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Abstract
The well known wave equation describes isentropic wave propagation. In this equation, non-isentropic
boundary layer effects are neglected. This is allowed if the characteristicdimensions of the acoustic domain
are large with respect to the thickness of the boundary layers. However, in small acoustic devices such as
hearing aid loudspeakers, the boundary layer effects are significantand can not be neglected. A model that
describes viscothermal wave propagation is needed to model such devices.
For viscothermal wave propagation, the compressibility of air depends on the thermal behavior that can
range from adiabatic to isothermal. Moreover, the propagation behavior can range from propagation with
negligible viscosity to propagation with negligible inertia (Stokes flow). This complete range is accurately
described by thelow reduced frequency model. This model’s major drawback is that it is only defined for
simple geometries such as thin layers and narrow tubes. It is not valid for arbitrary geometries.
To overcome this drawback, a three dimensional viscothermal finite element has been developed. Like the
LRF model, it covers the complete range from isothermal Stokes flow to isentropic acoustics. As opposed to
the LRF model, the viscothermal finite element can be used to analyze complicatedgeometries.
This paper presents the weak formulation of the finite element. Furthermore, two examples are presented in
which the results of the finite element models are compared to measurements.

1 Introduction

The response of miniature acoustic transducers, like hearing aid loudspeakers, is influenced by the viscos-
ity and heat conduction of air. Therefore, these devices cannot be described by models based on standard
isentropic acoustic equations. Unfortunately, not many models are availablefor viscothermal wave propa-
gation. The low reduced frequency (LRF) model is an accurate option, but it is only defined for simple tube
and layer geometries in which the wave propagation is effectively one dimensional or two dimensional; see
Beltman [1]. The finite element presented in this paper is intended to model threedimensional viscothermal
wave propagation, possibly in complicated geometries.

Viscothermal effects occur in boundary layers near walls. If these boundary layers are very small compared
to the characteristic lengths of the geometry, it is usually possible to use isentropic acoustic models. In the
other limit, when the geometry is much smaller than the boundary layer would be in open space, it is possible
to use isothermal (compressible) Stokes flow models. In this limit, the fluid behavior cannot be called wave
propagation anymore, because inertia is neglected. Nevertheless it is useful to think of viscothermal wave
propagation as fluid behavior in between these two limits. Both the LRF model andthe presented finite
element is accurate for this complete range. Clearly, near either limit it is usuallysensible to use a simplified
model that describes this limit’s behavior. Nevertheless, for the wide rangein between these limits, the
finite element for viscothermal wave propagation is a flexible, widely applicable modeling tool and a useful
addition to LRF models.
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Finite elements for viscothermal wave propagation have been published previously by Malinen [2] and
Nijhof [3]. The element presented in this paper uses the same weak formulation as presented in Nijhof,
but a different discretization. For completeness, a brief overview of thetheory is presented in this paper.
More details can be found in the mentioned references. The symbols used inthis paper are listed in table 1.

Symbol Description Value Unit

v Velocity vector m s−1

T Temperature perturbation K
p Pressure perturbation Pa
ω Angular frequency rad s−1

τ Viscous stress tensor Pa
κ Heat conduction coefficient 0.0254 W m−1 K−1

ρ0 Quiescent density 1.1859 kg m−3

T0 Quiescent temperature 296.15 K
p0 Quiescent pressure 101325 Pa
c0 Speed of sound 345.8707 m s−1

Cp Specific heat at constant pressure 1009.6 J kg−1 K−1

µ Dynamic viscosity 18.266·10−6 Pa s
λ Second viscosity -1.2177·10−6 Pa s
δbl Boundary layer thickness m
i Imaginary unit
I Identity matrix
Ω Domain m3 (or m2)
Γ Boundary of domainΩ m2 (or m)
∇ Gradient operator m−1

∆ Laplacian operator m−2

· Inner product
: Double dot product
vT Transpose ofv
vH Conjugate transpose ofv
vt test function corresponding tov

Table 1: Nomenclature, with used values

2 Theory

Viscothermal wave propagation is a subproblem of fluid dynamics which, under the continuum assumption,
can be modeled by the Navier-Stokes equations. Constitutive behavior hasbeen modeled by Fourier’s law
for heat conduction, the Newtonian fluid assumption for viscosity and the perfect gas laws for the equations
of state. Finally, linearization and Fourier transformation lead to the set of equations (1) used for the finite
element for viscothermal wave propagation. The set consists of the momentum equation (1a), the energy or
enthalpy equation (1b) and the continuity equation (1c).

iωρ0v −∇ · τ +∇p = 0 (1a)

iωρ0CpT − κ∆T − iωp = 0 (1b)

∇ · v − iω
T0

T + iω
p0

p = 0 (1c)

The degrees of freedom (DOFs) are the components of the velocity vector v, the temperatureT and the
pressurep. The terms with the viscous stress tensorτ and the heat conduction coefficientκ are responsible for
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the viscothermal effects. Without these terms, the set of equations can be reduced to the acoustic Helmholtz
equation. The viscous stress tensorτ is a function of the velocity DOFs:

τ = λ (∇ · v) I + µ
(
∇v + (∇v)T

)
(2)

A weak formulation is created from the set of Navier Stokes equations (1) by multiplication with test func-
tionsvt, T t andpt respectively, followed by integration over the domain. Next, Stokes’ divergence theorem
is applied to the last two terms in the momentum equation and the second term in the enthalpy equation. This
reduces all second order derivatives to first order derivatives and creates useful weak boundary terms (total
force and heat flux). The resulting weak formulation is:∫

Ω

(
τ :

(∇vt
)

+ iωρ0v · vt − p
(∇ · vt

))
dΩ =

∫
Γ

(p + τ · n) · vt dΓ (3a)

∫
Ω

(
κ (∇T ) · (∇T t

)
+ iωρ0CpTT t − iωpT t

)
dΩ =

∫
Γ

κ (∇T ) · nT t dΓ (3b)

∫
Ω

(
∇ · v − iω

T0
T + iω

p0
p
)

pt dΩ = 0 (3c)

Discretization of this set of weak equations yields the viscothermal finite element. Lagrange shape functions
of second order are used for the velocity components, the temperature and their corresponding test functions
(v, vt, T andT t), and Lagrange shape functions of first order are used for the pressure and the corresponding
test functions (p andpt). Using equal order shape functions for all DOFs would result in a unstable element.
This finite element has a so called mixed formulation, because the continuity equation and the pressure DOF
could have been eliminated from the set. The domain equations can be made symmetric but not Hermitian
symmetric (K = KT 6= KH ) by multiplication of the enthalpy equation (3b) with−T−1

0 and the continuity
equation (3c) with−1. The natural boundary conditions then determine whether the complete system matrix
becomes symmetric or not.

The total number of boundary conditions (BCs) that needs to be specifiedon each boundary is four: one
thermal BC and three mechanical BCs (one in each direction). The thermal BC can be either temperature
(essential), or heat flux (natural), and the mechanical BC can be either velocity (essential), or force (natural);
see table 2. For example, a symmetry boundary is modeled with zero normal velocity, zero tangential forces
(in two directions) and zero heat flux. Natural BCs can be an expression as function of the DOFs. This can
be used to apply impedance BCs for example.

Boundary condition Weak equation Essential Natural

Normal mechanical Momentum (3a) Normal velocity Normal total force
Tangential mechanical Momentum (3a) Tangential velocity Tangential viscous force∗

Thermal Enthalpy (3b) Temperature Heat flux
∗ The tangential total force equals the tangential viscous force, becauseit is independent of the pressure.

Table 2: Applicable boundary conditions

3 Experimental validation

Results of viscothermal FEM calculations are compared to impedance tube measurements. The impedance
tube, see figure 1(a), is a practical measurement device to calculate a sample’s absorption coefficient at
normal incidence. During the measurement, a broadband signal is applied tothe speaker and the pressure
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Figure 1: (a) Schematic overview of the impedance tube setup, (b) Photo ofthe cylindrical layer resonator,
(c) Photo of the broadband resonator

perturbation is measured with two microphones. The absorption coefficientcan be calculated from the two
measurement signals and the known distance between the microphones.

Two samples were measured. Both are resonators that are influenced byviscothermal effects:

• a simple cylindrical layer resonator, optimized to reach an absorption coefficient of 1 at its resonance
frequency, see figure 1(b)

• a more complicated broadband resonator with twenty tubes, see figure 1(c). It has been optimized by
Hannink [5] for a high absorption coefficient between 1 and 2 kHz.

Both resonators were optimized using LRF models, which is possible becauseof the simple geometries
involved. Clearly, the viscothermal finite element has been developed for more complicated geometries.
Therefore, the presented experiments only serve as an experimental validation.

3.1 Cylindrical layer resonator

An axi-symmetrical viscothermal FEM model is used to model the cylindrical layer resonator shown in
figure 1(b). The used FEM formulation is obtained by writing the weak form, equation (3), in cylinder
coordinates. Next, the angular velocity, its test function and all angular derivatives are set equal to zero.
Last, all remaining equations multiplied with the radial coordinate to prevent divisions by zero.

Figure 2(a) shows the FEM model. Only a small part of the impedance tube is modeled and the chamfers of
the resonator are ignored. The impedance tube has a radius of 50 mm. The resonator’s length is 70 mm, its
layer thickness is 1 mm and its inner diameter is 42 mm. An adiabatic, unit normal force boundary condition
is applied to the upper pressure measurement surface to excite the model. After solving the FEM problem,
the absorption coefficient can be calculated from the pressures on the two pressure measurement surfaces.

Figures 2(b) and 2(c) show some post processing results at the plot area near the resonance frequency. The
axial velocity profile changes near the outflow opening of the resonator.In figure 2(c), the radial velocity
magnitude is shown. The line on which it is zero is curved to the nearby impedance tube wall. The dashed
line in the plot clearly illustrates this effect.
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Figure 2: (a) Axi-symmetrical FEM model, (b) Magnitude of Axial velocity, (c) Magnitude of radial velocity
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Figure 3: Absorption coefficient of the cylindrical layer resonator

VIBRO-ACOUSTIC MODELLING AND PREDICTION 4275



The cylindrical layer resonator has a simple geometry that can be modeled bya one dimensional LRF net-
work model; see Van der Eerden [4]. Such a model does not accuratelydescribe the mentioned three dimen-
sional effects near the outflow of the resonator. Nevertheless, these effects can be approximately modeled
with an end correction. The well known acoustic end correction for baffled tubes is8r

3π with r the tube
radius. This tube radius can be expressed as twice the outflow surface area divided by the circumference
length. Using the same reasoning for an infinitely long layer yields an end correction of 8h

3π , with h the layer
thickness1. This end correction seems to work well in this case, because the estimated absorption coefficient
of the cylindrical layer resonator corresponds well to the FEM model andto the measurement; see figure 3.
Both the finite element and the LRF network model can describe this resonatoraccurately.

3.2 Broadband resonator

The broadband resonator shown in figure 1(c), is optimized for high absorption between 1 and 2 kHz; see
Hannink [5]. An LRF network model was used to optimize the radii and lengthsof the tubes. The optimized
resonator was built using slightly different dimensions, for ease of manufacturing.

Figure 4 compares the measured response of the resonator to its LRF modelwith baffled tube end corrections
and to its LRF model without end corrections. Although the models roughly matchthe measurements, neither
is very accurate. This might have been expected, because the 3D outfloweffects at the the open tube ends are
not correctly taken into account in the LRF models; neither with baffled tube end corrections nor without end
corrections. Inevitably, the outflow of a tube is affected by neighboring tubes, especially if the tube lengths
are nearly equal. Therefore, standard end corrections can not be used. Likely, either a measurement or a
FEM model is required to find accurate end corrections for this particular resonator. Perhaps an isentropic
acoustic FEM model suffices, but this hypothesis has not been examined.

A three dimensional viscothermal FEM model was made of the resonator including a part of the impedance
tube; see figure 6. This is a large model, especially because it contains manysurfaces with boundary layers.
The model contains 500,000 DOFs, even after some ideas to reduce the model size have been applied:

• The walls on which the viscothermal effects can be neglected are modeled withslip and adiabatic
boundary conditions (identical to symmetry BC). These walls are the closed tube end surfaces and the
surface of the impedance tube and they are blue in figure 6.

• The viscous boundary layer thickness is estimated asδv ≈
√

µ
ρ0ω and a somewhat larger boundary

layer mesh is used in the tubes.

The results of the calculations are shown in figure 5. The absorption coefficient has been determined in a
similar way as in the model of the cylindrical layer resonator. The FEM model isaccurate for frequencies
up to 1450 Hz, because it can accurately describe the three dimensional outflow effects of the tubes. The
start and stop frequencies of the absorption range are also accuratelypredicted in the FEM model. Above
1450 Hz, the model only roughly corresponds to the measurement. Figure 5also shows the results of a FEM
calculation with a coarse mesh with 200,000 DOFs. The results above 1450 Hzare different, which indicates
that the results have not completely converged to the solution of the underlying equations. Therefore, the
original FEM model might be improved by using a finer mesh.

1The viscothermal finite element can be used to calculate viscothermal baffled tube end corrections, or, better in this case, baffled
layer end corrections. For simplicity, the mentioned end correction of8h

3π
has been used here.
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Figure 4: Absorption coefficient of the broadband resonator, LRF model
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Figure 5: Absorption coefficient of the broadband resonator, FEM model
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Figure 6: The broadband resonator model. The blue surfaces are modeled with adiabatic slip walls. The
boundary layer mesh is visible at the tube ends.

4 Conclusion

A finite element for viscothermal wave propagation has been presented in this paper. It is intended to solve
problems that cannot be modeled by the LRF model because of their complicated geometries. Examples of
applications are miniature acoustic transducers and MEMS devices.

Impedance tube measurements of two samples were compared to the FEM calculations and the results match
well. However, the limitation of the presented finite element in three dimensional problems is the required
computer hardware. Careful meshing of three dimensional problems is required to reduce the problem size
as much as possible.
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