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Abstract—Systematic testing is very important for assess- many resources. The testing phase often gets jammed be-
ing and improving the quality of embedded software. Yet, tween moving code delivery dates and fixed custom de-
testing turns out to be expensive, laborious, time-consumg  |ivery dates. Besides, research and development in testing

and error-prone. The project Cote de Resystieas beenwork-  5ye peen rather immature. Testing methodology is mostly
ing since 1998 on methods, techniques and tools for au- .
ad hoc and governed by heuristics.

tomating specification based testing using formal methods. o o ) ) )
The main achievement of the project is a test tool, baptized ~ Fortunately, this situation is gradually improving. Trig-
ToRX, which integrates automatic test generation, test exe- gered by the quest for improved quality and imposed by
cution, and test analysis in an on-the-fly manner. On the one increased product liability, testing is considered insrea
hand, TorX is based on well-defined theory, viz. the ioco- ingly important and treated more seriously. Research in
test theory, which has its roots in the theory of testing- and  software testing is growing, the testing phase is more seri-

refusal—equal_encg_s for transition systems. On the other ously planned and managed, and being a software tester is
hand, the applicability of TORX has been demonstrated by ' .

. . . . . . starting to be a true profession.
testing several academic and industrial case studies. This

paper summarizes the main results of the project.

Keywords—model-based testing, specification-based test- B. Cote de Resyste

ing, formal methods, test automation, test generation. The projectCote de ResysteConformanceTesting of
Reactive Systens — is a research and development project
l. INTRODUCTION aiming at improving the testing process by using formal
methods.

A. Software Testing Cote de Resystis supported by the Dutch Technology

Software quality is an issue that currently attracts a Idtoundation STW in the context of the “Progress” pro-
of attention. Software invades everywhere in our socie§amme. The project is a cooperation between Philips
and lives, and we are increasingly dependent on it. Mor&esearch Laboratories Eindhoven, Lucent Technologies
over, the complexity of software is still growing. ConseR&D Centre Twente, Eindhoven University of Technol-
quently, the quality, functional correctness and religbil 0gy, and the University of Twente. KPN Research partic-
of software is an issue of increasing importance and gro\}pated for some time, while close relationships exist with
ing concern. Systematic testing of software plays an infMG and Interpay. The 23 man-year project started in
portant role in the quest for improved quality. 1998 and ends in 2002.

Despite its importance, testing is often an under- _
exposed phase in the software development proce$s. Model Based Testing

Moreover, testing has turned out to be expensive, difficult, The goal ofCote de Resysteas been to develop theory,
and problematic. One source of problems is that specificgrethods and tools to enakdetomatic testingf software
tions are usually imprecise, incomplete and ambiguous, §9stems based diormal modelsof these systems. In do-
that a good basis for testing is lacking. Another source iﬁg s0,Cote de Resysthas concentrated aspecification

that testing usually is a manual and laborious process Withased functional testingpf reactive systems
out effective automation, so it is error-prone and consUmMes Raactive systems are mostly technical, event-driven

Current address: Jan Tretmans, University of Nijmegen, tDefp software systems in which stimulus/response behaviour is

Software Technology, P.O. Box 9010, NL-6500 GL Nijmegenm&# ~ Very important. Examples are embedded systems, commu-
tretmans@s. kun. nl . nication protocols, and process control software. Admin-



istrative systems are typically not reactive systems. II. THEORY
. Testing involves chegklng the _correctr_1ess of a rea%  ormal Methods
tive system by performing experiments in a systematic
and controlled way. Functional testing involves check- Currently, most system specifications are written in nat-
ing whether the system behaves correctly: does the sy#al languages, such as English or Dutch. Although such
tem do what it should do, as opposed to, e.g., testing thformal specifications are easily accessible, they asoft
performance, robustness, reliability, or user-friendlysm incomplete and liable to different and possibly inconsitte
Specification-based refers to the existence of a specifidaterpretations. Such ambiguities are not a good basis for
tion which exactly prescribes what the system shall do ari@sting: if it is not clear what a system shall do, it is diffi-
what not. This specification is the starting point for tegtin cult to test whether it does what it should do.
The system under test, referred to assbe, is considered ~ With formal methods, systems are specified and mod-
a black box about which no internal details are known. e€lled by applying techniques from mathematics and logic.
With formal, model based testing the specification iSuch formal specifications and models have precise, un-
given as a formal model in some formal language. Thi@mbiguous semantics, which enables the analysis of sys-
formal specification is the starting point for testing thdems and the reasoning about them with mathematical

SUT. precision and rigour. Moreover, formal languages are
_ more easily amenable to automatic processing by means
D. Automated Testing of tools. For example, verification tools exist that are able

Different phases can be distinguished in the testing pré? Verify fully automatically the absence of deadlock based
cess. Duringest generatiora test suite is developed start-On & formal description of the design. Until recently, for-
ing from a specification of theuT. This test suite is usu- Mal methods were merely an academic topic, but now their
ally expressed in an abstract way, thus it has to be rewrittéi§e in industrial software development is increasing, in
or implemented so that it can be executed. This is referr@grticular for safety critical systems and for telecommu-
to astest implementatianDuringtest executiohe imple-  hication software.
mented test suite is executed on ther. Finally, the test ~ In Cote de Resystae have been usintbelled tran-

results should be analysed, and compared with expect&ition systemss the underlying formal basis. A labelled
results:test analysis transition system consists of states, representing thessta

Traditionally, test automatiorrefers to automation of Of @ system, with labelled transitions between the states.

test execution, and sometimes to test analysis. A test mudte labels on the transitions represent the observable ac-
be devised by humans and written down in a usually loviions of a system, such as inputs and outputs. Many formal
level, test tool specific scripting language before autnatspecification languages can semantically be expressed in
execution can start. terms of transition systems. Of these, we usg©s[18],
Cote de Resyst@ims at automation of the whole testingPROMELA [17], SDL [5], and LTsA [19].
process starting with test generation up to and includin
test analysis. This opens the way towards completely ay-
tomatic testing, where the system under test and its formal A formal specification is a precise, consistent and unam-
specification are the only required prerequisites. biguous basis for software design and code development
as well as for testing. To define which implementations
are correct with respect to a transition system specifigatio
This paper outlines the main results of tdte de and which are not, aimplementation relatiorfor satisfac-
Resysteroject. The main challenge of the project was ttion relation) is defined. In this way it is also determined
develop atest too] which has, on the one hand, a well-which implementations shoulghssa generated test suite,
defined and soundheoretical basis and, on the other and which implementations shoufiail.
hand, high practicabpplicability. The theoretical basis In Cote de Resystee use theéoco-test theory to de-
is outlined in Section Il. The test tool baptized®X, fine correctness [22], [23]. The implementation relation
which is the main achievement of the project, is describgidco has its roots in the theory of testing equivalences and
in Section Ill. The applicability has been evaluated by pepreorders for transition systems [8], [4].
forming different case studies supplied by the companies Formally, the definition ofoco is
Philips, Lucent, CMG and Interpay. They are further dis-
cussed in Section IV. Section V gives the main conclu-i ioco s =gt
sions, the open issues, and hints for further research. Vo € Straces(s) : out(i after o) C out( s after o)

Testing with formal methods

E. Overview



Informally, this means that an implementatidbfwhich is  portant for test selection, but it cannot be found in the for-

seen as a transition system)iisco-correct with respect mal specification, so it must come from elsewhere.

to a specificatiors (which is also a transition system), if,

and only if, after all possible behaviours of the specificd?: Test Purposes

tion (Vo € Straces(s)), any output actiorr produced by Inthe “test purposes approach” it is the user (person per-

the implementationa( € out(i after o) can also occur forming the tests) who supplies information about which

as an output of the specification (€ out( s after 0)). behaviours are important or are likely to contain errors.

In particular, this should also hold for the special actiorhe user does this by specifyibgst purposesbehaviours

quiescencewhich models the absence of outputs [25].  which (s)he wants to observe and test to be sure that they
This formal notion of correctness is the starting point foare correctly implemented. This approach is also referred

atest generation algorithm which derives a test suite from@ as “user guided” test selection.

transition system specification to test foco-correctness.  The “test purposes” approach has been formally elabo-

A test suite generated with this algorithm has two imporated [29]. A framework has been developed in which test

tant properties: purposes are formalized abkservation objectivesvhich
soundnessif a testfails with an implementation, then this can behit or missedvhen executing a test. An observation
implementation isi0t ioco-correct; objective is orthogonal to correctness, and it can be very
exhaustivenessif an implementation isiotioco-correct, specific, e.g., one specific trace, or it can be very general,
then there is a test in the test suite whialts. e.g., all behaviours in which inputs are only supplied when

Formal methods provide a rigorous and sound basis ftife SUT is quiescent.
algorithmic and automatic generation of tests. Having This approach has been elaborated for theo-test
a precise and unambiguous specification together withdarivation algorithm: an observation objective gives the
clear notion of what a correct implementation is, is a bigxtra information to guide the test derivation in the direc-
advantage in contrast with traditional testing processeon of a test case which cdrit the observation objective.
where such a formal test basis is usually lacking. This new algorithm was proved to leexhaustiveande-
sound for details see [29].

Languages to represent observation objectives have

There is, however, also a disadvantage ofithen-test been studied, resulting in a language based on regular ex-
derivation algorithm: for almost any realistic system apressions, and a tool baptizesRhRACA. Alternative rep-
exhaustive test suite will contain infinitely many test caseresentations such as transition systems, automatapor L
so that such a test suite can never be executed. Therefdfes expressions have also been considered. Comparisons
a finite selection from the infinite exhaustive test suite igith existing methods to define and represent test purposes
necessary. By making such a selection exhaustivenesdaz/e been made.
lost, but soundness is preserved. o

Test selection is a difficult task. A simple solution i Heurstics
to make a random selection, and although our experimentsAn alternative approach is to provide the extra informa-
show that this can be quite satisfactory, it is better to &dofion for test selection in the form of predefined strategies
some selection strategy or to apply selection criteria. -A sbased on heuristics [12]. These heuristics are based on as-
lection strategy should aim at detecting as many erroneosismptions about the behaviour of the system under test.
implementations as possible within a restricted period dfhree heuristic principles have been elaborated refeored t
time: it should maximize the chance of detecting an erras “length heuristic” (testing a finite prefix of an infinite
while minimizing the cost of executing the test suite. trace is assumed to be sufficient), “cycling heuristic”tftes

A considerable part ofdte de Resystetheoretical re- ing a finite number of iterations of a transition-system cy-
search has been devoted to test selection. Two approachkesis assumed to be sufficient), and “reduction heuristic”
have been pursued, referred to as “test purposes approa@iha state has infinitely many outgoing transitions of the
and “heuristics approach”. same shape then testing a finite number of them is suffi-

It is important to note that for test selection additionatient).
information in the test derivation process is necessary. Another way of looking at heuristics is by assuming that
The formal specification prescribes which behaviour is ak trace can be tested by another trace which is sufficiently
lowed and which not. It does not give information aboutclose”. This notion of traces being close to each other
which behaviour is more important, or which behaviourtas been formalized by definirigace distance functions
are more likely to contain errors. Such information is imThe maximum distance between traces in a test suite and

C. Test Selection



those not in that suite then leads to a definition of test suigpecification, and in concrete form, as the bits and bytes

coveragefor details see [12]. communicated with theuT). The test log is visualized
on-the-fly as anessage sequence chad recorded test

[1l. TooLs log can be re-executed, or it can not be re-executed, i.e.,

A. TorX: A Tool for Formal Testing ?ens3; Its;t is derived except the one already recorded in the

One of the main achievements @bte de Resysts the _
prototype test tool TRX. TORX provides automatic test B- Architecture of GrX

generation, test implementation, test execution and analy The main characteristics ofoRX are its flexibility and

sis in anon-the-flymanner [2], [26]. RX implements openness. Flexibility is obtained by requiring a modu-

theioco-test derivation algorithm to derive tests from forar architecture with well-defined interfaces between the

mal, transition system-based specifications. This indudgomponents — this allows easy replacement of a compo-

test selection by means of test purposes, see Sectiondént by an improved or modified version (e.g., one that

The specifications can be expressed in the formal lagupports another specification language or test generation

guages IbTOS, PROMELA or LTSA, or directly as a tran- algorithm). Openness is achieved by using standard inter-

sition system in the ADEBARAN-format [13]. The first faces to link the components of the tool environment — this

two languages were mainly used in the case studies (s@fables integration of third-party components that imple-

Section 1V); the latter two are very useful for educationafent these interfaces.

purposes. The TorX architecture, see Figure 1, consists of
In TORX, automatic test generation and test executiothe following basic components that are mandatory in

are not done in separate phases but they are integratefy use of DRX: EXPLORER PRIMER, DRIVER, and

i.e. there is no complete test suite generated that is suipAPTER. The following components are optional and

sequently executed. During test execution, tests are dgmn be “plugged-in” when a particular feature is needed:

rived on-the-fly (or lazily, cf. lazy evaluation of functiah ComBINATOR, PARTITIONER, IOCHOOSER and N-

programming languages). For each test stepRX com- STANTIATOR. The well-defined interfaces allow this

putes only thetest primitivesfrom the formal specifica- “plugging in”. Figure 1 depicts how the components can

tion which are needed in that step: the stimuli that cape linked for on-the-fly derivation and execution. Tt

be given, and the observations that are expected. It thignthe system under test. This role can also be played by a

performs the test step: it decides between stimulating asfinulated specification.

observing, and then either chooses a stimulus and sends iThe ExPLORER is a specification language specific

to the implementation, or it acquires an observation fromomponent that offers functions (to therRIRIER) to

the implementation, and checks whether it was expectesiplore the state-transition graph of a specification.

(and reports an error if not). After sending the stimuluForX contains EXPLORERS for LoTos (using the

or checking the observation (and finding no error in it), iCA£SARALDEBARAN DEVELOPMENT PACKAGE [14].),

computes the test primitives for the next test step, peornProMeLA (based on 8IN [28]), Fsp (using the ITsA

the next test step, etc. analyser [19]), automata (UsingLAEBARAN), and any
This repeated derivation and execution of test steps cather specification language for which arEVCASAR

be done fully automatically without any user interventioninterface exists [14].

as described above (this is very useful for case studies), buThe PRRIMER uses the functions of the XLORER to

also semi-automatically under control of the user (this ignplement the test derivation algorithm that generates the

useful for demonstrations, and for studying particular scgest primitives from the state-transition graph.

narios in detail). For fully automatic derivation and execu The DRIVER is the central component of the tool archi-

tion, the user only has to provide the maximum number @cture. It controls the testing process by deciding whethe

test steps that should be performed. During user-controll¢o stimulate, or to observe and check an observation from

derivation and execution, the test primitives that havenbe¢he suT.

computed are presented to the user, who can decide beThe DRIVER can be run in two modes (see above): a

tween stimulating and observing, and, if stimulating, camanual mode, in which the user is in full control, and an

choose the particular stimulus that is to be sent to the irautomatic mode, in which the®VER makes all necessary

plementation. choices randomly (or guided by probabilities; see below).
A test run is collected in a log, containing all the test The ADAPTERIs the test application specific component

steps executed, (both in abstract form, as they appear in that provides the connection with teeT. It is responsible
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Fig. 1. On-the-fly test generation and execution with tesppses.

for sending inputs to, and receiving outputs from ther  C. Interfaces of ®rRX
on request of the RIVER, and for encoding and decod-

ing of abstract actions from theRDVER into the concrete support the openness of thefX architecture, stan-

bits and bytes for theuT, and vice versa. This includes 4,4 interfaces are used, like the N CAESAR interface
the mapping of time-outs onto quiescence actions. Thig4) ang the @1 interface [3]. When no standard inter-
clearly makes the BAPTER dependent on both the speci-5ce is available we connect components by pipes over
fication (version, language), and teT. _ which textual commands and responses are exchanged —
The optional @MBINATOR is used to combine test yhege textual interfaces make it simple to debug and test
primitives from multiple sources (like®MERS or COM-  jnqividual components, to experiment using (Unix-style)
BINATORS themselves —they can be cascaded). In partigyiers to massage the information exchanged, and even to
ular, it is used to combine the test primitives of a specifigyjit the tool over several machines. The textual intedface
cation with those derived from a test purpose. Test pUfised between thedRX components all have the form of
poses can be represented in the same languages as hgmote procedure call: a component issues a request to
specification and then the sam&m ORERs are used. Al 5n6ther component after which this component replies. In
teratively, they can be expressed and processed US{ig Torx architecture the components are connected pair-
JARARACA; see Section II. wise; a TorRX configuration forms a tree of components
The optional RRTITIONER is used to steer the on-the-\,ith the DRIVER as root. For each pair the component
fly derivation process. Normally, when we want to stimugjssest to the root of the tree (the parent) will take the
late thesuT, we choose randomly with equal distributionnjsiative to issue requests, and the other component (the
from the set of possible inputs. With the\RTITIONER child) will only reply to them (but, in order to do so, it

we guide this selection by dividing the possible input tesh,y issue request(s) to its own child(ren), and use their
primitives into partitions to which weights (probabilisie responses to compute its own response to its parent).
are assigned. These weights are taken into account when

an input is chosen.ARTITIONERS can be cascaded to par-
tition input actions according to multiple criteria.

Also the optional I@HOOSERIs used to steer the on-
the-fly derivation process. Normally, we choose randomly
with an equal distribution between stimulating and observ- During several case studies it turned out desirable to
ing. With the ICCHOOSERWe guide this choice by attach- have different test runs executed after each other without
ing weights (probabilities) to stimulating and observinguser interaction. To make this possibtest campaigns
These weights are taken into account when a choice bgere developed. Test campaigns make it possible specify,
tween stimulating and observing is made. d@OSER schedule and manage several test runs, all with different
and RRTITIONER implement the ideas presented [11]. ToRX configurations, different parameters, different input

The optional NSTANTIATOR is used to instantiate free distributions, and even different specifications or imple-
variables in the test primitives (stimuli) computed by thenentations. Moreover, the results of all these test runs are
PRIMER. This is necessary because thea®TER is not systematically archived. The implementation of test cam-
able to encode stimuli that contain free variables. paigns consists of a layer on top 0bRX,

D. Test Campaigns



IV. APPLICATIONS cations, and our implementations [20].

A. The Conference Protocol B. “Rekeningrijden”

The first case study withi@0te de Resystgas theCon- For Interpay B.V.Cote de Resystperformed a case
ference Protocol It is a simple, yet realistic chatbox pro-study to evaluate the applicability of formal testing tech-
tocol that runs on top of the internet protocol UDP. Conpjques. The study consisted of testing a part of the Pay-
ference Protocol Entities (CPE’s) were tested WithRK  ment Box, which is part of the once advocated Highway
based on specifications in the formal languagee®ELA  Tolling System — in Dutch “Rekeningrijden”. This sys-
and LoTos As implementations we used a set of 28em automatically charges fees from vehicle drivers who
different CPE’s, implemented in C, of which one wagass a toll gate on a highway. The fee is paid electroni-
(assumed-to-be) correct, 25 were erroneous mutants @ily by means of exchanging digital certificates between
tained by introducing single errors in the correct one, anfle Payment Box in the toll gate and an electronic purse on
2 were modified butoco-correct implementations. a smart card in the passing vehicle. When a vehicle passes

From this set of 28 implementations all erroneous onaeke toll gate, the system should debit the purse and register
could successfully be detected. At most 500 test everispalance increment at the Payment Box. Because many
were needed to detect the errors using random test selgghicles can pass a toll gate simultaneously and since the
tion. With the correct implementations, long test runs conrehicles travel at high and different speeds, the number of
sisting of more than 450,000 test events were generatggrallel transactions in progress can be large. Furthermor
and executed completely automatically without detectingr security reasons, the messages exchanged for an elec-
any error [2], [24]. tronic payment transaction are encrypted. These issues —

Apart from evaluating ©rRX, the Conference Protocol speed, parallelism and encryption — contribute to the com-
has been used as a bench-marking experiment to compplexity of testing. The object of testing was the Payment
TorX with some other specification-based test generatidBox side of the protocol between Payment Box and smart
tools. An SDL specification of the Conference Protocatard [27].
was developed from which 13 test cases were generatedrhe Payment Box had been tested by Interpay in a tra-
using the SDL test tool AU. These 13 test case were exditional way. Tests had been manually developed and au-
ecuted on the CPE’s, but they were not able to detecttématically executed using a dedicated test execution en-
erroneous mutants [2]. For the FSM-based test genekdronment. The latter was necessary to meet the speed and
tion tool PHACT/Conformance Kitan EFSM (Extended encryption requirements.

Finite State Machine) specification was developed, from Before starting, we developed a generic step-wise ap-
which 82 test cases were derived. Three erroneous impjgroach in which all the activities for formal testing are em-
mentations passed this test suite [16]. This confirmed obedded [27]. Subsequently, the case study was carried out
hypothesis that FSM-based software testing is inferior following this approach.

transition system-based testing. For the test tagV Tthe First, we studied the IUT (Implementation Under test)
LoTos specification was used again.GV is also based and wrote formal specifications indTos and FROMELA

on theioco-theory, and like DRX, was able to detect all starting from the informal documents. While writing and
erroneous implementations [9]. Beside these experimentallidating this formal specification (by model checking
comparisons, a theoretical comparison was made in [15}ith SPIN [17]) we detected an important design error. Be-

The Conference Protocol has also constantly been usfetde continuing this error was repaired.
as bench-mark to evaluate new versions ofRK, and to In the second step, we studied the test tools with respect
experiment with new functionalities, such as the recent atb their ability to test the IUT and their means to interface
dition of on-the-fly code-coverage determination [10]slt i with the SUT. We reused part of the existing test environ-
expected that such usage will continue in the future. ment for traditional testing.

The Conference Protocol, being small yet realistic, Third, the results of the first and second step were com-
turned out to be a very suitable case study farX. It  bined, as basis for the development of the test environment
provided valuable feedback for improvingoRX, and it containing both the test tools and the IUT. Most time was
was useful for bench-marking, for doing experiments witgpent in this phase. It turned out that we were not able
new extensions, for demonstration purposes, and for useinteract directly with the Payment Box, due to the en-
in courses. To allow others to use the Conference Protoamlyption involved in electronic transactions. Furthereor
as a bench-mark for their testing tools, a website has beee had to deal with the (real-) time requirements during
constructed containing documentation, all formal speciftesting. This led to significant effort in implementing the



application specific tool component — theAPTER; see were identified and ®rRX was improved and extended.
Section Il — and in extension of the IUT specification to
contain the test context. C. The EasyLink Protocol
In the fourth step, several test runs, with length up to Philips’ EasyLinkProtocol concerns the communication
50,000 test events, were automatically generated and eketween a video recorder and a television set. The TV-side
cuted. These runs were specified and scheduled using iefsthe preset-download feature of this protocol was tested
campaigns; see Section Ill. During test execution, one akith ToOrRX based on a ROMELA model. Functions like
ror was detected, which is still under study by Interpay. initiating a preset-download, stopping downloading at the
The main result with respect to the Payment Box is th&nd or somewhere in the middle, and shuffling the pre-
two defects were found. The most important one was a dsets with the TV remote control while downloading, were
sign error which was not detected during testing but duringsted; see [1] for the details of this test effort.

formal specification and subsequent validation. For the test environment, the messages between VCR
With respect to DRX and theCbdte de Resystmethod- and TV were caught using a specialized probe, which
ology we have the following conclusions: also allowed to insert messages. This probe communi-

« There is insufficient support, both in theory and in tools;ated with a PC, which then communicated with an HP-
for testing applications with real-time behaviour. In parworkstation on which the main parts oORX were run-
ticular, the difference between quiescence (see Secfion hing.

and time-out is confusing and not well-understood. The results of this study were promising: some (hon-
« The performance of 3rX’ test derivation needs to be fatal) faults were detected which had slipped through the
improved: TOorRX was not always able to calculate the nextonventional testing procedures. Moreover, we learnt the
test primitives before the Payment Box gave a time-oufollowing:

The FRROMELA specification performed much better in thiss The test environment (test context) strongly influences
respect than the@Tosone. what can be tested.

« Our hypothesis that @rX can easily deal with par- « If the initial state of the TV (the initially installed pre-
allelism was confirmed. Having many cars in parallesets) is unknown, this leads to almost unbounded nonde-
was conceptually no problem, although it sometimes gaverminism, which DRX could not handle. Some (ad-hoc)
problems with respect to performance; see above. improvements of DRX were needed in order to decrease

« Implementing a test execution environment is a laborihe state space. This problem could have been solved by
ous process, although not harder than for manual testiftavingsymbolic dateo represent and manipulate the pre-
More generic approaches for implementation for test envgets.

ronments (i.e., AAPTERS are needed. « The tool architecture was easily extended to cope with
« Detecting an error is one thing; analysing and repairintpe user-executed actions of the TV remote control.

it is another: more tool support for test result analysis i The en- and decoding in th&dapteris not always a
needed. bijection. Sometimes there are message on the line that
« TORX is easily distributed over multiple platforms: theshould be discarded.

Payment Box was running onXMVORKS, the ADAPTER e« The performance of ®RX is not always sufficient to

on WINDOWS-NT, and the rest of ®RX on LINUX. generate the stimuli fast enough (the TV may enter a time-
« The concept otest campaignsvas mainly developed out mode). The performance is strongly influenced by the
for, and during this case study. It proved to be very valispecification style used in the formal model.

able. o PROMELA is not an ideal specification language for this
Altogether, we conclude that ti@bte de Resyst@pproach kind of systems.

is not yet mature enough to cope with applications like Automatic specification-based testing of this kind of
the Payment Box, which is mainly due to timing — realroduct is feasible and beneficial.

time and performance requirements. But the automated

test approach turned out to be very flexible, reliable, arld: AN Access Network Protocol

fast: large numbers of long tests were easily derived andLucent R&D Centre Twente tested the implementation
executed. Certainly, formal specification and validationf an access network protocol. It concerned Lucent’s im-
should be used for the type of protocols as used in the Pgtementation the ETSI standard for the V5.1 Access Net-
ment Box. From a research point of view, the case studywsork Protocol. This product has been operating for many
considered successful, and a step ahead in formal testyeprs during which many (undocumented) modifications
of realistic systems. Many new ideas and research iterhave been made. This meant that there was no consistent



and up to date (informal) specification available, whicl. And Further

made it difficult to .develop a fqrmal one. Consequently, Currently we are investigating, together with CMG,
the formal model in TOS which was developed, had the use of DRX for testing the control software of the

to be based on reverse engineering of the existing implg‘[ormvloedkering Oosterscheldend we are studying the
mentation code, which turned out to be a laborious P'®ombination with their ESTERAME method [21]. An-
cess. IAppbarentIy th(?ctreverse epgmeer_mg W?; ierformgﬂ_ler project studies testing of internet-based protocols
correctly, because after extensive testing withRk no particular testing oFTP-clients. Moreover, the design

discrepancies were found between the formal model alag ToRX inspired Philips in their development of a new

the implementation. hardware-design tester.
The conclusions were that, in principle, testing of such

protocols is possible with @rRX, but that some form of G. Conclusions

specification is required as the basis for testing. Testing Taken together, the main outcomes of the case studies

against a formal model which is derived from the implez .

_m_entatlon dfOTS hot mlake serf1se. In genleral, this Teans t.h‘?—tormal models serve as a precise arbiter for testing, so
Itis nqt usetu t(_) apply 6!_2)_( o_r teStmg egacy soitware that only valid tests are generated, i.e., tests that teat wh
for which there is no specification available. should be tested

o Very long tests, depending on the case study from
E. A Cell-Broadcast-Centre Component 50, 000 up to500, 000 test events, were automatically gen-
erated and executed.

A component-based testing effort was conducted t@-In some of the case studies faults were detected which
gether with CMG Wireless Data Solutions B.V. CMG dehad slipped through the conventional testing procedures.
velops aCell-Broadcast-Centravhich can be seen as aStrong points of DRX are that it can easily cope with
switch for broadcasting SMS-messages. This system canhigh degree of parallelism and that it can detect errors
sists of a number of components communicating via a migvhich only occur after long sequences of events.
dleware layer. The aim was to test one of these componentsn cases where a comparison with traditional test meth-
[7]. ods has been madepRX performed “at least as good as”

A specification in loTos (28 pp.) was developed basedtraditional testing.
on the existing, natural language specification. The testBuilding a test environment for executing the generated
environment was built by reusing large parts of the existests is laborious, but does not differ from traditionak tes
ing test environment which had been used for conventiongkecution automation. Traditional test environments can
testing. The AAPTER was largely automatically gener- be reused for formal testing.
ated based on amL specification of the interfaces of thee The most important errors are usually not found by test-
component. Test execution withoRX did not reveal any ing, but during development of the formal model for test-
errors which had not been detected with conventional te$fd, €.9., when this model is analysed using model check-
ing. ing.
To compare DRX with conventional testing, 10 mu-
tants of the component were developed, of which 7 were
detected by BRX, and 5 by the conventional test suite A- Conclusion

A comparison of code coverage (statement coverage) re-The goal ofCote de Resysteas to develop theory, tools
sulted in 82% for the conventional test suite and 83% fQing applications for automatic specification based testing
TORX. using formal methods. To a large extent this goal has been
The main conclusions were thdt if principle, itis pos- achieved. Thédoco-test theory provides a well-defined
sible to considerably reduce the effort of implementing and rigorous basis for formal testing with proved test
test environment by having a tool that generates large padsrivation algorithms. The prototype test toabAX can
of the ADAPTER from an interface specification, e.g., incompletely automatically derive tests from formal spec-
IDL; (i) TORX performs at least as good as conventiondfications, execute them, and analyse the results. The
testing in detecting errorsjii) LoTos is not a suitable successful application of GrRX to different case studies
specification language to specify this kind of systems, ishowed the feasibility of the methodology, and the im-
particular not, if the goal is to transfer this kind of tegtin provements of the testing process which were gained in
technology to industry. terms of more, longer and provably correct tests.

V. CONCLUDING REMARKS



Altogether, these results lead us to believe that it is ad-Several cases concluded that the formal languages that
vantageous to perform automatic testing based on a fornveé currently use are not satisfactory. A language that com-
model of the system under test. The extra effort requirdaines specification of behaviour and of data both with for-
for developing the necessary formal model is more thamal semantics, that is user-friendly not only for formaljst
compensated by faster, cheaper, more effective, and mdéoe which there is sufficient tool support including seam-
flexible testing. less integration with verification tools, is desirable.

The use of formal methods can improve the testing pre- TORX tests functional properties. Extension with non-
cess, and formal testing can improve software develofunctional quality characteristic as robustness, perfor-
ment. An important benefit is not in testing itself, but inmance, usability, reliability, ..., can be considered ia th
the formalization and validation process preceding the fofuture.
mal testing process. Then the most important errors, sueiT ORX was developed for reactive systems. A possible
as design errors, are detected. In the other direction, faxtension is to makedrX test other kind of software sys-
mal testing can stimulate the use of formal methods, bgms, e.g., administrative systems.

exploiting the perceived benefits during testing. Some these open problems have already led to new re-
search projects. Action refinement is investigated\io-
B. The Future mystewhich is an STW RoGRESsproject. In the NWO

ToRX is only a prototype, and the case studies haveroject SREssreal-time and data extensions are studied.
clearly shown that it cannot cope with all kinds of testin o
in all circumstances. Moreover, there are still a numb%' Availability
of important open testing problems. We mention some of TORX is freely available for research purposes. Infor-
them: mation about obtaining it, as well as documentation and
« Although important improvements have been made iresearch papers can be found on ®&e de Resyste
test selection, it is still one of the most important reskaravebpage [6].
guestions: how can the completeness and coverage of an
automatically generated test suite be expressed, measufdgknowledgements

computed, and, ultimately, controlled. Even more intrigu- Many people contributed to the success @fte de

ing is the question how test suite coverage can be relatR@ésyste We thank Lex Heerink and Ron Koymans from
to a measure of product quality. After all, product qualityhilips Research Laboratories Eindhoven, Arjan de Heer
is the only actual reason to perform testing. from Lucent Technologies R&D Centre Twente, Erik
« Testing real-time requirements is an important issue, Kwast and Henri Dol from KPN Research, Loe Feijs,
particular in embedded systems. Neither the theory ngjouke Mauw and Nicolae Goga from the Eindhoven Uni-
ToRX can currently deal with them. versity of Technology, Axel Belinfante, Jan Feenstra and
« Large data domains lead to state-explosion. Symboligené de Vries from the University of Twente, and Peter
ways of representing and manipulating data are requiredChristian from CMG Wireless Data Solutions, for their ac-
« Systematic test data selection is currently not done, btife participation in the project. CMG and Interpay, in par-
is needed. ticular Cornel van Mastrigt and Rommert Jorritsma, are
« Sometimes an abstract action in the specification is inhanked for the support they gave in performing the case
plemented as a sequence of less abstract actions in the §iidies. The financial support from STW and from the
plementation. This is calledction refinementBoth theo- NWO Van Gogh programme is acknowledged.

retical and tool support are needed for this.
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