

Towards Semantic Software Engineering Environments
Ricardo A. Falbo, Giancarlo Guizzardi, Ana C.C. Natali

Gleidson Bertollo, Fabiano F. Ruy, Paula G. Mian
Computer Science Department, Federal University of Espírito Santo

Fernando Ferrari Avenue, CEP 29.060-900,
Vitória, Espírito Santo, Brasil

falbo@inf.ufes.br

ABSTRACT
Software tools processing partially common set of data should
share an understanding of what these data mean. Since ontologies
have been used to express formally a shared understanding of
information, we argue that they are a way towards Semantic SEEs.
In this paper we discuss an ontology-based approach to tool
integration and present ODE, an ontology-based SEE.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Computer-aided software engineering (CASE).

General Terms
Design.

Keywords
Ontology, software engineering environments.

1. INTRODUCTION
As software process becomes more and more complex, it is
necessary to provide computer-based tools to support software
engineers to perform their tasks. To be effective, however, these
tools must work together. Integration demands consistent
representations of software engineering information, standardized
interfaces between tools, homogeneous means of communication
between software engineers and tools, and an effective approach
that enables SEE to move among various platforms [1].

To deal with integration, we need an infrastructure. This
infrastructure should be based on robust conceptual models.
Software tools processing partially common set of data must share
a common understanding of what they mean. Ontologies are a
promising means to achieve these conceptual models, since they
can serve as basis for comprehensive information representation
and communication. In this way, an ontology-based approach can
be used to improve tool integration in SEEs. Moreover, using
such approach, we believe that we are going towards Semantic
SEEs.

2. ONTOLOGIES AND SEEs
Software Engineering Environments (SEEs) can be defined as
integrated collections of tools that facilitate software engineering
activities across the software lifecycle [2]. SEEs that explicitly
establish a linkage between the tools and the software
development process is called Process-centered Software
Engineering Environments (PSEEs). A PSEE integrates tool
support for software artifact development with support for the
modeling and execution of the software process [2].

Because software processes are complex entities, a number of
languages and modeling formalisms (often called Process
Modeling Languages or PMLs) has been proposed. However,
existing PMLs are complex, extremely sophisticated, and strongly
oriented towards detailed modeling of processes. This occurs
mainly because most software process researchers try to model all
the details concerning software development. The problems with
existing PMLs are reflected into PSEEs [3].

In this context, we explored the use of an ontology to improve
process integration in a SEE. An ontology is a representation
vocabulary specialized to some domain or subject matter. More
precisely, it is not the vocabulary as such that qualifies as an
ontology, but the conceptualizations that the terms in the
vocabulary are intended to capture [4]. Ontologies are
quintessentially content theories, because their main contribution
is to identify specific classes of objects and relations that exist in
some domain. Without ontologies, or the conceptualizations that
underlie knowledge, there cannot be a vocabulary for representing
knowledge [4]. An ontology should require only the minimal
ontological commitment sufficient to support the intended
knowledge sharing activities (minimal ontological commitment).
It should make as few claims as possible about the world being
modeled, allowing the parties committed to the ontology freedom
to specialize and instantiate the ontology as needed [5].

Since an ontology does not intend to describe all the knowledge
involved in a domain, but only that one that is essential to
conceptualize the domain (minimal ontological commitment [5]),
a software process ontology can be used as a coarse-grained
process model that can be enriched when necessary. Moreover, an
ontology can be developed without commitment to a specific
formalism (minimal encoding bias [5]). Several approaches can be
used to implement it using different technologies.

But this ontological approach for process integration can be
generalized. In fact, we claim that if the tools in a SEE are built
based on ontologies, tool integration can be improved. The same
ontology can be used for building different tools supporting
correlated software engineering activities. Moreover, if the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
International Conference on Software Engineering and Knowledge
Engineering, SEKE’02, July 15-19, 2002, Ischia, Italy.
Copyright 2000 ACM 1-58113-556-4/02/0700…$5.00.

- SEKE '02 - 477 -

ontologies are integrated, integration of tools built based on them
can be highly facilitated. Adopting this strategy, we believe that
we can advance towards Semantic SEEs.

A Semantic SEE can be viewed as a SEE in which part of the
information handled has a formal meaning (semantics) associated,
augmenting its tools’ ability to work in cooperation each other
and with human developers. Tools committed them self with an
ontology can share knowledge, since the ontology defines the
common meaning.

The term “Semantic SEE” was coined using an analogy with
Semantic Web [7]. Semantic Web aims to organize Web
information, adding meaning to them, and allowing machines to
process and analyze Web contents. The main goal of a Semantic
SEE is analogous: to organize software engineering information,
adding meaning to them, and allowing tools to share information.
In a Semantic SEE, software engineering knowledge is accessible
not only to human developers, but also to automated tools.
Adapting the discourse of Bechhofer et al. [7] to our context, the
key idea is to have software engineering data on the SEE defined
and linked in such a way that its meaning is explicitly
interpretable by software tools rather than just being implicitly
interpretable by human developers.

Since ontologies is used to express formally a shared
understanding of information, we advocate their use to go ahead
Semantic SEEs. Ontologies can be developed to address software
engineering sub-domains, such as software process, software
quality, artifact modeling, and so on. Based on an ontology,
domain infrastructures can be developed. Since we are most
interested in the object technology, we have applyed an approach
for deriving object frameworks from domain ontologies described
in [6]. In this way, we can develop object-based domain
infrastructures derived from the ontologies. These infrastructures,
in turn, are used to build and integrate tools in the SEE.

3. ODE: AN ONTOLOGY-BASED SEE
We have experimented this ontological approach in ODE
(Ontology-based software Development Environment), a process-
centered SEE. ODE’s process kernel was built based on a
software process ontology [6]. Tools for process definition and
project tracking were also built based on this ontology.

To address software quality control in ODE, we adopted the same
strategy. First, we developed a software quality ontology. From
this ontology, we derived an object framework [8] and based on it
we built a tool for quality management.

ODE’s architectural style reflects its basis on ontologies. It has
two levels. The base or application level concerns application
classes, which model the objects that address some software
engineering activity. The meta-level (or knowledge level) defines
classes that describe knowledge about objects in the base level.
Figure 1 shows these two levels concerning process integration
and quality control.

The classes in the meta-level are derived directly from the
ontologies. So, we can view the meta-level objects as items of an
ontology instantiantion. The classes in the base level are also built
based on the ontologies. The main classes and associations are
derived from the ontology, preserving the same constraints as

Knowledge’s model. Also several classes in the base level have a
corresponding Knowledge class in the Knowledge package. In
this way, the meta-level can be used to describe base-level
objects’ characteristics. However, since an ontology does not
intend to describe all the knowledge involved in a domain, but
only that one that is essential to conceptualize the domain, new
classes, associations, attributes and operations are defined to deal
with specific design decisions made in the application level. In
fact, the ontology is a general, common sense model, and then it
does not contain all necessary modeling elements to treat
applications’ requirements.

Figure 1 - ODE’s two-layered architecture.

4. CONCLUSIONS
In this paper, we briefly discussed an ontological approach to deal
with tool integration in SEEs and how it is materialized in ODE.
Using such approach we argue that we are going towards what we
are calling Semantic SEE: a SEE which tools are developed based
on ontologies.

5. REFERENCES
[1] R.S. Pressman, "Software Engineering: A Practitioner's

Approach", 5th Edition, New York: McGraw-Hill, 2000.

[2] W. Harrison, H. Ossher, and P. Tarr, “Software Engineering
Tools and Environments: A Roadmap”, in Proc. of The
Future of Software Engineering, ICSE, Ireland, 2000.

[3] A. Fuggetta, “Software Process: A Roadmap”, in Proc. of
The Future of Software Engineering, ICSE, Ireland, 2000.

[4] B. Chandrasekaran, John R. Josephson and V. Richard
Benjamins, “What Are Ontologies, and Why Do We Need
Them?”, IEEE Intelligent Systems, January/February 1999.

[5] T. Gruber, “Towards principles for the design of ontologies
used for knowledge sharing”, Int. J. Human-Computer
Studies, 43(5/6), 1995.

[6] G. Guizzardi, R. A. Falbo and J.G. Pereira Filho, “Using
Objects and Patterns to Implement Domain Ontologies”, in
Proc. of the 15th Brazilian Symposium on Software
Engineering, Rio de Janeiro, Brazil, 2001.

[7] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens, “OilEd:
a Reason-able Ontology Editor for the Semantic Web”,
Proceedings of KI2001, Joint German/Austrian conference
on Artificial Intelligence, Vienna. Springer-Verlag LNAI
Vol. 2174, pp 396--408. 2001.

[8] R. A. Falbo, G. Guizzardi, and K. C. Duarte, “An
Ontological Approach to Domain Engineering ”, in Proc. of
Int. Conference on Software Engineering and Knowledge
Engineering, SEKE’2002, Ischia, Italy, 2002..

Base Level

Meta-Level Knowledge

Process
Control

Quality
Control

- SEKE '02 - 478 -

	INTRODUCTION
	ONTOLOGIES AND SEEs
	ODE: AN ONTOLOGY-BASED SEE
	CONCLUSIONS
	REFERENCES

