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ABSTRACT

In this study, we investigate an audiovisual approach for classifica-
tion of vocal outbursts (non-linguistic vocalisations) in noisy con-
ditions using Long Short-Term Memory (LSTM) Recurrent Neural
Networks and Support Vector Machines. Fusion of geometric shape
features and acoustic low-level descriptors is performed on the fea-
ture level. Three different types of acoustic noise are considered:
babble, office and street noise. Experiments are conducted on ev-
ery noise type to asses the benefit of the fusion in each case. As
database for evaluations serves the INTERSPEECH 2010 Paralin-
guistic Challenge’s Audiovisual Interest Corpus of human-to-human
natural conversation. The results show that even when training is
performed on noise corrupted audio which matches the test condi-
tions the addition of visual features is still beneficial.

Index Terms— Non-linguistic Vocalisations, Laughter, Audio-
visual Processing, Long Short-Term Memory

1. INTRODUCTION

Non-linguistic vocal outbursts are defined as very brief, discrete,
nonverbal expressions of affect in both the face and voice [1]. Hu-
mans are very good at recognising emotions just by hearing such
vocalisations, which suggests that they convey emotion related in-
formation. While a growing number of efforts towards automatic
recognition of vocal outbursts is recently reported, most of these are
based only on audio signals and aimed at automatic laughter recogni-
tion [2-4]. Similarly to speech perception by humans, it has been re-
cently demonstrated that laughter is perceived as more audible when
the facial expression is visible [5]. Therefore lately, few efforts to-
wards audiovisual recognition of non-linguistic vocal outbursts have
been reported including mainly automatic classification of audiovi-
sual laughter episodes [6—8].

In our previous work [9], we performed classification of audio-
visual episodes of laughter, consent and hesitation. We compared
two different types of features, shape and appearance features, and
we found that the combination of audio and shape features leads to
an improvement over the audio-only classification approach. Ap-
pearance features did not result in an improvement, possibly due to
the use of spontaneous data which contain large head movements
and non-frontal poses.

In this contribution, we extend our previous work and inves-
tigate the performance of the audiovisual classification of vocal
outbursts in the presence of noise. A common experiment in the
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literature, is to train an audiovisual classifier on clean data and then
test it on noisy data. As expected, the performance decreases but
it remains higher than the performance of the audio-only classi-
fier since the addition of visual features provides extra information
which is not corrupted by acoustic noise. However, it is not clear if
the improvement observed in noisy conditions is simply because the
audio features are degraded, so the addition of clean visual features
helps, or due to the complementary information carried by the visual
features. In order to investigate this hypothesis, experiments are
conducted on matched noisy training and testing condition using 3
different noise types, babble, street and office noise. The results in
this study show that the addition of the visual information is bene-
ficial even when the audio classifiers are trained and tested on noisy
data under matched conditions, suggesting that the visual features
carry indeed complementary information.

The audio and visual modalities are fused at feature-level and
classification is performed using Support Vector Machines (SVMs)
and Long-Short-Term Memory (LSTM) Recurrent Neural Networks
(RNNs). The targets of interest include conversational consent, hes-
itation and laughter as opposed to ‘garbage’ in the sense of speech
and other vocalisation as breathing or coughing.

The remainder of this paper is structured as follows: Section 2
describes the audio and visual features used, the experimental pro-
tocol and data are discussed in Section 3 and finally results are pre-
sented in Section 4.

2. FEATURES

2.1. Audio features

We decided for a compact set of 9 acoustic low-level descriptors,
which are commonly used for related tasks such as emotion recog-
nition and speech recognition (cf. Table 1) and their respective first
and second order delta regression coefficients. We chose to use only
Perceptual Linear Prediction Cepstral Coefficients (PLP-CC) 1-5 in-
stead of coefficient 1-12 — as is usual for automatic speech recogni-
tion applications — in order to keep the dimensionality of the acoustic
feature set similar to the geometric shape based set. It is known that
the first coefficients suffice for non-linguistic assessment [9].

Acoustic features have been calculated using our open-source
extractor openSMILE [10] at 100 fps. The full set is 27 dimensional
after addition of first and second order delta regression coefficients
and will be referred to as ‘Audio’ in the ongoing.

2.2. Video features

Given the results presented in [9] we decided to use shape fea-
tures only, rather than investigating shape and appearance features.
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(a) Frame 1 (b) Frame 13 (c) Frame 26 (d) Frame 38

Fig. 1: Example of LAUGHTER from the TUM AVIC corpus.

(a) Frame 1

(b) Frame 7

(c) Frame 14 (d) Frame 22

Fig. 2: Example of HESITATION from the TUM AVIC corpus.

(a) Frame 1 (b) Frame 4 (c) Frame 8 (d) Frame 12

Fig. 3: Example of CONSENT from the TUM AVIC corpus.

Initially, we track 20 facial points using the Patras-Pantic particle
filtering tracking scheme [11] as shown in Fig. 1 to 3. For each video
segment containing K frames, we obtain a set of K vectors contain-
ing 2D coordinates of the 20 points. Employing a Point Distribution
Model (PDM), by applying PCA to the matrix of these K vectors,
head movement can be decoupled from facial expression. Using
the approach proposed in [12], the facial expression movements are
encoded by the projection of the tracking points’ coordinates to the
N principal components (PCs) of the PDM which correspond to
facial expressions. So our shape features are the projection of the
20 points to the 6 PCs which were found to correspond to facial
expressions (PCs 5 to 10), and are extracted at the video frame rate,
i.e., 25 fps. Further details of the feature extraction procedure can
be found in [12]. This set is referred to as ‘Shape’ in the ongoing.

3. EXPERIMENTAL PROTOCOL

3.1. Data

We prepared a data set based on the TUM Audio-Visual Interest Cor-
pus (TUM AVIC). The spoken content, including vocal outbursts
(also referred to as non-linguistic vocalisations), is transcribed on
the word level. For a detailed description of TUM AVIC we refer
to [13]. We follow the official partitioning of the corpus as was used
for the INTERSPEECH 2010 Paralinguistic Challenge [14]. By
that, there are 718 non-linguistic vocalisations in the evaluation set,
and 1573 non-linguistic vocalisations in the training set with more
than 3 frames (instances with less than 3 video frames (120 ms)
were discarded to avoid processing problems). These numbers ex-
clude the class “breath”, i. e., they include the classes (instances per
train/evaluation): GAR BAGE (420 / 161), CONSENT (218 / 91),
HES ITATION (731 / 403), LAU GHTER (204 / 63).

For the experiments described in section 4 each example is
corrupted by one of the three noise types considered in this paper:

Acoustic Low-level Descriptors (9)

Perceptual Linear Prediction Cepstral Coefficients (PLP-CC) 1-5
Logarithmic Energy

Loudness

Fundamental Frequency (Fp)

Probability of Voicing

Table 1: Set of 9 acoustic low-level descriptors.

Functionals (7)

Extremes (maximum, minimum value)
Range (maximum — minimum value)
Arithmetic mean

Standard deviation

Skewness, Kurtosis

Table 2: Set of 7 functionals used to convert low-level feature con-
tours of variable length to a fixed length vector for static classifica-
tion with SVM.

babble noise, street noise, and office noise. For babble and street
noise we use the Aurora noise samples (cf. [15]). The office noise
consists of typical sounds occurring in a busy office environment,
such as typing, printer machines, writing, beep sounds, and occa-
sional talk in the background. The noise samples have been sampled
from YouTube”™ videos which contained office environment noise
recordings.

Our noise samples have the following lengths: one minute for
street noise, 4 minutes for babble noise, and 47 minutes for office
noise. When overlaying an audio chunk (a single isolated non-
verbal) with noise a random region of the noise sample is selected,
and scaled accordingly to match the desired Signal-to-Noise-Ratio
(SNR) before adding it to the audio chunk. Independent parts of
the noise samples are used for training and evaluation sets. The
SNRs are computed based on Root Mean Square (RMS) ampli-

tudes Ag;ﬂs) and A™® of signal and noise chunks, respectively,

noise

according to the following equation:

(rms)
SNR = 20log,, f:‘jns) 1)
noise

3.2. Classification

In the experiments presented here we consider isolated non-linguistic
vocalisations as in [16]. For all experiments the classifiers have been
trained on the joint data from the TUM AVIC training and devel-
opment set, which we will refer to as training data in the ongoing.
Evaluations have been conducted on the TUM AVIC evaluation set.

We compare the performance of the audio and audiovisual clas-
sifiers on matched training and test set noisy conditions on 3 differ-
ent scenarios: babble noise, street noise and office noise. In other
words, both the training and test sets are corrupted by the same type
of noise with varying degrees of SNR from 0dB to 20 dB.

Audio and shape features are extracted at different frame rates,
100 fps and 25 fps, respectively, so shape features are upsampled
simply by copying each feature vector 4 times in order to match the
audio frame rate. Then the audio and shape features are concatenated
for feature-level fusion. We compare dynamic, frame-wise classifi-
cation with LSTM-RNN followed by weighted majority voting to
a static classification approach where low-level descriptor contours
are mapped to a fixed length vector via functionals and SVMs with
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Fig. 4: Babble noise.

a radial basis function (RBF) kernel function are employed in a sub-
sequent classification step for reference.

In principle LSTM networks are an extension of recurrent neu-
ral networks, equipped with an enhanced memory feature. Although
RNN s have access to all past information in theory, the actual range
of context is limited to a few frames due to the vanishing gradient
problem: The influence of an input value decays or blows up expo-
nentially over time. To overcome this deficiency, the LSTM concept
was introduced in [17]. In an LSTM hidden layer, the non-linear
units are extended to LSTM memory blocks. Each block contains
one or more linear memory units, whose internal state is maintained
by a recurrent connection with constant weight 1.0, enabling the unit
to store information over arbitrary periods of time. The input, output,
and internal state of the memory units are controlled by multiplica-
tive gate units, which correspond to write, read, and reset operations.
During network training, the weights for all connections, includ-
ing the gate units, are optimised such that the network—ideally—
automatically learns when to store, use, or discard information ac-
quired from previous inputs or outputs.

We tested several LSTM configurations and topologies by train-
ing on the TUM AVIC training set and evaluating on the develop-
ment set. We found the best configuration to have a single hidden
layer with 125 LSTM memory blocks with one cell each. The
networks used in this paper have an input layer with V; linear sum-
mation input units, a hidden layer with 125 LSTM blocks with one
memory cell each, and a soft-max output layer with 4 outputs (one
for each class of non-linguistic vocalisations).

For multimodal classification of isolated vocal outbursts, let
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Fig. 5: Street noise.
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Fig. 6: Office noise.

each vocalisation be represented by a sequence X of feature vectors
z;. An LSTM RNN is trained as a frame-wise classifier, i.e., a
target representing the ground-truth class label [ of each vocalisation
X is assigned to all frames z; belonging to this vocalisation for
training. During evaluation majority voting is applied to assign a
single label to the sequence: The sum of each network output over
the whole sequence is computed and the class label corresponding
to the output with the highest sum is chosen as sequence label.

The static classification approach (by SVM) is similar to the one
introduced in [16], except that we use a different feature set and the
official corpus partitioning from the INTERSPEECH 2010 Paralin-
guistic Challenge instead of 3-fold cross validation. Moreover, for a
fair comparison, the feature set used herein is based on the same low-
level descriptors (Audio and Shape features) as used for the proposed
LSTM-RNN approach. We then apply a small set of functionals (ta-
ble 2) to the (fused) set of low-level descriptors’ contours.

4. RESULTS

Table 3 shows the unweighted average recall (UAR) rate for the clean
data. It is clear that for both types of classifiers the audiovisual fu-
sion outperforms the audio-only approach, and LSTM outperforms
SVM, as was already previously shown. Results for the three dif-
ferent noise scenarios are plotted in Figs. 4 to 6. The x-axis in
each plot shows the SNR which is used both for training and test-
ing. In all cases, the audiovisual approach (red line) for both clas-
sifiers leads to improved performance over the audio-only approach.
This indicates that the improvement in performance, in noisy au-



UAR [%] LSTM SVM
Audio 67.6 55.3
Shape 41.1 37.3

Audio+Shape 72.3 57.7

Table 3: Results for audiovisual non-linguistic vocalisation classi-
fication on TUM AVIC on clean data without the addition of noise.
Unweighted average (UAR) of class-wise recall rates are reported.
Details in the text.

[%] as — GAR CoON HES LAuU
GARBAGE 55.3/53.3 2.5/0.4 38.1/36.4 4.1/9.9
CONSENT 16.8/16.8  39.6/47.3 40.7/34.1 2.9/1.8
HESITATION  12.7/13.9 3.6/79 82.2/75.5 1.5/2.7
LAUGHTER 22.7/14.3 1.1/2.1  24.3/10.6 51.9/73.0

Table 4: Confusion Matrix for LSTMs on TUM AVIC using Audio
(left, each) and Audio+Shape (right, each) features. The confusion
matrix is the average over the three types of noise at 0 dB.

dio conditions, achieved by the addition of the visual features is due
to their complementary information which can be useful when the
audio channel is noisy. If it was simply the result of the degraded
performance of the audio features (which is the case when training
on clean data and testing on noisy data) when training and testing on
noisy conditions, no improvement should have been observed.

It is noteable that the 20 dB SNR case performs slightly below
the 15dB case in some configurations (SVM for street noise, and
LSTM for babble and office noise). Interestingly, this effect is oppo-
site for SVM and LSTM regarding the noise type. The 15dB figures
are almost at the level of the clean results (cf. table 3). We attribute
this to the fact that adding a certain (small) amount of noise to the
training data improves the generalisation ability of the classifier, as
more variance in the training data is observed. This fact is exploited
deliberately when training LSTM-RNN, where often white noise is
added to the features of the training partition. In our case the test
partition is also corrupted, but we could expect the test results to be
superior to the clean case when testing on the clean audio with the
classifier trained on the 15 dB SNR noise corrupted versions. These
are very interesting issues that were discovered by this contribution.
They deserve more attention in follow-up work.

In Table 4 confusions are shown for the audio features and the
fusion case — audio and shape features. The results are averaged
over the three types of noise at 0 dB. One observes that HESITATION
is better classified by audio only, while the other classes benefit
from the fusion. A possible explanation is that Hesitation does not
involve much movement in the face, compared to consent (nodding)
and laughter (periodic movement). Apart from the expectable higher
number of confusions of any other with the GARBAGE class, more
confusions occur between CONSENT and HESITATION — for the
audio only case — which is explicable by their phonetically partly
similar structure (“mhm” vs. “hmm”). When adding shape features,
the nods which often occur along with consent can be better detected.

5. CONCLUSIONS

‘We presented an audiovisual feature-level fusion approach by LSTM
RNN and SVMs for the computational assessment of non-linguistic
vocalisations in conversational speech under noisy conditions. In
our experiments, the combination of audio and shape information
proved beneficial for all types of noise considered indicating that the
information carried by the shape features can be particularly helpful

when the audio channel is noisy.

An obvious next step will be the evaluation of noisy conditions
for shape feature extraction with clean and corrupted audio, as well
as mismatched noisy conditions in order to further investigate the
benefits and limitations of the audiovisual fusion. Moreover, the ef-
fects of training with noise corrupted data on the recognition per-
formance on clean data needs to be investigated in detail. Together,
this might lead to the next great step in improving performance of
non-linguistic and paralinguistic classification performance.
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