A finite element for viscothermal wave propagation
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Abstract

The well known wave equation describes isentropic wave propagatiorthid equation, non-isentropic
boundary layer effects are neglected. This is allowed if the charactatistensions of the acoustic domain
are large with respect to the thickness of the boundary layers. Howewvemall acoustic devices such as
hearing aid loudspeakers, the boundary layer effects are signifindntan not be neglected. A model that
describes viscothermal wave propagation is needed to model suchglevice

For viscothermal wave propagation, the compressibility of air dependseothédmmal behavior that can
range from adiabatic to isothermal. Moreover, the propagation behauorange from propagation with
negligible viscosity to propagation with negligible inertia (Stokes flow). This deteprange is accurately
described by théow reduced frequency moderhis model’'s major drawback is that it is only defined for
simple geometries such as thin layers and narrow tubes. It is not validbitnraay geometries.

To overcome this drawback, a three dimensional viscothermal finite elerastitden developed. Like the
LRF model, it covers the complete range from isothermal Stokes flow to ipénacoustics. As opposed to
the LRF model, the viscothermal finite element can be used to analyze complieateetries.

This paper presents the weak formulation of the finite element. Furthermarexamples are presented in
which the results of the finite element models are compared to measurements.

1 Introduction

The response of miniature acoustic transducers, like hearing aid l@ldspeis influenced by the viscos-
ity and heat conduction of air. Therefore, these devices cannotdmeiloled by models based on standard
isentropic acoustic equations. Unfortunately, not many models are avditahtscothermal wave propa-
gation. The low reduced frequency (LRF) model is an accurate optitrit, is only defined for simple tube
and layer geometries in which the wave propagation is effectively one diomath®r two dimensional; see
Beltman [1]. The finite element presented in this paper is intended to modeldimmeasional viscothermal
wave propagation, possibly in complicated geometries.

Viscothermal effects occur in boundary layers near walls. If thesadsmy layers are very small compared
to the characteristic lengths of the geometry, it is usually possible to use isierdimustic models. In the
other limit, when the geometry is much smaller than the boundary layer would belirspace, it is possible
to use isothermal (compressible) Stokes flow models. In this limit, the fluid bet@anmot be called wave
propagation anymore, because inertia is neglected. Nevertheless ifuistaghink of viscothermal wave
propagation as fluid behavior in between these two limits. Both the LRF modethanpresented finite
element is accurate for this complete range. Clearly, near either limit it is useagible to use a simplified
model that describes this limit's behavior. Nevertheless, for the wide rengetween these limits, the
finite element for viscothermal wave propagation is a flexible, widely appéaaldeling tool and a useful
addition to LRF models.
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Finite elements for viscothermal wave propagation have been publisheidusly by Malinen [2] and
Nijhof [3]. The element presented in this paper uses the same weak formutetipresented in Nijhof,
but a different discretization. For completeness, a brief overview ofttbery is presented in this paper.
More details can be found in the mentioned references. The symbols usesipaper are listed in table 1.

Symbol Description Value Unit

v Velocity vector ms!

T Temperature perturbation K

P Pressure perturbation Pa

w Angular frequency rads

T Viscous stress tensor Pa

K Heat conduction coefficient 0.0254 WthK~!
00 Quiescent density 1.1859 kgmh

To Quiescent temperature 296.15 K

Do Quiescent pressure 101325 Pa

co Speed of sound 345.8707 m's

Cp Specific heat at constant pressure 1009.6 Jkg!
U Dynamic viscosity 18.2660°° Pas

A Second viscosity -1.21770°%  Pas

Opl Boundary layer thickness m

i Imaginary unit

I Identity matrix

9 Domain m3 (or n?)
r Boundary of domair2 m? (or m)
\Y Gradient operator m'

A Laplacian operator e

Inner product
Double dot product

< -

T Transpose ob
vl Conjugate transpose of
vt test function corresponding to

Table 1: Nomenclature, with used values

2 Theory

Viscothermal wave propagation is a subproblem of fluid dynamics whiakerhe continuum assumption,
can be modeled by the Navier-Stokes equations. Constitutive behavibebasnodeled by Fourier’s law
for heat conduction, the Newtonian fluid assumption for viscosity and tifeqigas laws for the equations
of state. Finally, linearization and Fourier transformation lead to the setuaftiens (1) used for the finite
element for viscothermal wave propagation. The set consists of the mamentuation (1a), the energy or
enthalpy equation (1b) and the continuity equation (1c).

wpov —V -1+ Vp=0 (1a)
iwpoCpT — KAT —iwp =0 (1b)
Vov—#T+%p=0 (1c)

The degrees of freedom (DOFs) are the components of the velocityrvwectbe temperatur& and the
pressure. The terms with the viscous stress tensand the heat conduction coefficienare responsible for
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the viscothermal effects. Without these terms, the set of equations cedumed to the acoustic Helmholtz
equation. The viscous stress tensas a function of the velocity DOFs:

r=A(V-0)I+p(Vo+ (Vo)T) 2)

A weak formulation is created from the set of Navier Stokes equationsy(fjuitiplication with test func-
tionsv!, Tt andp’ respectively, followed by integration over the domain. Next, Stokesrdesmce theorem

is applied to the last two terms in the momentum equation and the second term in tdpyeatuation. This
reduces all second order derivatives to first order derivatimdsceeates useful weak boundary terms (total
force and heat flux). The resulting weak formulation is:

/(7‘ L (V') +iwpov - v' —p (V- 0')) dQ = /(p+7-n) -t dl (3a)
Q r
/ (£ (VT) - (VT") + iwpoCyTT" — iwpT") dQ = / K (VT) - nT"dl (3b)
Q r
/(v-v—z;;TJr;f;p)ptdQ:o (3c)
Q

Discretization of this set of weak equations yields the viscothermal finite eteinagrange shape functions
of second order are used for the velocity components, the temperatltieesincorresponding test functions
(v, v?, T andT?), and Lagrange shape functions of first order are used for tilssyme and the corresponding
test functions andp?). Using equal order shape functions for all DOFs would result in salntes element.
This finite element has a so called mixed formulation, because the continuitiyostaiad the pressure DOF
could have been eliminated from the set. The domain equations can be madetsgrontenot Hermitian
symmetric = K7 # K*H) by multiplication of the enthalpy equation (3b) WiIhTO_I and the continuity
equation (3c) with-1. The natural boundary conditions then determine whether the completengysstieix
becomes symmetric or not.

The total number of boundary conditions (BCs) that needs to be specifiedch boundary is four: one
thermal BC and three mechanical BCs (one in each direction). The thei@ahB be either temperature
(essential), or heat flux (natural), and the mechanical BC can be eélusity (essential), or force (natural);
see table 2. For example, a symmetry boundary is modeled with zero normatyedero tangential forces
(in two directions) and zero heat flux. Natural BCs can be an expreasitunction of the DOFs. This can
be used to apply impedance BCs for example.

Boundary condition Weak equation ~ Essential Natural

Normal mechanical Momentum (3a) Normal velocity Normal total force
Tangential mechanical Momentum (3a) Tangential velocity Tangential wssimyceé
Thermal Enthalpy (3b) Temperature Heat flux

* The tangential total force equals the tangential viscous force, beitasiggdependent of the pressure.

Table 2: Applicable boundary conditions

3 Experimental validation

Results of viscothermal FEM calculations are compared to impedance tubarereasts. The impedance
tube, see figure 1(a), is a practical measurement device to calculate fe’'samygorption coefficient at
normal incidence. During the measurement, a broadband signal is apptiesl $peaker and the pressure
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Figure 1: (a) Schematic overview of the impedance tube setup, (b) Phtte oflindrical layer resonator,
(c) Photo of the broadband resonator

perturbation is measured with two microphones. The absorption coeff@aane calculated from the two
measurement signals and the known distance between the microphones.

Two samples were measured. Both are resonators that are influenesddthermal effects:

e a simple cylindrical layer resonator, optimized to reach an absorption@eetfof 1 at its resonance
frequency, see figure 1(b)

e a more complicated broadband resonator with twenty tubes, see figurét h@$ been optimized by
Hannink [5] for a high absorption coefficient between 1 and 2 kHz.

Both resonators were optimized using LRF models, which is possible beohtise simple geometries
involved. Clearly, the viscothermal finite element has been developed fag comnplicated geometries.
Therefore, the presented experiments only serve as an experimdiualioa.

3.1 Cylindrical layer resonator

An axi-symmetrical viscothermal FEM model is used to model the cylindricalrleggonator shown in

figure 1(b). The used FEM formulation is obtained by writing the weak forguagon (3), in cylinder

coordinates. Next, the angular velocity, its test function and all angularatiges are set equal to zero.
Last, all remaining equations multiplied with the radial coordinate to preveisioins by zero.

Figure 2(a) shows the FEM model. Only a small part of the impedance tube ml@doghd the chamfers of
the resonator are ignored. The impedance tube has a radius of 50 mnesbhator’s length is 70 mm, its
layer thickness is 1 mm and its inner diameter is 42 mm. An adiabatic, unit normelfoundary condition
is applied to the upper pressure measurement surface to excite the maeelsoWing the FEM problem,
the absorption coefficient can be calculated from the pressures ondhEdasure measurement surfaces.

Figures 2(b) and 2(c) show some post processing results at the @éohear the resonance frequency. The
axial velocity profile changes near the outflow opening of the resonkatdigure 2(c), the radial velocity
magnitude is shown. The line on which it is zero is curved to the nearby impedabe wall. The dashed
line in the plot clearly illustrates this effect.
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Figure 2: (a) Axi-symmetrical FEM model, (b) Magnitude of Axial velocity), k¢agnitude of radial velocity
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Figure 3: Absorption coefficient of the cylindrical layer resonator
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The cylindrical layer resonator has a simple geometry that can be modekedixy dimensional LRF net-
work model; see Van der Eerden [4]. Such a model does not accuda®tyibe the mentioned three dimen-
sional effects near the outflow of the resonator. Nevertheless, tffesesecan be approximately modeled
with an end correction. The well known acoustic end correction for dzhfflibes is:,f’—;"r with r the tube
radius. This tube radius can be expressed as twice the outflow sur&eéigided by the circumference
length. Using the same reasoning for an infinitely long layer yields an emeation of%, with h the layer
thickness. This end correction seems to work well in this case, because the estimatedtadin coefficient
of the cylindrical layer resonator corresponds well to the FEM modeltaige measurement; see figure 3.
Both the finite element and the LRF network model can describe this resatatmately.

3.2 Broadband resonator

The broadband resonator shown in figure 1(c), is optimized for higbratisn between 1 and 2 kHz; see
Hannink [5]. An LRF network model was used to optimize the radii and lengfttige tubes. The optimized
resonator was built using slightly different dimensions, for ease of naaturing.

Figure 4 compares the measured response of the resonator to its LRRmwitbdwlffled tube end corrections
and to its LRF model without end corrections. Although the models roughly niiaéaheasurements, neither
is very accurate. This might have been expected, because the 3D cefthate at the the open tube ends are
not correctly taken into account in the LRF models; neither with baffled tobdeerrections nor without end
corrections. Inevitably, the outflow of a tube is affected by neighboribgguespecially if the tube lengths
are nearly equal. Therefore, standard end corrections can naeoe uikely, either a measurement or a
FEM model is required to find accurate end corrections for this particetamator. Perhaps an isentropic
acoustic FEM model suffices, but this hypothesis has not been examined.

A three dimensional viscothermal FEM model was made of the resonatoriimglaghart of the impedance
tube; see figure 6. This is a large model, especially because it containssoréarges with boundary layers.
The model contains 500,000 DOFs, even after some ideas to reduce thiesimedave been applied:

e The walls on which the viscothermal effects can be neglected are modeledlipittind adiabatic
boundary conditions (identical to symmetry BC). These walls are the clobedehd surfaces and the
surface of the impedance tube and they are blue in figure 6.

e The viscous boundary layer thickness is estimated, as ,00% and a somewhat larger boundary
layer mesh is used in the tubes.

The results of the calculations are shown in figure 5. The absorptioficeef has been determined in a
similar way as in the model of the cylindrical layer resonator. The FEM modmidarate for frequencies

up to 1450 Hz, because it can accurately describe the three dimensigfiavceffects of the tubes. The

start and stop frequencies of the absorption range are also accymegdigted in the FEM model. Above

1450 Hz, the model only roughly corresponds to the measurement. Figise Shows the results of a FEM
calculation with a coarse mesh with 200,000 DOFs. The results above 14&@ idifferent, which indicates

that the results have not completely converged to the solution of the undedgimtions. Therefore, the
original FEM model might be improved by using a finer mesh.

1The viscothermal finite element can be used to calculate viscothernflathiaibe end corrections, or, better in this case, baffled
layer end corrections. For simplicity, the mentioned end correcti@idfas been used here.
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Figure 4: Absorption coefficient of the broadband resonator, LRFeinod
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Figure 6: The broadband resonator model. The blue surfaces ardemadéh adiabatic slip walls. The
boundary layer mesh is visible at the tube ends.

4 Conclusion

A finite element for viscothermal wave propagation has been presenteid paiber. It is intended to solve
problems that cannot be modeled by the LRF model because of their congblgeaimetries. Examples of
applications are miniature acoustic transducers and MEMS devices.

Impedance tube measurements of two samples were compared to the FEMicaisaiad the results match
well. However, the limitation of the presented finite element in three dimensiooklgmns is the required

computer hardware. Careful meshing of three dimensional problemsusaddo reduce the problem size
as much as possible.
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