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Introduction: The Need for Multi-Group Analysis in PLS Path Modeling 
In many sciences, and in particular in business and social sciences, partial least squares path 

modeling has become an established means for modeling complex relationships between 

latent variables. Very often, researchers face a heterogeneity of observations, i. e. for different 

sub-populations, different population parameters hold. For instance, institutions releasing 

national customer satisfaction indices may want to know whether model parameters differ 

significantly between different industries (c. f. Fornell 1992). Another example are customer 

segmentation studies based on FIMIX-PLS (c. f. Ringle, Wende, Will 2005). Usually, the 

segmentation phase is followed by separate PLS path modeling analyses of the customer 

segments, whose outcomes are subject to inter-segment comparisons. Commonly in multi-

group analysis, a population parameter β is hypothesized to differ for two subpopulations, i. e. 

β
(1)

 ≠ β
(2)

. Referring to PLS path modeling, researchers would ask whether differences in path 

coefficients between subsamples, say b(1) and b(2) are significant.

An Overview over Existing Approaches to     Multi-Group Analysis in PLS Path Modeling   

Basically, three approaches to multi-group analysis in PLS path modeling have been proposed 

in literature so far: the parametric approach, the moderation approach, and the permutation 

approach.

The parametric approach. Keil et al. (2000) based their statistical test of group differences on 

the pooled standard errors that they had gathered from Jackknifing. Similarly, Chin (2000) 

suggests as a quick fix to treat the estimates of the bootstrap re-sampling in a parametric sense 

via t-tests. After having exposed the subsamples to separate bootstrap analyses and having 

made parametric assumptions about the distributions of the parameter standard errors, one 

may calculate the following statistic for the difference in paths between groups. It is 

asymptotically t-distributed with n(1) + n(2) – 2 degrees of freedom.

t=
b1−b2

 n1−12

n1n2−2
⋅se 1

2 
n2−12

n1n2−2
⋅se 2

2 ⋅ 1
n1 

 1
n2

Equation 1
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The subsample-specific path coefficients are denoted as b, the sizes of the subsamples as n, 

and the path coefficient standard errors as resulting from bootstrapping as se.

The moderation approach. Baron and Kenny (1986) define moderator variables as metric or 

categorical variables that influence the strength and/or direction of a relationship between two 

other variables. In the terminology of Baron and Kenny, group effects are nothing else than 

moderating effects of a categorical moderator variable, namely the grouping variable. 

Henseler and Fassott (forthcoming) as well as Tenenhaus (forthcoming) advocate to use Chin, 

Marcolin & Newsted's (2003) well-known interaction approach for PLS path modeling in 

order to test for group effects. The moderation approach uses bootstrapping to test the group 

effect hypothesis and hence does not rely on distributional assumptions like the parametric 

approach. However, due to the standardization of latent variable scores within the PLS path 

modeling algorithm (c.f. Tenenhaus et al. 2005), it is not possible to determine the size of a 

potential group effect.

The permutation approach. The permutation approach was coined by Chin (2003) and 

illustrated by Chin and Dibbern (forthcoming). In analogy to Edgington (1987), the procedure 

of the PLS-based permutation test is carried out as follows:

1. A test statistic is computed for the data, for instance the difference between two path 

coefficients.

2. The data is repeatedly permuted (maintaining consistency with the random assignment 

procedure).

3. The test statistic is also calculated for each permutation.

4. The proportion of the test statistics resulting from the permutation that exceeds/falls 

below the value stemming from the original data, determine the error probability. If 

for instance more than 95% of the permutation test statistics exceed the original test 

statistic, the null hypothesis should be rejected.

The permutation approach overcomes both the disadvantages of the parametric approach and 

the moderation approach. However, the central drawback of the permutation approach is that 

it is currently not available to PLS users, because it is not implemented in any known PLS 

software so far.

A New Approach to Multi-Group Analysis in PLS Path Modeling 

From a procedural perspective, the new approach most resembles the parametric approach. 

Firstly, the subsamples are exposed to separate bootstrap analyses, and the bootstrap 
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outcomes serve as basis for the hypothesis tests of group differences. However, in contrast to 

the parametric approach, the new approach does not need any distributional assumptions. 

Instead, it evaluates the observed distribution of the bootstrap outcomes. Given two 

subsamples with parameter estimates (e. g., a path coefficient), b(1) and b(2), the probability 

P(β
(1)

 > β
(2)

) is to be determined. More often than not, in PLS path modeling, continuous 

distributions of β
(1)

 and β
(2)

 are not available. Instead, by means of bootstrapping, empirical 

cumulative distribution functions (CDF's), say F, are determined through the bootstrap 

parameter estimates bj. In case of J bootstrap samples, the empirical CDF is:

F  x =P  x=1− 1
J
⋅∑

j=1

J

 b j−x  Equation 2

Here, Θ denotes the unit step function, which has a value of one, if its argument exceeds zero, 

and zero otherwise. The probability of having group differences in the population is thus:

P 12=1−P 12=1−F 1 2 Equation 3
At this stage, one can again make use of the characteristic of the bootstrap, namely that it 

delivers an empirical cumulative distribution function of the population parameter.

F 12=∑
i=1

J 1
J
⋅F 1 b2 i=1− 1

J 2∑
i=1

J

∑
j=1

J

 b1  j−b2 i  Equation 4

Knowing the parameter estimates from bootstrapping for two subsamples and with the 

following formula at hand, researchers can easily verify how probable a difference in 

parameters between two subpopulations is, and hence test their hypothesis.

P 1 2 =
1
J 2∑

i=1

J

∑
j=1

J

 b 1 j−b2 i  Equation 5

This formula states that J2 (i. e., all possible) comparisons of bootstrap parameters have to be 

made. The number of cases in which the parameter of the one group exceeds the parameter 

of the other group has to be determined and divided by the number of comparisons.

Conclusions

The new approach combines the advantages of the three approaches presented before. It is 

simple to use, because it relies on nothing more than the bootstrap outputs that are generated 

by the prevailing PLS implementations (e. g., PLS-Graph, SPAD-PLS, and SmartPLS), it 

does not affect the estimate of the group difference, nor does it require distributional 

assumptions. The way of determining the probability that a population parameter differs 

across two sub-populations is unique to the new approach. It uses the empirical cumulative 

Page 3 of 4



distribution functions provided by bootstrap re-sampling as the basis for calculating the 

probability of differences in subpopulation parameters. Researchers can easily conduct the 

final calculations with available spreadsheet software like for instance MS Excel.
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