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Abstract— In this report, a method for approximating the
stabilizing solution of the Hamilton-Jacobi equation for in-
tegrable systems is proposed using symplectic geometry and
a Hamiltonian perturbation technique. Using the fact that
the Hamiltonian lifted system of an integrable system is also
integrable, the Hamiltonian system (canonical equation) that
is derived from the theory of 1-st order partial differential
equations is considered as an integrable Hamiltonian sys-
tem with a perturbation caused by control. Assuming that
the approximating Riccati equation from the Hamilton-Jacobi
equation at the origin has a stabilizing solution, we construct
approximating behaviors of the Hamiltonian flows on a stable
Lagrangian submanifold, from which an approximation to the
stabilizing solution is obtained.

I. INTRODUCTION

When analyzing a control system or designing a feedback
control, one often encounters certain types of equations that
dominate fundamental properties of the control problem at
hand. It is the Riccati equation for linear systems and the
Hamilton-Jacobi equation plays the same role in nonlinear
systems. For example, an optimal feedback control can be
derived from a solution of a Hamilton-Jacobi equation [15]
and H∞ feedback controls are obtained by solving one or
two Hamilton-Jacobi equations [3], [14], [21], [22]. Closely
related to optimal control and H∞ control is the notion
of dissipativity, which is also characterized by a Hamilton-
Jacobi equation (see, e.g., [13], [24]). Some active areas of
research in recent years are the factorization problem [4], [5]
and the balanced realization problem [11] and the solutions
of these problems are again represented by Hamilton-Jacobi
equations (or, inequalities).

Contrary to the well-developed theory and computational
tools for the Riccati equation, which are widely applied, the
Hamilton-Jacobi equation is still an impediment to practical
applications of nonlinear control theory. There seem to be
mainly two directions in the study of the Hamilton-Jacobi
equation. One is to try to obtain approximate solutions and
the other is to study the geometric structure and the prop-
erties of the equation itself and its exact solutions. For the
former research we refer to [16] for the Taylor series expan-
sion approach, [7] for the Galerkin approximation method,
and [17] for the state dependent Riccati equation approach.
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A partially related research field to the former direction is the
theory of viscosity solutions. It deals with general Hamilton-
Jacobi equations for which classical (differentiable) solutions
do not exist. For introductions to viscosity solutions see,
for instance, [6], [8], [10] and for an application to an
H∞ control problem, see [20]. In the second direction, [21]
and [22] give a sufficient condition for the existence of
the stabilizing solution using symplectic geometry. In [19],
the geometric structure of the Hamilton-Jacobi equation is
studied showing the similarity and difference with the Riccati
equation. See also [23] for the treatment of the Hamilton-
Jacobi equation as well as recently developed techniques
in nonlinear control theory such as the theory of port-
Hamiltonian systems.

In this report, we attempt to develop a method to approxi-
mate the stabilizing solution of the Hamilton-Jacobi equation
based on the geometric research in [21], [22] and [19]. The
main object of the geometric research on the Hamilton-Jacobi
equation is the associated Hamiltonian system. However,
most approximation research papers mentioned above do
not explicitly consider Hamiltonian systems, although it is
well-known that the Hamiltonian matrix plays a crucial role
in the calculation of the stabilizing solution for the Riccati
equation. One of our purposes in this report is to fill in this
gap. Another purpose is to explore the possibility of using
integrability conditions on the uncontrolled part of the system
for controller design. Even when one can completely solve
the equations of motion for a system with zero input, most
nonlinear control techniques do not exploit the knowledge
because once a feedback control is implemented, the system
is not integrable anymore. However, within the geometric
framework for the Hamilton-Jacobi equation, the effect of
control can be considered as a Hamiltonian perturbation
to the Hamiltonian system obtained by lifting the origi-
nal equations of motion. Here, a crucial property is that
if the equations of motion are integrable, then its lifted
Hamiltonian system is also integrable (see, §IV). By using
one of the Hamiltonian perturbation techniques (see, e.g.,
[2], [12]) we analyze the behaviors of the Hamiltonian
systems with control effects and try to approximate the
Lagrangian submanifold on which the Hamiltonian flow is
asymptotically stable.

The organization of this report is as follows. In §II, the
theory of 1st-order partial differential equations is reviewed
in the framework of symplectic geometry, stressing the
one-to-one correspondence between solution and Lagrangian
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submanifold. In §III, a special type of solution, called the
stabilizing solution, is introduced and the geometric theory
for the Riccati equation is also reviewed. In §IV a key
observation on integrability for Hamiltonian lifted systems
is presented. We apply, in §VI, a Hamiltonian perturbation
technique (reviewed in §V) for the system in which the
Hamiltonian is decomposed into an integrable one and a per-
turbation Hamiltonian that is related to influence of control.
By assuming that the linearized Riccati equation at the origin
has a stabilizing solution, we try to approximate the behav-
iors on the stable Lagrangian submanifold. Once the flows
approximating the actual asymptotically stable Hamiltonian
flows are obtained with general initial conditions, it is an
algebraic operation to obtain the surface on which these flows
are moving. In §VII, a numerical example is illustrated. For
the sake of space, we have omitted proofs for propositions.

II. REVIEW OF THE THEORY OF 1ST-ORDER PARTIAL

DIFFERENTIAL EQUATIONS

In this section we outline, by using the symplectic geo-
metric machinery, the essential parts of the theory of partial
differential equations of first order.

Let us consider a partial differential equation of the form

(PD) F (x1, · · · , xn, p1, · · · , pn) = 0,

where F is a C∞ function of 2n variables, x1, · · · , xn

are independent variables, z is an unknown function and
p1 = ∂z/∂x1, · · · , pn = ∂z/∂xn. Let M be an n dimen-
sional space for (x1, · · · , xn). We regard the 2n dimensional
space for (x, p) = (x1, · · · , xn, p1, · · · , pn) as the cotangent
bundle T ∗M of M . T ∗M is a symplectic manifold with
symplectic form θ =

∑n
i=1 dxi ∧ dpi.

Let π : T ∗M → M be the natural projection and
V ⊂ T ∗M be a hypersurface defined by F = 0. Define
a submanifold

ΛZ = {(x, p) ∈ T ∗M | pi = ∂z/∂xi(x), i = 1, · · · , n}
for a smooth function z(x). Then, z(x) is a solution of (PD)
if and only if ΛZ ⊂ V . Furthermore, π|ΛZ

: ΛZ → M
is a diffeomorphism and ΛZ is a Lagrangian submanifold
because dim ΛZ = n and

θ|ΛZ
= 0.

Conversely, it is well-known (see, e.g. [1], [18]) that for a
Lagrangian submanifold Λ passing through q ∈ T ∗M on
which π|Λ : Λ → M is a diffeomorphism, there exists a
neighborhood U of q and a function z(x) defined on π(U)
such that

Λ ∩ U = {(x, p) ∈ U | pi = ∂z/∂xi(x), i = 1, · · · , n}.
Therefore, finding a solution of (PD) is equivalent to finding
a Lagrangian submanifold Λ ⊂ V on which π|Λ : Λ → M
is a diffeomorphism.

Let f1 = F . To construct such a Lagrangian submanifold
passing through q ∈ T ∗M , and hence to obtain a solution
defined on a neighborhood of π(q), it suffices to find func-
tions f2, · · · , fn ∈ F (T ∗M) with df1(q)∧ · · · ∧ dfn(q) �= 0

such that {fi, fj} = 0 (i, j = 1, · · · , n), where {·, ·} is the
Poisson bracket, and∣∣∣∣∂(f1, · · · , fn)

∂(p1, · · · , pn)

∣∣∣∣ (q) �= 0. (1)

Using these functions, equations f1 = 0, fj = constant, j =
2, . . . , n define a Lagrangian submanifold Λ ⊂ V . Note that
the condition (1) implies, by the implicit function theorem,
that π|Λ is a diffeomorphism on some neighborhood of q.

Since {F, ·} is the Hamiltonian vector field XF with
Hamiltonian F , the functions f2, · · · , fn above are first
integrals of XF . The ordinary differential equation that
gives the integral curve of XF is the Hamilton’s canonical
equations ⎧⎪⎪⎨

⎪⎪⎩
dxi

dt
=

∂F

∂pi

dpi

dt
= − ∂F

∂xi

(i = 1, · · · , n), (2)

and therefore, we seek n−1 commuting first integrals of (2)
satisfying (1).

III. THE STABILIZING SOLUTION OF THE

HAMILTON-JACOBI EQUATION

Let us consider the Hamilton-Jacobi equation often en-
countered in nonlinear control theory

(HJ) H(x, p) = pT f(x) − 1
2
pT R(x)p + q(x) = 0,

where f : M → R
n, R : M → R

n×n, q : M → R are all
C∞, and R(x) is a symmetric matrix for all x ∈ M . We
also assume that f and q satisfy f(0) = 0, q(0) = 0 and
∂q
∂x (0) = 0.

The stabilizing solution of (HJ) is defined as follows.

Definition 1: A solution z(x) of (HJ) is said to be the
stabilizing solution if p(0) = 0 and 0 is an asymptotically
stable equilibrium of the vector field f(x)−R(x)p(x), where
p(x) = (∂z/∂x)T (x).

It will be important to understand the notion of the
stabilizing solution in the framework of symplectic geometry
described in the previous section. Suppose that we have
the stabilizing solution z(x) around the origin. Then, the
Lagrangian submanifold corresponding to z(x) is

ΛZ = {(x, p) | p = ∂z/∂x(x)} ⊂ T ∗M.

ΛZ is invariant under the Hamiltonian flow of⎧⎨
⎩

ẋ = f(x) − R(x)p

ṗ = −∂f

∂x
(x)T p +

∂(pT R(x)p)
∂x

T

− ∂q

∂x

T

.
(3)

To see this invariance, one needs to show that the second
equation identically holds on ΛZ , which can be done by
taking the derivative of (HJ) after replacing p with p(x). Note
that the left-hand side in the second equation of (3) restricted
to ΛZ is (∂p/∂x)(f(x) − R(x)p(x)). The first equation
is exactly the vector field in Definition 1. Therefore, the
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stabilizing solution is the Lagrangian submanifold on which
π is a diffeomorphism and the Hamiltonian flow associated
with H(x, p) is asymptotically stable.

IV. AN OBSERVATION ON INTEGRABLE SYSTEMS AND

THEIR HAMILTONIAN LIFTING

It is well-known that any system described by an ordinary
differential equation can be represented as a Hamiltonian
system by doubling the system dimension (Hamiltonian
lifting). In [9] this technique is extended to control systems
with inputs and outputs and is known to be effective for
fundamental control problems such as factorization [5], [4]
and model reduction problems [11]. In this section we give a
useful observation on a Hamiltonian lifted system when the
original system is integrable. Although it is simple, we did
not find this observation in the literature.

Let the system ẋ = f(x) be completely integrable and
u1(x), . . . ,un−1(x) be first integrals. Consider its Hamilto-
nian lifted system{

ẋ = ∂H
∂p = f(x)

ṗ = −∂H
∂x = −∂f

∂x (x)T p
(4)

with Hamiltonian H = pT f(x). Let vj(x, p) = uj(x) for
j = 1, . . . , n − 1 and vn = H(x, p). Then,

{vi, vj} =
∂vi

∂x

∂vj

∂p

T

− ∂vi

∂p

∂vj

∂x

T

= 0

for i, j = 1, . . . , n − 1,

{vi, vn} =
∂vi

∂x
f(x) − ∂vi

∂p

∂(pT f(x))
∂x

T

= 0

for i = 1, . . . , n − 1,

which means that v1,. . . , vn are in involution. Therefore,
the Hamiltonian system (4) is integrable in the sense of
Liouville. This means that if one can obtain general solutions
of the original system by quadrature, it is also possible for
its lifted system.

One may realize that in the analysis of the Hamilton-Jacobi
equation (HJ) Hamilton’s canonical equations (3) contain the
same terms as the Hamiltonian lifting (4) of the plant system.
The purpose of this report is to show that one can exploit
this property of Hamiltonian lifting for approximation of the
stabilizing solution of (HJ).

V. THE VARIATION OF CONSTANTS TECHNIQUE IN

HAMILTONIAN PERTURBATION THEORY

We review, in this section, one of the Hamiltonian per-
turbation techniques which is a simple consequence of the
Hamilton-Jacobi theory (see, e.g., [2], [12]).

Let
H(x, p) = H0(x, p) + H1(x, p)

be the Hamiltonian with the integrable part H0 and the per-
turbation H1. By the integrability condition, the Hamilton-
Jacobi equation

H0

(
x,

∂S

∂x

)
+

∂S

∂t
= 0 (5)

has a complete solution S(x1, . . . , xn, t, P1, . . . , Pn), where
P1,. . .,Pn are arbitrary constants. By the canonical coordi-
nate transformation (x, p) → (X,P ) defined by

pj =
∂S

∂xj
, Xj =

∂S

∂Pj
(6)

the new Hamiltonian becomes 0 and the unperturbed equa-
tions of motion

ẋj =
∂H0

∂pj
, ṗj = −∂H0

∂xj

are converted into

Ẋj = 0, Ṗj = 0.

By the canonical transformation (6), the new Hamiltonian
for the perturbed equations of motion is H1(x, p) since by
(5) S satisfies

H

(
x,

∂S

∂x

)
+

∂S

∂t
= H1(x, p).

Therefore,

ẋj =
∂H

∂pj
, ṗj = − ∂H

∂xj

are converted into

Ẋj =
∂H1

∂Pj
(x, p) Ṗj = −∂H1

∂Xj
(x, p),

where, from (6), xj = xj(t,X, P ) and pj = pj(t,X, P ).

VI. CONTROL PROBLEM FOR INTEGRABLE SYSTEMS AND

APPROXIMATION OF THE STABILIZING SOLUTION

In this report we consider the nonlinear control system
with m inputs of the form

ẋ = f(x) + G(x)u, (7)

where f : R
n → R

n and G : R
n → R

n×m are smooth
functions of x.

Assumption 1: The system under control ẋ = f(x) is
integrable and a solution x = Φ(t, x0) for a general initial
condition x = x0 at t = 0 is obtained by quadrature.

We consider the same Hamilton-Jacobi equation in §III

(HJ) H = pT f(x) − 1
2
pT R(x)p + q(x) = 0

where q = 1
2xT Qx + O(|x|3) with Q a real constant

n×n symmetric matrix. Being R(x) and q(x) positive semi-
definite in (HJ) corresponds to an optimal control problem
whereas R(x) and q(x) are indefinite for an H∞ type
problem.

The Hamilton’s canonical equations to solve (HJ) are⎧⎨
⎩

ẋ = f(x) − R(x)p

ṗ = −∂f

∂x
(x)T p +

∂(pT R(x)p)
∂x

T

− ∂q

∂x

T

.
(8)

From the integrability assumption on (7) and the property of
lifted Hamiltonian systems described in §IV, the Hamiltonian
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H0 = pT f(x) is integrable. We define the perturbation
Hamiltonian by H1 := H −H0 = − 1

2pT R(x)p + q(x). The
Hamiltonian H1 is considered to represent the behaviors cre-
ated by the control inputs, although this must be interpreted
in the lifted space, the cotangent bundle T ∗M .

We first solve the unperturbed Hamilton’s canonical equa-
tions

ẋ = f(x), ṗ = −∂f

∂x
(x)T p (9)

determined by H0 by means of the Hamilton-Jacobi theory.
We take the Hamilton-Jacobi approach because it automat-
ically produces new canonical variables. It is important to
keep working with canonical variables not to cause secular
terms in calculations, by which stability analysis may be-
come unreliable (see, e.g., [12]).

The Hamilton-Jacobi equation to solve (9) is

H0

(
x,

∂W

∂x

)
+

∂W

∂t
= 0. (10)

Proposition 2: A complete solution of (10) is obtained as

W (x, t, P ) =
n∑

j=1

PjΦ̃j(t, x), Pj’s are arbitrary constants,

where Φ̃(t, x) = (Φ̃1(t, x), · · · , Φ̃n(t, x)) is the inverse of
the solution x = Φ(t, x0).

From W (x, t, P ), by

pj =
∂W

∂x
, Xj =

∂W

∂Pj
(arbitrary constants),

a general solution of (9) is obtained as

xj(t) = Φj(t,X), pj(t) =
n∑

k=1

Pk
∂Φ̃
∂xj

(t, x) (11)

or,

x(t,X) = Φ(t,X), p(t,X, P ) =
∂Φ̃
∂x

(t, x)T P. (12)

We note that the transformation (x, p) → (X,P ) is canoni-
cal. In the new coordinates the free motion (without control)
is represented as

Ẋ = 0, Ṗ = 0.

With control, the new Hamiltonian is

H1(x, p) = H1(x(t,X), p(t,X, P )) =: H̄1(X, P, t),

and X , P obey

Ẋj =
∂H̄1

∂Pj
, Ṗj = −∂H̄1

∂Xj
. (13)

We remark that until now no approximation has been made.
If we plug the solution X(t), P (t) of (13) into (11) or (12),
we get exact solutions of the Hamilton’s canonical equations
(8) for the original control Hamilton-Jacobi equation (HJ).
However, it is still difficult to solve (13) and we try to find
an approximate solution of (13).

Assumption 2: The integrable vector field f(x) is written
as

f(x) = Ax + O(|x|2), A =
∂f

∂x
(0),

where A is a real n×n matrix. Furthermore, the linearization
of (HJ), which is the algebraic Riccati equation

PA + AT P − PR(0)P + Q = 0, (14)

has the stabilizing solution Γ.

We note that from Assumption 2, it follows that

x = Φ(t,X) = eAtX + O(|X|2) (15)

X = Φ̃(t, x) = e−Atx + O(|x|2). (16)

Proposition 3: The linearized equation of (13) is{
˙̄X = −e−AtR(0)e−AT tP̄
˙̄P = −eAT tQeAtX̄.

(17)

Moreover, this can be explicitly solved as(
X̄(t, X̄0, P̄0)
P̄ (t, X̄0, P̄0)

)
=

(
eAt 0
0 e−AT t

)−1

× exp
[
t

(
A −R(0)
−Q −AT

)] (
X̄0

P̄0

)
. (18)

By Assumption 2, it follows that(
A −R(0)
−Q −AT

) (
I
Γ

)
=

(
I
Γ

)
(A − R(0)Γ),

and

exp
[
t

(
A −R(0)
−Q −AT

)](
I
Γ

)
=

(
I
Γ

)
exp [t(A − R(0)Γ)] .

Therefore, if we take the initial conditions X̄0 and P̄0

satisfying P̄0 = ΓX̄0, then, we have(
X̄
P̄

)
=

(
e−At 0

0 eAT t

)(
I
Γ

)
exp [t(A − R(0)Γ)] X̄0.

Denoting quantities in the left-hand side of the above equa-
tion as X̄(t, X̄0, ΓX̄0) and P̄ (t, X̄0,ΓX̄0), we substitute
them in (12). Then, we have the following proposition.

Proposition 4: For sufficiently small |X̄0|,
x(t, X̄(t, X̄0,ΓX̄0)), p(t, X̄(t, X̄0,ΓX̄0), P̄ (t, X̄0, ΓX̄0))

converge to the origin as t → ∞.

From Proposition 4, we think of

x(t, X̄(t, X̄0, ΓX̄0)), p(t, X̄(t, X̄0, ΓX̄0), P̄ (t, X̄0,ΓX̄0))
(19)

as approximated behaviors of the canonical equations (8)
near the stable Lagrangian submanifold. By changing t and
X̄0 the points defined by (19) move on a surface which will
be an approximation of the stable Lagrangian submanifold.
Actually, one direction in X̄0 space is not independent
of t. Therefore, we eliminate t and n − 1 elements of
X̄0 = (X̄01, . . . , X̄0n) to get an approximation of the
stable Lagrangian submanifold. Summarizing, we propose
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the following method to approximate the stable Lagrangian
submanifold and the stabilizing feedback.

Proposition 5: Solve the uncontrolled system equation
ẋ = f(x) of (7). Form a general solution (11) or (12) of
(9) using the solution of ẋ = f(x). Calculate X̄(t, X̄0, P̄0)
and P̄ (t, X̄0, P̄0) in (18) and restrict their initial points to the
stable Lagrangian subspace of the linearized Riccati equation
around the origin, {(X̄0, ΓX̄0) | |X̄0| small}, where Γ is the
stabilizing solution. Substitute them in (11) (or (12)) to get
(19). Eliminate t and n − 1 variables from X̄01, . . . , X̄0n

to get a set of n algebraic equations of x1, . . . , xn and
p1, . . . , pn, which defines an n-dimensional surface. Solve
the algebraic equation with respect to p1, . . . , pn to get
a graph form expression of the surface p = p(x) (or,
p1 = p1(x), . . . , pn = pn(x)). One can construct the desired
feedback from p(x) depending on R in (HJ).

Based on the next proposition, one can expect that the
performance of the feedback control in Proposition 5 is better
than that of the linear control obtained from (14).

Proposition 6: If the procedure in Proposition 5 is ap-
plied to the linearized system and the Riccati equation (14),
the resulting solution is the linear stabilizing solution Γ.

VII. NUMERICAL EXAMPLE

Let us consider the 1-dimensional nonlinear optimal con-
trol problem;

ẋ = x − x3 + u (20)

J =
∫ ∞

0

q

2
x2 +

r

2
u2 dt.

The Hamilton-Jacobi equation for this problem is

H = p(x − x3) − 1
2r

p2 +
q

2
x2 = 0 (21)

and the Hamilton’s canonical equations are⎧⎨
⎩ẋ = x − x3 − 1

r
p

ṗ = −(1 − 3x2)p − qx.

The Hamiltonian H is split into the integrable and perturba-
tion parts;

H0 = p(x − x3), H1 = − 1
2r

p2 +
q

2
x2.

The solution of the equation (20) with the initial condition
x = X at t = 0 without control is obtained from

x2

1 − x2
=

X2

1 − X2
e2t, (22)

and is denoted as x = Φ(t,X). The solution of the canonical
equations for H0 corresponding to (9) is

x = Φ(t,X), p = DΦ̃(t, x)P =
X3e2t

x3
P, (23)

where Φ̃ is the inverse of Φ with respect to x, P is an
arbitrary constant and the last equation is derived from (22).

Based on the linearization of (20) (A = 1, B = 1), the lin-
earized canonical equations for perturbation that corresponds
to (9) are ⎧⎨

⎩
˙̄X = −1

r
e−2tP̄

˙̄P = −qe2tX̄.

The solution of the above equations for the initial condition
in the stable Lagrangian subspace of the linearized Riccati
equation of (21) is{

X̄(t, X̄0, ΓX̄0) = e−(1+λ)tX̄0

P̄ (t, X̄0,ΓX̄0) = e(1−λ)tΓX̄0,
(24)

where Γ = r +
√

r2 + qr is the stabilizing solution of the
Riccati equation and −λ = −√

1 + q/r is the closed loop
matrix (eigenvalue). Substituting the expression of X̄ into
the first equation of (23), we have

x2

1 − x2
=

e−2λtX̄2
0

1 − e−2(1+λ)tX̄2
0

, (25)

from which we write down t as a function of x. Next,
we substitute the expressions of t(x) just obtained and X̄
and P̄ into the second equation of (23). Then, we have
an approximation of the asymptotically stable Lagrangian
submanifold in the graph form

p = p(x), (26)

and u = −(1/r)p(x) is an approximation of the optimal
feedback control.

Remarks.

(i) When q/r � 1, in other words, when a high gain feed-
back is allowed, by approximating e−2λt ∼ e−2(1+λ)t,
(23) gives x2 = e−2λtX̄2

0 . Thus, we have p(x) = Γx,
which is the linear optimal feedback.

(ii) When t � 1 in (23), it follows that

e−2λtX̄2
0

1 − e−2(1+λ)tX̄2
0

∼ e−2λtX̄2
0 ,

x2

1 − x2
∼ x2

and hence e−2λtX̄2
0 ∼ x2. Thus, it can be seen that the

feedback (26) is tangent to the linear optimal feedback
at the origin (see, also Proposition 6);

p(x) ∼ Γx.

Calculations have been carried out with q = 1 and r = 1.
The important step of the calculations is to solve (25) with
respect to t. We have done it for sampled points of x in [0, 2]
with step size 0.05. The values of t are substituted, first in
(24) which gives a relation of x and X̄ and, next in (23)
together with the x-X relation, yielding a relation of p and
x at the sample points. Finally, the p-x relation thus obtained
is interpolated with a spline function. The result is shown in
Fig. 1, which is an approximation of the optimal feedback.

One knows that the Hamilton-Jacobi equation (21) can
be solved exactly since the problem is one dimensional.
Actually, we are more concerned with (stabilizing) feedback
function rather than solutions of (21). It is easily obtained
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Fig. 1. Sub-optimal (pertrubation), linear optimal, and optimal feedback.

by solving the quadratic equation for p and taking a positive
solution. Fig. 1 shows the optimal feedback showing a
resemblance to the sub-optimal feedback.

VIII. CONCLUDING REMARKS AND FUTURE WORK

In this report we have proposed an approximation method
for the stabilizing solution of the Hamilton-Jacobi equation
for integrable systems. The approach in this research has
several unique features. First, we have taken full account of
the geometric studies done by the authors using symplectic
geometry. Second, techniques from Hamiltonian mechanics
are used, which is quite natural since the well-established
theory for the Riccati equation is based on the Hamiltonian
matrix. Third, we have shown that the knowledge on the
system without control, which is the complete expression
of general solutions, can be effectively used for controller
design when the framework is properly chosen.

As is shown in the numerical example, the quantitative
error of the obtained feedback function from the optimal
one is apparent. To eliminate this, calculations following
the linearization of (13) need to be considered. Also, for
higher dimensional systems, efficient software use to solve
the algebraic equation defining the approximated Lagrangian
submanifold is necessary although the theory presented itself
can be applied for any finite dimensional system.
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