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Abstract 
 
 We propose a new method for deriving rankings 
from fuzzy pairwise comparisons. It is based on the 
observation that quantification of the uncertainty of the 
pairwise comparisons should be used to obtain a better 
crisp ranking, instead of a fuzzified version of the 
ranking obtained from crisp pairwise comparisons. 
With our method, a crisp ranking is obtained by 
solving a linear programming problem, when the fuzzy 
pairwise comparisons are fuzzy triangular numbers. 
Our method simplifies the recent method by Mikhailov. 
 
1. Introduction 
 
 In multicriteria decision-making, the problem of 
deriving rankings from pairwise comparisons is 
discussed extensively ever since the introduction of the 
analytic hierarchy process (AHP) by Saaty [1]. Several 
authors presented methods for the case where the 
pairwise fuzzy comparisons are fuzzy numbers [2-6]. 
We will argue that all these methods have drawbacks, 
and present a new, simple method which does not 
suffer from these drawbacks. 
 
 A ranking w of order N is a sequence of N positive 
numbers w1,w2,..,wN. The ranking w determines a 
ranking matrix A, with elements Aij = wi/wj. A ranking 
matrix A satisfies 
 
1.  Aij>0,  for all 1<=i,j<=N 
2.  Aij = 1/Aji,  for all 1<=i,j<=N;  
 special case: Aii = 1,  for all  i<=i<=N 
3.  Aij*Ajk=Aik,  for all 1<=i,j,k<=N 
 
 Two rankings are said to be equivalent if they have 
the same ranking matrix. It follows that two rankings v 
and w are equivalent if and only if they are equal up to 
a multiplicative constant: vi = a*wi,  for all 1<=i<=N, 

and each ranking is equivalent with a ranking w with 
w1+w2+...+wN = 1. 
 If a matrix A satisfies the conditions 1,2 and 3 
above, then it is the ranking matrix of some ranking w. 
This ranking w can be determined in a number of 
ways, for instance:  
 
a.  w = any column of A. 
b.  wi is the Nth root of the product of row i. (So w is  
 the multiplicative average of the columns of A.) 
c.  w is eigenvector of A with eigenvalue N. 
d.  w minimizes the sum of dist(Aij, wi/wj), where dist  
 is a distance function (metric). 
 
 The problem now is: given a matrix A which 
satisfies the constraints 1 and 2, but does not satisfy 
constraint 3, determine a reasonable ranking for A. 
Mathematically speaking, the problem is ill-defined, 
since "reasonable" is not defined. So, we are asked to 
give a model for a reasonable ranking. We can use a. or 
b. above, where b. seems to be more reasonable then a. 
We can use c., if we generalise it to: w is eigenvector 
of A with greatest eigenvalue. This is the approach 
taken by Saaty [1] in the AHP method; a variant is 
given by Cogger and Yu [7]. An overview of d. is 
given by Golany and Kress [8], for the distance 
functions least squares, weighted least squares, 
logarithmic least squares and logarithmic least absolute 
values. 
 
 Note that there is apparently some (unquantified) 
uncertainty in the matrix elements Aij. Otherwise, 
condition 3 would not have been violated. So, w is 
uncertain, not only because our model cannot be 
validated, but also because of the uncertainty of the 
matrix elements Aij from which it is derived. 
 
 Now consider the case where the matrix elements Aij 
for i/=j are fuzzy numbers. Buckley [2] and 



Wagenknecht and Hartmann [3] generalised method b, 
and Van Laarhoven and Pedrycz [4], De Boender, De 
Graan and Lootsma [5] and Mikhailov [6] generalized 
method d. 
 
 In [2-5], the authors compute the uncertainty of the 
ranking, given the uncertainty of the comparisons. In 
the next section we will argue that this is not the 
appropriate way to deal with this problem, and that the 
right way to approach fuzzy pairwise comparisons is to 
use the quantification  of the uncertainty of the 
pairwise comparisons to obtain a better crisp ranking, 
as in [6]. 
 
2. Dealing with fuzzy estimations 
 
 We will consider a very simple example of fuzzy 
estimations. Consider the function average, which 
computes the average of two real numbers. A fuzzy 
version of this function may be defined with Zadeh’s 
extension principle; for instance, given the fuzzy 
triangular numbers (10,20,30) and (24,26,28), their 
average will be (17,23,29). 
 Now suppose that x and y both are crisp estimations 
of a unknown number z. The best thing we can do to 
define z, is to let z be the average of x and y. Next 
suppose that the uncertainty in the estimations is 
quantified by letting x and y be fuzzy triangular 
numbers. For instance, x = (10,20,30) and y = 
(24,26,28). Is the best value for z the value (17,23,29), 
given by the fuzzified average? The answer must 
clearly be: no. Since the uncertainty in y is much less 
than the uncertainty in x, we expect z to be closer to 26 
than to 20.  A better approach is to let z be the value 
for which the minimum of the membership functions 
for x and y is maximal. This gives the value z = 25. 
 The same idea can be applied to the case of fuzzy 
pairwise comparisons. Also here, quantification of the 
uncertainty in the comparisons can be used to obtain a 
better crisp ranking,  instead of a fuzzification of the 
ranking obtained from the crisp pairwise comparisons.  
 
3. New approach 
 
 The problem in the case of crisp pairwise 
comparisons is that it is not possible, in general, to 
determine a ranking w such that Aij = wi/wj, for all 
1<=i,j<= N. When Aij is a fuzzy number, however, the 
condition Aij = wi/wj can be considered to be true to the 
degree µij(wi/wj), where µij is the membership function 
of Aij. Then the condition that Aij = wi/wj for all 
1<=i,j<= N is equal to the minimum of the set 
{µij(wi/wj) | 1<=i,j<= N}. Our proposed ranking is the 
ranking for which this minimum is as large as possible. 

So, the first cornerstone of our approach is: the ranking 
w has the property that, for all 1<=i,j<= N, wi/wj 
belongs to the α–cut of Aij, where α is as large as 
possible. 
 The second cornerstone of our approach is the choice 
of fuzzy sets for modeling Aij. It is common practice to 
use fuzzy triangular numbers for modeling Aij. 
However, where the Aij are defined on a multiplicative 
(geometric) scale, the piecewise linearity of the 
membership functions of fuzzy triangular numbers 
corresponds to an additive (linear) scale. Therefore, in 
our approach we will use fuzzy triangular numbers to 
model the logarithms of the Aij. The fuzzy numbers Aij 
themselves can be obtained by exponentiation of fuzzy 
triangular numbers via the extension principle. 
However, as it will turn out in the section on 
computation below, these exponentiation is not needed 
in actual calculations. 
 
4. Comparison with Mikhailov’s methods 
 
 Mikhailov’s paper [6] contains two methods. In his 
first method, he considers α-cuts of the fuzzy numbers 
Aij; for particular α he finds the ranking which is 
optimal with respect to tolerance parameters, which are 
provided by the decision-maker. These tolerance 
parameters describe how the matrix elements wi/wj are 
allowed to lie outside the α -cut of Aij. The final 
ranking is then obtained by aggregating the rankings 
for a set of values of α. 
 We identify two drawbacks of this approach. First, 
the uncertainty in Aij is quantified twice: by the fuzzy 
numbers Aij, and by the tolerance parameters. Second, 
it is only a matter of taste how the aggregation of the 
results for different values of α should be done.  
 Comparing our method with Mikhailov’s method we 
see that both methods seek solutions within α-cuts. 
Mikhailov determines a solution for some set of values 
of α. Since for α close to 1, the α–cuts will be too small 
to contain a solution, he needs some freedom to go 
outside the α–cuts, for which he introduces the 
tolerance parameters. Our method seeks a solution for 
a single value of α: the highest value for which the α–
cuts contain a solution. So we need no tolerance 
parameters, and no aggregation of results for different 
values of α. 
 The difference between Mikhailov’s second method 
and our method is the choice of membership functions: 
he uses fuzzy triangular numbers for the pairwise 
comparisons whereas we use fuzzy triangular numbers 
for the logarithms of the pairwise comparisons. This 
difference is crucial, since his choice leads to non-
linear programs, whereas our choice leads to linear 
programs, as is shown in the next section. 



5. Computation 
 
 In this section we will show that in order to calculate 
a ranking with our method, a linear programming 
problem has to be solved. 
 We define vi = ln (wi) and Bij = ln (Aij) .Then the 
equation Aij=wi/wj becomes Bij=vi-vj, Aii=1 becomes 
Bii=0, and Aij=1/Aji  becomes Bij=-Bji. Let the Bij be 
fuzzy triangular numbers: Bij = (lij,mij,rij). The α-cut of 
Bij at α is the interval [lij + α(mij-lij), rij - α(rij-mij)]. 
Without loss of generality we may take v1=0 (i.e. 
w1=1). We have an optimization problem with N 
variables: α and vi with 2<=i<=N. The expression to be 
optimized is just α. The constraints that should be 
satisfied are, for all 1<=i,j<=N, that vi-vj belongs to the 
α-cut at α of Bij, i.e.  
 
lij + α (mij-lij) <= vi-vj <= rij - α (rij-mij). (1) 
 
 For i=j the constraints are satisfied since (lii,mii,rii) = 
(0,0,0). The constraint for i and j is satisfied if and only 
if the constraint for j and i is satisfied, due to the 
symmetry. Therefore, only the constraints with i>j 
need to be considered. So our problem is a linear 
programming problem with N variables and N2-N 
linear constraints. In order to apply the simplex 
algorithm, the variables should satisfy positivity 
conditions. From eq. (1), with j=1, it follows, since 
v1=0, that vi >= li1 + α(mi1-li1). With the variable 
transformation ui = vi - li1 - α(mi1-li1) these N-1 
constraints are just the positivity condition for the new 
variables ui. In this form, the linear programming 
problem has N variables and (N-1)2 constraints, and 
can be solved by the simplex algorithm. 
 
6. Summary of the method 
 
 Step 1:  Obtain triangular fuzzy numbers (lij,mij,rij) 
for the logarithms of the fuzzy pairwise comparisons 
Aij for 1<=j<i<=N. 
 
 Step 2: Solve the linear programming problem 
(using the simplex algorithm) with variables α and ui 
(2<=i<=N) and the following constraints: 
 
ui-uj <= rij - α(rij-mij) - li1 - α(mi1-li1) + lj1 + α(mj1-lj1) 
 for all 2<=j<i<=N 
ui-uj >= lij + α(mij-lij) - li1 - α(mi1-li1) + lj1 + α(mj1-lj1) 
 for all  2<=j<i<=N 
ui <= ri1 - li1 - α(ri1-li1)  for all 2<=i<=N 
 
 
 
 

 Step 3:  w1 = 1 and wi = exp(ui + li1 + α(mi1-li1))  
 for all 2<=i<=N. 
 
 Step 4:  normalize w. 

 
7. Example 
 
 We consider the same example which has been 
shown in [2,4,5,6] where N=3 and the  fuzzy pairwise 
comparisons  are  given  by A21 = (2.5, 3, 3.5), A31 = 
(4, 5, 6) and A32 = (1.5 ,2, 2.5). Their logarithms are 
approximated by B21 = (0.916, 1.099, 1.253), B31 = 
(1.386, 1.609, 1.792) and B32 = (0.405, 0.693, 0.916).  
 
 The 4 constraints are: 
 
u2 + 0.336α <= 0.336 
u3 + 0.405α <= 0.405 
-u2 + u3 +0.264α <= 0.446 
u2 – u3 +0.247α <= 0.065 
 
 The solution, by means of the simplex algorithm is 
given by: u2 = 0, u3 = 0.113, α = 0.721, which leads to 
the normalised ranking w1 = 0.11, w2 = 0.31 and w3 = 
0.58. This ranking is equal (in two decimal places) to 
the modal values of the fuzzy rankings obtained in 
[2,4,5] and to the result in [6]. When A32 is changed 
from (1.5, 2, 2.5) to (2,2,2), the result becomes w1 = 
0.11, w2 = 0.30 and w3 = 0.59, while the modal values 
of [2,4,5] would be unchanged.  
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