Pushing the Frontiers of Cross-layer Optimization
in Wireless Sensor Networks Right up to the
Application Layer

S. Chatterjea and P.J.M. Havinga
Pervasive Systems Group, Department of Computer Science, University of Twente
P.O. Box 217, 7500AE, Enschede, The Netherlands, (supriyo, havinga)@ cs.utwente.nl

Abstract

Unlike conventional computer networks such as office LANs
or the Internet which can be used for a host of applications,
wireless sensor networks are typically used for specific ap-
plications in mind. It is this fundamental difference combined
with the fact that energy efficiency is of paramount importance
in wireless sensor networks that a different approach needs
to be taken when designing protocols. In this paper we first
describe the main differences and benefits of the cross-layered
techniques used for sensor networks over the traditional OSI
layered approach used for conventional networks. We then give
two examples which illustrate how we extend usual sensor
network cross-layered optimization by going beyond just MAC-
routing optimizations to optimizations between the application
and the MAC layers.

1. INTRODUCTION

The Open Systems Interconnection Model or OSI Model has
long been used as a basis to develop protocols and services
designed to run on various types of computer networks
such the Internet or LANs. One of the main advantages of
the seven-layer OSI model is that it allows interoperability
between different products and services made by different
manufacturers. Thus every individual layer acts as a black
box hiding the details of how it deals with incoming data
from the other layers. Only the interface between the layers is
made public to allow for compatible communication between
neighboring layers. So as an example, a person designing a
web browser need not worry whether the network interface
of the computer running the web browser application is a
wired or wireless connection. Another important aspect about
conventional computer networks is that they are used for
a whole range of applications. For example, a person may
use the same network for emailing, transferring files from a
network drive or even downloading streaming video from a
video sharing web site. It is this general purpose nature of the
network and support for interoperability that makes it essential
to have a layered architecture - e.g. different protocols such
as FTP or HTTP will run regardless of a wired or wireless
network interface.

1-4244-1502-0/07/$25.00 © 2007 IEEE

19

Wireless sensor networks (WSNs) however, have a few
fundamental differences when compared to the conventional
computer networks mentioned above. Rather than interop-
erability, the main emphasis in WSNs is energy-efficiency.
Another fundamental difference is that WSNs are typically
application specific networks. Thus the general approach in
WSN design is to maximize energy efficiency by taking
advantage of the application specific nature of WSNs.

While having a cross-layered architecture for WSNs does
have a multitude of advantages, it has several drawbacks
both from business and technical perspectives. As WSNs
are application-specific networks, one would be inclined to
conclude that every sensor network application would re-
quired a completely customized solution. This of course is
economically impractical as it would entail designing a new
architecture for every application. Thus it is essential to design
a cross-layered architecture that is able to adapt its operation
to a certain extent based on the variations that take place in the
environment where the WSN is deployed. This would allow
a single architecture to work optimally in a single class of
applications rather than just a single application thus making it
more economically viable. Furthermore, a cross-layered archi-
tecture has many interdependencies between different layers
and this can make the higher layers particularly vulnerable to
perturbations in the lower layers. Thus steps need to be taken
to minimize such undesirable effects.

The main focus of this paper is to describe how cross-
layer optimization - specifically with the involvement of the
application layer - can benefit the operation of a WSN. We
illustrate this using two examples based on an adaptive MAC
protocol and scheduling for data aggregation. We first give
a brief summary of related work in the next section. This is
followed by an overview of the MAC protocol that our work
is based on. We then describe two separate examples showing
how both the MAC layer and application layer can benefit
from exchanging information.

2. RELATED WORK

Cross-layer optimization is a key term that is used frequently
in sensor network research terminology. However, the term
does not have a well-defined definition. Generally, as stated

ISSNIP 2007

in [1], cross-layer optimization techniques may be catego-
rized as follows: (i) Physical+MAC , (ii) MAC+Routing, (iii)
PHY +Routing and (iv)PHY+MAC+Routing. It is immediately
obvious from this categorization that the application layer is
usually excluded from the realm of cross-layer optimization.
We intend to further broaden the definition of cross-layer
optimization by illustrating the benefits that can be obtained
when optimizations are carried out between the application
and MAC layers. For example, in the two examples described
in this paper, we show how the MAC protocol could benefit by
using information from the application layer and also how the
application layer could benefit from the information provided
by the underlying MAC layer.

As both our examples deal extensively with the MAC layer,
we first give an overview of the MAC protocol we base our
work on and explain the advantages of using it.

3. LMAC: A LIGHTWEIGHT MEDIUM ACCESS
CONTROL PrROTOCOL

LMAC [2] is a TDMA-based medium access control protocol
designed for WSNs. Time in LMAC is divided into frames,
each of which is further divided into a fixed number of time
slots. Every node chooses its own slot using a distributed
algorithm that uses only locally available information. A node
is allowed to pick any slot as long as it is not owned by any
other node within its two-hop neighborhood.

A time slot consists of two sections, the Control Message
(CM) and the Data Message (DM). The CM, which contains
control information and has a fixed length, is broadcast by
a node to its neighbors during its own time slot once every
frame irrespective of whether the node has any data to send.
The CM contains a table which indicates the slots that are
occupied by itself and its one-hop neighbors and other control
information. Every node maintains a Neighbor Table that
stores the information about its one-hop neighbors, e.g. ID,
occupied slot, number of hops to sink node, etc. Thus a node
can automatically work out its degree from its Neighbor Table.
Occupied slots are marked with a 1 where as unoccupied ones
are marked with a 0. A node joining the network first listens
out for the CMs of all its neighbors and then picks one of
the slots that is marked as unoccupied by performing an OR-
operation. The DM contains higher layer protocol messages.
The length of the DM can vary depending on the amount
of data that a node needs to send. It does however, have a
maximum length.

The reason for choosing LMAC is that it provides a lot
of “free” information that can have a wide range of uses.
For example, all nodes running LMAC have continuous in-
formation about their first order neighbors. Thus any changes
in network topology can be immediately detected without
any additional message transmissions. LMAC also has an
inherent synchronization system that not only ensures its
own reliable operation but also ensures that other protocols
running above it do not suffer from timing related problems.
Additionally, LMAC’s scheduling scheme can be re-used by

20

Data Distribution Tables (DDTs)

[SOLARRADIATION | COUNT | COUNT]

COUNT |

Q [PRESSURE [COUNT | [COUNT | [COUNT
TEMPERATURE COUNT COUNT CNT ||
Min Max (Range 1) | (Range 2) | (Range 3)

O O - P R i | K e
7 —

Fig. 1: Format of data distribution table

other higher layer scheduling protocols in order to save energy.
We illustrate how this may be done in the second example.

4. AI-LMAC: AN ADAPTIVE, INFORMATION-CENTRIC
AND LIGHTWEIGHT MAC PROTOCOL FOR WSNS

AI-LMAC [3] is a TDMA-based protocl that is an adaptive
and information-aware version of the LMAC protocol [XX].
The main idea of the protocol is to assign multiple slots to
certain nodes in the network that are expecting more data to
flow through them than other nodes in response to a query
that has been injected into the network. Such a scheme helps
allocate resources to the areas of the network that require more
attention thus reducing both latency and buffer overflows.

Every node running AI-LMAC maintains Data Distribution
Tables (DDTs) shown in Figure 1. When a node receives
a query it looks up its DDTs to deduce how many of its
children are going to respond to the particular query. Every
node maintains its own set of DDTs each of which is a
table representing a particular type of sensor that is present
within its set of child nodes. So if for instance a node and
its children possess temperature and air pressure sensors, then
the node would have two separate DDTs. A DDT is built
over time by monitoring the data that flows through it. In
other words, statistics about the data flowing through the
network is collected without incurring any extra overhead. It
is simply based on the data that already needs to flow from
the leaf nodes to the root. Thus statistics are collected using
only locally available information. Upon receiving a reading
from a child node, the parent node updates the entry in the
appropriate DDT depending on a number of variables: the
type of sensor that originally generated the reading, the region
where the reading originated from and the value of the reading
itself. Additionally, the DDT also keeps track of the maximum
and minimum readings obtained and also which particular
immediate neighbor sent it the reading.

In AI-LMAC, we assume that a parent-child relationship
exists between all the nodes in the network, such that the root
of the network can be considered to be the highest parent in the
hierarchy. Using the DDT, every node would know how much
“importance” to give every one of its immediate children.

Using the DDTs a node cannot decide by itself, how much
importance it should give itself to transmit. This is because
the DDTs only contain information about a node’s active child
information. A node is not aware of the data generated by the
other children of its own parent node as they may not be in
range. Thus, the parent is the only node that has knowledge of
the proportion of data that will be contributed by each of its
immediate children. The idea here is that if a node realizes that

a subset of its immediate children is going to transmit large
quantities of data, then more attention needs to be paid to this
particular subset of child nodes. In this case, when we say
more attention, we actually refer to assigning multiple slots to
a particular child.

However, even though a parent node knows which child
node deserves more slots to be assigned to it, it cannot send
such a rigid instruction to its children as in LMAC. This is
because in LMAC, when a node performs slot assignment,
it has knowledge of the slot ownership of its first and second
order nodes. In this case, the parent node would not know slot
ownership information about the slot assignments of its child
node’s second order nodes since they are three hops away.

Thus, the responsibility of the parent node is simply to
“advise” the child, i.e. the parent node sends a message
to every one of its children indicating the ideal number of
slots that a particular node should take up under the current
conditions. It is then up to the child node to follow the advice
as closely as possible. This naturally depends on the number
of empty slots available.

The process of giving advice starts at the root node of
the tree when a query is first injected into the network.
This process then percolates down the branches of the tree
towards the leaf nodes. If however, the process of giving
advice started at an intermediate node, this would increase the
chance of performing unfair slot allocations. This is because
a node assigning slots would not be aware of the bandwidth
requirements of all its sibling nodes which are not within its
direct range. From this argument, it is obvious that if we apply
this rule repeatedly, the root node is the only node which can
assign slots fairly at the beginning. We term this as horizontal
fairness as the mechanism ensures that all sibling nodes (i.e. a
the same level) under a certain parent are allocated slots fairly.

Apart from establishing a horizontal relationship between
nodes, we also introduce a mechanism to include vertical
fairness. In order to prevent buffer overflow problems, our
mechanism ensures that that the total number of slots assigned
to the immediate children of a certain parent node, does not
exceed the number of slots owned by the parent. This reduces
the likelihood of data packets being dropped due to lack of
bandwidth. Furthermore, leaf nodes are prevented from being
allocated excessive bandwidth using this mechanism.

Thus introducing two dimensional fairness ensures that the
number of slots taken up by a node does not only depend on
its siblings but on its parent as well. Once a node has received
the ideal number of slots it should take up, it checks to see
which slots are free within its 2nd order neighborhood. Just
like in LMAC, once a node decides to take up a certain slot, it
“marks” the slot using a ”’1” to indicate that the slot has been
taken up.

A. Experimental Analysis

Our framework provides a mechanism to assign more band-
width to those parts in the network that encounter more
data traffic than others. In fact, the assigned bandwidth is
proportional to the expected traffic. Hence our framework

21

160

140

120 1 slot

100

©
(=)

Latency [s]

o
(=]

IS
=)

4 slot

20 8 slot

N

4 5
Number of hops

Fig. 2: Average latencies for different number of maximum allowable slots

is able to minimize the overall latency in the network and
also the number of messages which need to be buffered in
the nodes. Figure 2 illustrates how latency is reduced as the
maximum number of allowable slots that can be owned by
a node is increased from 1 to 16. These results are obtained
by simulation using the discrete event simulator OMNeT++.
Results are averaged over five different network topologies
consisting of 49 nodes and one root. Ten different runs were
carried out per topology. The results clearly indicate that
latency is proportionally reduced with the maximum number
of controlled slots. However, this holds true only until eight
slots. For the sixteen slot scenario, the number of free slots
in the network rapidly decreases with every hop from the root
and thus the nodes are not able to comply with the advice.
Consequently, a bottleneck is created at a few hops (6 to 8)
from the root, resulting in higher latency for messages created
in those areas.

5. DATA AGGREGATION USING A DISTRIBUTED AND
SELF-ORGANIZING SCHEDULING ALGORITHM FOR
WIRELESS SENSOR NETWORKS

Densely deployed WSNs allow environmental monitoring at
extremely high spatial and temporal resolutions. However,
extracting the raw data from such networks can have problems,
e.g. batteries may get drained rapidly due to excessive opera-
tion of the transceiver or data quality may deteriorate due to
dropped packets caused by network congestion. To solve these
problems, we exploit the high degree of spatial correlation
that exists between the sensor readings of adjacent nodes
in a densely deployed network. Thus, instead of every node
transmitting individual readings, we appoint a subset of nodes,
referred to as correlating nodes that transmit the messages
representative of all the remaining nodes at any given point
in time. Every correlating node initially transmits information
to the sink, indicating the correlation of its readings with its
adjacent neighbors. Subsequently, it continues transmitting its
own readings until a change in correlation is detected, in which
case, it transmits an updated correlation message. The sink
then estimates the readings of the adjacent neighbors of the
correlating node by combining the current readings of the

correlating node with the previously transmitted correlation
information. We present a completely distributed and self-
organizing scheduling algorithm that (i) prevents two adjacent
nodes acting as correlating nodes simultaneously, (ii) increases
the robustness and accuracy of the readings by giving every
node a chance at some point to act as a correlating node. This
ensures that no node is always represented only by estimated
readings.

The primary objective of DOSA [4] is to help decide
when a particular node should act as a correlating node and
thus represent the sensor readings of its 1%¢ order neighbors.
During the correlating node’s schedule, the node initially
transmits correlation information to the sink node followed
by its own sensor readings. All the 1°¢ order neighbors do not
transmit their sensor readings to the sink during this period.
Since DOSA is intended to solve a scheduling problem, we
make use of a distributed graph coloring algorithm to assign
schedules to individual nodes. From a graph theoretic point of
view, since no two adjacent nodes can act as correlating nodes
simultaneously, all the nodes chosen by DOSA to be corre-
lating nodes need to form an independent set. Additionally,
the correlating nodes for a particular instant of time need to
form a dominating set since every non-correlating node must
be joined to at least one correlating node by some edge.

To hasten the rate of assigning schedules to the nodes,
DOSA utilizes the information provided by LMAC. Instead
of coloring all the nodes from scratch, DOSA meets its
requirements by building up on the colors already assigned
by LMAC. An added advantage of this form of cross-layer
optimization is that a lesser number of messages need to be
transmitted for all the schedules to be assigned properly as
we make use of information that already exists. Furthermore,
DOSA’s dependence on LMAC makes it more reactive to
changes in topology as any changes in neighborhood detected
by LMAC are immediately filtered to DOS A.

DOS A uses a distributed graph coloring approach to decide
when a particular node should be a correlating node. Every
color owned by a node represents a particular frame of time
during which a node is required to act as a correlating node. In
conventional graph coloring approaches, colors are assigned
to vertices such that adjacent vertices are assigned different
colors and the number of colors used is minimized. While
DOSA’s graph coloring approach also ensures that adjacent
nodes in the network do not own the same colors it differs in
the sense that each node is allowed to own multiple colors, i.e.
a node can have multiple schedules. Moreover, the number of
colors used in DOSA is fixed and is equal to the number of
slots that are assigned to an LMAC frame.

Before describing the details of the operation of DOSA,
we first state the constraints derived from the requirements
stated above which define its behavior: (i) Two adjacent nodes
cannot own the same colors. This is because two adjacent
nodes should not be assigned as correlating nodes in the same
time instant, (ii) All colors should be present within the one-
hop neighborhood of node v, i.e. if node v does not own a
particular color itself, the color must be present in one of

its neighboring nodes that is one hop away. This ensures that
every node’s readings will be represented at the sink node
for every time instant either directly or through a correlated
reading.

As mentioned in Section 3, LMAC assigns a slot to every
node in the network. DOSA begins its distributed coloring
scheme by considering the initial slot assignment phase in
LMAC as an input. Slot assignments in LMAC correspond
to partial color assignments in DOSA. Thus while LMAC
assigns every node with a single color, DOSA assigns the
remaining colors that ensure the adherence to the constraints
(i) and (ii) stated above.

The dependency of DOSA on LMAC allows nodes to
adapt autonomously and immediately to changes in network
topology. For example, the addition or removal of a node
results in the change being reflected in the LMAC Neighbor
Tables of all other neighboring nodes within range. DOS.A
detects changes in LMAC’s Neighbor Table and performs a re-
assignment of schedules if any of the neighboring nodes do not
meet the constraints mentioned above. Utilizing such cross-
layer information from LMAC ensures that DOSA does not
spend additional resources trying to detect topology changes
itself.

A. General Operation of DOSA

DOSA uses a greedy approach to assign colors to nodes.
Coloring is performed using two types of colors: LMAC Colors
and DOSA Colors. LMAC Colors refer to the colors that
have been assigned by LMAC - due to the slot assignment.
DOS A Colors refer to the additional colors that are assigned
by DOSA to ensure that constraints (i) and (ii) are met. This
occurs after the LMAC colors have been assigned. DOSA
does not have any control over the LMAC Color of a node as
it depends purely on the slot assignment performed by LMAC.
In fact, such control is also not required. Therefore, in the
following, we refer to DOSA Colors simply as colors unless
otherwise indicated.

Colors are acquired based on a calculated priority. A node
computes its priority within its one-hop neighborhood based
on its degree and node ID. The higher the degree of a node,
the higher its priority. If two neighboring nodes have the same
degree, priority is calculated based on the unique node ID; the
node with the larger node ID will have the higher priority.

Once all nodes have acquired their LMAC slots, a Begin-
SecondPhase message is injected into the network through
the sink node requesting the nodes to begin the DOSA
coloring phase. At this stage, every node receiving the Be-
ginSecondPhase message only has an LMAC Color and does
not satisfy the constraints mentioned earlier. Thus these nodes
mark themselves as Unsatisfied. A node only attains
the Satisfied status when it satisfies the two constraints
mentioned in Section 5. Upon receiving the BeginSecond-
Phase message, a node broadcasts the NodeStatus message.
This message contains information about the node’s status
(i.e. Satisfied/Unsatisfied) and the list of colors owned. The
ColorsOwned field is a string of |K| bits where every color

22

Algorithm 1 DOSA - Normal Initialization

Input: NodeStatusMSG(SatisfiedStatus(TRUE/FALSE), ColoursOwned)
Output: NodeStatusMSG(SatisfiedStatus(TRUE), ColoursOwned)/ NIL
1: UpDATE(LocallnfoTable, v)
2: if LocalInfoTable contains entries from ALL adjacent nodes then
if SatisfiedStatus(v)=F ALSFE then
Compute PRIORITY(v)
if PRIORITY(v)=Highest then
Cy — K\CF/(U)
ColorsOwned«— C,,
SatisfiedStatus«— T'RU E
UPDATE(LocallnfoTable, v)
BROADCAST NodeStatusMSG(Degree, SatisfiedStatus, ColoursOwned)
end if
end if

end if

3
4
5
6
7.
8:
9.
10
11
12

13:

owned by a node is marked with a 1. Note that |[K| is the
number of slots per frame in LMAC. The rest of the bits
are marked with a 0. Initially, a node only marks its own
LMAC Color as 1 due to the initial LMAC slot assignment. A
neighboring node that receives the NodeStatus message then
performs coloring using DOSA as outlined in Algorithm 1.
Note that the NodeStatus message is the only message that is
used for the operation of DOSA.

We now briefly describe the operation of DOS.A outlined
in Algorithm 1. Upon receiving a NodeStatus message, a node
first updates its Locallnfolable (Line 1). This table stores all
the information contained in the NodeStatus messages that are
received from all the adjacent nodes. Once a node receives
NodeStatus messages from all its immediate neighbors (Line
2), and if its status is Unsatisfied(Line 3), the node pro-
ceeds to compute its priority. PRIORITY computes the priority
of a node only among its unsatisfied neighbors (Line 4), i.e. as
time progresses and more nodes attain the Satisfied status,
PRIORITY needs to consider a smaller number of neighboring
nodes. The highest priority is given to the node with the largest
degree among its adjacent Unsatisfied neighbors. If more
than one node has the same degree, then the highest priority
is given to the Unsatisfied node with the largest NodelD.

The node that has the highest priority among all its imme-
diate unsatisfied neighbors, acquires all the colors that are not
owned by any of its adjacent neighbors (Line 7). As the node
has then satisfied both constraints of DOSA, it switches to
the Satisfied state, updates its own Locallnfolable and
informs all its neighbors through a broadcast operation (Lines
8-10). Note that this technique corresponds to a highest degree
greedy approach.

Figure 3 provides a step-by-step example of how the DOS.A
algorithm assigns colors to the nodes in a network. We make
the assumption in the example that LMAC uses 16 slots.

B. Experimental Analysis

In this subsection, we have carried out simulations to illustrate
the benefits of DOSA in terms of network lifetime and data
quality. Note that we define network lifetime as the total time
taken before the death of the first node in the network.
Figure 4(a) shows the total number of sensor readings that
are generated during a 10 minute interval using both data

23

4689,
11.12,13.14 16

Step 1: LMAC assigns slots to
all the nodes in the network

4689,
11‘12‘13‘14,16

Step 2: N2 and N14 have the highest
priority among all the unsatisfied nodes

11,12,13,14,15,16

Step 3: N9 and N13 have the highest
priority among all the unsatisfied nodes

Step 4: N3, N5, N6 and N8 have the
highest priority among all the unsatisfied
nodes

Key:
DOSA Colors

Node ID

357
LMAC Color

Slot assigned by LMAC

Assumption:

LMAC uses 16 slots.
Thus |K| = 16.

Step 5: N11 has the highest priority
among all the unsatisfied nodes; DOSA
coloring is complete - all nodes are
satisfied

Fig. 3: A step-by-step example of how DOSA colors are assigned

collection techniques. Figure 4(b) shows the total number of
transmit operations performed by all the nodes in the network
for the entire duration of the simulation. One can clearly see
that Figures 4(a) and 4(b) do not have similar shapes. This
is primarily because both raw data collection and DOSA
experience heavy message losses for high sampling rates. The
left hand side of the graphs in Figure 4(b) tend towards each
other as the limit of the maximum throughput of LMAC is
nearly reached. It is this same characteristic that gives the
shape of the network lifetime graph in Figure 4(c). Since the
total number of message transmissions are nearly the same
for both data collection methods at high sampling rates, the
network lifetime is also quite similar. It can be seen from
Figure 4(c) that DOSA can help network lifetime improve
by up to 83.5% (Epoch = 120s) as compared to raw data
collection.

Apart from helping to improve network lifetime, DOS.A
also has a significant positive impact on the quality of data
collected. When analyzing dropped messages for both data
collection scenarios, it is important to realize that every
message generated under the DOSA scheme carries a lot

(a) LMAC Frame Length = 8s (b) LMAC Frame Length = 85

(c) LMAC Frame Length = 85 (d) LMAC Frame Length = 85

—o—RAW
—w— DOSA

—o—RAW
—w— DOSA

5000

4000 400

3000

Total no. of Tx operations

2000

Total no. of messages generated

1000

o

Network lietime (Days)

——RAW
—w— DOSA

150
Epoch

o 50 100 150 200

Epoch

200 50 100

50 100 150 a1

Epoch

200 250 50 100 150

Epoch

200 250

Fig. 4: (a) Total number of messages generated, (b) Total number of transmit operations, (c) Network lifetime, (d) Percentage of uncovered epochs

more weight than a single message in the raw data collection
process. This is because a single sensor reading transmitted
by a node n under the DOSA scheme represents not only
the reading of n but also those of its adjacent neighbors.
Due to this reason, we analyze data quality by observing the
number of epochs which are not represented at the sink instead
of simply counting the number of dropped messages. As an
example, suppose a message generated by node n representing
its own reading and its neighbors, ¢, r, and s for the epoch
E is lost on the way to the sink due to a buffer overflow
event. This would mean that during epoch E, the sink would
not have any readings for nodes n,q, r, and s. Based on this
example, we present the results of data quality in Figure 4(d).
At high sampling rates e.g. when the Epoch is 10s, raw data
collection results in around 75% of uncovered epochs while
DOSA results in only 30% uncovered epochs. Uncovered
epochs under DOSA quickly reduces to 0 and remains there
as the sampling frequency is reduced. For raw data collection
however, the percentage of uncovered epochs levels off at
around 10%. We now explain this leveling off characteristic.

Usually a node drops messages when its buffers get filled
up. Thus the higher the sampling rate, (i.e. the smaller the
value of the Epoch) the larger the proportion of nodes in
the network that experience buffer overflows. This naturally
also increases the number of lost messages and in turn the
percentage of uncovered epochs. However, as the sampling rate
is reduced, the number of nodes experiencing buffer overflows
may not keep on decreasing to zero. In most topologies, due
to the simultaneous generation of messages by all nodes in the
network, there will be a certain set of nodes that will always
experience buffer overflows and will only allow a fixed number
of messages to successfully traverse towards the root. Thus for
low sampling rates, in every epoch, only a fixed number of
messages will reach the root regardless of the chosen epoch.
It is this characteristic that causes the percentage of uncovered
epochs to level off for low sampling rates.

Additionally, Figure 5 shows the benefit of having DOS.A
use underlying cross-layer information from LMAC when a
node is removed. The total number of messages transmitted
by all the nodes was compared over 9900 node deletions with
and without cross-layer information being used. When it is
not used, every neighbor of the dead node has to transmit
a NodeStatus message regardless of its status. The results
indicate a savings of up to 42% when cross layer information
is used.

24

Without cross-layer optimization

With cross-layer opfimization

4 6
Total no. of messages transmitted

10
x10'

Fig. 5: Number of messages transmitted over 9900 runs with and without
cross-layer information.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented two examples which show how
cross-layer optimizations can be carried out in WSN architec-
tures between the application layer and MAC layer. However,
when using cross-layer optimizations, any disturbance in the
lower layers could have a detrimental impact on the upper
layers. For example, link quality may deteriorate due to ad-
verse weather conditions. This could cause frequent topology
changes. This in turn would cause DOSA to continuously re-
arrange its scheduling scheme thus reducing the efficiency of
the algorithm. Thus further research is required to ensure that
the higher layers are well insulated from the instability of the
lower layers.

REFERENCES

[1] T. Melodia, M. C. Vuran and D. Pompili, “The state of the art in
cross-layer design for wireless sensor networks”, In: Proc. EuroNGI
Workshops on Wireless and Mobility, Como, Italy, July 2005.

L.EW. van Hoesel and P. Havinga, “A lightweight medium access
protocol (LMAC) for wireless sensor networks: Reducing Preamble
Transmissions and Transceiver State Switches”, In: First International
Conference on Networked Sensing Systems, Tokyo, 2004.

S. Chatterjea, L.v. Hoesel and P. Havinga, “AI-LMAC: An Adaptive,
Information-centric and Lightweight MAC Protocol for Wireless Sensor
Networks”, In: Proc. ISSNIP, Melbourne, Australia, December 2004.
S. Chatterjea, T.Nieberg, Y.Zhang and P. Havinga, “Energy-Efficient
Data Acquisition using a Distributed and Self-organizing Scheduling
Algorithm for Wireless Sensor Net”, In: Proc. DCOSS, Santa Fe, NM,
USA, June 2007.

[2]

[3]

[4]

	Welcome Page
	Hub Page
	Symposium List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Paul J.M. Havinga
