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Abstract

In this paper, technological and physical compatibilities in hybrid

integration of AlInGaP laser and monolithic integration of ZnO

monomode waveguide, pln-photodetector, CMOS circuits for
laser power control and signal amplification on silicon substrate

are studied Prospective problems and their possible solutions

are discussed. Also experimental results are presented.

l. Introduction

Opto-electronic systems, based on complete integration of optical and electronic components

on one single silicon chip, show many advantages due to compactness, rigidness, small size,

the prospect of cheap batchwise mass production, low loss, high speed and avoidance of the

need ofalignment ofoptical parts and independent packaging. In this paper, we report results

of the study oftechnological and physical compatibility for an optoelectronic integrated circuit

(OEIC) in which however the light source is incorporated hybridicatly. This OEIC has to be

considered as a general platform for integrated optical processing or sensing circuits.

The principal structure of the OEIC is shown schematically in Fig.l. Light, emitted from a
laserdiode, is coupled into an integrated optical waveguiding system. A small part of the light

is coupled into a photodiode by use of an optical interconnect function to control the laser

output power. In addition it serves as a measure for the magnitude of the input signal of the

optical circuit. The remaining light will continue to propagate in the waveguide and will be

modulated in the optical circuits by the measurement. The optical output signal is totally

coupled into a second photodiode. After amplification, the electrical signal is fed to the

output. The ratio between output and sensor input signal is the outcome of the measurement,

the exact relation depending on the specific optical circuitry that has been applied.
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Fig.l. Princþal structure ofthe OEIC.

It has been decided to concentrate initially on systems with bandwidth < l0 KHz, high
dynamic range and resolution. In l later stage, highér bandwidths (up to too MI{z) will 6e p-ut
into focus. The applied wavelength will be OZS nm.

2. Technological Compatibility

The technologies used in this system include BicMoS technology for the electronic ci¡cuits
and the photodiode, optical interconnection technology, waveguidãfabrication te"trrotogy;ã
laser mounting technology. Therefore, the technololcd comlatibliÇ should be studied and
the prospective problems should be solved.

For the reasons of materials incompatibilþ at high temperature processing it is required thatfirst all the electronic components including the photoåiode are made, followed uy ttre tow
temperature processes used for optical interconnections, the waveguide fabrication and the
laser mounting. Thus compatibility problems were reduced to twJmain questions: (l) can
degradation ofmicroelectronics by subsequent optical technologies be avoided t (z) ùow to
realise a microelectronics systern, that is a good piatform for the iltegrated optical p"rt, Z

The main results of our investigations are detailed in the next sections.

2.1 Influence of waveguide Fabrication on Microelectronics

The lowJoss, uniform planar waveguide, as shown in Fie.2.ismadebyreactiveRFsputterdepositionofZno[l]on-the1+
SiO2 buffer layer. After depositio4 the ZnO flm iJ annealed
zt 400 oC for four hours to reduce the optical attenuation.
Higher annealing temperatures should be avoided because
they will cause contact failure in microelectronics. The
channel of the ridge waveguide is etched by fugon sputter_
etching.
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F ig.2 ZnO waveguide stn¡cture
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2.2 Influence of Laser Mounting on Microelectronics

The laser is an AlInGaP ridge waveguide laser emitting at 675 ttrn.It is mounted epi-down in

an anisotropically etched *"tt Uy mians of a thermocompression method as shown in Fig'3

[2]. Multiple meial layers are evãporated on the substrate, after which the gold coated laser is

pressed on the heated substrate.

The influence of the laser mounting on the

microelectronics is now under investigation. Similar test

structures as mentioned in section 2.1 are used to

on.

2.3 Realisation of Grating Structures

an additional LOCOS ñeld oxidation during the fabrication of
the microelectronics, that is compatible with the standard
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Fig.3 Laser mounæd in Si substraæ
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Fig.4 Grating system

LOCOS in the BICMOS technology. of course, the process conditions for the first LOCOS

need a minor adjustment.

2.4 Optical Buffer Layer Structure

The waveguiding layer has to be separated from the Si by an optical buffer layer in order to

avoid Si-caused attenuation ofthe üþ propagating through the waveguide' The buffer layer

thickness is required to be larger than I pm. In additioq it is required to be as uniform and

smooth 
", 

poùibl". Since thã PLOX þlasma-oxide) layer in BiCMOS technology is not

appreciated by the optical system due to its higher refractive index, we introduced an

.ã¿ition"t lithågfaphic pror"r, step to delete the PLOX layer at the waveguiding circuitry

area.

Now for the buffer layer, there a¡e two options: (1) 0.5 ¡rm BPSG (Sio2 doped with boron

and phosphorus) + 1.-0 pm cvD oxide. (2) 0.5 ¡rm BPSG +1.0 pm sputtered oxide' After
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Zno depositior¡ it was found that only the second option results in a¡r acceptable opticalattenuation. Therefore, the sputtered oxide is a better basis for the Zno growh.

3. Physicat Compatibit¡fy

The integrated system is illustrated in Fig.5.
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Fig.5 Cross Section of the structures.
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The opto-electronic cross talk is caused by light, propagating in the ZnO layer, outside the

waveguide channels. This scattered light originates from imperfect laser-waveguide coupling.

If absorbed in the Si, it will influence the performance of the electronic devices. To eliminate

influence on the electronic devices, we introduce a light-blocking layer to cover the

microelectronics.

4.3 Thermal Behaviour Consideration

The thermal influence could be of great importance in the final OEIC. It is found that the

laserdiode (120 mW dissipation) and the driver electronics are the main heat sources. There

are trvo kinds of thermal problems which should be considered. One is the effect of self-

heating of components. The other is the influence between different components. In first
instance a 2-D numerical simulation was developed to study the temperature distribution in the

system [4].

First, we studied the temperature rise due to the photon absorption in the photodiode. The

calculation was performed for several wavelengths and power densities. It showed that the

maximum local temperature Tn'o is reached at the surface of the photodiode. Furthermore
T,oo increases with the incident power density and decreases with the wavelength. The selÊ

treating can be neglected if the incident power is less than I mW¡rm2 for l,=675 nm as shown

in Fig.6.

lcm

0 2 4 6 810 1211 16 18ã)
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Fig.6. Ma:<imum temperature in Si as a fi¡nction of Fig.7. Temperature distribution in the OEIC
incident power for various wavelenglhs. at its working state.

Fig.7 shows the simulation results of the temperature distribution across the entire chip

(thickness 450 pm), assuming that it is surrounded by air. The heat transfer mechanism in ai¡

is convection. Both the power dissipations of the laserdiode and the driver ci¡cuit are assumed

to be 90 mW. It was found that the variation of the temperature over the whole chip is small,

this is due to the high thermal conductivity of Si. Note that the temperatures are between 40 -

Y

I
F

T*= 300 K

l=r100 nm

laserdiode drivcrcircuit
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50 oc above ambient' In practice, due to the use ofa heat sind the increase oftemperature onthe chip can be reduced significantly and will be less than l0 oó.

5. Conclusions

ties of hybrid integration of laserdiode and
tector and electronic circuits have been studied
s can be solved and negative influences can be
thods and techniques.
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