
The Term Processor Generator Kimwitu?Peter van Eijk1, Axel Belinfante2, Henk Eertink3, Henk Alblas21 EDS, P.O. Box 2233, 3500 GE Utrecht, The Netherlands2 University of Twente, Department of Computer Science,P.O. Box 217, 7500 AE Enschede, The Netherlands3 Telematics Research Centre, P.O. Box 589, 7500 AN Enschede, The NetherlandsAbstract. The Kimwitu system is a meta-tool that supports the con-struction of programs (tools) that operate on trees or terms. The systemsupports open multi-paradigm programming, in that it allows to ex-press each part of an implementation in the most appropriate language.Terms can be implemented in a tool as well as exchanged between tools.In this way tool integration is facilitated. Experience has demonstratedthat Kimwitu drastically speeds up development time, facilitates toolintegration and generates production quality programs.1 IntroductionLanguage-based tools, such as compilers, editors, debuggers, simulators, testersand veri�ers, have in common that they operate on terms or trees. Operations ofthese tools deal directly or indirectly with trees, so that one may conclude thattrees and algorithms to manipulate trees are the core of language-based software.Some tools have already gone a long way in the process of maturing. Compi-lation of high-level programming languages, for instance, is a well-understoodprocess, in that all intermediate tree structures are well thought-out with re-spect to space and time. Apparently, the reason for this understanding is thathigh-level languages have much in common. This has stimulated people to de-velop compiler-generating systems that o�er for each compilation phase a toolthat generates an e�cient implementation from a high-level speci�cation. Thisdoes, however, not apply to other less understood tools, such as simulation,veri�cation, test generation and test execution tools. These tools are typicallyimplemented in high-level languages, based on, e.g. attribute grammars or func-tional languages. This works �ne for prototypes, but does not always result insatisfactory space and time performance. Another approach is to use a program-ming language that allows total control over the space and time consumption ofthe software, such as C. The disadvantage of languages like C is, however, thatthe gap between the description of the functionality and its realization is large,implying a long, tedious, and error-prone implementation e�ort. This meansthat we actually need a system that bridges this gap, and allows, on one hand, ahigh-level speci�cation of data structures and the operations on data structures,and on the other hand, low-level directions for the implementation.? Kimwitu (pronounced `kee-mweetu') is pidgin-Swahili for `language of trees'



Our Kimwitu system[vEB92] attempts to blend the advantages of both ap-proaches, in that it supports open multi-paradigmprogramming.Multi-paradigmprogramming allows to express each part of the implementation in the most ap-propriate language. It is a `best of both worlds' approach, where one uses ahigh-level language where possible, and a low-level language where necessary.Kimwitu allows one to specify rewrite rules, call them from within C functions,and arbitrarily mix advanced pattern-matching mechanisms over terms with or-dinary C code. `Open' in this context means that escape hatches are providedto other implementation techniques. In Kimwitu, this can be done through themixing with C code. This allows one to integrate code generated by Kimwituwith, for instance, X-Windows based user interfaces[Eer94], Yacc/Lex parsers orsocket-based services (the CLC system [Dub94]).It has already been mentioned that trees or terms are a basic common con-cept in language-based software. Terms are, therefore, the basis of the Kimwitusystem, in the sense that all formalisms operate on the same kind of structure.This facilitates tool integration, and allows, for instance, interfacing with Lex,Yacc and the Synthesizer Generator[RT89].2 The Kimwitu SystemThe Kimwitu system is a term processor generator. The basis of its speci�cationlanguage is a notation to describe a term algebra, which de�nes a set of termsand operations to construct and manipulate terms. Computations over theseterms can then be described through a variety of mechanisms, as explained be-low. Terms can be manipulated in a tool as well as exchanged between tools. Inthis way tool integration is facilitated because the same term algebra describesboth the internal as well as the external representation of values. The descrip-tion of terms and functions can be arbitrarily split into separate input �les.This allows one to separate the speci�cation of well-de�ned interchange formatsfrom functions that operate over these interchange formats. Typically, a tool-environment for a speci�c language will use a single, shared, description of theabstract syntax of the language as a Kimwitu input �le. This description is re-used for each tool, and therefore allows all tools to read/write �les that containterms according to that abstract syntax speci�cation. This is the core function-ality of two large tool environments that have been realized using Kimwitu: theLOTOS [ISO89] tool environment LITE[BvV95] and the SDL Tool environmentOpenSITE[Hum]. Individual tools can subsequently de�ne their own functionde�nitions over these, common, abstract syntax terms. This is comparable toIDL speci�cations as used in the CORBA architecture [OMG95]. IDL, however,is more powerful in that it also supports the de�nition of method-invocations(which is, by de�nition, not supported by the �le-interchange mechanisms usedin Kimwitu), but is also less powerful in that it only supports the de�nition ofinterfaces, not of the implementations of these interfaces.A speci�cation that is input to the Kimwitu compiler consists of a descrip-tion of terms, annotated with implementation directives, and a description of



functions to manipulate terms. Examples of the latter are functions for patternmatching, term rewriting and unparsing. The output (see also section 4) consistsof a number of C �les that contain data-structure de�nitions for the terms, atranslation of the function de�nitions, and a number of standard functions tocreate, compare and manipulate terms, and read and write them from and to�les in various formats. Each term-type (called a `phylum') is mapped onto a Ctype. This allows us to rely on the ANSI-C typing system for typechecking theC extensions that can be merged in the Kimwitu-speci�cation. The Kimwitu-compiler itself will typecheck all rewrite-rules, patterns, etc., and implementswarnings for incomplete pattern speci�cations (e.g. when partial functions arede�ned). The choice for C typing was pragmatic; a number of other systems aremore powerful in this area as C typing does not, for instance, allow for subtyping.This could be improved by using C++ or Java instead of C, which we will exper-iment with in future versions of Kimwitu. Additionally, analysis and statisticscollecting functions are generated. The generated C �les are not intended to beedited by hand. In this sense the Kimwitu `speci�cations' are really `programs'.3 Input Speci�cationsIn this section we explain the input structure of Kimwitu. We �rst describe howterms and attributes of terms are de�ned, next, how the storage strategy ofterms can be speci�ed, and �nally, how functions, rewrite and unparse rules canbe written.3.1 De�ning Terms and AttributesTerms in the Kimwitu system are speci�ed by means of an abstract syntaxor term algebra, in a similar way as in the speci�cation language SSL of theSynthesizer Generator. Terms are de�ned by rules of the form:x0 : op (x1 x2 : : : xn);where op is an operator name and xi is a nonterminal, or (in the terminology ofabstract algebra) the name of a phylum. The phylum associated with a nonter-minal is a non-empty set of terms (i.e. a set of trees) that can be derived fromit. An example is the following.expr: Plus(expr expr)j Minus(expr expr)j Neg(expr)j Zero();exprlist: list expr;



These rules de�ne the phyla expr and exprlist, each of which denotes a set ofterms. This example shows that there are two ways of constructing a phylum.One is by enumerating its variants, each of which is an operator applied to alist of phyla. It is possible to declare nullary operators, but it is not possible tode�ne phyla that do not have operators. The other way is declaring a phylumas a list phylum. The de�nition of exprlist above is equivalent to the followingright-recursive de�nition.exprlist: Nilexprlist()j Consexprlist(expr exprlist); A list phylum, therefore, always has a nullary operator to construct an emptylist, and a right-recursive binary operator to add an element to an already ex-isting (possibly empty) list. The advantage of a list declaration, apart from itsbrevity, is that it automatically instructs the system to generate additional, list-speci�c, functions.The aforementioned examples show how users can de�ne their own phyla. Foreach phylum, Kimwitu generates a C data type (a record) with the same name.Kimwitu also o�ers a number of prede�ned phyla, among them are casestring andnocasestring for case-sensitive and case-insensitive character strings, respectively.Phyla can be declared to have attributes of a prede�ned type. This type canbe any C type, e.g. int or 
oat. It can also be a C type that is generated byKimwitu, i.e., a phylum. An example phylum with an attribute is:expr: Plus(expr expr)j Minus(expr expr)j Neg(expr)j Zero()f 
oat value = 0;g; Here the attribute value of type 
oat is de�ned, and initialized with 0. Multi-ple attributes can be de�ned between the curly brackets. The initializations areoptional. Attributes do not appear in structure �les.Attributes serve as a facility to decorate a tree with extra information. Thedecoration can be done in arbitrary user code. The attribute becomes a compo-nent of the record that is generated for the phylum. If x is a value of type expr,then the attribute can be referred to as x!value.As the last item of the initialization a piece of arbitrary C code, enclosed incurly brackets, is allowed. The code is executed after the term has been builtcompletely, and the other initializations have been performed. This can for ex-ample be used to update attribute values while a term is being built. It resemblesthe constructor functions in e.g. C++.



3.2 Storage Options and Life Time of TermsThe system provides a choice between two storage options, selectable per phylum.For both options a C data type is generated for each phylum, together with a`create' function for each operator. In the default storage option each operator`application' just yields a new `memory cell' containing pointers to the argumentsof the operator, with initialized attributes. The second storage option, called`uniq', is more interesting. It will guarantee that if the operator is once calledwith a certain set of arguments, each additional call with the same argumentswill yield a pointer to the cell that was created at the �rst call. The result is thatcommon (sub)trees (including their attributes) are automatically shared. Thistechnique is known as `hashed-consing' (because consing is the LISP functionto create new cells, and hashing is used to implement the uniqueness of therepresentation). In this storage option attributes will be initialized only at the�rst call. Obviously, side e�ects on subterms can jeopardize this scheme: termsmaintained under unique storage should not be modi�ed (though their attributesmay be modi�ed because they do not contribute to the uniqueness). An essentialcondition on phyla de�nitions is that all constituent phyla of a `uniq' phylum arealso `uniq'. Kimwitu warns at generation time about violations of this condition.The `uniq' storage option has a number of interesting bene�ts. It gives usautomatic sharing of common (sub)expressions. E.g., the Binary Decision Dia-gram (BDD) package which provides the primitives to implement a routine forsolving Boolean equations. depends on this [Kar95].As a bonus, the common subtree sharing is taken into account when termsare written to a structure �le, which may greatly reduce the size of such a �le: forthe LOTOS abstract syntax tree that is the `common object' in LITE[BvV95]we found that the di�erence in �le size between no sharing and maximal sharingof common subtrees may be upto a factor 5.Another bene�t is cheap (constant-time) tree-matching. The LOTOS simu-lator Smile [Eer94] uses Kimwitu trees to represent `states' in a simulation run,and the tree-matching is used a.o. to check if a certain state already has beenanalysed.Finally, the sharing of attributes of common (sub)trees makes it easy to`simulate' associative arrays that can be used to implement for example symboltables and memo-functions. An example of such a symbol table is the following.It can be read as a mapping from casestring to short.ID funiqg: Str(casestring)f short type = UNDEF;g;Suppose that for each de�ning occurrence of an identi�er a term is created withthe attribute type appropriately set, then to check the type one merely has to`create' it again, and look at the attribute. In the same way one can check if theidenti�er is already de�ned at a de�ning occurrence. A sketch of this code is asfollows. It checks that an identi�er is de�ned only once, and de�ned before use.



=� de�ning occurrence �=id = Str(mkcasestring("foo"));if (id�>type != UNDEF) error("doubly defined");id�>type = USED; =� set other attributes here as well �==� applied occurrence �=id = Str(mkcasestring("foo"));if (id�>type == UNDEF) error("undefined");Of course, this is not the most sophisticated application of a symbol table, butserves as an example. The LOTOS front-end LCR[Hof95], a batch-orientedparser and static-semantics checker for LOTOS speci�cations that conformsstrictly to the LOTOS standard, extensively uses this technique to implementits symbol tables. LCR generates the common abstract syntax terms used inLITE. Also the Kimwitu compiler itself implements all its symbol tables usingthese associative arrays, and most other Kimwitu-built programs use them.Memo functions are functions that remember (`memorize') their results. Ifcalled again with the same arguments, they will return the remembered value.Memo functions are functional in their behaviour: a subsequent call with thesame argument will yield the same result. In their performance they are notfunctional: the subsequent call will not need recomputation. Memo functionsof course constitute a time/space trade o�. Their performance comes at theexpense of memory to store the results (and, in some schemes, memory to storethe operands).The mapping technique illustrated above can easily be used to implementa mapping from the function arguments to the result. Using Kimwitu, memo-functions of one argument can be implemented as an attribute of the phylumof the argument term. Memo-functions of more than one argument can be im-plemented as an attribute of a uniquely represented term that represents thefunction call. E.g. for a function F of two arguments one introduces a termF memo(x,y) of which the function result is an attribute. In both approaches itis essential that the arguments of the function are represented uniquely.The user is responsible for freeing the storage for trees (terms) that areno longer needed. For terms maintained under normal (non-uniq) storage, thiscan be done on a per-phylum basis. Terms maintained under uniq storage arestored through hash tables (the create routines use a hash table to guaranteethe uniqueness of the representation) and can only be freed on the level of the(a) hash table as a whole, because the `uniqueness of storage' property shouldnot be violated.Kimwitu implements default memory- and hash table management routineswhich are `open' in the sense that they can be controlled and even overruledby the user, and for example o�er the user control over the hash tables used.For normal use the default implementation is su�cient. More advanced memorymanagement can be realized by selectively overriding parts of the default memorymanagement routines.



3.3 Function De�nitionsThe structure of the generated C data types (see Section 4) for the phyla is veryregular. Nevertheless it appears tedious to write C functions over these datatypes. Therefore, there is a mechanism that allows easier expression of functionsover phyla. This mechanism extends the normal C code with with-statementsand and foreach-statements in which pattern matching can be expressed, whichsimpli�es case analysis and subterm selection. The syntax of the with-statementsis also borrowed from the language SSL. For example:int len(exprlist el) fwith(el) fNilexprlist: f return 0; gtt = Consexprlist(�, t): f return len(t) + 1; gg gHere an integer-valued function len is de�ned with one argument of type exprlist(for exprlist see Section 3.1). The C code of this function body consists of awith-statement, which does pattern matching on its el argument. In the casewhere more than one pattern matches, the most speci�c (leftmost innermost, seeSection 4) match is taken. The patterns can be arbitrary terms with variables,string-literals (double-quoted) and int-literals. Non-leaf variables can be denotedas variable=subpattern, as tt in the example above. The construct � can be usedto denote an `anonymous' variable. As a degenerate pattern an operator name notfollowed by parentheses can be used when one is not interested in the (numberof) subphyla. The Nilexprlist pattern above is an example of such a pattern. The`pattern' default can be used to indicate a default case. In case there is no default,the default becomes to give a run-time error message.For each pattern a piece of C code is given between curly brackets. If severalpatterns share the same piece of C code, the patterns can be grouped. In this Ccode, pattern variables denote the various components of the term. Attributescan be referred to as e.g. variable!value.Another construct in function bodies and C code is the foreach-statement,which expresses the iteration over a list. Its components are the loop variable,which automatically gets the type of the list element, the list to loop over, anda body. Another example of the len function:int len(exprlist el) fint length = 0;foreach( e; exprlist el ) flength++;greturn length;g



3.4 Rewrite De�nitionsFunctional languages are a convenient formalism for expressing functions overtrees. Another convenient formalism is formed by rewrite rules [EM85]. For in-stance, if we have a certain equivalence over terms, then rewrite rules expressingthis equivalence might de�ne a procedure for computing a normal form of aterm. Another use for term rewriting is as an alternative way of de�ning func-tions. For example to implement the function `plus' on natural numbers one cande�ne `plus' as an operator and specify the rewrite rules such that the normalform does not contain a plus. The result of normalizing (term rewriting) thenis that the function is `evaluated'. The notation for term rewrite rules is simple.For example:Neg(x) �> Minus(Zero(), x);In this example x is a variable, used in the term in the right-hand side. Themeaning of this example is that every occurrence of the operator Neg is replacedby an equivalent construct.For the collection of rewrite rules, the system generates for each phyluma function rewrite phylum, which has the normalized form as its result. Thisfunction can be called in the same way as any other function. The currentlyimplemented rewrite strategy is left-most inner-most. It is the responsibility ofthe user to guarantee that the rewrite systems always yields a normal form.3.5 Unparse RulesThe Kimwitu system generates print functions that print a textual representa-tion of terms in a �xed format to the standard output, but this representationis e�ectively only useful for debugging purposes. Unparse rules allow the userto describe textual representations of terms, by associating patterns with un-parse items. Each unparse rule consists of a pattern, a list of views and a list ofunparse items. The patterns are the same as those in function de�nitions andrewrite rules. Views can be used to specify di�erent textual representations forthe same term (e.g. a pre-order or a post-order representation of an expression).An unparse item can be any of the following: a string denotation, a piece ofarbitrary C code in which pattern variables can be used, a pattern variable, oran attribute of a pattern variable. From the collection of unparse de�nitions, foreach phylum a function unparse phylum is generated. These functions take threearguments: the phylum that will be unparsed, a (void) printer function (to besupplied by the user) that will be applied to each string denotation, and the viewto be used. Each unparse item de�nes a part of an unparse phylum function.In the example below the unparse rules contain strings and pattern variables.Plus(e1, e2) �> [ : e1 "+" e2 ];Minus(e1, e2) �> [ : e1 "-" e2 ];Neg(e1) �> [ : "-" e1 ];



Zero() �> [ : "0" ];Nilexprlist() �> [ : ];Consexprlist(ex, Nilexprlist()) �> [ : ex ];Consexprlist(ex, rest) �> [ : ex ", " rest ];In the case of overlapping patterns, the most speci�c match is preferred. In theexample this is used for the output of commas as list element separators. Seethe last line of the example where this is used to ensure that the number ofseparators is one less than the number of list elements. For each operator thereis always a default pattern, in case none of the patterns match. The unparse ruleassociated with this default pattern simply unparses all its subphyla sequentially.The possibility to include C code in unparse rules makes them usable formuch more than only formatting the textual representation of a term. They caneasily be used to describe arbitrary tree-walks to e.g. check or update the valueof attributes. Views can be used to di�erentiate between di�erent tree-walks. Wedemonstrate this in Section 5.2.4 OutputKimwitu generates a number of C �les. They contain data types and functionson those data types.For each phylum a C data type is generated. Its name is the same as thephylum so it can be arbitrarily used in a C program. Technically, it is a structurecontaining the attributes, a variant selector (cf. the operator) and a union of thealternatives. Note that this scheme allows type checking over C programs tocheck if a term is constructed from the correct phyla. An additional data typeis YYSTYPE, which can be used in Yacc-generated parsers to construct terms.The generated C code for the example in Section 3.1 is given below. Note, it israrely necessary to directly refer to these C structures, as function de�nitionsare much more convenient.typedef enum f . . . , sel Neg = 4, sel Minus = 5, sel Plus = 6, sel Zero = 7,sel Nilexprlist = 8, sel Consexprlist = 9, . . . g kc enum operators;typedef struct kc tag expr �expr; =� `expr' is a pointer to `struct kc tag expr'�=typedef struct kc tag exprlist �exprlist;struct kc tag expr fkc enum operators prod sel;union f struct f expr expr 1; g Neg;struct f expr expr 1; expr expr 2; g Minus;struct f expr expr 1; expr expr 2; g Plus;g u;
oat value; =� an attribute �=g;



struct kc tag exprlist fkc enum operators prod sel;union f struct f expr expr 1; exprlist exprlist 1; g Consexprlist;g u;g; For each user-provided function a corresponding C function is generated.Kimwitu also o�ers a number of C functions to manipulate hash tables, to con-struct phyla, to rewrite, unparse, and test terms for equality, and to read andwrite terms from and to a structure �le.The rewrite systems are compiled into C based on the approach describedin [Heu88]. The patterns in rewrite rules, unparse rules and user-provided func-tions are all compiled in the same way. In case of overlapping patterns P and Q,the `preorder most speci�c' one takes precedence: we say that P is more speci�cthan Q if in a preorder treewalk of both patterns, at the point where the tree-walks diverge, P contains (at least) one node more `down' in the tree than Q. Wehave chosen this strategy because it (mostly) frees the user from thinking aboutthe order in which patterns should appear. A disadvantage of this strategy isthat it gives the user less control than for example a `�rst matching pattern wins'strategy, which makes us infrequently write more pattern rules than is strictlynecessary. However, our strategy turns out to work well in practice.5 Some Special FeaturesIn this section we explain some of the possibilities of rewrite systems, and theuse of attributes grammars in Kimwitu.5.1 Abstract Data Types and Rewrite SystemsThe following example illustrates an abstract data type (ADT) style of program-ming functions. The data type de�ned here is the type of natural numbers. InADT theory there is usually no di�erence between constructors, which make upa term in normal form, and functions, which can be applied to terms. The di�er-ence between these two is only a property of the rewrite system. In the phylum,both of them are operators.=� the abstract data type of natural numbers �=nat: zero()j s(nat)j plus(nat nat)j mul(nat nat)j ack(nat nat);



=� rewrite rules for addition, multiplication, and Ackermann's function �=plus(x, zero()) �> x; ack(zero(), x) �> s(x);plus(x, s(y)) �> s(plus(x, y)); ack(s(x), zero()) �> ack(x, s(zero()));mul(x, zero()) �> zero(); ack(s(x), s(y)) �> ack(x, ack(s(x),y));mul(x, s(y)) �> plus(mul(x, y), x);=� application in C code: invoke rewrite nat to rewrite the term ack(3, 4) �=nat result = rewrite nat(ack(s(s(s(0))), s(s(s(s(0))))));5.2 Attribute GrammarsAttribute grammars are a formalism where each node, or term, is decoratedwith a number of attributes, of which the value is computed from the values ofthe subterms of the node or from the encompassing node. In the literature anumber of evaluation methods are presented for di�erent classes of attributegrammars[Alb91]. Most evaluation methods tacitly assume that all attributesare stored in the tree. However, most attributes carry only an intermediate result,and are only used to pass information. It is rarely necessary to keep attributevalues in the tree.In the current version of Kimwitu it is left to the user to specify his ownattribute evaluator, which may be a reasonable simple thing to do. Unparserules can be used to specify treewalks and attribute updates, as has been donein the implementation of the Kimwitu compiler itself. However, the followingexample shows that the design and implementation of an attribute evaluatorcan be a complicated task. The example is from the original paper on attributegrammars[Knu68], and computes the value of a fractional binary number, e.g.1101.01. The original attribute grammar, as presented by Knuth, is shown below.Note that the syntactic rules are on the left, and the associated evaluation ruleson the right. The nonterminals B, L and N stand for Bit, List and Number, andthe attributes v, s and l for value, scale and length, respectively.B ! 0 v(B) = 0B ! 1 v(B) = 2s(B)L ! B v(L) = v(B); s(B) = s(L); l(L) = 1L1 ! L2 B v(L1) = v(L2) + v(B); s(B) = s(L1);s(L2) = s(L1) + 1; l(L1) = l(L2) + 1N ! L v(N) = v(L); s(L) = 0N ! L1:L2 v(N) = v(L1) + v(L2); s(L1) = 0;s(L2) = �l(L2)Below we give the abstract syntax.=� The abstract syntax tree of fractional binary numbers, attributed �=number: Nonfraction(bitstring)j Fraction(bitstring bitstring)f 
oat value; =� synthesized �=g;



bitstring: Oneb(bit)j Moreb(bitstring bit)f 
oat value; =� synthesized �=int length; =� synthesized �=int scale; =� inherited �=g;bit: One()j Zero()f 
oat value; =� synthesized �=int scale; =� inherited �=g; We �rst present a demand-driven evaluation scheme, in which we don't storeattributes in the tree. Any synthesized attribute is connected to the root of somesubtree. With each combination of a synthesized attribute and a subtree (phy-lum) we associate a function eval phylum synthesized attr. This function takes asarguments the subtree concerned and (some) inherited attributes of the root, andreturns the value of the synthesized attribute. The functions below do patternmatching on the function argument that is pre�xed with $.=� illustrating attribute evaluation without storing the attributes �=
oat eval number value(number $n) fNonfraction(b): f return eval bitstring value(b,0); gFraction(b1, b2): f return eval bitstring value(b1,0) +eval bitstring value(b2, �eval bitstring length(b2));gg
oat eval bitstring value(bitstring $bs, int scale) fOneb(b): f return eval bit value(b, scale); gMoreb(bs bs, bs b): f return eval bitstring value(bs bs,scale+1) +eval bit value(bs b, scale); ggint eval bitstring length(bitstring $bs) fOneb: f return 1; gMoreb(bs bs, �): f return eval bitstring length(bs bs)+1; gg=� pow is a C math library function �=
oat eval bit value(bit $b, int scale) fOne: f return pow(2,(double)scale); gZero: f return 0.0; ggWhile it is simply enough for a number of cases, there can be some problemswith this approach. First, an inherited attribute of a phylum may depend on



a synthesized attribute of that phylum. For example bitstring scale depends onbitstring length, and the computation of bitstring length therefore cannot havescale as an argument. An analysis of the attribute dependencies is necessary toprune the argument lists of the functions. Second, as each used occurrence ofa synthesized attribute is represented as a call to the corresponding function,attributes may be evaluated more than once. This is of course the other side ofnot storing results in the tree.We now present an evaluation scheme that visits the tree a number of times,computes at each visit of a node all the attributes that can be computed, andstores their values in the tree. In the implementation we use unparse rules andgive each pass its own view. As unparse items (see Section 3.5) we use patternvariables (to recursively unparse, or visit, the corresponding subterms), and (be-tween braces) C code (to update attributes). In the C code $0 represents theterm being unparsed. In our example there are two passes. In the �rst pass theattribute length is computed, and in the second pass the other attributes.=� illustrating a multi-pass evaluation, using unparse rules �=%uview pass1, pass2; =� declare unparse views �==� rules for phylum number, pass1: �=Nonfraction(b) �> [pass1: b ];Fraction(b1, b2) �> [pass1: b1 b2 ];=� rules for phylum bitstring, pass1: �=Oneb(�) �> [pass1: f$0�>length=1;g ];Moreb(bs, �) �> [pass1: bs f$0�>length=bs�>length+1;g ];=� rules for phylum number, pass2: �=Nonfraction(b) �> [pass2: fb�>scale=0;g b f$0�>value=b�>value;g ];Fraction(b1, b2) �> [pass2: fb1�>scale=0; b2�>scale= �b2�>length;gb1 b2f$0�>value=b1�>value+b2�>value;g ];=� rules for phylum bitstring, pass2: �=Oneb(b) �> [pass2: fb�>scale=$0�>scale;g b f$0�>value=b�>value;g ];Moreb(bs, b) �> [pass2: fb�>scale=$0�>scale; bs�>scale=$0�>scale+1;gbs bf$0�>value= bs�>value + b�>value;g ];=� rules for phylum bit, pass2 (pow is a math library function): �=One() �> [pass2: f$0�>value=pow(2,(double)$0�>scale);g ];Zero() �> [pass2: f$0�>value=0.0;g ];Again, this scheme has its disadvantages. The allocation of attributes to passeshas to be derived from an analysis of the attribute dependencies. Second, in com-parison with the previous scheme, this one represents the opposite time/spacetrade-o�. No attribute is evaluated more than once, but at the expense of stor-ing all intermediate results. Finally, this scheme does not coexist very well with



unique storage of phyla that have inherited attributes. Two occurrences of aphylum cannot be shared if they have di�erent inherited attributes.Here follows the C code to call the attribute evaluations.number n = Fraction(Moreb(Moreb(Moreb(Oneb(One()),One()),Zero()),One()),Moreb(Oneb(Zero()), One())); =� 1101.01 �=printf(" %f \n", eval number value(n));unparse number(n, 0 =�no strings to print�=, pass1); unparse number(n, 0, pass2);printf(" %f \n", n�>value);The current version of Kimwitu does not prescribe a particular evaluationscheme. The advantage is that schemes can be mixed at liberty, and can even becombined with non-attribute grammar paradigms. The disadvantage is of coursethat the evaluation order, e.g. the allocation of attributes to passes or visits, hasto be determined manually, or by using some other tool.A next version of Kimwitu will therefore provide an attribute evaluator func-tion, based on an approach of Jourdan[Jou84], which meets the above-mentioneddemands. It will be based on the class of absolutely non-circular attribute gram-mars, which is a class that seems to include every practical example. Attributeswill not be stored in the tree, unless the user stipulates otherwise. Analysis ofthe attribute dependencies will be used to determine the argument list of theevaluation functions (i.e., the inherited attributes that are needed to compute asynthesized attribute). Evaluation by need will guarantee that only (or almostonly) those attributes are computed that are needed to compute the synthesizedattributes at the root of the tree. Memo-functions will be used to avoid thatattributes are evaluated more than once.6 ExperiencesKimwitu has proven to be a powerful tool that has been used to develop severallanguage-based tools, such as compilers, simulators, testers and veri�ers, and as`glue' between tools in toolkits. The system has been in use now for more than6 years, and has proven to be stable enough for production quality tools.Common uses of Kimwitu exploit one or more of the following features: theeasy interface with Yacc and Lex, to build abstract syntax (parse) trees; patternmatching and rewrite rules, to manipulate terms (trees); unparse rules, bothto describe the textual representation of terms, and to specify tree-walks; theunique storage option, to get state matching almost for free, but also to be able touse associative array-like functionality in C programs; the ability to manipulatehash tables, to get e�cient memory management with little e�ort; the ability toread and write from and to structure �les, to interface between tools in toolkits.It is our experience that users need some time to `digest' the features o�ered byKimwitu to be able to select the most `natural' way to describe their algorithmsin Kimwitu, but in this Kimwitu does not di�er from other advanced systems.Our main experience with Kimwitu has been the work on LOTOS [ISO89]tools, which was part of the Lotosphere (Esprit II) project[BvV95]. In this



project an integrated toolset, LITE, has been built for LOTOS. Every tool inLITE works on a central object, which is a representation of a LOTOS speci�-cation. This object is formally described in 525 lines of Kimwitu input. Kimwitugenerates data structures and I/O routines from this description. This makeschanges to the structure of the interface object rather easy | in most cases pro-grams only have to be recompiled. The fact that the speci�cation of the centralobject is used for both the external and the internal representation simpli�es theproduction of tools that work on the central object. In one case, a person withno experience in C or Kimwitu produced a conversion tool in one week.A compiler for equational systems into code for specialized abstract termrewriting and narrowing machines [Wol91] has been produced using Kimwituin three man-months, which was about half of the planned development time.This system is described in 2900 lines of Kimwitu input. In particular the au-tomatic management of symbol tables proved very helpful. The speed of theresulting program is comparable with earlier versions, which were written in C.The interpreters for the abstract machines were written in 2600 lines of C.The full LOTOS simulator Smile[Eer94] has been built in 6 man-months.This simulator does extensive manipulation of complex data structures. Thesize of Kimwitu code is about 4000 lines (112 Kb) with an additional 1200lines of C code for the X-Window based user-interface. These numbers do notinclude the abstract data type part mentioned previously. A previous system,Hippo [vEVD89], was implemented in 20,000 lines of Yacc, Lex and C, of which5000 lines are devoted to the abstract data type part. Its development took 18man-months. Smile has more functionality than Hippo: it is fully symbolic andits abstract data type part is much more advanced. The memory consumptionof Smile is less and the execution speed is better (both by a factor of 2 or 3), ona comparable run. The following gives an indication of the performance of thegenerated code. A 3195 line LOTOS speci�cation results in a structure �le of780 Kb, containing approximately 200,000 operator applications. Reading thisobject, initializing the simulator, and compiling the abstract data types takes 18seconds of cpu-time on a SparcStation 1.7 ConclusionsThe Kimwitu system improves productivity, is relatively easy to learn, and pro-duces e�cient code. The novelty of our approach is to allow a variety of for-malisms to be used in the construction of language-based software. We do notclaim novelty in the formalisms used, but rather in their combination.We believethat our system is a signi�cant tool in the implementation of programming andspeci�cation languages.Availability and Contact Kimwitu is available from the internet, via URL<http://wwwtios.cs.utwente.nl/kimwitu/>. The Kimwitu developers can be con-tacted at <kimwitu@cs.utwente.nl>.
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