
University
of Twente

trese.cs.utwente.nl

Utilizing design information
in aspect-oriented programming

István Nagy, Lodewijk Bergmans,
Wilke Havinga & Mehmet Aksit
[nagyist,bergmans,havingaw,
aksit@cs.utwente.nl]

TRESE group, University of Twente,
The Netherlands

Net.ObjectDays 2005 - Utilizing design information in AOP

University
of Twente

trese.cs.utwente.nl

Context

Composition Filters Model
Goal: support robust, scalable composition
Modularize crosscutting concerns
Implemented within Compose*.NET

language-independent

Metadata in OOP languages
Custom attributes (.NET)

e.g. [BusinessObject] class User {..}
Metadata annotations (Java)

e.g. @BusinessObject public class User {..}

3

University
of Twente

trese.cs.utwente.nl

Motivation

AOP: pointcuts define locations in the
program where the behavior should be
enhanced/modified

Often specified based on structural/syntactical
patterns: execution(* set*(..))
Mismatch between design intention and
pointcut expression: fragile pointcuts
Cause: design information is implicit

Lost when mapping design to implementation

Motivation -> Problem -> Analysis -> Realization -> Conclusion

Net.ObjectDays 2005 - Utilizing design information in AOP 4

University
of Twente

trese.cs.utwente.nl

Problem statement

How to represent/access design
information (in an AOP approach)

Such that pointcuts are more robust

Outline
Investigate mechanisms for accessing
design information (analysis)
Integration of mechanisms in Compose*
Conclusion/evaluation

Motivation -> Problem -> Analysis -> Realization -> Conclusion

Net.ObjectDays 2005 - Utilizing design information in AOP 5

University
of Twente

trese.cs.utwente.nl

Accessing design information (1):
Encoding

Naming patterns
Design intention can be obtained from
identifiers
Example: a method changes object state
Encoding: public void setName(..)
Pointcut: execution(public void set*(..));

Problems
Tight coupling between pointcut and base
classes (fragile pointcuts)
Representing multiple semantic properties

Motivation -> Problem -> Analysis -> Realization -> Conclusion

Net.ObjectDays 2005 - Utilizing design information in AOP 6

University
of Twente

trese.cs.utwente.nl

Accessing design information (2):
Encoding

Structural patterns
Design intentions represented by language
constructs (e.g. marker interfaces, dummy field,..)

Example: A class represents a BusinessObject
Encoding: public interface BusinessObject {}

public class User implements
BusinessObject {..}

Problem: information permanently
attached to units - no late binding

class User always a business object?

Motivation -> Problem -> Analysis -> Realization -> Conclusion

Net.ObjectDays 2005 - Utilizing design information in AOP 7

University
of Twente

trese.cs.utwente.nl

Accessing design information (3):
Attaching

Using annotations
Design intentions explicitly represented
by metadata annotations
Example: method changes object state

Encoding: [Update] public void setName(..)

Problems:
Late binding (introduction of annotations)
not supported by many AOP languages.
Annotations are scattered over the program

Motivation -> Problem -> Analysis -> Realization -> Conclusion

Net.ObjectDays 2005 - Utilizing design information in AOP 8

University
of Twente

trese.cs.utwente.nl

Accessing design information (4):
Inferring

Deriving design properties
Use automated reasoning to derive
design information from common rules

Example: When does a method update state?
Rule changeState(?class, ?methodName) if

shadowIn(?class, ?methodName, ?sp),
assignmentShadow(?sp, ?variable)

Problems
Information not always obtainable through
(automated) reasoning about syntax/structure
Need to specify domain specific properties

Motivation -> Problem -> Analysis -> Realization -> Conclusion

Net.ObjectDays 2005 - Utilizing design information in AOP 9

University
of Twente

trese.cs.utwente.nl

Accessing design information:
Summary

 Separability
of Props.

Multiple
Props.

Scattered
Properties

Late
Binding

Domain
Spec.Props.

Naming
Patterns no no no no yes

Structural
Patterns no yes no no yes

Custom
Attributes yes(1,2) yes no(1) no(1) yes

Semantic
Reasoning yes yes no yes no

Annotations

Deriving

(*)

yes

Desired properties

T
ec

h
n
iq

u
es

Motivation -> Problem -> Analysis -> Realization -> Conclusion

Net.ObjectDays 2005 - Utilizing design information in AOP 10

University
of Twente

trese.cs.utwente.nl

Analysis results

Annotations + derivation are a good
solution to represent design
information in AOP languages
Requirements for implementation:

Pointcuts that can refer to annotations
Means to introduce/derive annotations
(implement late binding, reasoning)

Ensures that decoupling of design
information from base code is possible

Motivation -> Problem -> Analysis -> Realization -> Conclusion

Net.ObjectDays 2005 - Utilizing design information in AOP 11

University
of Twente

trese.cs.utwente.nl

Integration in Compose* (1)

Selection based on annotations
[BusinessObject]
public class User {

String name;
String email;
SessionID session;

}

concern Persistence {
filtermodule PersistAdvice {..}

superimposition
selectors

persistClasses = { C |
classHasAnnotationWithName

(C, 'BusinessObject') };
filtermodules
persistClasses <- PersistAdvice;

}

Motivation -> Problem -> Analysis -> Realization -> Conclusion

Benefit:

• Write pointcuts
based on explicit
design information

Net.ObjectDays 2005 - Utilizing design information in AOP 12

University
of Twente

trese.cs.utwente.nl

Integration in Compose* (2)

Superimposition of annotations
[BusinessObject]
public class User {

String name;
String email;
SessionID session;

}

concern MyAppPersistence {
superimposition
selectors
transFields={F | fieldType(F, T),

isTypeWithName(T,'SessionID')};
annotations
transFields <- Transient; }

[BusinessObject]
public class User {

String name;
String email;
SessionID session;

}

Motivation -> Problem -> Analysis -> Realization -> Conclusion

Benefits:

• Modular specification of
scattered annotations

• Late binding

[Transient]

Net.ObjectDays 2005 - Utilizing design information in AOP 13

University
of Twente

trese.cs.utwente.nl

Integration in Compose* (3)

Derivation of annotations
[BusinessObject]
public class User {
String name;
String email;
SessionID session;
}

concern PersistenceView {
superimposition
selectors
persFields={ F |
classHasAnnotationWithName

(C, 'BusinessObject'),
hasField(C, F),
not(fieldHasAnnotationWithName

(F, 'Transient')) };
annotations

persFields <- Persistent; }

[BusinessObject]
public class User {
String name;
String email;
SessionID session;
}

Motivation -> Problem -> Analysis -> Realization -> Conclusion

[Transient]

[Persistent]

[Transient] Benefit: Reasoning to derive design information

Net.ObjectDays 2005 - Utilizing design information in AOP 14

University
of Twente

trese.cs.utwente.nl

Application:
Decoupling pointcuts & advice

Motivation -> Problem -> Analysis -> Realization -> Conclusion

concern SecurityLog{
[Monitoring] filtermodule AccessMonitoring{..}

..}

concern Debugging {
[Monitoring] filtermodule LoggingModule{..}
superimposition
selectors
criticalClasses = { AnyRes |

isClassWithName(Res, 'Resource'),
inInheritanceTree(Res, AnyRes) };

monitoringModules = { FM |
isFilterModule(FM),
hasAnnotationWithName(FM, 'Monitoring') };

filtermodules
criticalClasses <- monitoringModules;

}

Advice

Pointcuts

Binding

Net.ObjectDays 2005 - Utilizing design information in AOP 15

University
of Twente

trese.cs.utwente.nl

Conclusion: Benefits, contribution

What did we gain?
The ability to express pointcuts based on
design information

Pointcuts based on explicit design
information are less fragile
Aspects are more reusable

Decoupling of annotations from base
code, when the programmer wants it

Motivation -> Problem -> Analysis -> Realization -> Conclusion

Net.ObjectDays 2005 - Utilizing design information in AOP 16

University
of Twente

trese.cs.utwente.nl

Conclusion: Limitations, future work

Limitations
Disciplined programming still required to
keep annotations associated with proper
elements (when they cannot be derived)
Annotations may require parameters for
passing context; this is hard to include
when superimposing annotations
Current implementation can only use the
(type)name of annotations

Motivation -> Problem -> Analysis -> Realization -> Conclusion

	Utilizing design information� in aspect-oriented programming
	Context
	Motivation
	Problem statement
	Accessing design information (1): �Encoding
	Accessing design information (2):�Encoding
	Accessing design information (3):�Attaching
	Accessing design information (4):�Inferring
	Accessing design information: Summary
	Analysis results
	Integration in Compose* (1)
	Integration in Compose* (2)
	Integration in Compose* (3)
	Application:�Decoupling pointcuts & advice
	Conclusion: Benefits, contribution
	Conclusion: Limitations, future work

