Defining and Prototyping a Life-cycle for
Dynamic Service Composition

Eduardo Silva, Jorge Martez Lopez, Lus Ferreira Pires, Marten van Sinderen

Centre for Telematics and Information Technology
University of Twente, The Netherlands
P.O. Box 217, 7500 AE Enschede
{e.mg.silva, j.pmartinezlopez, |.ferreirapires,
m j . vansi nderen}@s. ut went e. nl

Abstract. Since the Internet has become a commodity in both wired and wire-
less environments, new applications and paradigms have emergeddredks
highly distributed and widespread system. One such paradigm is semnécgation,
which enables the provision of software functionality as services, allowing
this way the construction of distributed systems with loosely coupled parts. Th
Service-Oriented Architecture (SOA) provides a set of principles ttergervice-
oriented systems, by defining how services can be created, composdidhed,
discovered and invoked. In accordance with these principles, in thisr peg
address the challenge of performing dynamic service compositioncdingo-
sition process and its associated tasks have to be precisely defined Hwethat
different problems of dynamic service composition can be identifiedauided.

To achieve this, this paper defines a life-cycle for dynamic service ositign,
which defines the required phases and stakeholders. Furtherneopeesent our
prototype in which the different phases of the dynamic service compodifi
cycle are being implemented. This prototype is being used to experiment with
and validate our initial ideas on dynamic service composition.

1 Introduction

During the last years we have observed an increased use liténeet, on both wired
and wireless environments. Nowadays cellular phones &ea ebld with a data com-
munication contract, which allows phone users to accesserums applications. Re-
cent studies [1] show that in the upcoming years the contislyoincreasing use of
small portable communication devices, referredidsrnet-centric pocketabldevices,
will overcome the use of laptops, especially for users wigfnmobility. This tendency
brings the Internetlwaysandeverywheretriggering new opportunities and application
areas. As a consequence, many of the biggest software indwshpanies are invest-
ing in new developments in Internet-based applicationiserprovisioning.Software
as a Service (Saa$2] is a concrete example that is being adopted by some major
software companies. This Internet-based methodologydfiware delivery provides
the means to deliver services on-demand, as the user redjuéna, moving away from
some classical approaches to software distribution, saditense-based. These new
developments are based on the Service-Oriented Archite¢€BOA) [3], which pro-
vides a set of principles to address the creation, share saodfiservices. A service is

realized by a given application, or system, and represhgatsexternal behaviour of the
application, or system. This is the basic definition of segyivhich is going to be used
throughout this paper.

With the emergence of Internet-based application senaoelsopen principles for
service creation and use, such as SOA, new opportunitiegmaches for service
creation are appearing. One of these approaches is seniggosition, which focus
on the creation of value-added services from existing sesviService composition
should in principle reduce the development time of new sewyiwhile promoting the
re-use of available application services. Furthermoreydigig service composition it
should be possible to create personalised services onrdkinased on specific user re-
quirements. The creation of service compositions on-den@sed on particular user
requirements, context and preferences, charactatiaemmic service compositioDy-
namic service composition will possibly support serviceadepers at design-time, eas-
ing their task on service creation, and end-user, at runfita@y people are working on
different aspects of service composition in general, andmaffort is being spent on
some issues concerning dynamic service composition iicpéat. However, not much
effort is being spent on the precise definition of the dynaseiwice composition life-
cycle. A more precise definition of the dynamic service cosifjan life-cycle should
allow one to identify and reason about the concerns and ramgeints of this problem.
In this paper we focus on the definition of such a life-cycled &entify the research
challenges that need to be addressed in each phase of ¢htydifle. This paper also
presents the prototype we are building to support dynanmigcgecomposition, which
implements the life-cycle phases we have identified. Thisgbype should allow us to
identify new problems that need to be tackled in this area.

The paper is organized as follows: Section 2 motivates dymasrvice composi-
tion by discussing a target application scenario; Sectipre3ents a service composi-
tion life-cycle, aiming at identifying and addressing thitfestent phases of the dynamic
service composition process; Section 4 presents the ppatote are developing to im-
plement the phases of the dynamic service compositiorciitde; Section 5 discusses
some related work; and Section 6 presents our conclusiah®gits for future work.

2 Motivation

Service composition is mainly motivated by the principlesvided by the Service-
Oriented Architecture (SOA) [3]. The Organization for thev&ncement of Structured
Information Standards (OASIS) defines SOA as [4]:

A paradigm for organizing and utilizing distributed caphtiés that may be

under the control of different ownership domains. It pr@gdiniform means
to offer, discover, interact with and use capabilities toguce desired effects
consistent with measurable preconditions and expectation

According to the SOA principles, service developers canteraew services, and make
them available to potential service users. To make a seavigigable, a service descrip-
tion document has to be produced, which describes the sepvaperties, operations

and how the service can be invoked. Fig. 1 shows the basi@aitens in a service-

oriented architecture and the different parties involwethie architecture. SOA is not
an implementation technology, but rather a set of concdptsdan be implemented
using different concrete technologies. Currently, thetrpopular technology to imple-

ment SOA is Web services [5, 6]. Many aspects of Web serviaes been standardized,
making this technology mature and highly accepted by thastrg.

Service Registry

sx) Service
Description

.
> H-publish service

ii) request seryice ‘\deSt"p“O”

. . N
IR . Sx
,o° lii) retrieve service .

[e ,ef)

- descriptions
AN

N Service
Sx L
Description

-' Service
Service Service
User Provider/Developer

Fig. 1. Service-Oriented Architecture elements and interactions

SOA fosters the re-use of available services as componesgsvice compositions.
Traditionally, service composition is performed duringide-time, resulting in service
compositions that have to be used during runtime as they beea designed. How-
ever, new application scenarios have been identified thdtldzenefit from dynamic
service composition. We define dynamic service compos#égihe process of creating
a service on demand (at design or at runtime) to match spagséc requirements and
preferences by compaosing existing services

Amongst the scenarios in which dynamic service compositam be beneficially
applied ismobile computingwhich is presented in [6]. This scenario involves two main
system parts, namely the user’s mobile device and the baatlejeplication server. Ser-
vices in this scenario are call&ikeld Web servicesThe user has field mobile device,
which is used to input the user’s service request, store seesuprofile and service
preferences. The user's mobile device is also usedsensorfor the user’s context.
Provided with such a field mobile device, the user can creaaace request and for-
ward this request to the back-end server system. The batkearmer system performs

all the necessary operations to provide the user with acethiat matches the require-
ments expressed in the service request. This architedtavesaadvanced functionality
and added-value services to be provided to the user on pmeiketable deviceg\n-
other potential benefitis the increase of the battery lifestof the mobile devices, since
some power-consuming processing is shifted to the baclsemngr system. Saving bat-
tery life-time is a key issue in mobile computing nowadays.

3 Dynamic service composition life-cycle

The life-cycle of dynamic service composition defines thguieed phases and the
stakeholders that participate in the service compositi@mtgss. Fig. 2 presents the
life-cycle for the dynamic service composition processsitdered in our work.

— — — — — — — _)|Service publication |<_|Serv|ce creal|0n|<___ %

I

Service
I developer/provider
|

% Service registry

Service developer o n
Service discover i
Service request y Service composition
and composition selection
Y

Service Delivery <

End-user

Fig. 2. Dynamic service composition life-cycle

We assume that three stakeholders participate in theyliflecService developerSer-
vice providers andEnd-users The life-cycle depicted in Fig. 2 consists of two main
flows, namelycreation and publication of (atomic) services be performed by service
developers and service providers, ddgnamic) service compositipto be performed
by end-users on demand, at runtime, or by service develogtaitesign-time. Each one
of these flows is discussed below in terms of the phases aridsihes to be solved in
each phase.

3.1 Services Creation and Publication

Although the service provider and the service developemwaoedifferent stakehold-
ers with well-defined roles, in this discussion we do notelisdhem. We assume that

the service provider/developds usually a professional user or company, which fo-
cus on creating and providing services for a potential sesefs Application Service
Providers (ASPs]7] are organizations that play the combined roles of thésieebold-
ers. A service provider/developer creates services, whiaf be built from scratch by
programming new applications and making them availableeasces. A service may
also be built by hand by re-using existing services in a caitipm, making the com-
position available as a service. The service creation ptassists on theonstruction

of the service functionality and the respective servicedpson document.

The service description document is used in the serviceigatldn phase to pub-
lish the necessary information to allow potential servisers to discover the service.
Furthermore, the service description document also haerttam all the required in-
formation to deal with the invocation of the service, suchheesaddress of the service
end-points and specific technical details (protocols, dimgp etc.). The service descrip-
tion document may also contain other non-functional infation, such as quality-of-
service, Service Level Agreements (SLAS), and possiblyrastual conditions to use
the service.

Service creation and publication are essential phase®idyhamic service com-
position life-cycle, since service composition can onlietglace if services that are
candidates to be used in compositions are available andecdistovered for usage.

3.2 Service Composition

We assume here that an end-user or a service developer wasis service to satisfy
his specific needs. Fig. 2 shows an end-user, which usuatlynbdechnical skills on
service composition and wishes a new servigeatime and a service developer, which
has technical skills on service composition, but wants éater a new service in a faster
and more automated way given some specific requirementallyatidesign-time

The first phase of this process is the specification séice requestThe service
request should provide enough information on the user reaqugints and preferences for
the service. In the case of an end-user, additional comtéxtnation can also be gath-
ered to further adapt the service creation to the concretesitation. In this phase,
the end-user or the service developer interacts with theesythat performs the dy-
namic service composition, but most of the other phasesxgeceed to be performed
transparently for these stakeholders. This is because svarasthat dynamic service
composition should be an automated process in which a seivicreated without re-
quiring the direct intervention of a human user, as opposéae service creation phase
discussed in Section 3.1.

After the service request is defined, tbervice discovery and compositiphase
starts. The different services that could be used in a coitiposire discovered accord-
ing to the composition algorithm. Service discovery is parfed by invoking the inter-
face provided by the service registry, based on informatmmtained in the published
service description documents. The service discoveryetapends on the publica-
tion phase discussed in Section 3.1. This implies that tfegrimation published in the
publication phase should be compatible with the infornmatiequired in the discovery
and composition phase, which can be achieved by complyingeén standards even if
different organizations implement their own publicatiordaliscovery mechanisms. In

the service discovery and composition phase, an algorghofien performed that takes
the user service request to build candidate compositiotisea$ervices that have been
discovered previously or whenever the algorithm needs them

As a result of the discovery and composition phase, severapositions may be
generated that match the service request, which meansithgeherated services may
have to be selected. This happens in $kevice composition selectigghase. In the
case of an end-user, a single service (composition) shaulgtorned, which implies
that this phase is performed by the system that supportothpasition process. This is
because we have assumed that an end-user does not havéehttieateskills necessary
to select the most appropriate composition. However, theuser may be asked to indi-
cate which properties should have the highest priority ngblection of a composition
(e.g., the aggregate cost of using the services in the catiggg®or the performance of
the composition in terms of response delay). In any caseptiése should be as trans-
parent as possible for the end-user, i.e., the resultingposition should be selected
only based on the service request and the user’s preferandesontext. In the case of
a service developer, a list of services that match the seréquest may be returned.
Mechanisms to rank the generated service compositions mayséd to facilitate the
selection of the composition that is finally used.

Service deliverys the phase that follows service composition selectiod, ias
concerned with the activities that are necessary to all@vethd-user to use the ser-
vice composition. This phase is necessary because theimgstbmposition may still
be represented in some (formal) technology-independdatian, while an executable
representation is necessary to deploy and execute the &itiopoas a concrete ser-
vice. In the case of a service developer, a service compogiscription may also be
required to allow the composition to be published as a newis®rso these issues are
also relevant to this phase.

Service deploymeris a phase that applies only to the end-user case. The end-use
expects a running service, so the selected compositionoHae deployed to allow its
instantiation and invocation by the end-user.

At the end of the life-cycle some actions may still occur, eleging on the stake-
holder. In the case of an end-user, the service compostiamvoked to deliver the
service requested by the end-user. In the case of a serwietder, the list of services
is returned so that the most suitable composition the dpeelpeeds can be selected.
The service developer may possibly adapt the compositichdy to include some
additional functionality. Fig. 2 shows an additional ph&sethe case of service devel-
opers, in which the service developer publishes the conthesevice so that it can be
used later by end-users or other developers.

4 Prototype for dynamic composition of services

This section discusses the prototype we are building toempht the different phases
of the dynamic service composition life-cycle. We are magiiming at developing a

modular, scalable and extensible architecture, to adéads of the life-cycle phases,
but also at supporting different concrete technologieshas, for example, different
service description languages.

In our prototype we are currently using Spatel [8], which iarguage developed
in the European project IST SPICE [9] in which this work is edbted. Spatel sup-
ports service description, creation, composition and @kex. It also supports seman-
tic description of services, through references to oniekgontologies are formal rep-
resentations of conceptualizations, and are necessany iapproach to automate the
different tasks of the service composition life-cycle \pding the abstraction and trans-
parency needed in the dynamic service composition process.

Fig. 3 shows our initial prototype for dynamic service comigion by indicating

how each phase of our proposed life-cycle for dynamic sere@nposition is mapped
onto the components of the prototype.

Domain Ontologies

Cﬁ/o\é P

2 H
Service publication Service creation
Imp: Java + jUDDI API Imp: SPATEL-tools
Service
developer/provider

Service developer Service request Service discovery | CLM Construction H
Imp: XML + Java Imp: Java + jUDDI API | Imp: Java + FACT++| 1+

-- \ H
Iy i

Service delivery Sevice composition | & Graph-based o

< l—| selection (l_ service composition (:|

Imp: Java + SPATEL + EMF 1mp: gava | | g v |

v

Service deployment

End-user

Fig. 3. Prototype for dynamic service composition

4.1 Service creation

The service creation process makes use of the Spatel tddtd) wffer a graphical inter-
face to define the interface of services and the service eirdsp This component also
allows one to semantically annotate service operations iwtuts outputs precondi-
tionsandeffects to define theservice goalwhich reflects the purpose of a service, and
to definenon-functional propertiesf a service, such as, for example, cost and response
time. All these annotations refer to concepts formally dafiin ontologies, which in
our case have been produced in the scope of the SPICE project.

Other languages than Spatel may be used in the servicearrgdtase as long as
these languages support semantic annotations.

4.2 Service publication

The component responsible for service publication analgrseservice description doc-
ument, extracting the necessary information to publishstivwice in the service reg-
istry. The operation of extracting the information from avéee description document
depends on the used description language, which meandffeatiot interpreters have
to be available to parse the supported description langua&jece we use Spatel for
service description, in order to parse a Spatel serviceigéisn document we generate
a Java API from the Spatel Ecore model with the Eclipse Moddliramework (EMF).
This allows us to extract the semantically annotated ptagsefrom the Spatel service
description document, namely Inputs, Outputs, PrecanditiEffects, Goals and Non-
functional properties. These semantically annotated grt@s are always considered
for semantic service description in our prototype, so imelently of the description
language a service is always published in the service rggisthis same way.

The extracted information is organized and published in &DUbased registry.
We use jUDDI [10] as service registry, which is a Java-basaglémentation of the
Universal Description, Discovery, and Integration (UDBpecification [11] for Web
Services. Our purpose is to make use of the jJUDDI API for mation and discov-
ery of services, creating the necessary UDDI models to st@reemantic annotations
mentioned above.

4.3 Service request

The service request component allows the specification ef\dce request, using a set
of semantic annotations that describe the properties ofi¢lsered service. The prop-
erties considered are the same as those used for servidegtiain: Inputs, Outputs,

Preconditions, Effects, Goals, and Non-functional proger All these annotations re-
fer to ontologies that are valid in the application domaimgeconsidered, in our case
telecom services. This process is implemented using a simf@rface that allows the
construction of a (XML-based) service request documertt thié following structure:

<Servi ceRequest >
<l nputs>.. </ | nput s>
<Qut put s>. . </ Qut put s>
<Precondi tions>..</Preconditions>
<Ef fects>..<Effects/>
<Goal s>. . </ Goal s>
<Non- f uncti onal >. . </ Non- f unct i onal >
<Ont ol ogi es>. . </ Ont ol ogi es>
</ Servi ceRequest >

4.4 Service discovery

In our approach the component responsible for service @dsgds goal-based. The
list of candidate services for the service composition taldished before the actual
composition is performed. The service request is analys®tithe goal annotations are
extracted. Given these annotations, the service registquéried through the jUDDI
API Inquiry function for services with goals that are senizaily related to the goal of
the service request. This is possible because both thecesrand the service request

are described using the same properties, and ontologiesn Wibeservice registry is
queried, not only semantically exact matches are retrigvetother partial semantic
matches are also possible, suctPagyin, SubsumeandIntersection12].

4.5 Service composition

Once the list of services with matching service goals isalisced, they are first anal-
ysed and organized in a formalism call@dusal Link Matrix (CLM)12], and after that
they are composed using a graph-based algorithm [13].

CLM allows one to model all possible semantic connectiong;amsal links, be-
tween the discovered services. We use CLMhich is an extension of CLM, in order
to capture the services’ non-functional properties as.Walh-functional properties are
used later in the composition, and in the selection phase.

To construct the CLN matrix we use FACT++ [14], which is a reasoner for De-
scription Logics (DL). This reasoner is used to infer DL tiglas such as Consistency
and Subsumption. Based on these relations the Clovatrix can be constructed, and
once the CLM matrix is available the actual service composition protakss place.
In our prototype, the service composition process is impleted in Java, using a graph-
based composition algorithm. The algorithm dynamics iesif finding a combina-
tion of services, previously organized in the CiENhatrix, which makes it possible to
match the service request. The process starts by analysnGltM™ matrix for ser-
vices that provide the requested outputs. Once this is dbeealgorithm proceeds with
a backwards composition strategy, resolving the inputdhefdervices of the graph.
The composition process consists of a matching the inputsecfervices in the graph
with the outputs of services from the CLiVimatrix. If multiple services match a given
service input, an alternative composition graph is creatggresenting an alternative
service composition. During each step in the algorithm apgregated non-functional
properties in the composition graph are checked, to vertigtiver they match the re-
quested non-functional properties. If a composition grdgés not match the requested
non-functional properties, it is not further considered #&ndiscarded from the set of
valid service compositions. The algorithm finishes (i.lee tomposition is complete)
when all requested inputs and goals are resolved.

4.6 Service composition selection

In the service composition process, several alternatimgcgecompositions that match
the service request may be generated. This is possiblealieceative services can pro-
vide the same (or similar) functionality. It is thereforecessary to rank the generated
composition graphs according to some criteria. The rankinthe generated compo-
sition graphs can be made based on the graphs’ aggregatedmaiional properties
(e.g., total cost), and the semantic connections of théce=in the composition graph.
For the end-user case the best service composition is ed)eatd for the service de-
veloper case all generated service compositions are dtoted ranked order.

4.7 Service delivery

In our case, the service delivery phase consists of trangl#tte service composition
from our graph formalism to Spatel. We do this by using the Edvifi the Spatel Ecore
models. We have not yet addressed this issue in detail, butlifective is to create a
Spatel description of the generated composition servicéhat the service developer
can further adapt it to his needs, and the end-user can iramkexecute the composi-
tion.

The service deployment phase will be considered in our éuivork.

5 Related work

Service composition has received a lot of attention fronugtidal players and academia.
Different aspects of service composition are being addresscluding the (partial)
automation of service composition methodologies. Howeterintegration of the dif-
ferent parts of the life-cycle for dynamic service compgosithas not been addressed
that often. This is in our opinion a very important step toateeand evaluate suitable
solutions to the dynamic service composition.

In [15] the problem of interleaving web service discoveryl @omposition is ad-
dressed, by considering only simple workflows where webisesvhave one input and
one output parameter. In this case the web service compogitan is restricted to a
sequence of limited web services corresponding to a lineakflew of web services.
In our framework we propose a formalism to support the coritiposof services with
multiple inputs and outputs, and also address the otherephafsthe life-cycle of the
service composition process.

In [16] an algorithm for automatic composition of servicepiesented. The service
composition is considered as a directed graph, where naddmked by the seman-
tic matching compatibility Exact, Subsume, Plugin, Disjoint) between input and
output parameters. Based on this graph, the shortest sezjoémweb services from
the initial requirements to the goal can be determined. &bpjsroach computes the
best composition according to the semantic similarity dfpatiand input parameters
of web services, but it does not consider any non-functipnaperties of the service
composition. We consider this to be a very pertinent poirtake into account, since
the selection of the most suitable service compositionféndrased on such properties
(for example, costs and security).

In [17] a semi-automatic composition process is proposguetéorm the compo-
sition of web services. This approach supports the systeminghe selection of web
services during each step in the composition process, anrdate flow specifications to
link them. The discovery process consists of finding matgharvices, which consist of
web services that provide outputs that can be fed as inpaetsdrvices of the service
composition. After selecting all the services, the systemegates a composite process
[18]. The composition is executed by calling each servigasaely, and passing the
results between services according to the flow specificatibnis process allows more
control over the composition process, which is sometimagaae for service devel-
opers. However, since the composition process is semivaiio, end-users without

technical knowledge probably cannot make use of this agprdaur framework deals
with the composition process in a more abstract and automaty, which allows its
usage by both service developers and end-users.

6 Conclusions and future work

In this paper we motivate the dynamic composition of sesjidecusing on how to
address all the necessary phases of the dynamic serviceosdiop life-cycle. We
propose a life-cycle following the SOA principles, furthextended with the neces-
sary phases to perform dynamic and automatic compositieerices. The life-cycle
focuses on creating new services (i.e., service compasitibased on a service user
service request. The discovery, composition and seleptiaises are transparent to the
end-user or service developer.

Based on the proposed life-cycle we are developing a pre¢oimplementation.
The prototype is based on the use of ontologies to allow ttenzation of the ser-
vice discovery, matchmaking and composition processespipose a goal-based
discovery and graph-based composition algorithm, usimgfoactional properties for
service composition optimization and ranking of the getsetaervice compositions.
The whole process of publication/discovery and compasisdanguage-independent,
meaning that different description languages, suppogemantic annotations, can be
published. The generated service compositions can alselivered in different execu-
tion languages.

The ideas and the prototype presented in this paper araustiér development,
and several issues still need to be addressed. Apart froposting service developers,
at design-time, we also intend to support end-users, prayitlintime composition
of services. To achieve this we have to provide an even mata way to describe
service requests. The support of end-users also requeekefiioyment of the generated
service compositions. At the moment, the service discopargess is completely done
before the service composition process, and is goal-bdseslapproach has benefits,
but also drawbacks. For example, during composition timaay turn out that the
previously discovered services cannot be combined to fomatching composition.
In this case, on-demand service discovery during compositime is necessary. The
proposed prototype is being finalized and further evaluatiwill be performed. We
are currently setting up a demo scenario to evaluate thenpeahce of the proposed
prototype.

Acknowledgments. This work is supported by the European IST SPICE project-(IST
027617) and the Dutch Freeband A-MUSE project (BSIK 03025).

References

1. Gartner: Gartner highlights key predictions for it organisations aasuis 2008 and beyond.
http://gartner.com/it/page.jsp?id=593207 (January 2008)

2. O'Reilly, T.: The open source paradigm shift. In: Perspectivefree and Open Source
Software, The MIT Press (July 2005) 461 — 481

10.
11.

12.

13.

14.

15.

16.

17.

18.

. Erl, T.: Service-Oriented Architecture: Concepts, Technology, Besign. Prentice Hall

(2005)

. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., M&z, Reference model for

service oriented architecture 1.0. Technical report, OASIS (OcbB8)

. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web servicesicepts, architectures and

applications. Springer-Verlag (2004)

. Papazoglou, M.P.: Web Services: Principles and Technologwgti€seHall (2007)
. Tao, L.: Shifting paradigms with the application service provider mo@emputer34(10)

(2001) 32 — 39

. Almeida, J.P., Baravaglio, A., Belaunde, M., Falcarin, P., Key&c: Service creation in

the SPICE service platform. In: Wireless World Research Forum meefiri§erving and
Managing users in a heterogeneous environment”. (November 2006)

. Cordier, C., Carrez, F., van Kranenburg, H., Licciardi, Cn dar Meer, J., Spedalieri, A.,

Rouzic, J.P.L.: Addressing the challenges of beyond 3G serviceedglithe SPICE plat-
form. In: 6th International Workshop on Applications and Services ineldss Networks.
(2006)

Apache: Apache juddi. http://ws.apache.org/juddi/

Clement, L., von Riegen, A.H., Rogers, T.: Universal desioripdiscovery and integration
(uddi) version 3.0. http://uddi.org/pubs/udds.htm (October 2004)

Lécie, F., Leger, A.: A formal model for semantic web service composition. $wVC 2006.
LNCS, vol. 4273 (2006) 385-398

Lécwe, F,, da Silva, E.M.G., Ferreira Pires, L.: A framework for dyi@aweb services com-
position. In: 2nd ECOWS Workshop on Emerging Web Services TecgpgdWEWSTO07),
Halle, Germany, Germany, CEUR Workshop Proceedings (Novegii¥f)

Tsarkov, D., Horrocks, I.: Fact++. http://owl.man.ac.uk/factplus/

Lassila, O., Dixit, S.: Interleaving discovery and composition fopgemvorkfows. In: First
International Semantic Web Services Symposium. (2004)

Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic compositid semantic web ser-
vices. In: 1st International Conference on Web Services. (2083} B

Sirin, E., Hendler, J.A., Parsia, B.: Semi-automatic compositiometif services using se-
mantic descriptions. In: 1st Workshop on Web Services: Modelinghifecture and Infras-
tructure. (2003) 17-24

Burstein, M.H., Hobbs, J.R., Lassila, O., Martin, D.L., McDetinD.V., Mcllraith, S.A.,
Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K.P.. Dakkb service description for
the semantic web. In: International Semantic Web Conference. (33@2363

