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ABSTRACT

We analyze coupled optical defect cavities realized indimibe-dimensional Photonic Crystals. Viewing these as
open systems where waves are permitted to leave the seactme obtains eigenvalue problems for complex frequencie
(eigenvalues) and Quasi-Normal-Modes (eigenfunctidBs)gle defect structures (photonic crystal atoms) can beed
as elementary building blocks for multiple-defect struetu(photonic crystal molecules) with more complex funtdie
ity. The QNM description links the resonant behavior of indiial PC atoms to the properties of the PC molecules via
eigenfrequency splitting. A variational principle for QN\bdermits to predict the eigenfield and the complex eigeegalu
in PC molecules starting with a field template incorporatimg relevant QNMs of the PC atoms. Further, both the field
representation and the resonant spectral transmissise tddhese resonances are obtained from a variational fation
of the transmittance problem using a template with the nelstant QNMs. The method applies to both symmetric and
nonsymmetric single and multiple cavity structures withawer strong coupling between the defects.

1. INTRODUCTION

Photonic Crystal (PC) based devices attracted much intierése past two decades concerning both fundamental and
applied aspects. Plenty of modeling and computationahigcies are applied and well establishetiwe consider 1-D PC
structures that can provide qualitative insight and meanmferpreting the physics of higher dimensional struesuMore
specifically, we consider planar layered inhomogeneousaneith piecewise constant refractive index as the tradilo
model of 1-D PCs. Although they belong to the field of multéapptics? an old and well explored field, a novel way of
modeling these devices has certain theoretical and peahatierest for itself.

The open and finite nature of realistic structures is acbksbly directly characterizing resonance properties via an
investigation of the quasi-normal modes and associategleonfrequencies. Quasi-normal modes (QNMs) are eigen-
functions associated with the complex eigenfrequencisingrfrom the eigenvalue problem for outgoing wave$he
real parts of the complex eigenfrequencies are connectibdtiaé transmission resonance frequencies (local maxima of
the transmission) and the imaginary parts with the Q-factor linewidth) of the resonant transmission profile. Props
of the QNMs and related PC structures have been addresséeXd®C structures ifi;® while for 2-D PC structures the
theory is by far less often addressed and developed, withpartial results.

We specialize to finite PC structures with suitable defeststherwise periodic arrangements. These defects are
forming Fabry-Perot cavities enclosed by and separatecedlyyl mirrors that allow the exchange of energy between
cavities. These Coupled Optical Microcavites (CMC) alseattracted research interest as they provide means for the
implementation of optical filters, resonators, delay lim@sl other devices in both passive and active structut&s3
Reference method for analyzing one-dimensional strustisra Transfer Matrix Method (TMM).A description in the
framework of different coupled mode theory approaches leas ta traditional way of analysi§;” as far as interacting
optical waveguides (i.e., mostly systems with well confioptical states) are concerned. However, an analysis of,open
leaky structures directly based on QNMs seems to be missiigs paper considers some possibilities for the direct
characterization of open cavities in 1-D PC structuresgusinly the most relevant QNMs.

Composite CMC structures can be viewed as being formed fionpler single cavity structures or some other ele-
mentary building blocks. This decomposition is usuallytgairbitrary and can be done in many different ways for a given
structure. However, when the individual modes are welllized in the vicinity of their respective cavities, a fieldriplate
for the composite structure can be based on the superposititie individual cavity modes. In literature the basiastr
tures are sometimes called “photonic crystal atoms” whiettlae elementary building blocks for more complex “photoni
crystal molecules”. The key idea is that by combining PC atevith known properties more complex PC molecules can
be obtained with engineered properties. Based on QNMs aadatienal principle, our procedure enables the derivatio



of the properties of the composite structures in a consteigtay using the known properties of the building blocks and
certain design rules for the composite structure.

In the context of CMCs, we address the splitting of eigenfesgies by using a variational principle together with the
related QNMs of the individual cavities. QNMs of the compestructure (super-modes) can be approximated by this
approach. Further, we use the characterization of the CM@srins of quasi-normal modes to describe approximately
the resonant response to an external excitation in the érexyjudomain and the related field profiles. The approximate
frequency domain description follows from a suitable vigoizal formulatiort® for the transmission problem, using the
most relevant QNMs in establishing appropriate field tenesk?

2. THEORY

We consider 1-D optical structures in the frequency domaiteu external excitation. The optical fielt{x) excited
by the external influxE;,,. = Aince’™n@/9% with w € R and A;,. given, for vacuum speed of light satisfies the
Helmholtz equation

2 w? 2
on an interval: € [L, R], and transparent influx boundary conditions

(ELCE + #nnE) = 2% i A (ELCE - #nmE) -0 )
C =L C & x=R

at the boundaries = L, R. The exterior regions < L andz > R are assumed to be homogeneous with refractive indices

n;, andn,,, respectively. For structures with piecewise constamaotize index an exact solution can be obtained via a

standard and well known transfer matrix metHaalprief explanation is given in appendix A. This serves asresfce for

the approximate models discussed below.

Properties of passive, open optical structures with enexghange between the constitutive elements and the environ
ment are captured adequately by a formulation of an eigeayaloblem for complex frequencies. A finite structure can
be viewed as an open system with transparent boundarief whimit the leakage of energy to the exterior, see Figure 1
A). The electric field in the interior € (L, R) satisfies the Helmholtz equation:

w2
%Q + (1) Q=0 3)
with outgoing wave boundary conditions
C

This constitutes an eigenvalue problem for the frequeneg the complex eigenvalue and the field profjier) as eigen-
function (Quasi-Normal Mode).”-2° The eigenvalue problem is nonlinear because the eigenagl@ars in the boundary
conditions explicitly?® QNMs can be used to solve the initial-value problem of enéggiage out of a given open struc-
ture. The applicability of QNMs for solutions of the transsibn problems with given influx relies on specific pseudo-
orthogonality and completeness properties of QNMs whed ase basis set for an eigenfunction expansion.

A variational formulation of the QNM eigenvalue problem danbased on the functiort&l

R 2 .
Ew(Q) = 1 A ((amQ)Q - (;j_2n2('r)Q2) dx — E (ninQ2|m:L + noth2|z:R) . (5)
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If £,, becomes stationary, i.e. if the first variation®f (Q) vanishes for arbitrary variations @f, thenQ satisfies equation
(3) with equations (4) as natural boundary conditions. Talkes of the functional (5) with the proper eigenfunction/
eigenvalue paifw, Q) inserted is zero, i.e.

'Cw(Q) =0. (6)
This property can be shown analytically by computing theigkderivative of the first term in the (5).

We specialize to the analysis of optical defect modes &xjsti the bandgap of the underlying periodic structure. To
avoid using the full set of QNMs and the completeness praggedf QNMs to determine approximations of the optical
transmission and of the related field profiles, we apply aat@mal principle and a specific field template that consifts
QNMs associated only with the optical defects. Details @f fitocedure can be foundtfhand in appendix B.
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Figure 1. The coupled optical defect structures considered in this pepgnite periodic multilayer structures consisting of two materials
with high indexny and low indexn;,. The layer thicknessesy, d;, are chosen to be quarter-wavelength for the target wavelength
(related to a reference frequeney). Optical defects are introduced as changes of the layer thicknesseBaztive indices in the
otherwise periodic sequence. The whole structure is enclosed by twardarite media of indices;,, andn..... A composite multiple
defect structure A) can be decomposed into usually simpler singletdgfectures B) and C).

2.1 Coupled cavities

We start with the QNMgw1, @1), . .., (wn, QN ) for refractive index distributions; (x), ..., ny(x) of simpler (not
necessarily single cavity) structures. Solutions of tlgeevalue problem for the composite structure are assumbed to
well approximated by linear combinations of the QNMs belagdo the simpler structures. Therefore, we choose the field
template

N
Q=> aQ, @)
p=1
which represents a restrictiof),,(Q) — L. (a1, ...,ay) of the solutions of the original problem. Stationarity oéth
functional (5) transforms on the restricted set to the ciomus
L,
9 (a1,...,ap,...,an) =0, for p=1,...,N, (8)
Oay,

that can be written as an algebraic quadratic eigenvalusgmé'
(WM +wN+P)a=0 )

for the complex eigenfrequencies of the composite system. The eigenvectars= [a;,...,ax]? are the unknown
coefficients in the linear superposition (7) of the singleitytaQNMs. The elements of the matricds = [Mix]nxn,
N = [Nix]nxn, P = [Py]nxn are
1 [F i R
My, = —0—2/ n*(2)QiQrdx, Ny = - (Min@QiQk|o=1 + NoutQiQk|z=r) ; Pix = / 0:Q10,Qrdz.  (10)
L L

Equation (9) enables the approximate solution of the eiglelmvproblem for the composite structure. It directly links
the resonance behavior of the individual constitutive elsts (PC atoms) to the resonance properties of more complex
structures (PC molecules), i.e. describes the eigenfrexyusplitting. Both resonant frequencies and the relatdddfprs

can be estimated. Influences of the external and interndineament (type, length and strength of the “mirrors” in the
structure) or perturbations of various parameters canfeettii analyzed.

Usually the decompositions of the composite structure the precise choice of the elemerdds in (7) is to some
degree arbitrary. Supporting arguments can be based dtsrem direct computations, on physical intuition, big@bn
the following observation. For field3; with associated frequency; and refractive index; that satisfy (3), (4), equation
(9) can be written as

Sa=0, (12)

where

(w—w

QiQrdr + % (MinQiQk|z=1 + Mot QiQk|2=R) - (12)

If the trial field includes the exact solution for the compesstructure with the property = w; then (11) is satisfied.
Expression (12) suggests that the refractive index digiohsn; of the simpler structures in the decomposition should be
chosen as close as possible to the exact structure (re&aotiexn).

B w?n2(z) — win?(x)
S = 5
L C



2.2 First order perturbation correction for complex eigenfrequencies

We look for corrections of the complex eigenfrequenciesafgiven structure when small, localized perturbations of
the permittivity are present. A first order perturbationrection for the complex eigenvalue can be obtained by usihg (
and a known QNM eigenpafty, Qo) of the unperturbed problem with refractive index distribotug (x). It is reasonable
to assume that a small perturbation of the original strectiores neither change substantiality the position of thepdem
eigenfrequencies in the complex plane nor the shape of thespmnding QNMs. We consider a permittivity perturbation
in the form

n?(z) = nd(x) + n(x). (13)

For small (in effect) perturbation% we look for a first order correctian; to the eigenfrequenay = wq +w; . Variational
accuracy guarantees that the eigenfrequency is determpexfirst order if the eigenfunction is known up to zerothesrd
(solution of the unperturbed structure). Upon restric{ibigto the zeroth order field approximatidh, (aQo) — L(a), the

stationarity condition on the restricted set

OL

%(a) =0 (14)
gives an equation for the eigenfrequency correction. Kepepnly the first order terms i@, and using the property (6)

satisfied by the eigenpalit, Qo) of the unperturbed problem, the correction to the complgemrequency reads

R
w2 /L ng(x)dix
220 [ @) Qe + - (nn@lams + 1o Qo)
L

Obviously this procedure is closely related to the theorg20f); it may be viewed as a “coupled mode theory” with only
one mode in the template (7). Itis possible to extend thidhoteaind to derive both corrections to the eigenvalue anceto th
eigenfunction up to arbitrary order using a variationahpiple. An iterative procedure for higher order correcsiovill be
reported elsewhere.

3. RESULTSAND DISCUSSION

A series of examples of CMCs serves to validate the describeithods. First, we apply the variational principle
of Section 2.1 for approximating supermodes in a doublé:cairucture using known QNMs of the individual single
cavities. Second, the variational form of first order pdration theory for QNMs (Section 2.2) is used to analyze shift
of cavity resonances subjected to local perturbations eféfractive index. Third, the method of appendix B is agplie
to estimate the transmission on the basis of a few, mostaelé@NMs. Finally, we consider multiple-defect structures
designed to operate in weak and in strong coupling regiméso Bere our variational approximation method links the
resonant transmission to the underlying QNMs.

3.1 Double cavity structure

Consider a layer arrangement coded H4.)* D(LH )™, whereM; = 4 is the number of layer pairs in two mirrors
that enclose a single cavity, withy = 3.42, n;, = 1.0, between two semi-infinite media of the same refractivexnde
nin = nows = 1.0. The defect is introduced as a central layer of thicknéss= 2dg with high refractive index
np = ng. A complex QNM eigenfrequency associated with the defeprésent in the bandgap region of the related
periodic structure. This eigenfrequency has an imaginarytpat is several orders of magnitude smaller (absoluteya
than all other eigenfrequencies in the QNM spectfdrilsually this is a sign of a strong localization of the fiel, ifor
efficient energy trapping in the vicinity of the defect.

The combination H L) D(LH)M2 LD(LH)M: of two of these single cavity structures constitutes a raykir ar-
rangement with two defects and three mirrors (two enclosmigors of “length” M, one separating mirror of length
Ms). The defects form two Fabry-Perot-like resonant cavitis two corresponding QNMs and eigenfrequencies, see
Figure 2 A). These eigenfrequencies correspond to twonmeséon resonances (Figure 2 B)). The resonant response of
the double-cavity structure (the PC molecule) can be vieagokeing generated through eigenfrequency splitting fiam t
resonance of the single cavities (the PC atoms). By chantbmgiumber)M, of pairs in the separating mirror one can



control the interaction strength between the two cavitidsere the relative distance of the complex frequenciesatsfle
weak or strong coupling. If the separation is small, the layeof the individual QNMs is substantial, which results in a
strong separation of eigenfrequencies. Increasing treratpn leads to close eigenfrequencies and results imthetion

of a transmission pass-band. With a field template (7) thasists of a linear superposition of the two QNMs associated
with the individual left and right cavities, the procedurfeSection 2.1 permits the estimation of both eigenfrequesci
and QNMs of the PC molecule. According to Figure 2 this is acei&nt approximation even for quite moderate cavity
separationg/, with rather strong interaction.

In contrast to the composite structure, the permittivitgfipes that constitute the PC atoms do not show a particular
symmetry (cf. Figure 1). Hence the QNMs associated withrid&idual cavities do not exhibit a special symmetry. When
the decomposition is performed properly, however, theinsyetric and skew-symmetric linear combinations approi@ma
the symmetric and skew-symmetric supermodes of the conepstsiicture, see Figure 2 C) and D).
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Further, the variational method of appendix B allows to ebtarize the contributions of individual QNMs to the
spectral transmission. Figure 3 compares two differeningst The template (21) for the transmission field can betas
either on the two (exact) supermodes of the PC molecule, the®@NMs supported by the PC atoms. In both cases the
resulting approximations for the transmission are indggtishable (on the scale of the figure) from the TMM reference
Especially interesting is the weak coupling regime, whieedirect computation based on the TMM method can not easily
explain the resonant character of the transmission bandet#zr, examination of the relevant complex eigenvaluet)ef
QNMs, and of the expansion coefficients describes compl#ielresonant character of the transmission band.

3.1.1 Perturbation of the double cavity structure

The perturbation theory from Section 2.2 is applied to aralgigenfrequency shifts due to small local perturbations
of the cavity refractive index. Below we look at both symneamd asymmetric perturbations of the symmetric original
structure. The perturbative correction for QNMs estimagasonably, in first order, both real and imaginary parthef t
complex eigenfrequencies. This can be traced further togdm of the transmission, i.e. to the position of resonance
frequencies and the related Q-factors. Figure 4 introdtieespecific configuration.

First we consider an asymmetric perturbation, where thmcté¥e index of only one of the defects is raised locally.
According to Figure 5, this leads not only to shifts in theiposs of the eigenfrequencies (A)), but also to dramatic
changes of the transmission response (B)). The perturbaticrections (15) are obtained here with the QNMs (super-
modes) of the original composite structure. Figure 5 A) shtlve paths of the eigenfrequencies in the complex plane for
varying strengttp of the perturbation, where the influence of the refractivkeinchange has been evaluated by expression
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Figure 3. Transmittance (large axes, A), D); direct TMM computationts@MT model, superimposed curves) and coefficieptéor
approximations (appendix B) to the transmission problem, if the templatén@udes either the two exact supermodes of the composite
structure (left insets B), E)) or alternatively the QNMs associated with tthgidtual left and right cavities (right insets C), F)). The
upper plots A), B), C) correspond to a moderate cavity separafipe= 5, the lower plots D), E), F) to a setting witti, = 8, i.e. with
weaker interaction.

Figure 4. Perturbation of a CMC by localized refrac-
tive index changes. The double cavity structure is
encoded a§HL)*H(2L)(HL)*H(2L)(HL)*H.
The individual layers with alternately higlt() and
low refractive index L) are quarter-wavelength with
ng = 1.5, n, = 1, Nin = Nout = 1. TWo low in-
,,,,,, L - dex layers with larger half-wavelength thicknéss
e Pl form the two defects. Perturbations are introduced
rE T as local changes of the permittivity = n? (1+ p)
PR in the middle of the defect layer with a thickness of
d, d, = dp/5 andp € (0,0.05).

Local cavity
perturbation

A

Refractive index

B

(15) on the one hand, and, for comparison, by direct TMM dat@ns on the other hand. As expected, the straight lines
given by the first order perturbational expression are tatigjeo the reference paths. In this case the range of amabso
approximation level is rather limited, because the pe#tion destroys the overall symmetry of the structure.

If, in contrast, both cavities are perturbed in a symmeltricay, the results of the perturbational procedure are accu-
rate over a much larger range of perturbation strengthsees is Figure 5 C). Now the eigenfunctions of the perturbed
structured retain their symmetry, i.e. the assumptiontti@@QNM of the original structure forms an acceptable apipnax



tion to the perturbed configuration is apparently bettetifjed. For both the symmetric and the asymmetric pertudpati
the variational procedure of appendix B, in Figure 5 B) andapplied with the supermodes of the perturbed composite

structure in the template, gives accurate results for thetsql transmission through the double cavity structure.
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Figure 5. A), C): complex eigenfrequencies for the double cavity &traof Figure 4, direct computations and first order perturbation
theory approximations; B), D): spectral transmittance, QNM appratingappendix B) based on exact QNM supermodes, and TMM
reference; asymmetric (A), B) ) and symmetric perturbations ( C), D)

For the asymmetrically changed double cavity configuratbfrigure 5 A) we observed that the perturbational ex-
pression (15) grossly over- or underestimated the QNM e&®er correction. This was attributed to the fact that the
underlying field template could not respond to the brokenragtny of the perturbed structure. It is thus intriguing to
try a modified template that combines separate QNMs of theidividual cavities, i.e. to apply the theory of Section
2.1. Necessarily with this procedure one encounters aigerteor already for the approximation of the QNM supermode
eigenfrequencies of the unperturbed, symmetric strutlyserve that this concerns a configuration with relatively
refractive index contrast and strong interaction). Sditicording to Figure 6 A), the eigenfrequency shifts predidiy the
CMT formalism cover the whole range of perturbation strbegtonsidered here with reasonable accuracy, at least as far
as real parts are concerned. Plots B) and C) of Figure 6 shavittla eigenfunctions of the perturbed structure are indeed
not even approximately symmetric.

3.2 Multiple cavity structures

First, we look at the multiple cavity structure (the PC maleg that is formed by repeating the former single cavity
structure (the PC atom) according to the following deside.rRepetition of the unitcePC A, = (H L) (2H)(LH)M:,
here with)M; = 4, generates the molecu]l®C A, L] ;, whereJ is the number of PC atoms. The refractive indices are
the same as given in Figure 4 for the previous example. Ths plpand B) in Figure 7 show the complex frequencies
and the resonant transmission for PC molecules Wits 2 andJ = 3, respectively. Obviously these PC molecules
operate in the weak coupling regime, as is reflected in theiqity of the eigenfrequencies (A)) and in the charactarist
transmission pass-band (B)). The transmission, estinateording to the recipes of appendix B with directly comgute
QNM supermodes of the molecule, is in the excellent agreemigimthe TMM reference. The number of relevant QNMs
in the composite structure is equal to the number of PC atorodifications of this number permit a constructive tailgrin
of the transmission pass-band. For additional tuning ofrdmesmission that might be of interest, such as ripple fggon
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Figure 6. A): complex eigenfrequencies for the double cavity structiffggure 4, direct TMM computations and CMT approximations,
in the case of asymmetric perturbations. B), C), for or a perturbatiengtinp = 0.05: QNM profiles obtained with CMT (dashed
lines) and direct computation (continuous).

(to optimize for a flat-top response), one could adjust thength (number of layer pairs) of the mirrors, or add a certai
degree of asymmetry to the final desigt

Second, we consider the molecule formed by repeating theehiPC A, = (HL)M: (2H)(LH)M2 L(2H)(LH):,
with M; = 4 and M, = 2 (a strongly coupled double cavity structure), codedR6 A,, L] ;. In Figure 7 the complex
eigenfrequencies (C)) and the spectral transmission (B 3laown. This procedure represents the design of a multiple
channeled filter with narrow bandpass transmission. Bygragjustment of the inter cavity separation (i.e. of theptiog
strength), the relative position of the transmission cledgwecan be controlled. Additional unit cells contribute he t
eigenfrequency splitting in such a way that the split eigemiencies are close. Therefore, no additional transomissi
bands appear but the width of the transmission pass-bandsrisved.

Finally, a combination of the PC atoni3C'A; and PC A, leads to an even more complex composite structure. The
PC molecule is given by the sequerR€ M = [PC Ay, L, PC Ay, L, PC A,]. Figure 8 shows eigenfrequencies (A)) and
the corresponding QNMs (B)-E)). The individual contrilouis of each atom to the supermode profiles of the molecule
are clearly visible. The eigenfrequencies andws are the product of a weak coupling between the atétas4; (the
single cavity structures), according to the shape of theesppnding QNMs (D), E)). The eigenfrequencigsandw,
originate fromPC A5 and are affected by?C A; only in the form of an increased confinement (i.e. a lower hitso
value of the imaginary parts of the eigenfrequencies). Tdestmission for the composite structure exhibits a charistic
combination of both constitutive atoms. The high transanite peaks are caused by the resonances associatdel(Vuith,
while the transmission resonancesiof’A; are modulated (here they are suppressed) by the preseft@.4§. In this
case, light can not establish an efficient propagation paiim the left PC' A; to the right one, because the frequencies
supported by?C A, are inside the attenuation regionBE A, see Figure 7.

We like to emphasize here that the QNM analysis can be velfylifse an interpretation of results and for an accurate
prediction of the outcome of transmission experimentshag/a in the previous paragraphs. Here, the approach esiabli
a sound foundation of the concept of photonic crystal maés;uhat cannot be provided easily by direct TMM solutions.
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quencies and transmission for PC molec(ile§' A», L]; formed by repeating a double cavity unit cell in the strong coupling regime.
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Figure 8. A): complex eigenfrequencies —w.4 of the PC moleculePC A1, L, PC A,, L, PC A4] formed by combination of the single
and double cavity atoms of Figure 7. The insets show the correspondiMsQvherev:, w2, ws, andw, are related to profiles B), D),
E), and C). F): spectral transmission for the composite structure.

4. CONCLUSIONS

In this paper we consider the open and finite nature of a spet#fss of PC structures by directly characterizing their
resonance properties via an investigation of the quasirabmode spectrum. A variational principle for QNMs allows
to approximate the eigenfrequencies and QNMs of composgitiépie cavity structures by eigenfrequencies and QNMs



of simpler structures. Further, a constructive, recentlyetbped wadf of relating a quasi-normal mode description to
transmission properties of optical defect microcavitiedD PCs is applied. Detailed remarks about alternativetiagis
methods can be found .

We specialize to defect structures that support transamigsiodes in the bandgap of otherwise periodical structures.
Numerical examples show that the method is applicable ftlh bpmmetric and nonsymmetric layer arrangements and
both weak and strong coupling between defects.

A form of coupled mode theory for finite, open 1-D PC strucsui® proposed, that uses directly the most relevant
QNMs. Closely related, an expression for a first order pbétion correction of the complex eigenfrequencies is eeriv
by means of variational restriction. In contrast to othethods that use different types of basis fields and rely eibiner
a tight-binding approximatid- 13 and/or on supercell methods!? with our approach the finite nature of the individual
building blocks in the composite structure is fully respgelct

Further, we analyzed a series of characteristic examplesittiple cavity structures and were able to point out charac
teristic features in the composite structures as origigetiom simpler structures. The results suggest that tHemof the
photonic crystal molecules can be founded on the QNM armb@sconsidered here. Together with our variational approx-
imation method, the QNM analysis offers a resourceful methoo the interpretation of complex phenomena associated
with the resonance properties in 1-D PC structures.

Provided that suitable QNM basis fields can be made availaplenalytical or numerical means, possible general-
izations to 2D and 3D structures could be based on suitablkdifitnal representations of the frequency domain Maxwell
equations for higher dimensioAd.

APPENDIX A. TRANSFER MATRIX METHOD

For structures with piecewise constant refractive indestritiution inside a finite spatial domain a method for solv-
ing both the transmittance and eigenvalue problems is thiekwewn transfer matrix method (TMM).Solutions of the
Helmholtz equation are given as combinations of left- agttriraveling waves in thg-th layer

Ej(z) = Ajeikj(r*lj—l) + Bje*ikj(mflj—l) (16)

fora € [l;_1,1;] inaregion of constant index; wherek; = n;w/cis the wave number in this layer. To connect the fields
inside all layers we impose continuity conditions at theifaces:

E;(lj) = Ej1(lj),and 0, E;(l;) = 0. Ej11(15). 17)

These conditions lead to a system of equations that can beseged in matrix form. Ordered multiplication of the
relevant matrices connects amplitudes in each layer ofttbetare, as well as the amplitudes in the incidence andubutp

regions:
Ain _ mu(w) m12(w) Aout (18)
Bin m21(w) m22(w) Bout '
The transmittance problem with incoming wave from the lefélved withB,,,; = 0 for specifiedA;,, (amplitude of the
incoming wave) with given real frequency< R. The amplitude transmission and reflection coefficienteapessed as
Aout Bin
Ain ’ Azn ’
If we choose conditionsl;, = B,,: = 0, i.e. restrict the exterior solutions to purely outgoingves, the eigenvalue

problem with outgoing wave boundary conditions is addmréssé/ith these conditions the system of equations can be
nontrivially satisfied if

t(w) =

and r(w) =

(19)

mll(w) = 0 (20)

Analytic continuation of the transfer matrix into the compblane enables us to find solutions of (20) as complex eigen-
valuesw.?* By substituting the eigenvalue into the field representafi6) we obtain the corresponding eigenfunction,
up to a complex constant. To solve (20) we apply a numeriegiion procedure of Newton typge.In cases when that
method fails to converge due to closely spaced eigenvaluesise a more powerful technique for determining complex
solutions, based on the argument principle method from texgmalysis®



APPENDIX B. VARIATIONAL QNM MODEL OF THE TRANSMISSION PROBLEM

We specialize to finite periodic structures that possessinéssion properties with a bandgap, i.e. with a region of
frequencies of very low transmission. Breaking the pedibgiof the structure can give rise to defect resonancedérsie
bandgap. Approximation of the spectral transmission artl@fssociated field profiles for these resonances is thefaim o
our analysis. Therefore, we choose a field template for Hrestnittance problem as

N
E(z,w) ~ Epf(z,w) + Z ap(w)Qp(z), (21)

wherep is an index countingV relevant QNMs, i.e. those with the real part of their compiequency in the given
frequency range. We showed in terms of the successful apiplicof the template (21), that the transmission resoreance
associated with the defects are excited by the “mirror” figlgd; of the periodic structure without defect, which for
frequencies inside the bandgap is an almost completelycteflavave with only a weak tail that extends into the interior
of the structure. Therefore, this template (21) quantifiesrtotion of a forced resonance response that appears bdabaus
incident wave possesses a real frequency close to the mtalfplae complex eigenfrequency of a suitable QNM supported
by the defect structure.

This is only an approximate model for the transmittance fgmbin specific frequency regions, since neittigy, s
nor @) satisfy all of equations (1)-(2). The residuals can be vidae contributions from other QNMs in the complete
set supported by the defect structure, that are not inclutl¢al). To find the decomposition coefficients, we use
a variational form of the transmittance probléfnThe transmittance problem corresponds to the equation andah
boundary conditions, arising from the condition of statinty of the functional

1 R 2 -

['(E) = 7/ <(8J,E)2 - w2n2(x)E2> dx — E (ninE2|a;:L + noutE2|x=R> + 2igninA7?ncE|;c=L~ (22)
2 /L c 2c c

If £ becomes stationary, i.e. if the first variation©fE) vanishes for arbitrary variations &, then F satisfies (1), and

(2) as natural boundary conditions. Restricting the funretl (22) to the field template (214, becomes a function of the

coefficientsa,, for given £,y and@,. The stationarity conditions then read

oL
a—aq(al,ag,...,aN):O, q:L...,N. (23)

The optimal decomposition coefficients are obtained agisolsiof a linear system
Aa= —b, (24)

wherea = [aj,as, ...,ay]T is the vector of coefficients to be determined by solving §reesn of equations (24 and

b are calculated according to (21, 22, 23); explicit exp@ssare given in? For given frequency one thus approximates
the field profile for a transmission problem with a specifioiming wave. Spectral information (transmittance, refiectd
can be obtained by repeating this procedure for a serieggfiémcies. The transmittance reads

2
1 Nout

N
T(@) = o e [Brs (Row) +;ap(w)Qp(R) : (25)

We showed it that the mirror field is necessary for approximating the inow part of the transmission field on the
whole spatial region occupied by the structure. Howeveradditional approximation that is analytical in form can be
obtained without the mirror field when only the spectral sraittance profile is considered. In cases where the underlyi
periodic sequence forms a good mirror, i.e. provides a tadleatance over the bandgap region, the mirror field could be
omitted from the field template. This is possible becauseriner field contribution in the relevant terms of (24) be@sn
negligible for the field at the end of the structure where anlygoing waves are present. Then this approach can be seen
as an alternative projection technique for a QNM expansion.
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