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Abstract Can we construct an accurate atmospheric climate model with a balan-
ced model representing its fluid mechanics, and with dissipative as well
as non-dissipative parameterization schemes for the gravity-wave activ-
ity? To address this question, we focus our attention on a 1 1

2
-layer at-

mospheric model with an isentropic troposphere and isothermal stratos-
phere. We investigate parcel dynamics in a hybrid Eulerian-Lagrangian
formulation, potential vorticity conservation, static stability, linear mo-
des and the concept of balanced flow; and briefly discuss wave-vortex
interactions and recent advances in numerical solution techniques.

Keywords: hybrid Eulerian-Lagrangian fluid parcel dynamics, linear modes, balan-
ced models, gravity waves, weather and climate prediction

Introduction

Numerical weather and climate prediction is complicated because only
the flow scales larger than at least ∼ 10× 10× 1 km3 can be resolved to
date. When we use the (inviscid) primitive Navier-Stokes equations on
these scales, the commonly used (semi-Lagrangian) numerical schemes
implicitly filter all acoustic waves and some of the gravity-wave (GW)
motion. The rapid small-scale three-dimensional turbulence is then cer-
tainly not resolved. Consequently, also the feedback of the unresolved
wave and (quasi-two-dimensional) turbulent motions on the large-scale
dynamics requires parameterization.

A lot of attention has been paid to simplified or balanced versions of
the primitive equations, in which preservation of the conservation laws
(of the inviscid dynamics) such as mass, energy and potential vorticity
(PV) has been advocated to enhance the stability of these so-called ba-
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lanced models. The large-scale flow is generally close to hydrostatic and
geostrophic balance; the former due to the anisotropy of horizontal and
vertical scales and the latter due to the rapid rotation of the Earth,
both in these balanced models (by default) and the numerical integra-
tion schemes used. Consequently, one has a choice to use either the
primitive equations or balanced models.

Birner et al. (2002) observed that vertical temperature profiles are
nearly constant in the stratosphere with a distinct kink at the tropopause
between the troposphere and stratosphere. To analyze several proper-
ties of atmospheric flows, we therefore derive a conceptual model of the
atmosphere with an isentropic troposphere and isothermal stratosphere,
where the entropy or potential temperature θ and temperature T are
constant, respectively. Subsequently, we illustrate the concept of ba-
lance by deriving a balanced model describing only the vortical motion
from this so-called “θ-T -model”.

A novel derivation of this θ-T -model from the three-dimensional Euler
equations, using a combination of asymptotic methods and physical sim-
plifications, is given in the framework of a hybrid Eulerian-Lagrangian
description of a fluid parcel (Section 1). This hybrid formulation of the
Euler equations (Dixon and Reich, 2004) describes the Hamiltonian dy-
namics of each parcel as a dynamical system with six degrees of freedom
with the internal and potential energy as function of space and time.
The formulation is passive when this function is given. In contrast, an
integral equation for the density using the Jacobian between Eulerian
and Lagrangian space links the dynamics of all fluid parcels into a dy-
namically consistent continuum.

In the linearized θ-T -model, three time derivatives (or four in the
parcel framework) in the model give rise to a pair of fast GW modes
and one slow geostrophic mode, whose eigen-periods are separated in
time on the f -plane. However, the dynamics are nonlinear and there
may be a conversion of energy and momentum between these slow and
fast modes. In Section 2 (i.e., Fig. 4), this is illustrated in simulations of
the nonlinear dynamics initialized by a linear mode at finite amplitude,
in which a simple hydraulic, dissipative wave-breaking parameterization
is used.

In the nonlinear dynamics, the slow modes survive approximately on
a slow manifold of lower dimension. Balanced models of vortical dyna-
mics describe the slow motion on a slow manifold (Section 3), on which
the dimension of phase space is reduced by two thirds (or half in the
parcel framework) due to the removal of the pair of (fast) GW modes.
Within the Eulerian-Lagrangian framework of parcel dynamics, we illus-
trate the derivation of (Hamiltonian) balanced models using two velo-
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city constraints which arise in asymptotic expansions in a relevant small
parameter (such as the Rossby or Froude number). These constraints
define the reduction of the phase space to the slow or slaving manifold.
We compare balanced and unbalanced trajectories in simplified simu-
lations in Fig. 1(b). The generation of gravity waves by instabilities of
a balanced flow, or the absorption of gravity waves by the nearly balan-
ced mean flow through wave-vortex interactions indicate, however, that
the slow manifold is not an exact manifold (Bühler and McIntyre, 2003;
Vanneste and Yavneh, 2004).

In balanced models, these unbalanced GW effects can only be included
by explicitly parameterizing the gravity waves. Likewise, in numerical
weather and climate prediction small-scale, unresolved gravity waves
require parameterization. We finish by briefly discussing idealized wave-
vortex interactions and some recently developed numerical schemes for
geophysical flows (Sections 4 and 5), and their relevance to General
Circulation Models (GCMs).

1. Eulerian-Lagrangian Dynamics of Fluid
Parcels

Three-dimensional compressible Euler equations

Consider Newton’s equations of motion for a fluid parcel with position
x = (x, y, z)T and velocity u = (u, v, w)T [(·)T denotes the transpose] in
a rotating reference frame with rotation vector Ω

dx

dt
= u =

∂H3D

∂u
,

dθ

dt
= 0 and (1)

du

dt
= −θ∇Π − ∇φ− 2Ω × u = −

∂H3D

∂x
− 2Ω ×

∂H3D

∂u
(2)

with the parcel energy (extending Frank and Reich, 2003)

H3D(x,u, θ, t) = |u|2/2 + θΠ(x, t) + φ(x), (3)

three-dimensional gradient ∇; external potential φ, e.g., φ = gz; poten-
tial temperature θ = T (p/pr)

−κ; temperature T (x, t); pressure p(x, t)
and reference pressure pr; and Exner function Π = cp(p/pr)

κ for an
ideal gas p = ρRT with density ρ(x, t), gas constant R, specific heat at
constant pressure cp, and κ = R/cp. Note that θ∇Π = (1/ρ)∇p, so that
(2) attains its usual form (Dixon and Reich, 2004). We can write (1)–(3)
as a non-canonical Hamiltonian system dq/dt = J∂H3D/∂q with state
vector q = (x, y, z, u, v, w, θ)T and a skew-symmetric tensor J . The
state vector q is a function of time and fluid labels a = (a, b, c)T =
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(a1, a2, a3)
T , so q = q(a, t). If the parcel energy is a function of q and t,

then (1)–(3) is non-autonomous.
The continuum character of the fluid, albeit hidden in the represen-

tation (1)–(3), appears through the density

ρ(x, t) =

∫

D
ρ(x′, t)δ(x − x′)dx′dy′dz′

=

∫

D0

ρ0(a)δ(x − x′(a, t))dadbdc (4)

with x′ = x′(a, t) in a domain D or D0, since the Jacobian between label
and position space is proportional to the inverse density

ρ0(a)/ρ(x, t) = det |∂x/∂a|. (5)

Hence, an element of mass dm relates to the density as follows:

dm = ρ(x, t)dxdydz = ρ0(a)dadbdc. (6)

A common choice is ρ(x, 0) = ρ0(a) and x(a, 0) = a. The system (1)–(4)
is closed and represents the fluid as a continuum. From (1), (4) and (5),
we can derive the continuity equation

dρ(x, t)/dt = ∂tρ(x, t) + u · ∇ρ(x, t) = −ρ(x, t)∇ · u(x, t). (7)

Similarity to 2D vorticity dynamics. We note that this hybrid
description is akin to the (more familiar) situation in inviscid, incom-
pressible, two-dimensional vorticity dynamics, where the passive or kine-
matic advection of each fluid parcel is described by a given stream func-
tion ψ(x, y, t) as Hamiltonian with horizontal coordinates xh = (x, y)T

and time t. Thus, dx/dt = u = −∂ψ/∂y and dy/dt = v = ∂ψ/∂x. In
contrast, a dynamically consistent formulation appears when the vor-
ticity ω = ∇2

hψ is conserved on each fluid parcel and linked to the
continuum of parcels using

ω(x, y, t) =

∫

D0

ω0(a, b)δ(xh − x′

h(a, b, t))dadb

with domain D0, delta function δ(·), parcel position x′

h(a, b, t), and
ω0(a, b) denoting the initial distribution of vorticity on parcels identified
by labels a and b. Given ω on each parcel, we calculate ψ. Hence, the dy-
namical description is closed, since incompressibility yields dxdy = dadb.
With v = (u, v)T and gradient ∇h in the horizontal direction, we find
dω/dt = ∂ω/∂t+ v · ∇hω = 0.
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Static stability. To illustrate the formulation of the hybrid parcel
dynamics, parcel oscillations in a static atmosphere with given parcel
energy H3D = |u|2/2 + θΠ(z) + g z are shown in Fig. 1(a). We choose
Π = Π(z) with potential temperature θ = θg(z) in its thermodynamics to
satisfy hydrostatic balance θg(z)∂Π/∂z = −g. Hence, we find d2z′/dt2 =
−N2z′ for small amplitude oscillations with z′ = z − zr and a reference
level zr. Oscillations are then stable with Brunt–Väisälä frequency N ,
when N2 = [g(dθg/dz)/θg]z=zr > 0, neutral when N2 = 0, and unstable
whenN2 < 0. Note that θ is conserved on each parcel of air and generally
different from θg(z).
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Figure 1. (a) Three trajectories are shown of parcel oscillations in the atmosphere
for a given parcel energy. The stratification of the atmosphere is statically stable
(dθ/dz = cst. > 0) for x < −10 km, unstable (dθ/dz = cst. < 0) for −10 km< x <
10 km, and neutral (constant θ) for x > 10 km and z < 10 km, and isothermal and
stable for z > 10 km. The stable oscillations have a period of 10.84 min. When the
atmosphere is hydrostatic, these oscillations disappear as the thin lines at zr = 5km
illustrate. (b) 41.7 days of (dimensionless) geostrophically balanced and unbalanced
Hamiltonian motion of a particle in a simple, given Montgomery potential M2(x, y)
starting at (x, y) = (1, 1). The predictability horizon lies around 14 days whereafter
the balanced (dashed lines) and unbalanced (solid lines) trajectories depart from one
another significantly.

Hydrostatic primitive equations

The atmosphere is shallow for larger scales, and the aspect ratio δ
between vertical and horizontal length and velocity scales (D,W and
L,U) arises as a small parameter δ = W/U ≪ 1. At leading order in
δ, we find from the scaled version of system (1)–(4) the dynamics and
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hydrostatic balance

dxh

dt
= v =

∂Hp

∂v
, (8)

dv

dt
= −θ∇hΠ − f ẑ × v = −

∂Hp

∂xh
− f ẑ ×

∂Hp

∂v
, (9)

dθ

dt
= 0 and 0 = −θ∂Π/∂z − g (10)

with f = 2 Ω3, ẑ the unit vector in the vertical direction, and the hydro-
static parcel energy

Hp(x, y, z, u, v, θ, t) = (u2 + v2)/2 +M(x, y, z, t) (11)

with Montgomery potentialM = θΠ(x, y, z, t)+g z. The vertical velocity
dz/dt follows by insisting hydrostatic balance persists in time. We use
these interim results next in the derivation of the conceptual 11

2 - and
2-layer models.

A 1
1

2
- and 2-layer atmosphere

Birner et al. (2002) measured the vertical temperature profiles which
suggest a conceptual model with an isentropic troposphere and an isen-
tropic or isothermal stratosphere. We therefore simplify the stratifi-
cation of the atmosphere into an isentropic tropospheric layer and an
isentropic or isothermal stratospheric layer, see Fig. 2(a). In this figure,
we define the variables and constants used subsequently and denote their
dependence, if any, on x, y and t.

troposphere

stratosphere

(a)

x

z

15 km

45 km hb(x; y) p0p1(x; y; t)z = 0z2(x; y) h(x; y; t) p2(x; y; t)z1(x; y; t)z0(x; y; t) �2 �1 or T1

1

fast
f

s slow

real dynamics
forces

constraining

slow
manifold

(b)

Figure 2. (a) Sketch of a simplified atmosphere with an isentropic troposphere and
isentropic or isothermal stratosphere. p0 is a passive and constant pressure, and p1

and p2 are active pressures. (b) The slow manifold sketched has a third (or half) of
the dimension of the entire Eulerian (or Lagrangian) phase space, with fast and slow
variables f and s. Constraining forces, “the hand”, place the full dynamics on the
manifold. When s and f are small, the dynamics is linear and separated in time such
that f → 0, as it is sketched.
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Integrating hydrostatic balance θ∂Π/∂z + g = 0 in the tropospheric
layer from z = z2 = hb to z with z2 < z < z1, we obtain the Montgomery
potential

M2(p2) = θΠ + g z = cpθ(p/pr)
κ + g z = cpθ2 (p2/pr)

κ + g hb. (12)

In an isentropic stratospheric layer one finds likewise, by integrating from
z1 to z with z1 < z < z0 and using (12) at z = z1 with p(x, y, z1, t) = p1,
that

M1(p1, p2) = θΠ + gz = g(z0 − Z0) = cpθ(p/pr)
κ + gz

= cp(θ1 − θ2)(p1/pr)
κ + cpθ2(p2/pr)

κ + g(hb − Z0), (13)

while in an isothermal stratospheric layer, one obtains similarly

M1(p1, p2) = θΠ + gz = g(z0 − Z0) = cpθ(p/pr)
κ + gz

= RT1 ln(p1/p0) + cpθ2((p2/pr)
κ − (p1/pr)

κ) + g(hb − Z0). (14)

Note that, without any loss of generality, we have added a constant
reference level Z0 to which we can fix the top of the stratospheric layer
z0 at a later stage. Any initial z-independence in each layer remains
intact, so only two parcels in a vertical column of fluid suffice for closure.
Hence, the two-layer tropospheric-stratospheric model is the hydrostatic
model (8)–(9) applied in each layer

dxα

dt
= vα =

∂Hα

∂xα
, (15)

dvα

dt
= −f ẑ × vα − ∇hMα = −f ẑ ×

∂Hα

∂vα
−
∂Hα

∂xα
(16)

with α = 1, 2; x = (x, y)T
α and parcel energy

Hα(xα, yα, uα, vα, t) = (u2
α + v2

α)/2 +Mα(xα, yα, t). (17)

Closure of these two-layer equations is reached via the layer pseudo-
density

σα(x, y, t) =

∫

DH0

σ0(a, b)δ(x − x′

α(a, b, t))dadb (18)

relating the horizontal label and position spaces with (using ∂p/∂z =
−ρg)

dm = ρdxdydz = −dxdydp/g = dadbdc (19)

∆m2 = σ2dxdy = [(p2 − p1)/g]dxdy = σ20
(a, b)dadb (20)

∆m1 = σ1dxdy = [(p1 − p0)/g]dxdy = σ10
(a, b)dadb (21)

σα0
/σα = ∂xa∂yb− ∂ya∂xb. (22)
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We emphasize that in each layer the Eulerian velocity is independent of
depth, so vα = vα(x, y, t). Hence ∂zvα remains zero once it was initially
so.

Again, we can derive continuity equations ∂tσα + ∇h · (σαvα) = 0 and
a materially conserved PV: dQα/dt = 0 with

Qα = (f + ẑ · ∇ × vα)/σα.

11

2
-layer models. When the stratospheric layer is much deeper than

the tropospheric layer, e.g., 45 km versus 15 km, we approximate the
top z0 to Z0 and neglect the motion in the stratospheric layer. Thus,
from (13) or (14) one finds M1(p1, p2) = 0. The stratospheric pressure p1

remains active, but the dynamics [(15) and (16) for α = 2] is evolved in
the tropospheric layer. The bottom pressure p2 used to define M2 [(12)]
in the tropospheric momentum equations (16) is then determined from
σ2 = (p2 − p1)/g and M1(p1, p2) = 0.

Static stability. Static stability means that a fluid parcel perturbed
in the vertical oscillates around a certain height with the Brunt-Väisälä
frequency N rather than taking off. The eigen-values a of the 11

2 -layer
equations [(15) and (16) for α = 2 with σ2 = (p2−p1)/g andM1(p1, p2) =
0] are

a2 ∝

{

cpκ(θ1 − θ2)(p1/pr)
κ−1(p2 − p1)/pr (θ2–θ1-model)

(p2 − p1)(prRT1/p1 − cpθ2κ(p1/pr)
κ−1) (θ2–T1-model).

(23)

These eigen-values are real when the atmosphere is statically stable or
dθ/dz > 0: this occurs when θ1 > θ2 in the θ2-θ1-model, and when
T1 > θ2(p1/pr)

κ in the θ2-T1 model. While the θ2-θ1 model remains
statically neutral or stable if it is initially so, the stability of the θ2-T1

model thus depends on p1(x, y, t).

2. Linear Modes

Linearized around a “rest depth” H with σ = σ2 = H(x, y) + η, the
11

2 -layer models [(15) and (16) for α = 2] become

∂tv = −fẑ × v − g′∇hη and ∂tη + ∇h · (Hv) = 0 (24)

with velocity v = v′

2 and effective gravity g′. This linearized system is
akin to the classical, linearized shallow water equations with (for hb = 0)

g′ ∝











(θ1−θ2)P κ−1

1

(θ1−θ2)P κ−1

1
+θ2P κ−1

2

(θ2–θ1-model)

prRT1/P1−cpκθ2(P1/pr)κ−1

RT1/P1+cpκθ2(P κ−1

2
−P κ−1

1
)

(θ2–T1-model)
(25)
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Figure 3. Dispersion relation of linear modes in a periodic channel for the θ2-θ1-
model.

and the rest state H = (P2 − P1)/g, which is consistent with (23). In
a periodic channel with constant H, the linear modes using η ∝ ei(kx+ωt)

(i2 = −1) consist of: a vortical or geostrophic mode with frequency ω =
0, Poincaré GW modes with ω2 = f2 + g′H (k2 + l2), and counterclock-
wise propagating boundary-trapped Kelvin modes with ω2 = g′H k2 (for
constant f > 0). We observe in the dispersion diagram in Fig. 3 that
there is a time-scale separation between the vortical and GW modes,
except perhaps for the lowest-order Kelvin modes and the geostrophic
solution.

As usual, a linear mode analysis is limited in scope. First, the dyna-
mics is nonlinear, so there is no clear notion of a time scale separation
anymore. Nonlinear “slow” dynamics can have high-frequency overtones
triggering resonances or interactions with “fast” dynamics. Second, ap-
proaching the equator, the effective Coriolis parameter f → 0 , giving
rise to equatorial Kelvin waves and mixed Rossby-gravity waves or mixed
slow-fast linear modes. Consequently, linear Kelvin or gravity mode so-
lutions of larger amplitude used as initial condition, can develop vortex
motion and, vice versa, linear geostrophic or Rossby modes can develop
GW motion from instabilities. Mixed fast-slow motion emerges in sim-
ulations, see Fig. 4, of the nonlinear evolution of a linear Kelvin mode
solution in a zonally periodic channel used as initial condition. In par-
ticular PV is constant (in time and/or space) for a Kelvin or Poincaré
mode,

Q2 = Q = (f + ẑ · ∇ × v)/σ = f/H and ∂tQ+(v ·∇h)Q = 0, (26)

before the occurrence and parameterization of wave breaking. These
constant PV regions are then distinguished, ideally, from regions where
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Figure 4. Top: contour plots of σ in simulations of the 1.5-layer θ2-θ1-model with
shock-capturing numerics which, however, do not conserve absolute vorticity σQ.
Bottom: simulations displaying σ (left) and 100× PV anomaly (Q − f/H) (right) at
the final time. Non-dimensional quantities are displayed, for example in a domain of
4000 × 2000 km with z1 ≈ 15 km and Z0 ≈ 60 km.

a wave breaking parameterization generates non-constant PV anomalies
Q− f/H (cf., Peregrine and Bokhove, 1998).

3. Balanced Dynamics

The concept of balanced large-scale flow arises from the observation
that at mid-latitudes the atmosphere and oceans are in approximate
geostrophic balance, and near the equator the Earth’s rotation remains
influential. Locally — due to topography, strong (tropical) convection,
dissipative and non-dissipative (GW) instabilities — balance often fails.
The notion of balance may be formalized in various ways: small Rossby
and Froude numbers are identified from measurements, observations or
simulations, and then used in scaling arguments. Subsequently, a pertur-
bative or iterative approach is applied to approximate the full or parent
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model. The resulting dynamics evolves on a slow or slaving manifold of
reduced dimensionality, see the sketch in Fig. 2(b).

The preservation of certain conservation laws, or the variational or
Hamiltonian structure, may be imposed heuristically in these balanced
approximations. Whether the conservative or non-conservative approach
to balanced dynamics is better, remains undecided and depends on the,
perhaps subjective, value placed on (point-wise) accuracy, and long-term
stability.

Geostrophic balance denotes the alignment of the wind vectors along
the pressure or Montgomery potential isobars. To derive this leading
order balance, we rewrite the 11

2 -layer equations [(16) for α = 2] and
drop the layer subscripts

dui

dt
=
f

R
ǫijuj −

1

R
∂xi

M =
f

R
ǫij
∂H

∂ui
−

1

R

∂H

∂xi
(27)

with the permutation symbol ǫij , v = (u1, u2)
T and i, j = 1, 2. The

Rossby number R = U/(f L) ≪ 1 is placed in (27) at the relevant
locations, as the ratio of the GW time scale 1/f and the vortical time
scale L/U with typical length and velocity scales L and U . At leading
order in R, we find geostrophic balance from (27) as a constraint on the
velocity with M/f being a stream function in the balance relations u =
−∂yM/f and v = ∂xM/f . In general, (higher-order) velocity constraints
obtain the form

φi = ui − uC
i [σ(x)]

e.g.
= ui +

1

f
ǫij ∂xj

M, (28)

in which uC [σ] operates (non-locally) on σ and, hence, through σ on
the parcel coordinates x and y. Next, we use these constraints to derive
balanced models.

Conservative balanced models: slaved Hamiltonian
approach

We illustrate the derivation of Hamiltonian balanced models in the hy-
brid parcel framework. The variables (xi, ui) are transformed to (xi, φi)
using (28), and a constrained variational derivative is introduced

∂H

∂xi

∣

∣

∣

∣

C

=
∂H

∂xi
+
∂H

∂uj

∂uC
j

∂xi
, (29)

where (·)|C denotes that φi = 0 in derivatives of x and y. The evolu-
tion on the slow manifold of reduced dimensionality becomes, using (15)
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and (16),

dxi

dt
=
∂H

∂ui
= ui and 0 =

dφi

dt
= −

∂HC

∂xi
+ ǫijσQ

Cuj (30)

with σQC = f + ∂vC/∂x− ∂uC/∂y. The slaved Hamiltonian dynamics
on the slow manifold is concisely written as

dxi

dt
= (L−1)ij

∂HC

∂xj
or

dFC

dt
=
∂FC

∂xi
(L−1)ij

∂HC

∂xj
(31)

[cf. Dirac (1958)] with skew-symmetric matrix Lij = ǫijσQ
C and ar-

bitrary function FC = FC(x, y) and HC = H(x, y, uC , vC). Simplified
numerical integrations are explained in Fig. 1(b). It is unclear whether
the parcel balanced dynamics (31) presented is a didactic simplifica-
tion, or equivalent to the results for the Eulerian balanced equations in
Vanneste and Bokhove (2002).

4. Wave-Vortex Interactions and Numerical
Schemes

The parameterization of unresolved gravity waves is a critical com-
ponent in numerical GCMs. Gravity waves can influence the large-scale
dynamics in various ways: (i) breaking gravity waves dissipate energy to
small scales and deposit momentum to drive the mean, large-scale flow
(McFarlane, 1987); (ii) instabilities of balanced vortical flows locally ex-
cite gravity waves, which can transport energy and momentum away
(Vanneste and Yavneh, 2004); and (iii) non-dissipative wave-vortex in-
teractions, such as remote recoil, can lead to a cumulative forcing of the
mean vortical flow (Bühler and McIntyre, 2003). The crucial question
is how to parameterize these unresolved GW-effects, studied hitherto
in isolation, in numerical models for large-scale flows on advective time
scales, given the resolved large-scale flow.

New numerical schemes have emerged with a focus on improved meshes
without pole problem, conservation properties and advection-dominated
time integration. Based on gas dynamics and novel finite-element dis-
cretizations (Bokhove, 2005; Fig. 4), an impulse formulation of the θ-
T -model with 3 prognostic equations can be used, which are shock-
capturing but with explicit time stepping limited by the largest GW
speed. In atmospheric dynamics, the velocity formulation with 3 prog-
nostic equations is often preferred (Ringler and Randall, 2002). The GW
speed is then still the limiting factor. Hamiltonian Particle Mesh meth-
ods (HPM) involve (15)–(18) with 4 prognostic equations and 1 integral
equation (Frank and Reich, 2003). By smoothing the pseudo-density,
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time step restrictions can be lifted. To emphasize the vortical dyna-
mics, a mass-divergence-vorticity formulation is used by Thuburn (1997)
and Ringler and Randall (2002) resulting in 3 prognostic and 2 elliptic
equations. The advective time step is then used after some numerical
stabilization. The approaches by Ringler and Randall conserve mass,
energy, potential enstrophy and vorticity. Mass or PV conserving balan-
ced models consist of a prognostic equation and 2–4 elliptic equations of
the first and second order. These elliptic inversions are time consuming
and require special (multi-grid) techniques.

5. Conclusions

The HPM and related semi-Lagrangian numerical schemes, as well
as the ones using vorticity-divergence variables (Frank and Reich, 2003;
Thuburn, 1997; and Ringler and Randall, 2002) seem to be most ad-
vantageous as they use the larger advective time step, at the expense
of introducing an artificial numerical GW-vortex parameterization. It
may be a good strategy to test GW-vortex parameterizations in both the
balanced models and high-resolution (in space and time) primitive equa-
tions. Otherwise, it is unclear to what extent the (artificial) numerical
GW parameterizations in the numerical schemes jeopardize the physical
ones. Clearly, the potential interplay between physical and (hidden) nu-
merical parameterizations of gravity waves is a research question with
important implications for GCMs. Finally, a thorough answer to the
initial question whether a balanced model can provide accurate climate
predictions needs to be postponed, although Olaguer’s (2002) results
seem to be encouraging.
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