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Abstract—Personal data is a valuable asset for service
providers. To collect such data, free services are offered to users,
for whom the risk of loosing privacy by subscribing to a service
is often not clear. Although the services are free in terms of
money, the user does not know how much he or she actually
pays for a given service when allowing his or her data to be
collected, unaware of taking a significant privacy risk by doing
so. In practice, this risk is even not taken into account when
deciding how long the data will be retained; the service provider
simply wants to optimize the total worth of the stored data by
retaining the data as long as possible. In this paper, we express
the privacy risk for the user in terms of such a retention period;
the user wants to optimize its privacy by allowing the data to be
retained as short as possible. Now, in stead of only considering the
interests of the service provider, we argue that we should optimize
the common interest of both parties, and present a framework
to reason about worth and privacy to find such optimum. Going
one step further, we refine and generalize limited retention to
data degradation, which prescribes to store data in progressively
less accurate forms. Data degradation gives users and service
providers a fine grained control over the price to be paid, in
terms of privacy risks, and to optimize their common interest:
balancing privacy and data usability.

I. INTRODUCTION

Privacy has become a popular topic, triggered by the vast

amount of web services with an apparently unsatisfiable desire

for their users’ personal data. Acquiring personal data is big

business, a new gold mine for Internet companies, boosting

all kind of new web services, increasing the threat to privacy

even further [9]. It works; Google can reach over half a

billion unique individuals each year, collecting—among many

different types of personal data—their search queries, which to

an high extent encapsulate their daily lives’ habits [10]. Google

made in 2008 a revenue of $22.1 billion [12], indicating the

worth of that personal data for the company. Google is not

alone; in their footsteps many other companies followed, and

many will follow.

What do the users get in return for their personal data?

Indeed, they profit from all the services which ease their lives.

The web has been made accessible thanks to search engines,

and communicating with friends and relatives has never been

easier. However, until the Internet era, transactions between

producer and consumer have been much more transparent for

both parties. The consumer pays the price which has been

negotiated between producer and consumer, and the producer

delivers the good or service. If the price is not satisfactory for

both parties, the transaction will not take place. So, it pays off

for the producer to be transparent. Today, business models are

different. Services are offered for free—in terms of money—

to the user, such that, at first glance, there is no reason to

negotiate anymore.

Here the privacy danger becomes apparent. Transparency is

one of the key foundations of privacy [19]; it must be clear for

the user how his or her data is being handled, stored, and to

whom it will be disclosed. In other words: the price a user has

to pay for a service should be expressed in terms of privacy

risks, where it was expressed in terms of money in the old

days. If the service provider can argue that the data is needed

to offer certain kind of services, the user may want to decide

to allow the service provider to keep the data longer, paying a

higher price, most probably benefiting from a better service.

So why is it a problem that companies store all these data

about us? The fact is that, even if we put full trust in the service

provider, this data can always be subject to data disclosure

due to attacks, corrupt employees, governments demanding

the data, et cetera. No access control mechanism has been

proven to be both usable and fully secure; to give an example,

even servers of the Pentagon [8] and FBI [23] have been

hacked, credit card companies and mobile communication

companies have lost personal data on several occasions [27].

Moreover, human mistakes are hardly preventable: politicians

and policemen lose usb sticks or other media with sensitive

information [11], obsolete personal computers sold second-

hand are subject to forensic analysis with sometimes shocking

results [26]. Finally, personal data is often weakly protected

by obscure and loose privacy policies which are unjustly

presumed to be good and acceptable for a given service.

The privacy violation will only increase with the growth of

data which has been collected about us. All these data, even

when “legally” obtained by the service providers themselves,

foster ill-intended scrutiny and abusive usages justified by

business interests, governmental pressures and inquisitiveness

among people. Not only criminals and terrorists are threatened.

Everyone may experience a particular event (e.g., accident,

divorce, job or credit application) which suddenly makes her

digital trail of interest for someone else. Moreover, identity

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.174

146

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.174

146

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.174

146

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.174

146

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.174

146

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.174

146

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.174

146

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.174

146

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on November 11, 2009 at 03:16 from IEEE Xplore.  Restrictions apply. 



fraud is nowadays becoming one of the most serious crimes,

with huge consequences for the victims [15]. The retention

problem has become so important and the civil pressure

so high that practices start changing. For instance, Google

and other search engine companies announced to shorten

the retention period of their query logs. Limiting the reten-

tion of personal data indeed reduces the privacy problems

sketched above. Limited retention is a widely accepted privacy

principle [2], complementary to techniques such as access

control, and is included in various privacy regulations [14].

The principle prescribes that data should not be stored longer

than necessary to fulfill the purpose for which the data has

been collected [2]. By limiting the time that data is stored, the

impact of disclosure of a store is less severe [10].

Limited retention is however difficult to put in practice,

because it is difficult to determine retention periods; we

need to find a mechanism to balance privacy and usability.

Otherwise we either end up with a lot of worth for the data

collector and zero privacy for the user, or zero worth and full

privacy [10]. In this paper we propose to put service provider

and user at the negotiation table again, with equal rights for

both parties. The goals are clear: the service provider wants

to optimize the worth of the data it can collect, and the user

wants to optimize his or her privacy. We will model those goals

and argue to optimize the common interest of both parties. As

a result, both parties will agree upon a retention period for

storing the users’ personal data in exchange for the service

offered by the provider.

However, the all-or-nothing behavior of limited retention

is too rigorous: after the retention period, the data will be

destroyed completely. This makes it hard to balance data

usability and privacy. In this paper we also propose a new

technique named data degradation, which can bridge the

gap between both ends. By using well-known generalization

techniques [17] (not elaborated in this paper), data degradation

degrades the accuracy of the data after predefined retention

periods, such that although the usability of that data will

decrease, the privacy sensitivity will also decrease. This tech-

nique is orthogonal to other privacy enhancing techniques such

as k-anonymity [24]; our aim is not to hide identities, but

only to make the knowledge related to those identities less

privacy sensitive. We will show that with data degradation, the

common interest will be at least equal, but in many situations

significantly higher, than which is possible with only limited

retention.

In summary, the main contributions of our paper are these:

• a framework to reason about retention periods in order to

optimize the common interest of both users and service

providers, discussed in Section II;

• the technique data degradation, which makes it possible

to achieve a common interest that is higher than possi-

ble with limited retention, discussed in Section III and

analyzed, with explanation of the benefits, in Section IV.

We also indicate the challenges data degradation raises with re-

spect to traditional databases (Section V), mainly by referring

to other work. Section VI compares data degradation to related

work and indicates where data degradation is complementary

to existing techniques. Finally, Section VII gives directions

for further work in this new research area of limited retention

techniques.

II. FINDING LIMITED RETENTION PERIODS

To let the reader get familiar with our notations and rea-

soning, we introduce our concepts for the limited retention

principle here. In the next section we will reuse and extend

those concepts when we refine limited retention to data

degradation. Our goal is a qualitative framework which makes

it possible to reason about retention periods. We model the

interest of a service provider and, separately, the interest of the

user in a way that is as simple as possible; a more elaborate

model is left for future work. Then we combine these to a

common interest, from which an optimal retention period can

be derived. We make no quantitative statements about how
exactly these interests will be expressed in practice; again, the

practical implications will be left for future work.

A. Preliminaries

In the sequel, we consider only one user, which we refer to

as “the user”. Considering more users is no problem but would

lead to the same result if we treat them on equal footing. Also,

we shall not make a distinction between different kinds of data:

we treat all data on equal footing.

The history of which datum is inserted into the store at

which time, is called H; it is a set of pairs of a datum and its

insertion time in the store. For example:

H = {(d, b), . . . , (d′, b′)}
We take H as a constant, we let d range over the set of data

and t over the set of time points, and use letter b (birth) for ‘the

insertion time of a datum into the store’. We use N to measure

an age, i.e., length of a time interval, and let a, δ range over

ages. A simplifying assumption is that the insert rate of data is

constant over time; that is, there exists a constant c such that

during each interval of length a the amount of data inserted

into the store is c × a:

∀t, a • #{(d, b) : H | t ≤ b < t + a} = c × a (1)

By its definition, limited retention bounds the interval during

which a datum is stored by a fixed retention period δ. Hence,

the store at time t depends on δ and is expressed as follows:

store(δ, t) = {(d, b) : H | b ≤ t < b + δ}
B. Service provider’s interest

In practice, the worth of a datum for the service provider

depends on multiple factors, such as the actual content of the

datum, the context in which the datum has been acquired, the

user from which the datum has been acquired, time of day, and

possibly many others depending on the type of use. Our model

does not limit the possibility to include those parameters;

however, for the sake of simplicity we omit them. Thus, we
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assume that for the service provider the worth at time t of a

datum with birth b depends only on the datum’s age t−b:

worth((d, b), t) = wt(t−b)
where wt(a) is nonnegative, monotonic descending in a

The auxiliary function wt is monotonic descending since older

data is assumed to be less valuable for the service provider.

Figure 1(a) gives the typical shape of function wt(a).
The service provider wants, at each point t in time, to

maximize the total worth of the data in the store:

totworth(δ, t)
= definition∑

(d,b):store(δ,t) worth((d, b), t)
= ∑

(d,b):store(δ,t) wt(t − b)

=

⎧⎪⎨
⎪⎩

A stored datum of age a contributes wt(a) to

the sum. Thanks to the constant insert rate (1),

the number of stored datums of age a is the

same (namely c) for each a = 0, . . . , δ.

c × (wt(0) + wt(1) + · · · + wt(δ))
=

c × ∑
a=0...δ wt(a)

It turns out that totworth(δ) does not depend on t, hence we

omit parameter t and simply write totworth(δ). Figure 1(b)

gives the typical shape of function totworth(δ). Without other

constraints, the service provider would achieve his goal by

setting δ to infinity.

C. User’s interest

For the user it is risky to have data stored at the service

provider: in some way or another (hackers’ attacks, for in-

stance) the data might be disclosed. We assume that the harm

for the user of a disclosure of his data is proportional to the

amount of data. Below, we take the risk equal to the amount of

data since this simplifies the formulas and nevertheless gives

the same results. Again, there are multiple other factors which

influence the risk of storing a datum. For example, the fact that

a user searched for HIV is more risky than a search for flowers.

Also, we assume that disclosure of old data is as harmful

as disclosure of recent data. Our model does not restrict the

possibility to take those factors into account, but we leave this

for future work. Thus we define and simplify risk as follows:

risk(δ, t)
= definition

#{(d, b) : store(δ, t)}
=

#{(d, b) : H | b ≤ t < b + δ}
= constant insert rate (1)

c × δ

So, risk(δ, t) doesn’t depend on t and we simply write risk(δ).

The goal of the user is to minimize risk(δ). It is equivalent

to maximize the inverse: 1/risk(δ), which we call the privacy
guarantee. It follows that the privacy guarantee is infinite when

there is no data in the store, δ = 0 (and goes down to zero

when retention is unlimited, δ = ∞). To escape mathematical

problems (division by zero) and come to a slightly more

realistic model of privacy, we apply a smoothing technique

so that privacy cannot be infinite: add a constant to the

denominator of 1/risk(δ). The smoothing constant s may have

a reasonable interpretation; for example, the fact that there is

no data in the store, might be interpreted as an indication that

“the user has something to hide” and so his privacy guarantee

is not infinite. Thus our definition reads:

priv(δ) =
1

s + risk(δ)
=

1
s + c×δ

Figure 1(c) gives the typical shape of function priv(δ). The

user wants to maximize priv(δ), which without further con-

straints is achieved by taking δ as small as possible.

D. Common interest

Above we defined the interests of both service provider

and user. Those interests are conflicting; whereas the service

provider benefits most when δ is large, the user aims for

a δ as small as possible. We want a concept of common
interest which both parties can agree upon. We expect that

the common interest leads to a retention period which is both

limited (δ < ∞) and non-zero (δ > 0).

To define the common interest CI(δ), we require two things.

First, CI(δ) is proportional to the service provider’s goal

function totworth(δ) when the user’s interest is viewed as

constant. Second, CI(δ) is proportional to the user’s goal

function priv(δ) when the service provider’s interest is viewed

as constant. Since both goal functions are nonnegative, a

suitable function CI(δ) is the product of these:

CI(δ) = totworth(δ) × priv(δ)

Figure 1(d) gives the typical shape of function CI(δ).
Since worth is monotonic descending and risk is (almost)

proportional to δ, it follows that CI( ) has a maximum, which

it takes on argument δopt, say. The existence of a maximum can

be interpreted in the following way. By setting the retention

period smaller than δopt the user will gain more privacy, but

the common interest will be lower because the decrease in

stored data induces a greater loss of total worth for the service

provider. Similarly, by setting the retention period larger than

δopt the service provider will gain more total worth of the

stored data, but the common interest will be lower because of

a larger decrease of the user’s privacy.

III. THE CONCEPT OF DATA DEGRADATION

Recall that the principle of limited retention tries to satisfy

the service provider by allowing to store data for at least the

retention period δ, and it tries at the same time to satisfy the

privacy concern of the user by ensuring that the data is stored

for at most the retention period δ (and the previous section

shows how to reason about the optimal retention period). The

principle is a crude all-or-nothing approach: a datum either

exists completely in the store or not at all. The principle of

data degradation overcomes the all-or-nothing approach by
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(d) CI(δ) = totworth(δ)× priv(δ)

Fig. 1. The common interest function reaches its highest point at δopt meaning that a retention period of δopt gives the best balance between totworth for
the service provider and priv for the user.

storing data in progressively less accurate forms so as to make

it less privacy sensitive over time while still providing some

worth to the service provider. A well accepted form of data

degradation is data generalization. This technique is often used

in k-anonymity research, where it is used to generalize identi-

ties in order to make the data k-anonymous [24], and applied in

data mining and warehousing [17]. More about the techniques

we use to generalize data—based on domain hierarchies and

generalization trees—can be found elsewhere [3].

A. Life-cycle policies

To formalize the data degradation principle, we need some

terminology and notation. First, we distinguish several levels
of accuracy, say L0, L1, . . . , Ln−1 in decreasing order of ac-

curacy. Level L0 denotes the most accurate level. Second, the

degradation from Li−1 to Li is denoted τi (τ is mnemonic

for “transformation”). Third, the interval from the birth of a

datum to its degradation to Li is denoted δi; it follows that

δ0 = 0 because a datum is supposed to enter the store in

the most accurate level, and we let δn be the interval from

birth to removal from the store. The notation �δ abbreviates the

sequence δ1, . . . , δn. Almost all this information is captured in

a so-called life-cycle, as illustrated in Figure 2.

L2
δ3

L1
δ2

L0
δ1δ0

Fig. 2. Graphical representation of a simple life-cycle. Edges denote
transitions between Levels of accuracy after a retention period δ.

So, the store consists of data of age at most δn, and degraded

to the appropriate levels:

store(�δ, t) =
{(d, b):H | b+δ0 ≤ t < b+δ1 • (d, b, L0)}

∪ {(d, b):H | b+δ1 ≤ t < b+δ2 • (τ1(d), b, L1)}
...

∪ {(d, b):H | b+δn−1 ≤ t < b+δn • (τn−1(d), b, Ln−1)}
The product of our framework is a life-cycle policy, which

captures how and when data needs to be degraded, and to

which the service provider has to comply with. As long as the

service provider can be trusted, the life-cycle policy ensures

that if the data store is attacked, the impact of disclosure will

be less severe; only a small subset of the data will be stored in

an accurate form, the rest will be either degraded or destroyed.

Some of the technical challenges related to the implementation

and enforcement of such policies on traditional database

systems are discussed in Section V.

B. Interests revised

We assume that degraded data is less worthwhile for the

service provider but also less risky for the user to store, and we

will revise the definitions of worth and risk accordingly. The

definitions of the total worth, privacy, and common interest

in terms of worth and risk remain the same except for the

replacement of δ by �δ.

Worth and total worth: For the service provider, the worth

of a datum depends not only on the age “t−b” but also on the

level of accuracy l:

worth((d, b, l), t) = wtl(t−b)
wtl(a) is nonnegative, monotonic descending in a and l

The effect of degrading a datum to a level of lesser accuracy

is that its worth for the service provider is decreased. Indeed,

‘wtl(a) is monotonic descending in l’ means that for all a:

wt0(a) ≥ wt1(a) ≥ . . . ≥ wtn−1(a)

As before, the total worth of the store at time t is the

aggregation of the worth of all data in the store:

totworth(�δ, t)
= definition∑

(d,b,l):store(t,�δ) worth((d, b, l), t)
=

c × (
wt0(δ0) + wt0(δ0+1) + . . . + wt0(δ1 − 1) +
wt1(δ1) + wt1(δ1+1) + . . . + wt1(δ2 − 1) +
. . .

wtn−1(δn−1) + wtn−1(δn−1+1) + . . . + wtn−1(δn − 1) )
=

c × ∑n−1
l=0

∑δl+1−1
a=δl

wtl(a)

It follows that totworth(�δ, t) is independent of t, and we

can simply write totworth(�δ). Note that the contribution to

totworth(�δ) of the most degraded level may be negligible in
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comparison to the less degraded levels: both the age and the

level are higher.

Risk and privacy: The risk of having data in the store was

proportional to the amount of data in the store. However, with

data degradation, the assumption is that storing data in a more

degraded level is less risky than for a more accurate level. To

express this, we weight the risk of storing a datum in level Ll

with a factor rl such that 1 = r0 ≥ r1 ≥ . . . ≥ rn−1. Hence,

the definition reads:

risk(�δ, t)
= definition∑n−1

l=0 rl × #{(d, b, l′) : store(�δ, t) | l′ = l}
=

c × ∑n−1
l=0 rl × (δl+1 − δl)

Again, risk(�δ, t) is independent of t and we simply write

risk(�δ). The definition of privacy doesn’t change:

priv(�δ) = 1 / (s + risk(�δ))

Common interest: The goals of both service provider and

user remain the same: optimizing the common interest. Except

for the replacement of δ by �δ there is no change:

CI(�δ) = totworth(�δ) × priv(�δ)

Note that if there is just one level of accuracy, n = 1, the newly

defined notions coincide with the already existing notions

(such as CI(�δ) and CI(δ)) provided we take wt0(a) = wt(a)
and δ1 = δn = δ.

IV. BENEFITS OF DATA DEGRADATION

The aim of data degradation is not to provide more privacy

while ensuring the same amount of worth for the service

provider, nor providing more worth while ensuring the same

amount of privacy as what can be achieved with limited

retention. Instead, we want to show that we can achieve

an higher common interest with data degradation than with

limited retention.

Since the contributions of δ2, δ3, . . . to CI are nonnegative,

data degradation with n > 1 will outperform limited retention:

∀δ1, δ2, . . . • CI(δ1) ≤ CI(δ1, . . . , δn)

In the following we will show, using experimental examples,

that for a set of examples which all comply with our as-

sumptions, the common interest will be higher when we use

data degradation. Hence, our target is to give insights in what

we can gain by choosing data degradation in comparison to

limited retention.

A. Analysis

We use Matlab as the platform for our analysis. We imple-

mented a set of worth and privacy functions which simulate

the functions which have a practical shape, complying with the

assumptions posed in section II. Given those functions, we let

Matlab optimize the common interest considering n = 1 . . . 4
possible degradation steps. Hence, choosing n = 1 means the

same as applying limited retention, whereas n > 1 means we

allow one or more degradation steps.

Although we can easily experiment with different types

of worth functions to simulate a service provider’s worth

function—as long as they are monotonic descending—we

choose the cosine function, as in Figure 3.

w
or

th

age

wt1
wt2
wt3
wt4

Fig. 3. wtl(a) = wl ×
(

1 + cos
(

a× π

180

))
, 0 ≤ a ≤ 180

In the worth functions we use weights w1 ≥ w2 ≥ . . . ≥ wn.

Recall that ri are weight factors in the risk function. We choose

w1 = r1 = 1 and w2 . . . wn vary over 0 . . . 1, similarly for ri.

1) Increased common interest: To show that using data

degradation indeed can result in a higher common interest,

we let our script find the �δ for which common interest is

maximal, with at most n = 4 degradation steps. We choose

the following parameters:

i = 1 2 3 4
wi 1 0.3 0.2 0.1
ri 1 0.2 0.1 0.05
s = 18

With those parameters, we obtain the following results (also

shown in Figure 4).

n = 1 2 3 4
�δ [53] [26,81] [16,46,96] [16,46,96,96]

CI(�δ) 0.7948 0.8358 0.8532 0.8532

totworth(�δ) 98.5582 76.8960 61.4329 61.4329

priv(�δ) 0.0081 0.0109 0.0139 0.0139

From this result we conclude for the chosen parameters:

1) Common interests is higher when progressively degrad-

ing (n > 1) the data than with limited retention of

accurate data (n = 1)

2) With n > 1, δ1 is smaller than the single δ with n = 1. It

thus makes sense to degrade the data earlier to achieve

an higher common interest.

3) When n = 4, it turns out that δ3 = δ4, meaning that it is

not possible to achieve an higher common interest with

more than three degradation steps.

2) A closer look on weights and their effect on CI: We

already have seen that data degradation results in an higher

common interest. An interesting question is how the ratios

between weights w1 . . . wn and r1 . . . rn assigned to each level

of accuracy Li influence the gain in common interest which

can be achieved with data degradation. Our expectation is the
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Fig. 4. Common interest function for n = 1 (limited retention) and n = 2.
For n = 2, we only vary over δ2. The first retention period δ1 is chosen
such that CI(δ1, δ2) is optimal for the δ2 where this plot reaches its highest
point. The graph shows that δ1 for n = 2 is shorter than the optimal δ1 when
n = 1, and that the common interest for n = 2 is higher than for n = 1.

following: with wi descending in i, and wi > ri, degradation

results in a higher common interest compared to limited

retention.

For this experiment we choose arbitrarily r1 = 1, r2 =
0.2, r3 = 0.1, r4 = 0.05, and vary over wi. We use a simple

distance metric: dist(�w) =
∑n

i=2 w1 − wi to express the drop

in worth when degrading the data. Note that the smaller wi is,

the less worth is preserved on that accuracy level.

In Figure 5 we plotted for various weights wi the ratio

between the common interest which can be achieved with

only limited retention and the common interest which can be

achieved by at most n = 4 degradation steps. Figure 5(b)

shows only common interest points achieved with at least 3

degradation steps. The ratio indicates the fraction of common

interest possible with limited retention compared to that of

data degradation. Hence, this fraction cannot be higher than 1

since limited retention can never perform better than data

degradation (see earlier this section).

We make the following observations:

1) When dist(�w) � dist(�r) � 2.65, the decrease in worth

is similar to the increase in privacy, so that common

interest hardly increases (CI ratio is close to 1).

2) When the decrease in worth becomes higher (dist(w)
grows), data degradation hardly outperforms limited

retention.

3) Most gain in common interest is achieved by applying

one-step degradation: data is immediately degraded to

a higher level, and fully degraded afterwards. This can

be concluded from Figure 5(b), in which only multi-step
degradation is allowed.

From the last observation, we conclude that for some (our

current) parameter values it makes sense to generalize the data

before storing it. Hence, a higher common interest can be

achieved by handing over some accuracy to get much more

privacy in return, especially when the privacy increase is much

higher than the loss in worth. When the decrease in worth is

more close to the increase in privacy, we showed again that

multi-step degradation leads to an increase in common interest.
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Fig. 5. Ratio between the common interest which can be achieved with only
limited retention and the common interest which can be achieved by allowing
n = 4 degradation steps. A ratio equal to 1 means no increase in common
interest, lower than 1 indicates that limited retention performs less than data
degradation. This ratio can never be higher than 1; limited retention cannot
perform better than data degradation.

V. IMPACT ON TRADITIONAL DATABASES

Since data degradation will take place within the data store,

the first and legitimate question which comes in mind is

how complex will the technology be to support it. Traditional

databases are developed in order to efficiently and durably

insert data, make updates to this data and to query them.

The ACID properties ensure durability and correct execution

of queries and updates to keep the database in a consistent

state. In our context, we have to revise the ACID properties,

such that the durability requirement ends when data should

be degraded, even requiring that data can not be recovered.

In order to apply the degradation model correctly, we have to

ensure that even operations made outside control of the DBMS

cannot reverse the degradation steps. A delete statement should

therefor not only be made visible on the application level, but

it should also be internally irreversible. However, in current

traditional database implementations this is not the case [22].

Hence, identifying the impact of making a database data-

degradation aware leads to several important questions. For

more details, and a comprehensive study on this topics, we

refer to [3]. Here, we only give a brief overview.

Updates to the data items due to degradation, as well as final

removal from the database have to be enforced. As pointed

out in [22], traditional databases cannot even guarantee the

non-recoverability of deleted data due to different forms of

unintended retention in the data space, the indexes and the

logs. With data degradation, the problem is particularly acute
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considering that each data item inserted in the database un-

dergoes multiple degradation steps. The storage of degradable

attributes, indexes and logs have to be revisited in this light.

Databases have been designed to speed up queries. Some

workloads induce the need of few indexes on the most

selective attributes to get the best trade-off between selec-

tion performance and insertion/update/deletion cost. For other

application, insertions are done off-line, queries are complex

and the data set is very large. This leads to multiple indexes

to speed up even low selectivity queries. Data degradation

can be useful in both contexts. However, data degradation

changes the workload characteristics in the sense that queries

become less selective when applied to degradable attributes.

This introduces the need for indexing techniques supporting

efficiently degradation.

User transactions inserting data items with degradable at-

tributes generates effects all along the lifetime of the degra-

dation process, that is from the transaction commit up to

the time where all inserted data items have reached a final

state for all their degradable attributes. This significantly

impacts transaction atomicity and durability and even isolation

considering potential conflicts between degradation steps and

reader transactions.

VI. RELATED WORK

Proposals have been made to make the donor herself respon-

sible for protecting her own data, not just relying on the phi-

losophy of trusting organizations to protect the privacy. In their

vision paper, Aggarwal et al proposed the P4P framework [1],

in which the donor keeps control about which information

to release to service providers. They consider the ‘paranoid’

user who doesn’t trust the collecting organizations, in contrast

to the users of policy based framework such as P3P [25].

Although such solution is robust against server attacks, the

accessibility for service providers is much lower, leading to

high communication costs when data needs to be queried

or updated and placing constraints on how applications are

developed and deployed. In contrast, data degradation doesn’t

place these restrictions on applications, data can still be stored

at the server side and by enforcing data degradation, donors

are in control of the level of privacy risk they want to take in

terms of retention periods.

Limited retention techniques have been proposed to ensure

that data can no longer be subject to occasional disclosure.

The limited retention principle is a key principle behind many

privacy laws, and as such has been adopted in the work on

Hippocratic databases [2]. Implementation frameworks behind

such a system, based on access control mechanisms, including

handling of generalized forms of the data, already exist [2],

[4], [5]. However, such systems are still based on trust [1]; trust

which cannot be put forever on a system. Even when secure

access control techniques are used, a database administrator

can be or become malicious. Even if the chosen security

regime can be proven successful now, it might be not in the

future [16].

In addition to access control, security measures for protect-

ing a database server, such as data encryption, firewalls, and in-

trusion detection systems can be used. Those techniques make

attacks more difficult without completely preventing them.

Intrusion detection systems [7] are especially useful against

repetitive attacks such as spying on a database, although it

is still hard to find a good balance between false negative

and false positive detections. However, used in addition to

data degradation, intrusion detection systems would make it

very hard for even a determined attacker to obtain a large

consecutive history of accurate data.

Anonymization of data might be a solution to prevent disclo-

sure of privacy sensitive-data. In fact, major companies such

as Google already state they will adopt anonymization as a

measure to improve privacy protection [13]. k-Anonymity [24]

is based on the idea of masking (parts of) the (quasi) identifier

of a partly privacy-sensitive tuple, such that the sensitive part

of the tuple will be hidden between k − 1 potential identifier

candidates within the same dataset. The work on l-diversity

[20] goes a step further by taking background knowledge

into account, enforcing enough diversity between the privacy

sensitive attributes. Although data degradation aims not on

generalizing identities, the techniques used to generalize the

data are comparable.

Usually, anonymization is applied to large datasets at once,

making sure that for each tuple, the tuple shares the same

identifier with k−1 others. In practice this could result in

a strictly k-anonymous database at the cost of losing much

usability. Although Byun et al provided a technique to update

anonymized databases [6], each time new data arrives, the

database has to be sanitized into a k-anonymous state again,

making it hard to obtain a clear view of the database from an

application perspective, since old tuples might be sanitized

at unpredictable times. Besides, correctly anonymizing the

data is a hard problem [21]. To illustrate, a good example

of incorrect and insufficient use of anonymization has been

given when American Online decided to put a large set of

search queries online [18]. AOL anonymized the IP addresses

of the computers from which the queries were issued, which

was not enough to prevent attackers from inferring many

privacy sensitive facts. Data degradation does not suffer from

such kind of vulnerabilities, because the facts themselves are

degraded, not the identities.

Data degradation can be complementary to all discussed

techniques. Firstly, by limiting the impact of inevitable privacy

breaches, data degradation is complementary to access control,

since data which has been subject to degradation either has a

lower level of accuracy and thus sensitivity, or has already

been removed from the system. Moreover, although only on

temporary basis, accurate data can still be protected against

regular attacks with the use of access control techniques.

Secondly, anonymization is good practice when datasets have

to be made public without revealing the identity of the users;

for example, when used for disclosing datasets for research

purposes, and therefore it can be a complementary technique

to data degradation. Data degradation is particularly useful
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when data needs to be accurate for some time, but where the

details are less important when the data gets old. Moreover,

within our degradation model, the identifier of the user can be

kept intact; hence, user-oriented services can still exploit the

information to the benefit of the user.

VII. FUTURE WORK AND CONCLUSION

In this paper, we presented a new framework to be able

to reason about limited retention, and more specifically data

degradation. We showed that using a function capturing the

worth of storing data for the service provider, and a function

for the risk involved for storing this data, we are able to find

an optimal retention period such that the common interest for

both service provider and user is respected.

The increase of common interest which can be achieved

depends on multiple factors. When the decrease of worth is

much higher than the increase in privacy, it is good to apply

data degradation, even if this means that the data will never

be stored accurately. In our analysis, we showed cases where

it is useful to progressively degrade the data from accurate

states to generalized states until final destruction of the data.

We hope that our findings will lead to a break with a tradition

where service providers collect everything they can, and store

it as long as they can. This paper is a first attempt to achieve

that goal. However, there is much future work to do:

• Firstly, we have to investigate the actual privacy guar-

antees of data degradation and its effect on the risk

functions. How much ‘privacy’ can be provided by gen-

eralizing the data is an important question in order to

correctly define the risk functions. Correctly defining

privacy will always be subject of discussion, mainly

because of its subjective nature. In that light, defining

privacy as function based on risk, and to relate this risk

to the amount of stored data is a promising first step.

• We introduced a model in which we only take retention

periods of data into account. Indeed, both privacy and

worth function can depend on various parameters other

than retention periods. Users can choose different ‘risk

profiles’ depending on the nature of the data items, and

service providers can attach a lower worth to specific data

based on the user, location, time of the day, et cetera.

• An important question is if and how service providers

will be able to express their worth functions. To put our

framework into practice, it is necessary to provide tools

which enable service providers to give transparency about

their need to collect personal data.

To conclude: our framework makes that it is indeed possible

to reason about retention periods such that not only one but

both parties will be satisfied. Together with data degradation,

we presented a promising new approach to close the huge

gap between the enormous amount of collection and storage

of personal data, and the risk users have to take to be able

to profit from all the new and exciting services offered to us

today and in the future.
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