Al₂O₃:Er³⁺ as a New Platform for Active Integrated Optics

M. Pollnau, J.D.B. Bradley, L. Agazzi, E. Bernhardi, F. Ay, K. Wörhoff, and R.M. de Ridder
Integrated Optical MicroSystems Group, MESA+ Institute for Nanotechnology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
Tel: +31-53-489 1037, e-mail: m.pollnau@ewi.utwente.nl

ABSTRACT
Recently, we have demonstrated internal net gain with a bandwidth of 80 nm (1500 – 1580 nm) and 1533 nm peak gain of 2.0 dB/cm in Al₂O₃:Er³⁺ channel waveguides which were sputtered on silicon substrates and subsequently reactive ion etched. Based on measured spectroscopic parameters, rate-equation simulations predict gain of > 20 dB throughout the entire telecom C-band for optimized waveguide lengths. Data transmission of 40 Gbit/s has been obtained. Grating structures for on-chip integrated cavities and distributed-feedback lasers have been fabricated in this material and are currently under investigation.

Keywords: aluminum oxide, erbium-doped materials, optical amplifier, channel waveguide, Bragg grating, Integrated optics.

1. INTRODUCTION
In integrated optics the search continues for active materials which can be integrated with passive materials in a straightforward and low-cost manner. Dielectric Er³⁺-doped planar glass waveguiding materials offer broad gain around the critical 1550-nm wavelength range, and the potential for integrated on-chip tunable or short-pulse laser sources. Compared to other such glass materials, Al₂O₃:Er³⁺ has distinct advantages. It possesses a highly broadened emission spectrum for gain over a wider wavelength range. It has a higher refractive index contrast which allows tighter bend radii and more compact devices. Furthermore, it can be deposited on a number of common substrates, including thermally-oxidized Si wafers. This opens the possibility for integration of Al₂O₃:Er³⁺ directly with photonic materials such as Si which are optimized for passive waveguiding functions.

2. OPTICAL GAIN IN Al₂O₃:Er
Deposition of Al₂O₃:Er³⁺ is carried out by applying a low-cost and straightforward reactive co-sputtering approach [1] and channel waveguides are prepared by reactive ion etching [2]. Al₂O₃:Er³⁺ amplifiers with different Er³⁺ concentrations have been investigated. Up to 2.0 dB/cm net gain was demonstrated at 1533 nm for an Er³⁺ concentration of 2×10²⁰ cm⁻³ when pumping at 977 nm [3], see Fig. 1. Peak total gain of 9.3 dB was demonstrated in a 5.4-cm amplifier and positive gain was achieved over an 80-nm bandwidth [3]. Using a rate-equation model, up to 33 dB at the peak and > 20 dB between 1525 – 1565 nm is predicted in a 24-cm-long amplifier for a pump power of 100 mW [3], see Fig. 2. In Er³⁺-doped fiber amplifiers, the long excited-state lifetime means transmission at bit rates around 40 Gbit/s is possible. We recently showed open-eye diagrams and only a small power penalty of 1 dB in bit-error-rate measurements for on-chip 40 Gbit/s signal transmission in an integrated Al₂O₃:Er³⁺ amplifier [4].

3. ON-CHIP INTEGRATED RESONANT STRUCTURES
We employed an optimized approach of focused ion beam (FIB) nano-structuring, which enabled patterning of distributed Bragg reflector (DBR) gratings on Al₂O₃ channel waveguides with smooth and uniform sidewalls and investigated the optical performance and limits of FIB-patterned integrated waveguide Fabry-Perot microcavities formed by two 520-nm-period surface-relief DBR gratings on dielectric channel waveguides, see Fig. 3. The grating structures were milled by 200 nm and the length of each grating was ~47.5 µm. The cavity length was varied between 100 – 450 µm. Measured Fabry-Perot resonances in the 1540-1577 nm wavelength range before and after annealing the sample at 600 °C for 17 hrs in N₂ atmosphere are plotted in Fig. 4, together with calculated transmission spectra of the annealed Fabry-Perot cavity. Values for the annealed Fabry-Perot cavity are a free spectral range of 7.5 nm, finesse of 3.1, reflectivity of 40%, and total resonator losses of 2.8 dB [5]. Based on these results we are currently investigating channel waveguide lasers based on DBR gratings as well as distributed feedback lasers in Al₂O₃:Er³⁺. Furthermore, we are working on integrated ring lasers based on this material.
Figure 1. Net internal gain vs. 977-nm pump power in a 2.1-cm-long $\text{Al}_2\text{O}_3:\text{Er}^{3+}$ amplifier, demonstrating up to 2.0 dB/cm gain. Figure taken from [3].

Figure 2. Predicted total gain vs. length at 1525, 1533, and 1565 nm in compact spiral amplifiers with an Er^{3+} concentration of 2×10^{20} cm$^{-3}$ for 100 mW pump power. Figure taken from [3].
Figure 3. Scanning electron micrograph of a sample grating device realized on a waveguide. Figure taken from [5].

Figure 4. Experimental and calculated Fabry-Perot transmission resonances for TE polarization of the as-milled and annealed cavity. Figure taken from [5].
4. CONCLUSIONS

The high net gain per unit length, large gain bandwidth, and high predicted total gain for low launched pump power demonstrate that Al₂O₃:Er³⁺ qualifies as a competitive material for active integrated optical devices, thus opening perspectives for amplifiers as well as widely tunable and ultrashort-pulse lasers in a material which can be integrated with silicon photonics. Rather than operating as a stand-alone device, which would give rise to significant coupling losses between the individual components and also have to compete with existing, high-performance, but non-integrable fiber-based solutions for amplifiers and lasers, we envisage the technology presented in this work primarily as applying to on-chip amplification and lasing within an integrated circuit, thereby exploiting its full integration and miniaturization potential.

ACKNOWLEDGEMENTS

This work was supported by funding through the European Union's Sixth Framework Programme (Specific Targeted Research Project "PI-OXIDE", contract no. 017501) and by the Smartmix Memphis programme of the Dutch Ministry of Economic Affairs.

REFERENCES

