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A port-Hamiltonian approach to modeling and interconnections of
canal systems

Ramkrishna Pasumarthy and Arjan van der Schaft

Abstract— We show how the port-Hamiltonian formulation of distribut ed parameter systems, which incorporates energy flow
through the boundary of the spatial domain of the system, cae used to model networks of canals and study interconnectis
of such systems. We first formulate fluid flow with 1-d spatial ariable whose dynamics are given by the well-known shallow
water equations, with respect to a Stokes-Dirac structureand then consider a slightly more complicated case where weakie
a modified (a non-constant) Stokes-Dirac structure. We alsexplore the existence of Casimir functions for such systemand
highlight their implications on control of fluid dynamical systems.
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I. INTRODUCTION

In recent publications, see for e.g. [9], [8], the Hamilemmiformulation of distributed parameter systems has been
successfully extended to incorporate boundary conditamrsesponding to non-zero energy flow, by defining a Dirac
structure on certain spaces of differential forms on thdaiapdomain and its boundary, based on the use of Stokes’
theorem. This is essential from a control and interconnactioint of view, since in many applications interaction
of system with its environment takes place through the baondf the system. This framework has been applied to
model various kinds of systems from different domains, tidegraphers equations, fluid dynamical systems, Maxwell
equations, flexible beams and so on. The results on inteexbions of port-Hamiltonian systems have also been extende
to the distributed parameter case, and so have been songy ehaping techniques for control of distributed parameter
port-Hamiltonian systems.

In this paper we use this framework of distributed paramptat-Hamiltonian systems to model and study inter-
connections of canals described by the so called shallolgrequations. This is a case of a distributed parameter
port-Hamiltonian system with 1-d spatial domain. The masssity and the velocity both are represented by a 1-form.
We consider two different cases of fluid flow, first where we énawly one velocity component. In this case we see
that this system can be modeled with help of a constant Stdkeac structure. Next we consider a slightly different
case where we induce an additional velocity component inzthiBrection such that the mass density and the two
velocity components are constant with respect to this amdit coordinate. So, it can still be modeled as a system
with 1 — d spatial domain. In this case we need to define a modified Diractare (because of the additional velocity
component) on the space of state variables. We study inteemtion properties of canals modeled in this framework for
both the cases and also see how the additional velocity coemaloes not contribute to the power exchange through
the boundary.

Finally we investigate the existence of Casimirs for botBesawhich give rise to some possibilities of passivity
based control of fluid dynamical systems in the port-Hamido framework. We see that in the first case the only
conservation law is the mass balance, where as in the seesed(the system with an additional velocity component)
we have possibilities for more Casimir functions, in fact agve a whole class of Casimirs to choose from.

Il. PORT-HAMILTONIAN FORMULATION OF THE SHALLOW-WATER EQUATIONS.

The dynamics of an open-channel canal can be described tshtilew water equations given by the following set
of equations [5]

o, [h] + {“ ff] o, m —0 1)
U g u U
with fz(m,t) the height of the water levely(z,t) the water speed ang the acceleration due to gravity, with being

the spatial variable representing the length of the camali. € [0, L]. The first equation expresses the mass-balance
and the second equation comes from the momentum-balaneetotd energy (Hamiltonian) is given by

l
H :% / [hi? + gh®]dx 2)
0
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A. Notations

We apply the differential geometric framework of differ@htforms on the spatial domaif/ of the system. The
shallow water equations are a case of a distributed paramettem with a one-dimensional spatial domain and in this
context it means that we distinguish between zero-formsctfans) and one forms defined on the interval representing
the spatial domain of the canal. One forms are objects whachbe integrated over every sub-interval of the interval
where as zero-forms or functions can be evaluated at anytspointhe interval. If we consider a spatial coordinate
z for the intervalWW, then a function is simply given by the valugéz) € R for every coordinate value im in the
interval, while a one-forny is given asg(x)dx for a certain density functiog. We denote the set of zero forms and
one-forms onl by Q°(W) and Q! (W) respectively. Given a coordinatefor the spatial domain we obtain by spatial
differentiation of a functionf(z) the one-formw := fi—i(x)dx. In coordinate free language this is denoted.as df,
whered is called the exterior derivates mapping zero forms to omen$dNe denote by, the Hodge star operator
mapping one forms to zero-forms, meaning that given a ona-fpon W, the star operator converts the one form g
to a functiong, mathematically given asg(z) = g(x). Also denote by, the wedge product of two differential forms.
Given ak-form w; and ani-form ws, the wedge product; A ws is ak + [-form.

In case of shallow-water equations the energy variabledreréneighti(x,t) and the velocityu(x,t). The energy
exchange of the system with the environment takes placeigtwrthe boundary0, L} of the system.

The Stokes-Dirac structure corresponding to the 1-d fluid flmodeled by the shallow-water equations is defined as
follows: The spatial domai¥ ¢ D C R is represented by a 1-d manifold with point boundaries. Téight of the
water flow (representing the mass density) through the chfalt) is identified with a 1-form ord//. Note that the
integral of h over a subinterval denotes the total amount of water coadilain that subinterval. Furthermore, assuming
the existence of iemannian metrie<, > on W, we identify (by index raising w.r.t this Riemannian meltice Eulerian
vector fieldu on W with a 1-form. This leads to the consideration of the (linesgpace of energy variables

X = QY W) x QY(W)
To identify the boundary variables we consider space ofrtip i.e., space of functions al¥, to represent both the
boundary flow and the dynamic pressure at the boundary. Wedbosider the space of boundary variables
QUOW) x Q°(oW)
Proposition 1: Let W C R be a 1-dimensional manifold with boundadyV. ConsiderV = Q'(W) x QY(W) x
QYOW) andV* = QY(W) x QY(W) x Q°(OW), together with the bilinear form
<< (o> fus Fo s eusen), (fis Jibs Jil s ens i €) >>

::/ (er NfE+er ANfr+el Af2+e2 Afh
w

+/ (es A f5 +ex AJy) ®)
1°A%%4

with f7, fi € QY (W), e, el fi el € QO(OW)
Then,D C V x V* defined as

D = {(fhafuvfbaeh7eu;eb) eV xVr (4)

fn=dey, fu = den, fo = en low, ep = —eu |ow }

whered is the exterior derivative (mapping—forms into 1- forms), |sw denoting the restriction df-forms onW to
0-forms on the boundarglV, is a Dirac structure with respect to the bilinear formc, >> defined as above, that is
D = D+, where L is with respect to (3)D is called a Stokes’ Dirac structure. Note that in standaatdinate notation
d would correspond to the spatial derivative, givendy
In terms of shallow-water equations the above terms woutdespond to

1
fn = fgh(:c,t),eh =0H :g(w)(*“) +gxh

ot
fu= —%u(:p,t),eu =0,H =xhxu
fb =0, H |8W)eb = —0pH |8W (5)

with the Hamiltonian given as
1 1
”/m7{:: —(xu)h(xu) + =g(*xh)h
7 2 2

Substituting (5) into (4), we obtain the shallow water egurat (1).
Proof: The proof follows the same arguments as in [9], making usehef3tokes’ theorem and hence we omit
the proof here. [ ]
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Fig. 1. Two canals in cascade

B. Energy Balance
Energy balance follows immediately from the power conserproperty of the Stokes-Dirac structure, given by

/ (eh/\fh-l-eu/\hu)-i-/ ep N\ fo=0
W

oW
and hence

d
EH— - evfo
1 ~
— Ra(La + gh) &

2,1 1 - 1 -
= (a(5hi® + 59h*) [§ +(a(59h*)) I§
The first term in last line of the above expression for energhattice corresponds to the energy flux (the total energy
times the velocity) through the boundary and the second terthe work done by the hydrostatic pressure given by
pressure times the velocity.
C. Interconnections of canals modeled by shallow-watea#qns.

In this section we study the interconnection propertieswad tanals in cascade as shown in fig(1). The beds of
the two canals are assumed to be horizontal and frictiorctsffere neglected. Lét;(z,t), v;(z,t)* respectively be the
height of the water level and water velocity at theth reach,; = 1,2. We also assume

hup > h1 > hg > hqo
and that both reaches have the same lerigth
h;(x,t) is the water height in thé-th reach, withi = 1,2
hio = h;(0,t) and h;p, = h;(L,t)
u;(x,t) is the water velocity in the-th reach
w0 = u;(0,¢t) and w;r, = u;(L,t)

hyp andhg, are the water heights of the left and right reservoirs retbgdy, as shown in the figure. The dynamics of
each reach are given by the shallow-water equations (5)

fri| 10 d] |ens
together with the boundary conditions as above. The flowassemed subcritical i.@; < v/gh;. One end of each reach
is coupled to a reservoir as shown in the figure. The inteyadietween the various subsystems takes place through the
three gates. The interconnection constraints at each gatgiaen as follows:
Left gate:

h _ o U%O h
up = fp1,0 = % + hio

Qo = €p1,0 = —hiouig (7)

1from now on we will often abuse the notation and simply wiite= E(m)dz) and similarly for other terms.
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Fig. 2. Interconnections of cross canals

Intermediate gate:

UQL U%O
for,L = fro0 = QL +hip === +hp
g 29
ev1,I = €2,0 <= hiruir = haouao (8)
Right gate:
2 2
w u
foor = fao = 2L+ hap = -2 + hy,
29 29
ep2,L = €do <= — hapuar = hgotdo )

with fi; 2, enie being the flows and effort variables at each end of the boyniflghe i-th reach. It can easily be
shown that the composed system is again a port-Hamiltonjaters, with Dirac structure the composition of Dirac
structures of the subsystems and Hamiltonian the sum of dmilkbnians. Since the closed-loop system is again a
port-Hamiltonian system, it easily ensures some desirepeties and provides useful information for analysis and
control of the closed-loop system by generating Casimirgte closed-loop system.

Remark 2:In a similar way we can also look at more practical cases @fr@unnections of cross canals as shown in
fig (2). If (f1,e1), (f2,e2) and(f3,e3) are the boundary variables (the end where the three can&y ofecanal 1, 2
and 3 respectively, then the interconnection constraimislidvbe as follows:

hitfe=1s
€1 = €3 = €3

At steady state the boundary variables would be the samepas th the spatial domain. The first equation corresponds
to the water flow or discharge at the junction and the secow@t&mn corresponds to the Bernoulli function.

I1l. SHALLOW WATER EQUATIONS WITH AN ADDITIONAL VELOCITY COMPONENT.

We consider a slightly different and more complicated casalich we consider an additional component of the
velocity in thez direction as shown in the figure (3). In addition, we assuna¢ the heighth, the horizontal velocity
u and the additional velocity componentdo not depend on this additional coordinate and hence we tdamedel
this as a 1-d fluid flow as shown below. The dynamics of the aystee described by the following set of equations [5]

Oth = —0,(hit)
Oy (ht) = —0, (huw) (10)

with h(z, ) the height of the water leveli(z, t) the water velocity in the: direction andi(z, t) the component of the
velocity in thez direction with g the acceleration due to gravity. The first equation againesponds to mass balance,
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Fig. 3. The additional velocity component

while the second and third equations correspond to the mtumebalance. The above set of equations can alternatively
be written as

@B:-@(ﬁm
Oyt = 6( @ + gh)
O = —u@wv (11)

In the port-Hamiltonian framework it is modeled as folloW$e energy variables now afdz, t), u(z,t) andv(x, t),
the Hamiltonian of the system is given by

Thiééwﬁaﬂ+ﬁ%@ﬂ%+%ﬁ2 (12)

and the variational derivatives are given &t = [392 +gh hii ho)T. As before the interaction of the system with the
environment takes place through the boundary of the sy§tem}. The Stokes-Dirac structure corresponding to the
shallow-water equations with an additional velocity comgmot, and modeled as a 1-d fluid flow, is defined as follows:
The spatial domaii? ¢ D C R as before is represented by a 1-d manifold with point bouadaihe height of the
water flow through the canal(z, ¢) is identified with a 1-form ori¥ and again assuming the existence &iamannian
metric <, > on W, we can identify (by index raising w.r.t this Riemannian ri@tthe Eulerian vector fields andv

on W with a 1-form. This leads to the consideration of the (lifesgrace of energy variables.

X = Q' (W) x Q* (W) x QY(W)

To identify the boundary variables we consider space ofrfp i.e., the space of functions @iV, to represent the
boundary height ,the dynamic pressure and the additiodatie component at the boundary. We thus consider the
space of boundary variables

QW) x Q°(OW) x Q°(oW)

We will now define the Stokes-Dirac structure ahx Q°(dW), (i.e., the space of energy variables and part of the

space of the boundary variables) in the following way
Proposition 3: (Modified Stokes Dirac structure) Lél/ C R be al -dimensional manifold with boundargiV.
ConsiderV = X x QUOW) = QY(W) x QL(W) x QY (W) x Q°(0W), together with the bilinear form

(
/W
a

<<

=/

[ @nsteeng) a3)
ow

1 1 1 1 1 1 1 2 2 2 2
h:fu:fv:fbveh,veuvemeb)v (fhvfuvavfb7eh,7euyevveb) >>

enNfrtenAfatenfotenAfotesAfeternfe)

where
fi € QYW), fL e QX (W), fi € QY W), fi € Q°(OW)
eh € QW) el € QO(W), el € QO(W), el € QY (W)
ThenD C V x V* defined as
D ={( fh,fu,fv,fb,eh,eu,ev,eb) eVxVT

0 €h
O —2d(xv) | |eu
fU ﬁd(*v) 0 €y
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fo 0O 1 0 eu low
epl = 1—1 0 O en low
E{U 0 0 # €y |8W

is a Dirac structure, that i® = D+, where_L is with respect to (13).
In terms of shallow-water equations with an additional e@locomponent the above terms would correspond to

= 2,0 en = 80 = (3 (s o) + (s0)(0)) + g(oh)
fu= —%u(m,t),eu = 0, H = (xh)(xu)

fo =~ 2@, t), e = 8,7 = (xh)(x0)

ot
fo=0uH |¢9Waeb = —0nH |8Wa
1
e; = —0,H |ow (15)
xh

Substituting (15) into (14), we obtain the equations (11).
Proof: The proof is based on the skew symmetric term in3he3 matrix and also that the boundary variable

in (14) does not contribute to the bilinear form (13) and dtdtows a procedure as in [9]. ]

Remark 4:The Dirac structure above is no more a constant Dirac streicts it depends on the energy varialiles
andv. Moreover, we will also see that of the three boundary véemlf,, e, andel,, only f, ande, play a role in the
power exchange through the boundary as will be seen in theessipn for energy balance. We considgras the third
boundary variable instead ef |5y because to study interconnections of such systems we wikeldd considern as
the boundary variable instead bt at the boundary as will be shown later.

A. Energy Balance

It follows from the power conserving property of a Dirac sture that the modified Stokes-Dirac structure defined
above has the property

/(ehAfh+euAfu+ev/\fv)+/ eb/\fb:O
w 9

w
and hence we can get the energy balance

d
E'H = - ep N\ fb
which can also be seen by the following
d oh ou ov
—H = 0 — + 0y — + 4y —
dtH /W[ nH A T + 0 H A 5 + 0, HA at]
= —/ d[on HASH]
w
= OnHNA6H

19174

:/ ep A fo
oW

= (a(zhi + 3072) & +(a(507)) |&

As in the previous case the first term in last line of the aboy®ession for energy balance corresponds to the energy
flux (the total energy times the velocity) through the bougdand the second term is the work done by the hydrostatic
pressure given by pressure times the velocity. It is also #eat the boundary variables which contribute to the power
at the boundary arg, ande, and the third boundary variablé, does not contribute to it.

B. Interconnections in this case

We again consider interconnections of canals as shown irLfijgo(t now we have an additional velocity component
v(z,t) in the z direction.
vio = v(0,t), and v;r, = v(L,t)
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vyp andug, are the velocity components in thedirection at the gates of the left and right reservoirs retpely. The
constraints corresponding # ande; remain the same as the case discussed in the above sect®omt&ttonnection
constraints due to the additional velocity component ammrenodated as follows:

Vup = V10, V1L = V20, V2L = Vdo

where

Vij = efvi,j' 1 =1,2 andj = {O,L}
Since we would like to equate(z, t) at the intermediate gates (boundaries if the system), itdsensonvenient to use
el = %ev |sawinstead ofe, = hv |sw as the third boundary variable, which does not contributda¢opower exchanged

through the boundary of the system.

IV. EXISTENCE OFCASIMIRS AND CONTROL.

For the systems (4, 14) considered above one can infer a@igar laws or Casimirs, which are independent of the
Hamiltonian’{ of the system. We investigate such laws for both kinds ofesystdiscussed above. What we see is that
the only conservation law for the system described by (4)esmonds to the total mass. However, we also see that for
system described by (14) there exist more Casimirs thartlastotal mass, in fact we have a whole class of Casimir
functions to choose from.

For the system (14), it can be seen by the theory of achiex@dmémirs [4], that any functiod’ : Q1 (W) x QY (W) x
W — R which satisfies

d(6,C) =0, d(6,C)=0

In addition if §,C |aw= 0, and6,,C |sw= 0 then we see tha!f% = 0 along the trajectories of the system for any
Hamiltonian’®. Then the only Casimir for the system is the total mass of thetesy given by, h. It can then be

easily verified that
i/h*/%ff/d(éH)ff/éHf y
dt Jw w Ot W ow ow

which corresponds to the mass balance.

Next we investigate as to what are the achievable Casimith&system whose dynamics are described by equations
(14), with a modified Dirac structure. Applying the theory athievable Casimirs [4], we see that any funct©n
QL W) x Q! x QY (W) x W — R is a Casimir function if it satisfies

0 0 d 0 5nC
0| = |d 0 —ﬁd* v| |6,C
0 0 Sdxv 0 6,C

this is considering,C |aw= 0., |aw= 0. It follows from the first and the third rows of the above matitat
0,C =0

meaning that the Casimir function does not depend onutherm, then to find all the Casimir functions we need to
solve the equation given by the second row of the matrix i.e.,

1
d5,C = +d(+0)5,C

It can be shown that all the functions of the form given below @asimirs for the system (see [7])

1
C = /W hé(—-d(x))

for any function¢. We discuss here a few specific examples of Casimir functions
Case 1: where(1-d(+v)) = 1, we haveC = [,,, h which corresponds to mass conservation as in the above case
Case 2:¢(J-d(xv)) = Z=d(+v), in which caseC' = [, d(xv) which is calledvorticity
Case 3y(-;d(xv)) = (5;d(xv))?, and this corresponds @ = [, - (d(xv))?, which is callednass weighted potential
enstrophy

The existence of Casimir gives rise to some possibilitiesp@ssivity based control of distributed parameter port-
Hamiltonian systems by interconnection and energy shagseg for eg [6]. A simple case could be to consider the
stability of the interconnected system (4) or(14), for gigate openings and a givén,, andhq, and consider stability
of the forced equilibriumh;(x, t), ;(z,t) (and alsov;(z,t) in case of the interconnected system as in fig (L}, 1, 2.
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We can then use the energy Casimir method for stability aislyf the closed-loop system, by using the following
function as a candidate Lyapunov function
Vi=Hg+C

with H.; the Hamiltonian system of the closed-loop system éhthe corresponding Casimir function of the closed-

loop system. The total system can be viewed as a plant-damtsystem in the following way: The plant system is the

interconnection of the two canals in cascade and the resgrabboth ends of the plant are viewed as the controller
system. The height and velocity can be assumed to be fixechéocontroller system, and hence no dynamics. The
stability of the forced equilibrium can thus be analyzed tloe interconnected plant controller system by generating
Casimirs for the closed-loop system. A finite dimensionallgsis of closed-loop system with a forced equilibrium can

be found in [3]

V. CONCLUSIONS AND FUTURE WORK

We have shown how we can model water flow through canals ukimgadrt-Hamiltonian framework for distributed
parameter systems, using a Dirac structure for a simplearaalso a modified Dirac structure, for a slightly compkcht
case. We also study interconnections of various canalsisrirdmework and also existence of Casimir functions which
opens up a possibility for passivity based control of sucsteaps.

Future work could certainly be on exploring passivity basedtrol of fluid systems, by making use of the Casimir
functions. Also a possibility could be to consider a highenehsional spatial domain.
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