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ABSTRACT
Fuzzy extractors allow cryptographic keys to be generated
from noisy, non-uniform biometric data. Fuzzy extractors
can be used to authenticate a user to a server without stor-
ing her biometric data directly. However, in the Informa-
tion Theoretic sense fuzzy extractors will leak information
about the biometric data. We propose as alternative to use
a fuzzy embedder which fuses an independently generated
cryptographic key with biometric data. As fuzzy extractors,
a fuzzy embedder can be used to authenticate a user with-
out storing her biometric information or the cryptographic
key on a server. A fuzzy embedder will leak in the Informa-
tion Theoretic sense information about both the biometrics
and the cryptographic key. While both types of leakage are
important, information leakage of the biometric data is criti-
cal since the cryptographic key as opposed to biometric data
can be renewed. We show that constructing fuzzy embed-
ders which leak no information about the biometrics is the-
oretically possible. We present a construction which allows
controlling the leakage of biometric information, but which
requires a weak secret at the decoder called dither. If this
secret is compromised the security of the construction will
degrade gracefully.

1. INTRODUCTION

A fuzzy extractor is a generic construction proposed by
Dodis,et al. [4] which allows cryptographic keys to be gen-
erated from noisy, non-uniform data, such as biometrics. A
fuzzy extractor can be used to authenticate a user to a server
without storing her biometric data directly. This is important
because the server may well be (partially) untrusted.

A fuzzy extractor is a pair of two functions. The first
function is called the encoder, which is used once during en-
rollment. The second function is the decoder, which is used
every time the user is authenticating to the server.
The encoder takes as input the users biometricx. It then out-
puts a public sketchp and a binary keyk. For the same bio-
metricx always the same pair(k, p) is output. The decoder
takes as input a fresh measurementx′ of the users biomet-
ric and the public sketchp, and outputs the secret keyk if x
andx′ are similar enough (we will explain later what similar
enough actually means).

A fuzzy extractor has two disadvantages. Firstly, the
public sketchp and the authentication keyk are extracted
from the biometric and cannot be renewed. Secondly, it has
been shown that it is impossible [5] to build fuzzy extractors
for which the output does not leak information about the
biometric input. Therefore, in [1] we propose an alternative
construction to the fuzzy extractor termed afuzzy embedder
which takes as input an independently generated keyk and
the real valued (biometric data)x. Like a fuzzy extractor, a

fuzzy embedder allows recovery of the binary keyk, in the
presence ofx′ (a corrupted version ofx) at the decoder.

Contribution. We show that it is possible for a fuzzy em-
bedder to make the outputp statistically independent from
the biometric inputx or x′. We propose to use dithering tech-
niques to break the correlation between the secret biomet-
ric information and the data that is made public. We give
a practical construction based on quantization data-hiding
codes [6] which requires a weak secret at the decoder. We
show that if the secret is compromised, or if it is simply im-
possible to store secret information at the decoder, the secu-
rity of the construction will degrade gracefully.

2. FUNDAMENTALS

Notation. By capital letters we denote random variables
while small letters are used to denote realizations of random
variables. A random variableX is endowed with a domain of
definition,DX and a probability density functionfX(x). We
denote the characteristic function ofX by

FX(u) =

∫ ∞

−∞
fX(x)ejuxdx.

In the rest of the paper we use a random variableX when
referring to biometric data,P when referring to public data
(the sketch) andK for binary strings that are used as crypto-
graphic keys.
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Figure 1: By quantization, the probability density function of X
fX(x) (continuous line) is transformed into fQX (x) (dotted line).

Quantization. Quantization of variableX means sampling
the probability density distribution ofX and rounding the
values ofDX to predefined points. By quantization the prob-
ability density function of the inputX, fX(x),which is con-
tinuous, is transformed into the probability density function
fQX (x), which is discrete, seeFigure1.
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Figure 2: Quantization of X with two scalar quantizers Q0 and Q1
both with step size q.

Formally, a quantizer is a functionQ : DX → CQ that
maps eachx ∈ DX into the closestreconstruction pointin
the setCQ = {c1,c2, . . .} by

Q(x) = argmin
ci∈C

d(x,ci)

whered is a suitable distance measure for the spaceX.
WhenX is one dimensional,Q is called ascalar quan-

tizer. In the scalar case, the length of the decision region is
called thestep size.If all decision regions of a quantizer are
equal the quantizer isuniform.

To measure the quality of the quantizer, the quantization
error e is defined as the difference between the input of
the quantizer,X, and its outputQ(X): e = Q(x)− x. The
quantization error is minimized if the reconstruction point
is the centroid of its decision region. TheVoronoi region
of a set of points is the subset of all points that are closer
to one reconstruction point than to any other reconstruction
point. If the points form a lattice the Voronoi regions of
all reconstruction points are congruent. We refer then, to
the Voronoi region of the lattice. Thesize and shapeof the
Voronoi region determines the tolerated noise between two
valuesx andx′.

Quantization-Based Hiding Codes. Quantization based
data hiding codes as introduced by Chen,et al. [3] (also
known as quantization index modulation) can embed secret
information into a real valued signal. We start with an exam-
ple of the simplest case of embedding one bit of information
into a single samplex.

Example.In a real valuex we want to embed one bit of
information, thusk∈ {0,1}. For this purpose we use a scalar
uniform quantizer with step sizeq, given by

Q(x) = qb
x
q
c.

The quantizerQ is used to generate a set of two new quantiz-
ers{Q0,Q1} defined as:

Q0(x) = Q(x+v0)−v0

and
Q1(x) = Q(x+v1)−v1

where
v0 =

q
4

andv1 = −
q
4
.

In Figure2 the reconstruction points for the quantizerQ1 are
shown as circles and the reconstruction points for the quan-
tizerQ0 are shown as crosses.

The embedding is done by outputting the distance vector
to the nearest× or ◦ chosen byk. When during decodingx is
perturbed by noise, the decoder will assign the received data
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Figure 3: A fuzzy embedder is a pair of two functions: the en-
coder and the decoder. The encode function, which takes as input
a biometric descriptor x and a binary sequence k generated inde-
pendently, is executed during enrollment. The result p is made pub-
lic. The decode function, which takes as input a (possibly)corrupted
biometric measurement x′ and the public sketch p will output k if x
and x′ are close, is executed during authentication.

to the closest× or ◦ point, and output 0 or 1 respectively.
The set of the two quantizers{Q0,Q1} is called aQIM.

General-QIM. The generalization of the one-dimensional
QIM presented above is a lattice-QIM that replaces the
scalar quantization by ann dimensional vector quantizer.

A QIM : DX × K → CQIM is a set of quantizers
{Q1,Q2, . . .QN} that mapsx into one of the reconstruction
points of the quantizers in the set. The quantizer is chosen
by the input valuek∈ K such that

QIM(x,k) = Qk(x).

The set of all reconstruction points isCQIM =
⋃

k∈K Ck where
Ck is the set of reconstruction points of the quantizerQk.

The number of quantizersin the QIM determines the
number of bits that can be embedded inx. By setting the
number of quantizers in theQIM set and by choosing the
shape and size of the decision region the performance prop-
erties can be fine tuned.

3. CONSTRUCTING A FUZZY EMBEDDER USING
A QIM

We consider points in ann-dimensional universe, i.e.
DX ⊂ R

n. The random binary stringK is generated inde-
pendently from the random variableX andK has a uniform
distribution.

Definition. A fuzzy embedderis a tuple (X, K, P,En-
code, Decode), where p= Encode(X,k), X is a random vari-
able and k= Decode(x, p) when x∈ X and p∈ P . The fuzzy
embedder isρ-reliablefor the probability density fX(x) if

P(Decode(x,Encode(X,k)) = k|X = x) ≥ ρ ,

for all k ∈ K. We say the scheme is(ε,δ )-secureif:

I(X;P) ≤ ε and I(K;P) ≤ δ .

Figure 3 illustrates a fuzzy embedder system. Below we
give the intuition for the parameters of a fuzzy embedder.
Reliability captures the capability of a fuzzy embedder to re-
construct the correct key from a noisy measurement of the
biometric. Security measures the amount of secret informa-
tion that is revealed by the outputp. As we have two inde-
pendent inputs we measure the leakage on both of them. If



an attacker learns the valuex she can reproduce the valuek
with the help of the public valuep. However, if an attacker
learns the secret keyk, she could potentially circumvent the
security altogether but cannot reproducex. We illustrate this
observation in the next example.

Example.In the fuzzy embedder example given inFig-
ure 2, the attacker can choose between two different key
values{◦,×}. Assume she learns the correct key,◦. To find
the correct value forx she still has to decide which of the re-
construction points of the quantizerQ◦ is closest tox. With-
out any other information this is an impossible task since the
quantizerQ◦ has an infinite number of reconstruction points.

The public sketchp leaks information about both the ran-
dom stringk, denoted withδ , and the valuex, denoted with
ε. Since full disclosure of the stringr is not enough to re-
coverx, we conclude thatε ≤ δ . More details about the size
of δ relative to the dimension of the parameters can be found
in Buhan [1].

In the following we give a practical construction for a
fuzzy embedder usingQIM data hiding codes.

3.1 QIM fuzzy embedder basic construction

A QIM-fuzzy embedder is a hiding scheme where the en-
coder is defined as:

Encode(x,k) = QIM(x,k)−x,

and where the decoder is the minimum distance Euclidian
decoder:

Decode(x′, p) = Q̃(x′ + p),

whereQ̃ : DX → DK , is defined as:

Q̃(x′) = arg min
k∈DK

d(x′,Ck).

ρ-Reliability. Reliability is the probability with which the
decode function mapsx andx′ to the same valuek.

The public stringp is the distance betweenx andQk(x),
the chosen reconstruction point. By adding the valuep to
x′, Qk(x) will be detected as long asx andx′ are within the
bounds of the same Voronoi region. Thus,ρ is the probability
thatx andx′ are in the same Voronoi region.

Whenx andx′ are biometric samples collected from the
same user,ρ can be seen as theprobability of detectionor the
probability that two samples coming from the same user will
be correctly identified as such. For a lattice quantizer we can
write:

ρ ≈

∫

V
fX(x)dx

whereV is the Voronoi region of the lattice.
In earlier work, [2] we investigated the link between

reliability and the size of the cryptographic key. It turns out
that they are not independent. Increasing the number of bits
in the cryptographic keyk has a negative influence on the
reliability.

ε-Security. To evaluateε the statistical properties offP(p)
need to be investigated. Eachp is computed as:

p = Qk(x)−x, ∀x∈ DX , k∈ DK .

When|K| = 1 (or in other wordsQIM = {Q} has only
one quantizer) this simplifies to:

p = Q(x)−x.

fP(p|k1)

1−10−6

fP(p|k0)

1

1+10−6

−q
2
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Figure 4: Conditional probability densities functions of the pub-
lic sketch P given two different keys{k0,k1} that can be embedded,
when fX(x) = N(0,1). We used theQIM construction from the ex-
ample given in section 2.

Now fP(p) is the same as the probability densityfE(e) of the
quantization errore. This observation makes analysis of the
security properties of aQIM easier.
When |K| > 1, for each quantizer,Qk we have a particular
error probability densityfE(ek) which is equal tofP(p|k).
Figure 4 illustrates the two error probability densities
{ fP(p|k1), fP(p|k0)} of the QIM ensemble in the example
of section 2. Conditioning on the key, we can computefP(p)
as

fP(p) = ∑
k∈DK

fP(p|k) · fK(k)

In the remainder of the paper, we analyze scalar quantization
and leave lattice quantization as future work.

Widrow, [10] show how the probability density of
fP(p|k) can be constructed: the value of the error results from
the quantization ofx falling at just the right places within all
the quantization boxes. Thus whenQk are scalar uniform
quantizers with step sizeq and reconstruction points given
by Qk(n·q),∀n∈ Z, we can cutfX(x) into strips of lengthq,
stacking the strips and then adding we arrive at:

fP(p|k) =

{
∑n fX(Qk(nq)+ p) if |p| ≤ q

2
0, elsewhere.

The definition of the encoder shows that there is a
deterministic relationship between the input and the output
of the quantizer and as a resultε cannot be zero. In spite
of this deterministic relation Widrow, [10] shows that under
certain circumstances (depending on the distribution ofX)
the quantization error can be made uniformly distributed
on its support, butnot statistically independent ofX.
Widrow, [10] gives sufficient conditions thatFX(x) has to
satisfy to make the quantization error uniform. Sripad,et
al. [8] give necessary and sufficient conditions for the errors
to be independent. Both results apply to uniform scalar



quantizers, with step sizeq.

Proposition 1. (Sripad and Snyder)The characteristic
function of the input random variable satisfies

FX(
2πn

q
) = 0, ∀n 6= 0

if and only if the density function of the quantization erroris
uniform,

fE(e) =

{
1
q, − q

2 ≤ e<
q
2

0, otherwise.

In our case,fE(e) in the result above can be replaced by
fP(p|k), which also implies that whenfK(k) is uniformly
distributed also fP(p) is uniformly distributed. Unfor-
tunately, the above result imposes conditions upon the
statistics of the system input which in most practical cases
cannot be controlled.

δ -Security. δ shows the amount of information thatP re-
veals about the cryptographic keyK. Information leaks
wheneverfP(p|ki) 6= fP(p), ∀ki ∈ DK . We look at the differ-
ences between the probability distributions of error for each
quantizer.

In this paper, we focus only on the topic ofε-security,
or the privacy leakage. We show, in the reminder of the pa-
per how one can balance the private information leakage by
the introduction of additional noise at the encoder. When
no additional information is added to the inputX of a quan-
tizer as above, the quantizer is also known asundithered
quantization. In the following when referring to a basic
QIM construction we use the undithered-fuzzy embedder .

3.2 QIM-fuzzy embedder dithered construction

Schuchman, [7] shows how to circumvent Sripad’s result by
multiplying the characteristic function of the input signal,
FX(u) by a desired function. A product of characteristic func-
tions corresponds to convolution in the probability density
domain. Convolution of probability densities correspondsto
addition of independent random variables. Therefore accord-
ing to Schuchman, [7]any input fX(x) can be forced to sat-
isfy Widrow, [10] condition by adding a suitable independent
variable. The independent variable is calleddither (v).

Dithering is currently being used in processing of both
digital video or audio data to reduce errors introduced by
signal quantization. The premise is that quantization and re-
quantization of digital data yields an error. If that error is
repeating and correlated to the signal, the error has a deter-
mined pattern. By adding noise at the input signal the error
patterns- are randomized. It was found that random errors
compared to error pattern can reduce visual or audio artifacts.

For the fuzzy embedder it means that we can make the
public sketch independent of the biometric data by adding
an independent random variable to the inputX. This means
that the value of theε parameter can be made arbitrarily
small, without compromisingδ , by adding to the input
X, an independent source of noise with suitable statistical
properties. There are two types of dithered quantization
systems known in the literature. The first, is thesubtractive
dither quantization system (SD), seeFigure 5. The ditherv
is added to the real valuedx before it is fed into the encoder.
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Figure 5:A subtractive quantization fuzzy embedder system.

In an SD-quantization system at the decoder, the same
dither value is subtracted. The second is thenon-subtractive
dither quantization system (NSD), seeFigure 6. The only
difference between an SD and an NSD quantization system
is that the dither is not available at the decoder.

SD-fuzzy embedder. When SD quantization is used the
fuzzy embedder system is defined as below,

Encode(x+v,k) = QIM(x+v,k)

wherev is uniformly distributed and− q
2 ≤ v <

q
2. The de-

coder function is defined as

Decode(x′−v, p) = Q̃(x′−v+ p)

In this case the dither can be seen as a weak secret between
the encoder and the decoder. The dither vectorv is stored
along withp encrypted with a key known only at the decoder.

In the proposition below Schuchman, gives a necessary
and sufficient condition for the characteristic function of
the dither, Fv(u). All dithers that satisfy this condition
render the quantization errorfE(e) uniformandstatistically
independentof X in given by .

Proposition 2. (Schuchmans Condition)In an subtrac-
tive quantizing system, the error will be statistically indepen-
dent of the system input forarbitraryinput distributions if and
only if the characteristic function of the dither Fv satisfies the
condition that

Fv(
n
q
) = 0 ∀n 6= 0

Furthermore, the error will be uniformly distributed for
arbitrary input distributions if and only if this condition
holds.

It is natural to wonder which probability density func-
tions satisfy the criterion in Schuchman result. One of the
most simple candidates is a dither which is uniformly dis-
tributed on

(
− q

2,
q
2

)
.

It was shown [9] that when subtractive dither quanti-
zation is used the properties of the public sequencep are
ideal. Namely,p is statistically independent from the input
sequencex and the correction capabilities are not affected by
the noise introduced by the dither.

ρ-Reliability. To estimate reliability, we look at the noise
tolerated between the input of the encoderx+v and the input
of the decoderx′ +v.

ρ = P(Decode(x′ +v,Encode(X +v,k)) = k|X = x)
= P(Decode(x′,Encode(X,k)) = k|X = x)



’x
v

x′

k

k

p pEncode Decode

Noise

Figure 6:A non-subtractive quantization fuzzy embedder system.

This is exactly the same as the robustness in the case of an
undithered fuzzy embedder system, section 3.1.

ε-Security. According to Schuchman’s conditionfP(p|k)
is independent offX(x), thus fP(p) is also independent of
fX(x). We have as a resultε = 0.

NSD-fuzzy embedder. An SD-fuzzy embedder system
might not be practical since it requires secret informationto
be available at the decoder. This reason would be impractical
if that the decoder does not have encryption-decryptioncapa-
bilities or another reason might be that the value of the dither
vectorv, is compromised. It is useful for practical reasons to
study what happens to the reliability and security of a fuzzy
embedder when the dither is not available at the decoder.
When NSD quantization is used the fuzzy embedder system
is defined as below,

Encode(x+v,k) = QIM(x+v,k)

Herev is uniformly distributed and− q
2 ≤ v<

q
2. The decoder

function is defined as

Decode(x′, p) = Q̃(x′ + p)

ρ-Reliability. Again, we look at the noise tolerated between
the input of the encoderx+v and the input of the decoderx′.

ρ = P(Decode(x′ +v,Encode(X +v,k)) = k|X = x)

=
∫

q
fX(x+v)dx.

The reliability of a NSD-fuzzy embedder is lower than both
the reliability of a undithered-fe or a SD-fuzzy embedder .

ε-Security. Wannamaker,et al. [9] show that in an NSD
quantizing system it isnot possible to render the quantiza-
tion error statistically independent or uniformly distributed
for inputs of arbitrary distributions. It can render however
any desired moments of the error independent of the input
distribution. For many applications, controlling relevant er-
ror moments is just as good as having full statistical indepen-
dence of the input and error processes.

4. CONCLUSIONS

We use the property of dithering in a novel way to reduce the
correlation between information that is made public about
biometric data and the biometric data itself. By dithering
the biometric data we can make the published information

statistically independent from the biometric data. This ap-
proach requires a weak secret to be available at the decoder.
We further investigate what happens if the secret information
available at the decoder is compromised. The effect of com-
promising the secret at the decoder is a reduction on the re-
liability with which the decoder finds the correct binary key,
but the compromise has almost no effect on the information
that is leaked about the biometric itself. As future work we
intend to extend the above results to high dimensional lattice
quantizers. Investigation of the exact relation between the ε
andδ security is also left for future work.
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