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Abstract—Systematic testing is very important for assess-
ing and improving the quality of embedded software. Yet,
testing turns out to be expensive, laborious, time-consuming
and error-prone. The project Côte de Resystehas been work-
ing since 1998 on methods, techniques and tools for au-
tomating specification based testing using formal methods.
The main achievement of the project is a test tool, baptized
TORX, which integrates automatic test generation, test exe-
cution, and test analysis in an on-the-fly manner. On the one
hand, TORX is based on well-defined theory, viz. the ioco-
test theory, which has its roots in the theory of testing- and
refusal-equivalences for transition systems. On the other
hand, the applicability of TORX has been demonstrated by
testing several academic and industrial case studies. This
paper summarizes the main results of the project.

Keywords— model-based testing, specification-based test-
ing, formal methods, test automation, test generation.

I. INTRODUCTION

A. Software Testing

Software quality is an issue that currently attracts a lot
of attention. Software invades everywhere in our society
and lives, and we are increasingly dependent on it. More-
over, the complexity of software is still growing. Conse-
quently, the quality, functional correctness and reliability
of software is an issue of increasing importance and grow-
ing concern. Systematic testing of software plays an im-
portant role in the quest for improved quality.

Despite its importance, testing is often an under-
exposed phase in the software development process.
Moreover, testing has turned out to be expensive, difficult,
and problematic. One source of problems is that specifica-
tions are usually imprecise, incomplete and ambiguous, so
that a good basis for testing is lacking. Another source is
that testing usually is a manual and laborious process with-
out effective automation, so it is error-prone and consumes
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many resources. The testing phase often gets jammed be-
tween moving code delivery dates and fixed custom de-
livery dates. Besides, research and development in testing
have been rather immature. Testing methodology is mostly
ad hoc and governed by heuristics.

Fortunately, this situation is gradually improving. Trig-
gered by the quest for improved quality and imposed by
increased product liability, testing is considered increas-
ingly important and treated more seriously. Research in
software testing is growing, the testing phase is more seri-
ously planned and managed, and being a software tester is
starting to be a true profession.

B. Côte de Resyste

The projectCôte de Resyste– ConformanceTesting of
ReactiveSystems – is a research and development project
aiming at improving the testing process by using formal
methods.

Côte de Resysteis supported by the Dutch Technology
Foundation STW in the context of the “Progress” pro-
gramme. The project is a cooperation between Philips
Research Laboratories Eindhoven, Lucent Technologies
R&D Centre Twente, Eindhoven University of Technol-
ogy, and the University of Twente. KPN Research partic-
ipated for some time, while close relationships exist with
CMG and Interpay. The 23 man-year project started in
1998 and ends in 2002.

C. Model Based Testing

The goal ofCôte de Resystehas been to develop theory,
methods and tools to enableautomatic testingof software
systems based onformal modelsof these systems. In do-
ing so,Côte de Resystehas concentrated onspecification
based, functional testingof reactive systems.

Reactive systems are mostly technical, event-driven
software systems in which stimulus/response behaviour is
very important. Examples are embedded systems, commu-
nication protocols, and process control software. Admin-



istrative systems are typically not reactive systems.
Testing involves checking the correctness of a reac-

tive system by performing experiments in a systematic
and controlled way. Functional testing involves check-
ing whether the system behaves correctly: does the sys-
tem do what it should do, as opposed to, e.g., testing the
performance, robustness, reliability, or user-friendlyness.
Specification-based refers to the existence of a specifica-
tion which exactly prescribes what the system shall do and
what not. This specification is the starting point for testing.
The system under test, referred to as theSUT, is considered
a black box about which no internal details are known.

With formal, model based testing the specification is
given as a formal model in some formal language. This
formal specification is the starting point for testing the
SUT.

D. Automated Testing

Different phases can be distinguished in the testing pro-
cess. Duringtest generationa test suite is developed start-
ing from a specification of theSUT. This test suite is usu-
ally expressed in an abstract way, thus it has to be rewritten
or implemented so that it can be executed. This is referred
to astest implementation. During test executionthe imple-
mented test suite is executed on theSUT. Finally, the test
results should be analysed, and compared with expected
results:test analysis.

Traditionally, test automationrefers to automation of
test execution, and sometimes to test analysis. A test must
be devised by humans and written down in a usually low-
level, test tool specific scripting language before automatic
execution can start.

Côte de Resysteaims at automation of the whole testing
process starting with test generation up to and including
test analysis. This opens the way towards completely au-
tomatic testing, where the system under test and its formal
specification are the only required prerequisites.

E. Overview

This paper outlines the main results of theCôte de
Resysteproject. The main challenge of the project was to
develop atest tool, which has, on the one hand, a well-
defined and soundtheoretical basis, and, on the other
hand, high practicalapplicability. The theoretical basis
is outlined in Section II. The test tool baptized TORX,
which is the main achievement of the project, is described
in Section III. The applicability has been evaluated by per-
forming different case studies supplied by the companies
Philips, Lucent, CMG and Interpay. They are further dis-
cussed in Section IV. Section V gives the main conclu-
sions, the open issues, and hints for further research.

II. T HEORY

A. Formal Methods

Currently, most system specifications are written in nat-
ural languages, such as English or Dutch. Although such
informal specifications are easily accessible, they are often
incomplete and liable to different and possibly inconsistent
interpretations. Such ambiguities are not a good basis for
testing: if it is not clear what a system shall do, it is diffi-
cult to test whether it does what it should do.

With formal methods, systems are specified and mod-
elled by applying techniques from mathematics and logic.
Such formal specifications and models have precise, un-
ambiguous semantics, which enables the analysis of sys-
tems and the reasoning about them with mathematical
precision and rigour. Moreover, formal languages are
more easily amenable to automatic processing by means
of tools. For example, verification tools exist that are able
to verify fully automatically the absence of deadlock based
on a formal description of the design. Until recently, for-
mal methods were merely an academic topic, but now their
use in industrial software development is increasing, in
particular for safety critical systems and for telecommu-
nication software.

In Côte de Resystewe have been usinglabelled tran-
sition systemsas the underlying formal basis. A labelled
transition system consists of states, representing the states
of a system, with labelled transitions between the states.
The labels on the transitions represent the observable ac-
tions of a system, such as inputs and outputs. Many formal
specification languages can semantically be expressed in
terms of transition systems. Of these, we use LOTOS [18],
PROMELA [17], SDL [5], and LTSA [19].

B. Testing with formal methods

A formal specification is a precise, consistent and unam-
biguous basis for software design and code development
as well as for testing. To define which implementations
are correct with respect to a transition system specification
and which are not, animplementation relation(or satisfac-
tion relation) is defined. In this way it is also determined
which implementations shouldpassa generated test suite,
and which implementations shouldfail.

In Côte de Resystewe use theioco-test theory to de-
fine correctness [22], [23]. The implementation relation
ioco has its roots in the theory of testing equivalences and
preorders for transition systems [8], [4].

Formally, the definition ofioco is

i ioco s =def

∀σ ∈ Straces(s) : out( i after σ ) ⊆ out( s after σ )



Informally, this means that an implementationi (which is
seen as a transition system) isioco-correct with respect
to a specifications (which is also a transition system), if,
and only if, after all possible behaviours of the specifica-
tion (∀σ ∈ Straces(s)), any output actionx produced by
the implementation (x ∈ out( i after σ ) can also occur
as an output of the specification (x ∈ out( s after σ )).
In particular, this should also hold for the special action
quiescence, which models the absence of outputs [25].

This formal notion of correctness is the starting point for
a test generation algorithm which derives a test suite from a
transition system specification to test forioco-correctness.
A test suite generated with this algorithm has two impor-
tant properties:
soundness:if a testfails with an implementation, then this
implementation isnot ioco-correct;
exhaustiveness:if an implementation isnot ioco-correct,
then there is a test in the test suite whichfails.

Formal methods provide a rigorous and sound basis for
algorithmic and automatic generation of tests. Having
a precise and unambiguous specification together with a
clear notion of what a correct implementation is, is a big
advantage in contrast with traditional testing processes,
where such a formal test basis is usually lacking.

C. Test Selection

There is, however, also a disadvantage of theioco-test
derivation algorithm: for almost any realistic system an
exhaustive test suite will contain infinitely many test cases,
so that such a test suite can never be executed. Therefore
a finite selection from the infinite exhaustive test suite is
necessary. By making such a selection exhaustiveness is
lost, but soundness is preserved.

Test selection is a difficult task. A simple solution is
to make a random selection, and although our experiments
show that this can be quite satisfactory, it is better to adopt
some selection strategy or to apply selection criteria. A se-
lection strategy should aim at detecting as many erroneous
implementations as possible within a restricted period of
time: it should maximize the chance of detecting an error
while minimizing the cost of executing the test suite.

A considerable part ofCôte de Resyste’s theoretical re-
search has been devoted to test selection. Two approaches
have been pursued, referred to as “test purposes approach”
and “heuristics approach”.

It is important to note that for test selection additional
information in the test derivation process is necessary.
The formal specification prescribes which behaviour is al-
lowed and which not. It does not give information about
which behaviour is more important, or which behaviours
are more likely to contain errors. Such information is im-

portant for test selection, but it cannot be found in the for-
mal specification, so it must come from elsewhere.

D. Test Purposes

In the “test purposes approach” it is the user (person per-
forming the tests) who supplies information about which
behaviours are important or are likely to contain errors.
The user does this by specifyingtest purposes: behaviours
which (s)he wants to observe and test to be sure that they
are correctly implemented. This approach is also referred
to as “user guided” test selection.

The “test purposes” approach has been formally elabo-
rated [29]. A framework has been developed in which test
purposes are formalized asobservation objectives, which
can behit or missedwhen executing a test. An observation
objective is orthogonal to correctness, and it can be very
specific, e.g., one specific trace, or it can be very general,
e.g., all behaviours in which inputs are only supplied when
theSUT is quiescent.

This approach has been elaborated for theioco-test
derivation algorithm: an observation objective gives the
extra information to guide the test derivation in the direc-
tion of a test case which canhit the observation objective.
This new algorithm was proved to bee-exhaustiveande-
sound; for details see [29].

Languages to represent observation objectives have
been studied, resulting in a language based on regular ex-
pressions, and a tool baptized JARARACA. Alternative rep-
resentations such as transition systems, automata, or LO-
TOS expressions have also been considered. Comparisons
with existing methods to define and represent test purposes
have been made.

E. Heuristics

An alternative approach is to provide the extra informa-
tion for test selection in the form of predefined strategies
based on heuristics [12]. These heuristics are based on as-
sumptions about the behaviour of the system under test.
Three heuristic principles have been elaborated referred to
as “length heuristic” (testing a finite prefix of an infinite
trace is assumed to be sufficient), “cycling heuristic” (test-
ing a finite number of iterations of a transition-system cy-
cle is assumed to be sufficient), and “reduction heuristic”
(if a state has infinitely many outgoing transitions of the
same shape then testing a finite number of them is suffi-
cient).

Another way of looking at heuristics is by assuming that
a trace can be tested by another trace which is sufficiently
“close”. This notion of traces being close to each other
has been formalized by definingtrace distance functions.
The maximum distance between traces in a test suite and



those not in that suite then leads to a definition of test suite
coverage; for details see [12].

III. T OOLS

A. TORX: A Tool for Formal Testing

One of the main achievements ofCôte de Resysteis the
prototype test tool TORX. TORX provides automatic test
generation, test implementation, test execution and analy-
sis in anon-the-flymanner [2], [26]. TORX implements
theioco-test derivation algorithm to derive tests from for-
mal, transition system-based specifications. This includes
test selection by means of test purposes, see Section II.
The specifications can be expressed in the formal lan-
guages LOTOS, PROMELA or LTSA, or directly as a tran-
sition system in the ALDEBARAN-format [13]. The first
two languages were mainly used in the case studies (see
Section IV); the latter two are very useful for educational
purposes.

In TORX, automatic test generation and test execution
are not done in separate phases but they are integrated,
i.e. there is no complete test suite generated that is sub-
sequently executed. During test execution, tests are de-
rived on-the-fly (or lazily, cf. lazy evaluation of functional
programming languages). For each test step, TORX com-
putes only thetest primitivesfrom the formal specifica-
tion which are needed in that step: the stimuli that can
be given, and the observations that are expected. It then
performs the test step: it decides between stimulating and
observing, and then either chooses a stimulus and sends it
to the implementation, or it acquires an observation from
the implementation, and checks whether it was expected
(and reports an error if not). After sending the stimulus
or checking the observation (and finding no error in it), it
computes the test primitives for the next test step, performs
the next test step, etc.

This repeated derivation and execution of test steps can
be done fully automatically without any user intervention,
as described above (this is very useful for case studies), but
also semi-automatically under control of the user (this is
useful for demonstrations, and for studying particular sce-
narios in detail). For fully automatic derivation and execu-
tion, the user only has to provide the maximum number of
test steps that should be performed. During user-controlled
derivation and execution, the test primitives that have been
computed are presented to the user, who can decide be-
tween stimulating and observing, and, if stimulating, can
choose the particular stimulus that is to be sent to the im-
plementation.

A test run is collected in a log, containing all the test
steps executed, (both in abstract form, as they appear in the

specification, and in concrete form, as the bits and bytes
communicated with theSUT). The test log is visualized
on-the-fly as amessage sequence chart. A recorded test
log can be re-executed, or it can not be re-executed, i.e.,
any test is derived except the one already recorded in the
test log.

B. Architecture of TORX

The main characteristics of TORX are its flexibility and
openness. Flexibility is obtained by requiring a modu-
lar architecture with well-defined interfaces between the
components – this allows easy replacement of a compo-
nent by an improved or modified version (e.g., one that
supports another specification language or test generation
algorithm). Openness is achieved by using standard inter-
faces to link the components of the tool environment – this
enables integration of third-party components that imple-
ment these interfaces.

The TORX architecture, see Figure 1, consists of
the following basic components that are mandatory in
any use of TORX: EXPLORER, PRIMER, DRIVER, and
ADAPTER. The following components are optional and
can be “plugged-in” when a particular feature is needed:
COMBINATOR, PARTITIONER, IOCHOOSER, and IN-
STANTIATOR. The well-defined interfaces allow this
“plugging in”. Figure 1 depicts how the components can
be linked for on-the-fly derivation and execution. TheSUT

is the system under test. This role can also be played by a
simulated specification.

The EXPLORER is a specification language specific
component that offers functions (to the PRIMER) to
explore the state-transition graph of a specification.
TORX contains EXPLORERS for LOTOS (using the
CÆSAR/ALDEBARAN DEVELOPMENT PACKAGE [14].),
PROMELA (based on SPIN [28]), FSP (using the LTSA

analyser [19]), automata (using ALDEBARAN), and any
other specification language for which an OPEN/CÆSAR

interface exists [14].
The PRIMER uses the functions of the EXPLORER to

implement the test derivation algorithm that generates the
test primitives from the state-transition graph.

The DRIVER is the central component of the tool archi-
tecture. It controls the testing process by deciding whether
to stimulate, or to observe and check an observation from
theSUT.

The DRIVER can be run in two modes (see above): a
manual mode, in which the user is in full control, and an
automatic mode, in which the DRIVER makes all necessary
choices randomly (or guided by probabilities; see below).

The ADAPTER is the test application specific component
that provides the connection with theSUT. It is responsible
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Fig. 1. On-the-fly test generation and execution with test purposes.

for sending inputs to, and receiving outputs from theSUT

on request of the DRIVER, and for encoding and decod-
ing of abstract actions from the DRIVER into the concrete
bits and bytes for theSUT, and vice versa. This includes
the mapping of time-outs onto quiescence actions. This
clearly makes the ADAPTER dependent on both the speci-
fication (version, language), and theSUT.

The optional COMBINATOR is used to combine test
primitives from multiple sources (like PRIMERS or COM-
BINATORS themselves – they can be cascaded). In partic-
ular, it is used to combine the test primitives of a specifi-
cation with those derived from a test purpose. Test pur-
poses can be represented in the same languages as the
specification and then the same EXPLORERs are used. Al-
ternatively, they can be expressed and processed using
JARARACA; see Section II.

The optional PARTITIONER is used to steer the on-the-
fly derivation process. Normally, when we want to stimu-
late theSUT, we choose randomly with equal distribution
from the set of possible inputs. With the PARTITIONER

we guide this selection by dividing the possible input test
primitives into partitions to which weights (probabilities)
are assigned. These weights are taken into account when
an input is chosen. PARTITIONERS can be cascaded to par-
tition input actions according to multiple criteria.

Also the optional IOCHOOSER is used to steer the on-
the-fly derivation process. Normally, we choose randomly
with an equal distribution between stimulating and observ-
ing. With the IOCHOOSERwe guide this choice by attach-
ing weights (probabilities) to stimulating and observing.
These weights are taken into account when a choice be-
tween stimulating and observing is made. IOCHOOSER

and PARTITIONER implement the ideas presented [11].
The optional INSTANTIATOR is used to instantiate free

variables in the test primitives (stimuli) computed by the
PRIMER. This is necessary because the ADAPTER is not
able to encode stimuli that contain free variables.

C. Interfaces of TORX

To support the openness of the TORX architecture, stan-
dard interfaces are used, like the OPEN/CÆSAR interface
[14] and the GCI interface [3]. When no standard inter-
face is available we connect components by pipes over
which textual commands and responses are exchanged –
these textual interfaces make it simple to debug and test
individual components, to experiment using (Unix-style)
filters to massage the information exchanged, and even to
split the tool over several machines. The textual interfaces
used between the TORX components all have the form of
a remote procedure call: a component issues a request to
another component after which this component replies. In
the TORX architecture the components are connected pair-
wise; a TORX configuration forms a tree of components
with the DRIVER as root. For each pair the component
closest to the root of the tree (the parent) will take the
initiative to issue requests, and the other component (the
child) will only reply to them (but, in order to do so, it
may issue request(s) to its own child(ren), and use their
responses to compute its own response to its parent).

D. Test Campaigns

During several case studies it turned out desirable to
have different test runs executed after each other without
user interaction. To make this possible,test campaigns
were developed. Test campaigns make it possible specify,
schedule and manage several test runs, all with different
TORX configurations, different parameters, different input
distributions, and even different specifications or imple-
mentations. Moreover, the results of all these test runs are
systematically archived. The implementation of test cam-
paigns consists of a layer on top of TORX,



IV. A PPLICATIONS

A. The Conference Protocol

The first case study withinCôte de Resystewas theCon-
ference Protocol. It is a simple, yet realistic chatbox pro-
tocol that runs on top of the internet protocol UDP. Con-
ference Protocol Entities (CPE’s) were tested with TORX
based on specifications in the formal languages PROMELA

and LOTOS. As implementations we used a set of 28
different CPE’s, implemented in C, of which one was
(assumed-to-be) correct, 25 were erroneous mutants ob-
tained by introducing single errors in the correct one, and
2 were modified butioco-correct implementations.

From this set of 28 implementations all erroneous ones
could successfully be detected. At most 500 test events
were needed to detect the errors using random test selec-
tion. With the correct implementations, long test runs con-
sisting of more than 450,000 test events were generated
and executed completely automatically without detecting
any error [2], [24].

Apart from evaluating TORX, the Conference Protocol
has been used as a bench-marking experiment to compare
TORX with some other specification-based test generation
tools. An SDL specification of the Conference Protocol
was developed from which 13 test cases were generated
using the SDL test tool TAU. These 13 test case were ex-
ecuted on the CPE’s, but they were not able to detect 6
erroneous mutants [2]. For the FSM-based test genera-
tion tool PHACT/Conformance Kit, an EFSM (Extended
Finite State Machine) specification was developed, from
which 82 test cases were derived. Three erroneous imple-
mentations passed this test suite [16]. This confirmed our
hypothesis that FSM-based software testing is inferior to
transition system-based testing. For the test tool TGV, the
LOTOS specification was used again. TGV is also based
on theioco-theory, and like TORX, was able to detect all
erroneous implementations [9]. Beside these experimental
comparisons, a theoretical comparison was made in [15].

The Conference Protocol has also constantly been used
as bench-mark to evaluate new versions of TORX, and to
experiment with new functionalities, such as the recent ad-
dition of on-the-fly code-coverage determination [10]. It is
expected that such usage will continue in the future.

The Conference Protocol, being small yet realistic,
turned out to be a very suitable case study for TORX. It
provided valuable feedback for improving TORX, and it
was useful for bench-marking, for doing experiments with
new extensions, for demonstration purposes, and for use
in courses. To allow others to use the Conference Protocol
as a bench-mark for their testing tools, a website has been
constructed containing documentation, all formal specifi-

cations, and our implementations [20].

B. “Rekeningrijden”

For Interpay B.V.Côte de Resysteperformed a case
study to evaluate the applicability of formal testing tech-
niques. The study consisted of testing a part of the Pay-
ment Box, which is part of the once advocated Highway
Tolling System – in Dutch “Rekeningrijden”. This sys-
tem automatically charges fees from vehicle drivers who
pass a toll gate on a highway. The fee is paid electroni-
cally by means of exchanging digital certificates between
the Payment Box in the toll gate and an electronic purse on
a smart card in the passing vehicle. When a vehicle passes
the toll gate, the system should debit the purse and register
a balance increment at the Payment Box. Because many
vehicles can pass a toll gate simultaneously and since the
vehicles travel at high and different speeds, the number of
parallel transactions in progress can be large. Furthermore,
for security reasons, the messages exchanged for an elec-
tronic payment transaction are encrypted. These issues –
speed, parallelism and encryption – contribute to the com-
plexity of testing. The object of testing was the Payment
Box side of the protocol between Payment Box and smart
card [27].

The Payment Box had been tested by Interpay in a tra-
ditional way. Tests had been manually developed and au-
tomatically executed using a dedicated test execution en-
vironment. The latter was necessary to meet the speed and
encryption requirements.

Before starting, we developed a generic step-wise ap-
proach in which all the activities for formal testing are em-
bedded [27]. Subsequently, the case study was carried out
following this approach.

First, we studied the IUT (Implementation Under test)
and wrote formal specifications in LOTOS and PROMELA

starting from the informal documents. While writing and
validating this formal specification (by model checking
with SPIN [17]) we detected an important design error. Be-
fore continuing this error was repaired.

In the second step, we studied the test tools with respect
to their ability to test the IUT and their means to interface
with the SUT. We reused part of the existing test environ-
ment for traditional testing.

Third, the results of the first and second step were com-
bined, as basis for the development of the test environment
containing both the test tools and the IUT. Most time was
spent in this phase. It turned out that we were not able
to interact directly with the Payment Box, due to the en-
cryption involved in electronic transactions. Furthermore,
we had to deal with the (real-) time requirements during
testing. This led to significant effort in implementing the



application specific tool component – the ADAPTER; see
Section III – and in extension of the IUT specification to
contain the test context.

In the fourth step, several test runs, with length up to
50,000 test events, were automatically generated and exe-
cuted. These runs were specified and scheduled using test
campaigns; see Section III. During test execution, one er-
ror was detected, which is still under study by Interpay.

The main result with respect to the Payment Box is that
two defects were found. The most important one was a de-
sign error which was not detected during testing but during
formal specification and subsequent validation.

With respect to TORX and theCôte de Resystemethod-
ology we have the following conclusions:
• There is insufficient support, both in theory and in tools,
for testing applications with real-time behaviour. In par-
ticular, the difference between quiescence (see Section II)
and time-out is confusing and not well-understood.
• The performance of TORX’ test derivation needs to be
improved: TORX was not always able to calculate the next
test primitives before the Payment Box gave a time-out.
The PROMELA specification performed much better in this
respect than the LOTOSone.
• Our hypothesis that TORX can easily deal with par-
allelism was confirmed. Having many cars in parallel
was conceptually no problem, although it sometimes gave
problems with respect to performance; see above.
• Implementing a test execution environment is a labori-
ous process, although not harder than for manual testing.
More generic approaches for implementation for test envi-
ronments (i.e., ADAPTERS) are needed.
• Detecting an error is one thing; analysing and repairing
it is another: more tool support for test result analysis is
needed.
• TORX is easily distributed over multiple platforms: the
Payment Box was running on VXWORKS, the ADAPTER

on WINDOWS-NT, and the rest of TORX on LINUX .
• The concept oftest campaignswas mainly developed
for, and during this case study. It proved to be very valu-
able.
Altogether, we conclude that theCôte de Resysteapproach
is not yet mature enough to cope with applications like
the Payment Box, which is mainly due to timing – real-
time and performance requirements. But the automated
test approach turned out to be very flexible, reliable, and
fast: large numbers of long tests were easily derived and
executed. Certainly, formal specification and validation
should be used for the type of protocols as used in the Pay-
ment Box. From a research point of view, the case study is
considered successful, and a step ahead in formal testing
of realistic systems. Many new ideas and research items

were identified and TORX was improved and extended.

C. The EasyLink Protocol

Philips’ EasyLinkProtocol concerns the communication
between a video recorder and a television set. The TV-side
of the preset-download feature of this protocol was tested
with TORX based on a PROMELA model. Functions like
initiating a preset-download, stopping downloading at the
end or somewhere in the middle, and shuffling the pre-
sets with the TV remote control while downloading, were
tested; see [1] for the details of this test effort.

For the test environment, the messages between VCR
and TV were caught using a specialized probe, which
also allowed to insert messages. This probe communi-
cated with a PC, which then communicated with an HP-
workstation on which the main parts of TORX were run-
ning.

The results of this study were promising: some (non-
fatal) faults were detected which had slipped through the
conventional testing procedures. Moreover, we learnt the
following:
• The test environment (test context) strongly influences
what can be tested.
• If the initial state of the TV (the initially installed pre-
sets) is unknown, this leads to almost unbounded nonde-
terminism, which TORX could not handle. Some (ad-hoc)
improvements of TORX were needed in order to decrease
the state space. This problem could have been solved by
havingsymbolic datato represent and manipulate the pre-
sets.
• The tool architecture was easily extended to cope with
the user-executed actions of the TV remote control.
• The en- and decoding in theAdapter is not always a
bijection. Sometimes there are message on the line that
should be discarded.
• The performance of TORX is not always sufficient to
generate the stimuli fast enough (the TV may enter a time-
out mode). The performance is strongly influenced by the
specification style used in the formal model.
• PROMELA is not an ideal specification language for this
kind of systems.
• Automatic specification-based testing of this kind of
product is feasible and beneficial.

D. An Access Network Protocol

Lucent R&D Centre Twente tested the implementation
of an access network protocol. It concerned Lucent’s im-
plementation the ETSI standard for the V5.1 Access Net-
work Protocol. This product has been operating for many
years during which many (undocumented) modifications
have been made. This meant that there was no consistent



and up to date (informal) specification available, which
made it difficult to develop a formal one. Consequently,
the formal model in LOTOS which was developed, had
to be based on reverse engineering of the existing imple-
mentation code, which turned out to be a laborious pro-
cess. Apparently the reverse engineering was performed
correctly, because after extensive testing with TORX no
discrepancies were found between the formal model and
the implementation.

The conclusions were that, in principle, testing of such
protocols is possible with TORX, but that some form of
specification is required as the basis for testing. Testing
against a formal model which is derived from the imple-
mentation does not make sense. In general, this means that
it is not useful to apply TORX for testing legacy software
for which there is no specification available.

E. A Cell-Broadcast-Centre Component

A component-based testing effort was conducted to-
gether with CMG Wireless Data Solutions B.V. CMG de-
velops aCell-Broadcast-Centrewhich can be seen as a
switch for broadcasting SMS-messages. This system con-
sists of a number of components communicating via a mid-
dleware layer. The aim was to test one of these components
[7].

A specification in LOTOS(28 pp.) was developed based
on the existing, natural language specification. The test
environment was built by reusing large parts of the exist-
ing test environment which had been used for conventional
testing. The ADAPTER was largely automatically gener-
ated based on an IDL specification of the interfaces of the
component. Test execution with TORX did not reveal any
errors which had not been detected with conventional test-
ing.

To compare TORX with conventional testing, 10 mu-
tants of the component were developed, of which 7 were
detected by TORX, and 5 by the conventional test suite.
A comparison of code coverage (statement coverage) re-
sulted in 82% for the conventional test suite and 83% for
TORX.

The main conclusions were that (i) in principle, it is pos-
sible to considerably reduce the effort of implementing a
test environment by having a tool that generates large parts
of the ADAPTER from an interface specification, e.g., in
IDL; (ii ) TORX performs at least as good as conventional
testing in detecting errors; (iii ) LOTOS is not a suitable
specification language to specify this kind of systems, in
particular not, if the goal is to transfer this kind of testing
technology to industry.

F. And Further

Currently we are investigating, together with CMG,
the use of TORX for testing the control software of the
Stormvloedkering Oosterschelde, and we are studying the
combination with their TESTFRAME method [21]. An-
other project studies testing of internet-based protocols,
in particular testing ofFTP-clients. Moreover, the design
of TORX inspired Philips in their development of a new
hardware-design tester.

G. Conclusions

Taken together, the main outcomes of the case studies
are:
• Formal models serve as a precise arbiter for testing, so
that only valid tests are generated, i.e., tests that test what
should be tested.
• Very long tests, depending on the case study from
50, 000 up to500, 000 test events, were automatically gen-
erated and executed.
• In some of the case studies faults were detected which
had slipped through the conventional testing procedures.
Strong points of TORX are that it can easily cope with
a high degree of parallelism and that it can detect errors
which only occur after long sequences of events.
• In cases where a comparison with traditional test meth-
ods has been made, TORX performed “at least as good as”
traditional testing.
• Building a test environment for executing the generated
tests is laborious, but does not differ from traditional test
execution automation. Traditional test environments can
be reused for formal testing.
• The most important errors are usually not found by test-
ing, but during development of the formal model for test-
ing, e.g., when this model is analysed using model check-
ing.

V. CONCLUDING REMARKS

A. Conclusion

The goal ofCôte de Resystewas to develop theory, tools
and applications for automatic specification based testing
using formal methods. To a large extent this goal has been
achieved. Theioco-test theory provides a well-defined
and rigorous basis for formal testing with proved test
derivation algorithms. The prototype test tool TORX can
completely automatically derive tests from formal spec-
ifications, execute them, and analyse the results. The
successful application of TORX to different case studies
showed the feasibility of the methodology, and the im-
provements of the testing process which were gained in
terms of more, longer and provably correct tests.



Altogether, these results lead us to believe that it is ad-
vantageous to perform automatic testing based on a formal
model of the system under test. The extra effort required
for developing the necessary formal model is more than
compensated by faster, cheaper, more effective, and more
flexible testing.

The use of formal methods can improve the testing pro-
cess, and formal testing can improve software develop-
ment. An important benefit is not in testing itself, but in
the formalization and validation process preceding the for-
mal testing process. Then the most important errors, such
as design errors, are detected. In the other direction, for-
mal testing can stimulate the use of formal methods, by
exploiting the perceived benefits during testing.

B. The Future

TORX is only a prototype, and the case studies have
clearly shown that it cannot cope with all kinds of testing
in all circumstances. Moreover, there are still a number
of important open testing problems. We mention some of
them:
• Although important improvements have been made in
test selection, it is still one of the most important research
questions: how can the completeness and coverage of an
automatically generated test suite be expressed, measured,
computed, and, ultimately, controlled. Even more intrigu-
ing is the question how test suite coverage can be related
to a measure of product quality. After all, product quality
is the only actual reason to perform testing.
• Testing real-time requirements is an important issue, in
particular in embedded systems. Neither the theory nor
TORX can currently deal with them.
• Large data domains lead to state-explosion. Symbolic
ways of representing and manipulating data are required.
• Systematic test data selection is currently not done, but
is needed.
• Sometimes an abstract action in the specification is im-
plemented as a sequence of less abstract actions in the im-
plementation. This is calledaction refinement. Both theo-
retical and tool support are needed for this.
• Several case studies have shown that the performance of
TORX should be improved, in particular with respect to
the on-the-fly calculation of test primitives.
• Implementing a test environment, in particular the
ADAPTER, is laborious. More support is needed, and the
case studies showed that this is feasible, e.g., by gener-
ating the ADAPTER from an interface description in IDL.
Alternatives may be ASN.1 or XML .
• Support for test result analysis can be improved, in par-
ticular, localization of an error in the implementation is not
at all supported.

• Several cases concluded that the formal languages that
we currently use are not satisfactory. A language that com-
bines specification of behaviour and of data both with for-
mal semantics, that is user-friendly not only for formalists,
for which there is sufficient tool support including seam-
less integration with verification tools, is desirable.
• TORX tests functional properties. Extension with non-
functional quality characteristic as robustness, perfor-
mance, usability, reliability, ..., can be considered in the
future.
• TORX was developed for reactive systems. A possible
extension is to make TORX test other kind of software sys-
tems, e.g., administrative systems.
Some these open problems have already led to new re-
search projects. Action refinement is investigated inAto-
mystewhich is an STW PROGRESSproject. In the NWO
project STRESSreal-time and data extensions are studied.

C. Availability

TORX is freely available for research purposes. Infor-
mation about obtaining it, as well as documentation and
research papers can be found on theCôte de Resyste-
webpage [6].
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