
Using an FPGA for Fast Bit Accurate SoC Simulation

Pascal T. Wolkotte and Philip K.F. Hölzenspies and Gerard J.M. Smit
University of Twente, Department of EEMCS

P.O. Box 217, 7500 AE Enschede, The Netherlands
P.T.Wolkotte@utwente.nl

Abstract

In this paper we describe a sequential simulation method
to simulate large parallel homo- and heterogeneous systems
on a single FPGA. The method is applicable for parallel
systems were lengthy cycle and bit accurate simulations are
required. It is particularly designed for systems that do not
fit completely on the simulation platform (i.e. FPGA). As
a case study, we use a Network-on-Chip (NoC) that is sim-
ulated in SystemC and on the described FPGA simulator.
This enables us to observe the NoC behavior under a large
variety of traffic patterns. Compared with the SystemC sim-
ulation we achieved a factor 80-300 of speed improvement,
without compromising the cycle and bit level accuracy.

1 Introduction

In the Smart chipS for Smart Surroundings (4S) project
[1] we propose a heterogeneous Multi-Processor System-
on-Chip (MPSoC) architecture with run-time software and
tools. The MPSoC architecture contains a heterogeneous
set of processing tiles interconnected by a Network-on-Chip
(NoC).

The development of such a heterogenous platform intro-
duces problems related to hardware/software codesign. The
MPSoC architect wants to study all kinds of trade-offs, e.g.
operation bit-widths, memory sizes, and performance pa-
rameters/bottlenecks, e.g. latency and throughput. Com-
mon practice is to do extensive simulations on the MPSoC
architecture before the system can be realized in silicon. In
general the approach of simulating such large MPSoC de-
signs is to either use (non cycle accurate) high level mod-
elling or accept long simulation times with cycle accurate
simulations. For systems consisting of several tens or hun-
dreds of tiles, cycle-true simulation leads to prohibitive sim-
ulation times of multiple hours to days.

In the 4S project, we would like to study the conse-
quences of design choices on the performance of the NoC
in a system with hundreds of tiles. For the performance we

1-4244-0910-1/07/$20.00 c©2007 IEEE.

cannot just analyze a single router and determine a local op-
timal schedule, because this might cause buffering problems
in the neighboring routers. In this project we are interested
in the latency and throughput behavior of our NoC [9].

1.1 Related Work

There are several methods to analyze large heteroge-
neous systems. High level formal analysis methods can be
applied [15], where an application of the system is char-
acterized by high level parameters (e.g. latency of a task).
Data dependencies and interactions of processes can only
be analyzed if their characteristics can be described with
the high level model. However, this is only applicable for
a restricted number of cases. For example, at design time
the latency and execution time of a task has to be known
(manifest).

Another method is system level simulation such as Sys-
temC [2] at different levels of abstraction. It can be used
to describe systems from functional level to RTL level.
The level of abstraction determines the speed of simula-
tions. An example of SystemC simulation for NoC are
the On-Chip Communication Network (OCCN) project [6],
which defined an universal Application Programming Inter-
face (API) for specification, modelling, simulation, and de-
sign exploration of NoC. Another framework is presented
by Kogel [11]. In the design flows of Æthereal [7] and
xpipesCompiler [8], SystemC simulation is used for perfor-
mance validation.

For our packet switched NoC we would like to monitor
the cycle and bit accurate behavior under different traffic
loads. A bit and cycle accurate simulation is required, be-
cause adaptations to the logic behavior of the router and the
network as a whole are foreseen. Furthermore, we need to
do extensive cycle true simulations before a chip can be re-
alized.

We started with a SystemC description of the router [10],
but the simulation frequency was disappointing. Seriously
testing a single scenario on one specific network configu-
ration already took a full day. Therefore, an FPGA based
simulator was considered. For very large multiprocessor
systems an FPGA based emulation platform makes accu-

rate and fast system simulation possible, as proposed in the
RAMP project [3] and shown by, for example, the BEE
hardware emulation environment [5]. We would like to
adopt this method and develop a simulator that requires a
single FPGA for designs that are developed into RTL. This
paper describes the method to sequentially simulate large
parallel systems in one FPGA that normally would require
multiple FPGAs. In this paper we use our Network-on-Chip
as a case study for this simulator.

The rest of the paper is organized as follows. In section
2 we describe the NoC that we would like to analyze. In
section 3 we describe the three methods that are evaluated to
simulate this network. In section 4 we describe the method
that is used to simulate a parallel system sequentially. In
section 5 we describe the implementation of this method
onto the FPGA platform. In section 6 we show the speed
improvements that are achieved by the FPGA method. In
section 7 we discuss the simulator and conclude the paper
in section 8.

2 Network-on-Chip

Traditionally, communication between processing tiles is
based on a shared bus. For larger MPSoCs with many pro-
cessing tiles it is expected that the bus will become a bot-
tleneck from a performance, scalability and energy point of
view [4]. Therefore, we propose a multi-hop Network-on-
Chip, where the network consists of a set of routers inter-
connected by links.

For the NoC, we have defined two networks (packet-
switched [9] and circuit-switched [16]) that can both han-
dle guaranteed throughput (GT) traffic and best-effort (BE)
traffic simultaneously. The guaranteed throughput traffic is
defined as data streams that have a guaranteed throughput
and a bounded latency. The best-effort traffic is defined
as traffic where neither throughput nor latency is guaran-
teed. In this paper we focus on the packet-switched net-
work. However, the approach can also be used for the
circuit-switched network and other parallel designs.

2.1 Packet-Switched Network-on-Chip

The packet-switched router described by Kavaldjiev [9]
implements wormhole routing with virtual channel (VC)
flow control. The advantage of wormhole routing is the
packet-size independent buffer-size. The VCs are used to
decrease the chance of blocking and enable the routing of
guaranteed throughput traffic.

The router has five input and five output ports and four
VCs per port. The flits (atomic unit) of a packet are labelled
with their VC number and they are buffered in four flit deep
queues at the input ports. Per port, four queues are available
- one queue per VC.

The outputs of the queues are not multiplexed per port,
but directly connected to the crossbar. This is used to ease

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

100

200

300

400

500

600

BE load per PE [fraction of channel capacity]

La
te

nc
y

[c
yc

le
s]

Guarantee
GT mean
GT max
BE mean

Figure 1. Delay of the GT and BE packets vs.
BE load for 6-by-6 network (queue size 2 flits)

the arbitration compared to a standard wormhole router with
VCs. The crossbar is asymmetric and has 20 inputs, one
input for every queue, and five outputs that are directly con-
nected to the router’s output ports.

The access to the crossbar is arbitrated by 5 round-robin
arbiters - one arbiter per crossbar output. This arbitration is
sufficient, since a conflict can only arise when more than
one queue contains flits destined for a same output port.
Due to the predictable round-robin arbitration the router is
able to handle guaranteed throughput (GT) traffic, if one
single data stream is assigned per VC. Multiple best-effort
(BE) packets can be assigned to the same output VC. For
more details see [9].

Although the round-robin arbitration is deterministic and
maximum latency per hop can be determined, the specific
latency and timing of packets largely depends on the global
behavior of the network. Figure 1 shows the result of the
latency simulation for a 6-by-6 network that has been per-
formed in SystemC.

The graph shows how the latencies of the GT and BE
messages depend on the offered BE load. For the GT traf-
fic, the mean and the maximal latency of packets are given.
When the offered BE load is low, the latency of the GT
packets is smaller than the guaranteed (or allowed) latency.
The reason is that the GT traffic utilizes the bandwidth un-
used by the BE traffic. Note: the latency of the GT packets
is higher than the latency of the BE traffic because the GT
packets are larger (256 bytes against 10 bytes for BE pack-
ets). With the increase of the BE load, the average and max-
imum latency of the GT traffic increases, but the maximum
GT latency never exceeds the guaranteed latency.

3 Simulation of Network-on-Chip

To simulate a whole network we examined three options:

1. VHDL
2. SystemC
3. An FPGA

For all options we modelled the NoC cycle and bit ac-
curate. We started with a VHDL description, because, be-
sides latency analysis, we are also interested in the area and
power consumption of the NoC design after synthesis. A
router implementation with with very good throughput and
latency, might result in a very high power consumption. For
example, we found that buffers require a relatively large
amount of area and energy. So we would like to redo the
simulation of Figure 1 with different buffer sizes and in-
vestigate what the effect of buffer size on performance and
energy consumption is.

For the latency and throughput analysis, we were ham-
pered by the speed of the VHDL simulation (as is shown
in section 6). Therefore, a SystemC model seemed a good
approach with, as literature suggests, orders of magnitude
speed improvements [11, 12, 14]. The SystemC simulations
gave the first insights in the behavior of the network as is
shown by Figure 1. However, to generate all the informa-
tion that was required for this single graph we needed 29
hours of simulation time on a single Pentium 4.

The attempt to simulate a NoC in an FPGA was inspired
by the fact that an FPGA has a lot of internal storage, which
enables updating a large number of registers in a single cy-
cle. In our lab we have a platform available with a multi-
processor SoC. This SoC has an ARM processor which
can communicate via a memory interface with a Virtex-II
FPGA. This platform was used in our experiments. The
method to simulate the network is described in the next sec-
tion. In section 5 we describe the details of the FPGA sim-
ulator.

4 Sequential Simulation of a Parallel System

There are several ways to simulate a Network-on-Chip
in an FPGA. The first idea was to instantiate the whole net-
work in the FPGA including simple traffic generators, but
initial synthesis tests showed a size limitation of approxi-
mately 24 routers in a Virtex-II 8000. These were results
with a reduced data-path of 6-bit and without the network
interfaces and simulation controllers. The two major bot-
tlenecks were the number of CLBs and available number of
tri-states in the FPGA.

Therefore, a sequential simulator of the network was
built. This simulator has another trade-off between hard-
ware resource requirements and simulation speed. It re-
quired a small modification of the router VHDL-sources
and an additional controller. It is very important that we can
use (almost) unmodified VHDL sources as this will mini-
mize the risk of errors between the synthesized hardware
and the simulator. The only modification is the extraction of
all registers in the design and their mapping on a memory
position as explained in the next subsections. Up to now,
the modifications are implemented manually, but automatic
transformations should be possible.

In this section we explain the methodology how to simu-

���� ������� ����������

(a) Parallel representation

��

���

��

���

��

���

���	

������	

����	

�

(b) Sequential representation

Figure 2. System with registered boundaries

late a parallel system with cyclic dependencies in a sequen-
tial order. A network-on-chip can have multiple cyclic de-
pendencies depending on the topology of the network and
the design of the routers. The cyclic dependencies might
cause changes of the inputs of a router after its evaluation
in the sequential schedule. The change of input requires
re-evaluations of the routers that corresponds to that input.
We will explain the sequential simulation methodology us-
ing a 1-dimensional cyclic dependent example system. The
method is also applicable for two and higher dimensional
systems.

We start with a cyclic system that can have an arbitrary
evaluation order and no re-evaluation. This method is ex-
tended in section 4.2 to a partitioned system, where re-
evaluation is necessary due to the cyclic dependencies and
its partitioning. The method is based on the two level tim-
ing model that was introduced in CONLAN [13]. In the
explanation of the methodology we use system cycles (i.e.
real time) and delta cycles (i.e. computation steps). A delta
cycle is defined as a clock cycle in the sequential simulator
that evaluates one function but does not advance the simu-
lation time. A system cycle is a clock cycle in the simulated
parallel system and corresponds to a real clock cycle. A
system cycle consists of multiple delta cycles.

4.1 Sequential Simulation of Designs with
Registered Boundaries

Figure 2a depicts a parallel system that consists of three
combinatorial circuitries with functionality F1(x), F2(x)
and F3(x). The function Fi(x) may be equal or different to
Fj(x). In the homogeneous NoC of our test case, all routers
have the same functionality. The input of all Fi(x) comes
from separate registers and the results go to separate regis-
ters. The circuitries are separated by registers. To simulate a
system cycle of this system, we evaluate the three circuitries
in an arbitrary sequential order. This increases the required
time to simulate the system by a factor three, but reduces
required hardware resources. All identical functions Fi(x),
Fj(x) can use the same implementation, denoted F ′

i,j(x).
We change the logic of Figure 2a to Figure 2b, where

����

��

���

��

���

�	

�	�

��

���

��

���

�	

�	�

����

��

���

��

���

�	

�	�

���� ����

����

����

�
�
�
��
�
��
�
�
	�

�
�

�
�
�
��
�
��
�
�
	�

�

�
�
�
��
�
��
�
�
	�

�
�

��

���

��

���

�	

�	�

��

���

��

���

�	

�	�

��

���

��

���

�	

�	�

��

���

��

���

�	

�	�

��

���

��

���

�	

�	�

����

��

���

��

���

�	

�	�

��

���

��

���

�	

�	�

����

��

���

��

���

�	

�	�

����

��

���

��

���

�	

�	�

��	������	��
���� ��	������	��
��� ��	������	��
����

��	������	��
��� ��	������	��
�� ��	������	��
���

��	������	��
���� ��	������	��
��� ��	������	��
����

�
������ �
������ �
������

�
������ �
������ �
������

�
������ �
������ �
������

Figure 3. Possible static schedule

all registers are mapped into a single memory. The func-
tions F1(x), F2(x) use implementation F ′

1,2(x) and F3 uses
F ′

3
(x). The set of implementations is replaced by H(x). In

the memory, both the old and new version of the register
values are stored (as depicted in the right part of the fig-
ure by R1..3 and R′

1..3). The order in which the circuitry is
evaluated to calculate new register values can be arbitrary,
because for all parts of the system a previously calculated
register value is used at input to a combinatorial circuit to
calculate the new register value.

After all three functions are evaluated we should copy
the new state to the current state of the registers and then a
new system cycle can be started. In our system this copy
action is performed by switching the offset pointer of the
current state and new state. In the even system cycles the
registers R1..3 are the current state and R′

1..3 are the next
state. In the odd system cycles, R′

1..3 are the current state
and R1..3 are the next state. Figure 3 depicts the execution
example of simulating three system clock cycles.

4.2 Sequential Simulation of Designs with
Combinatorial Boundaries

The approach described above is not completely suitable
for our Network-on-Chip design as will be described in this
section.

To modify the original router design as little as possi-
ble, we would like to partition the design at the granular-
ity of routers, as this is our basic element in the NoC. The
router’s inputs and outputs are connected to neighboring
routers via links (i.e. unbuffered wires). The previously de-
scribed method requires that all output ports are registered.
However, this is not the case in the NoC design.

It is undesirable to change a given implementation for
testing purposes, because rewriting the code might intro-

� �

����� ����

� �

����� ����

� �

����� ����

	
������ 	
������ 	
������

�
��
�
��
�

�
��
�
��
�

�������

(a) Parallel representation

�

�

�
�

�

� ���

�������	���

��������

�

�

�

���

���

���

��������� ���������
������
������

���� 	���

(b) Sequential representation

Figure 4. System with combinatorial bound-
aries

duce faults and it is difficult. It requires repositioning of
functionality, especially in a NoC where functionality might
shift to the preceding or next router. However, in our case,
it was not even possible without changing the functional be-
havior of the design. A solution is to re-evaluate the router’s
state and output if one of its inputs has changed after its
evaluation in the current system cycle. Re-evaluation is pos-
sible, because the router’s old state is available during the
whole system cycle.

Figure 4a depicts a system that represents our router ar-
chitecture. The router cannot be described by a simple func-
tion Fi(x), because the router’s outputs depend, besides on
its inputs, on its internal state. This can easily be solved by
storing all internal registers in a memory as depicted in Fig-
ure 4b. The functionality of the router is then described by
multiple functions (F (x) and G(x) in the example). F (x)
and G(x) of a single router will be evaluated in parallel in
the sequential simulation. Part of the inputs and the cir-
cuit F (x) of a router depends on the combinatorial circuit
G(x) of the preceding router. In this case we cannot eval-
uate these routers in-order as in Figure 3. Any given se-
quence of routers will also give problems, because there is
always a link that is read before it is updated by the preced-
ing router. Changing the partitioning (e.g. group G(x) with
F (x) of the next router) did not help, because no fully reg-
istered cross-section was possible and, as previously stated,
it is generally undesirable.

Therefore, we adapted Figure 2b to Figure 4b. For all in-
ternal registers we use the same mechanism as described in
the previous section. For the links we have a separate mem-
ory, where every link has only a single memory position and
not two as for the registers. Per memory position one addi-
tional status bit is stored. This bit indicates whether the last
written value Has Been Read (HBR) from this link. Per
router we group all status bits that corresponds to the links

�
�
�
��
�
��
�
�
	�

�
�

�	������	��
����

�	������	��
���� �	������	��
���� �	������	��
����

�	������	��
���� �	������	��
����

��

��

��

����	
	����

����	�����

����	
	����

����	�����

����	
	����

����	�����

��

��

��

��

��

��

��

��

��

�	������	��
���� �	������	��
���� �	������	��
����

����	
	����

����	�����

�	������	��
����

�
�
�
��
�
��
�
�
	�

�
�

�
�
�
��
�
��
�
�
	�

�
�

��

��

��

����	
	����

����	�����

����	
	����

����	�����

����	
	����

����	�����

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

����	
	����

����	�����

����	
	����

����	�����

����	
	����

����	�����

��

��

��

��

��

��

��

��

��

�

� �

� �

�

� � �

�� �

� �

�

� �

� �

�

�

�

�

�

�

�

�

�

�

���

���

���

���

������

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

������

���

���

���

���

���

���

���

���

���

���

���

���

��������� ��������� ���������

��������� ��������� ��������� ���������

��������� ���������

Figure 5. Possible dynamic schedule

that are connected to its input ports and output ports. If not
all of these bits are valid the router is considered to be non-
stable and has to be evaluated. A simple round-robin sched-
uler will decide which non-stable router has to be evaluated.
If all routers are stable the network is considered to be com-
pletely evaluated and ready for the next system cycle.

An example of three system clock cycles is given in Fig-
ure 5. Every system cycle is started by resetting all status
bits to zero. Because all status bits are reset to zero at the
start of a system cycle, it is guaranteed that all routers are
evaluated at least once. This is necessary as a router might
change its outputs independent of its inputs. After a router
is evaluated all links that are connected to its input port will
make their status bit one. Furthermore, if the router writes a
value to a link, which is not equal to the current value in the
memory, it will reset this link’s status bit to zero. The router
that has this link as an input will become non-stable and has
to be (re-)evaluated. In Figure 5 all values that are different
from the current value are underlined. This happens in delta
cycle (1,1);(1,2);(2,0);(2,1). In case of delta cycle (1,2) link
2 is updated, but had already been evaluated in delta cycle
(1,0). In this specific case the HBR-bit changes from one
to zero and router 0 has to be re-evaluated. In all other cases
the updates of the links do not result in extra evaluation cy-
cles as the HBR-bit was still zero and routers had to be
evaluated anyway.

5 Implementation

The implementation of the simulator requires a hardware
platform, an FPGA design and software. All three are de-
scribed in this section.

5.1 Platform

Figure 6 depicts the general block scheme of the avail-
able platform with the most important components. The

���������	
��

�����������������

�������

����

�������

�
�
�
�
��
	��
��
���
�
�

��

�

�

�

������ �

!�	�"�

��	�"�

"

�
#

$��

���� �

����%

������&'��

�()

�#�*

�
�
�
�
��
	��
��
���
�
�

�()

�#�*

"
�
�

����

�#�*

Figure 6. Schematic view of the hardware

SoC board contains a general purpose system-on-chip that
is connected with 1 MB of on-board SRAM memory and
lots of peripherals and connectors. One of the connectors
connects the FPGA board with the SoC board. This connec-
tor contains a memory interface with a 32-bit wide data-bus
and a 17-bit wide address-bus. All registers and memory of
the FPGA design, via the memory interface, are available
in the address map of the ARM9 processor. This makes it
possible to control the FPGA and exchange data. Reading
and writing the registers via the JTAG interface is signifi-
cantly slower due to the narrow serial interface. The FPGA
board itself does not have a separate off-FPGA memory and
contains a Virtex-II 8000 FPGA.

Any other platform that has a large FPGA and on-board
SRAM memory available will be suitable for the simula-
tions. The on-board SRAM is required by the general pur-
pose processor that can control the simulation. This control
is both generation of stimuli vectors as well as analysis of
the results. This general purpose processor can either be
implemented on the FPGA or, as in our case, a separate
processor.

5.2 FPGA implementation

Figure 7 depicts the major blocks of the FPGA design.
The design can be partitioned into two major parts. 1) The
router part, that describes the logic of a single router and
its stimuli interface. 2) The global part, which controls
the FPGA and the Network-on-Chip that is simulated. If
the system was heterogeneous, all the unique components
needed to be instantiated once as depicted in Figure 2b.

For the router we separated the combinatorial logic from
the registers in the original router design. The inputs and
output signals of all registers are concatenated into two
memory words: old and new. The old word is the current
state of the router and read from the memory. The new word
is the result of the evaluation and has to be written into the
memory after a delta cycle. The address of the memory
corresponds to the router that is evaluated. This address is
generated by the scheduler in the FPGA. Table 1 summa-
rizes the width of the memory word. The number of routers
in the network determine the depth of the memory.

In the current implementation reading the values from
memory takes 1 cycle. Evaluation of the combinatorial

���������	

�	����

�	�����	�

���

������

�	��

�������

��
���������

�����

��
�����

�����

�
�

�
��
�
�

�
����
���
�

�

���

���

�

���

�	����

����
�	����

�����	��

�	�����
�

�	����

������ ������
�������

��	�

�����

��	�

�����

��	�

�����

��	�

�����

��	�

�����

��	�

�����

��	�

�����

��	�

�����

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

Figure 7. Schematic view of the FPGA design

State Registers

Input queues 1440 bits
Router control and arbitration 292 bits
Links 200 bits
Stimuli interfaces 180 bits

Total 2112 bits

Table 1. Required registers per router

logic and writing the result in memory takes another cycle.
In total a delta cycle equals FPGA 2 cycles.

The stimuli for the design are generated by software in
the ARM9. We have chosen to generate the stimuli in soft-
ware, because it is easier to define new tests and analyze the
results in software. The disadvantage is the large amount
of data that has to be copied from the ARM9 to the FPGA
and visa-versa. The stimuli are buffered per virtual chan-
nel (VC) in cyclic buffers in the FPGA. The output values
of the network are stored per router, and not per VC, in a
cyclic buffer.

The data in the buffers has a timestamp and can be read
or written by the ARM9. The timestamps make it possible
to store only valid data, which requires less storage space
and less time to copy data. The cyclic buffers make it possi-
ble to run the simulation independently from the copying of
data Of course, we have to prevent buffer under- and over-
run, because it will influence the traffic in the NoC. Two
extra cyclic buffers make it possible to log 1) the traffic of
a specific link and 2) the access delay a flit notices before it
enters the network. These two buffers cannot influence the
traffic in the NoC.

����

����	
�

������

��������

�	�

�����
��

��������

����

���
���

����

����

����	
�
������

����

��	���

�����

����������

���

��

��������

����������

�������������

��

�������

Figure 8. Processes of the simulation

5.3 Software

The simulation is completely controlled in software by
the ARM processor. The software is partitioned in pro-
cesses that communicate via cyclic buffers. All the pro-
cesses can run in parallel and do not have dependencies.

Figure 8 depicts the organization of these processes and
what part of the hardware is involved. The top processes
require only the ARM processor and the NoC simulation
itself only requires the FPGA. The two processes that in-
terchange data between the boards require both ARM and
FPGA.

Because each processes uses its own cyclic buffers, it
only needs to be fired when data and free memory are avail-
able. The processes that only require the FPGA or ARM
run in parallel, which tremendously reduces the simulation
time.

The simulation is performed in steps. We start with gen-
erating a routing information table. After all routes are de-
termined, a loop is started that has five phases. 1) We start
by generating the traffic for each node in a stimuli table.
Any data pattern can be generated as the generation is done
in software. The generation process uses a random number
generator on the FPGA. Reading a 32 bit random number
from the FPGA is noticeably faster compared to the stan-
dard rand() function in C. The generated stimuli table con-
tains stimuli for at least x system cycles. 2) The gener-
ated stimuli have to be written into the input buffers of the
FPGA. All input buffers are maximally filled unless no data
is available. 3) After filling the buffers we start the simu-
lation in the FPGA and evaluate x system cycles. This se-
quence of x simulated system cycles is called a simulation
period. To prevent buffer underrun, the simulation period
is fixed to the size of the VC stimuli buffers in the FPGA.
The simulation in the FPGA needs to be started by software,
but can run autonomously. 4) After a single simulation pe-
riod, we have to empty the output buffers. We retrieve the
data from the output buffers that we think are interesting for
the analysis. For the buffers that are not interesting we can
update the read-pointer, which empties the buffer. 5) Af-
ter the data is retrieved from the FPGA it is analyzed and
the desired statistics are stored. When the simulation is not
finished we go to step 1 and generate extra traffic in the
stimuli table. This makes it possible to simulate an arbi-

Block CLB RAM

Router 1762 61
Stimuli interface 540 62
Network 2103 16
Random number generator 2021 0
Global control 627 0

Total 7053 (15%) 139 (82%)

Table 2. FPGA resource usage (256 routers)

Block CPS

VHDL 10-17 Hz
SystemC 215 Hz
FPGA average 22 kHz
FPGA fastest 61.6 kHz

Table 3. Simulated clock cycles per second

trary number of simulation periods which is not limited by
the software or hardware. However, due to back-pressure
in the network, not all generated data might have been writ-
ten into the FPGA. To prevent the loss of this data and the
potentially resulting undefined state of the stimuli, all un-
consumed data will eventually be written into the FPGA. If
the network is overloaded with traffic and it does not accept
data on virtual channels for a longer time, this is reported to
the user and simulation is stopped.

6 Results

In this section we describe the results of the simulator.
The simulator is realized for a Xilinx Virtex-II 8000 FPGA
and can simulate any size of network from 2 to 256 routers
with 4 flit deep queues. Table 2 shows the resource usage of
the simulator in the FPGA for a maximum network of 256
routers. From these results it is clear that the limiting factor
of the design is the number of RAM-blocks that are used.
It would be possible to simulate the design in smaller FP-
GAs, but it would reduce the maximum number of routers
and/or the amount of state registers (e.g. queue depth) of
the design.

The router design is synthesized for a frequency of 6.6
MHz, which gives a delta cycle frequency of 3.3 MHz. This
limits the maximum simulation frequency of the simulator
to 3.3 ∗ 106/36 = 91.6 kHz for a 6-by-6 network. No effort
was made to increase this frequency, because it was suffi-
cient for the first tests. The interface frequency is equal to
the ARM frequency of 86 MHz, which makes it possible to
copy data at a higher frequency.

Table 3 shows the number clock cycles that can be sim-
ulated per second for a 6-by-6 NoC. The FPGA frequency
depends on the generated network load and analysis tech-
niques used. The difference between the theoretical max-
imum frequency and the measured frequency is caused by
the software and copying data between ARM and FPGA.

Simulation step %

Generate stimuli (ARM) 45-65 %
Load stimuli (ARM / FPGA) 10-20 %
Simulation (FPGA) 0-2 %
Retrieve results (ARM / FPGA) 5-15 %
Analyze results (ARM) 5-40 %

Table 4. Profile information

Table 4 shows the percentage of time that was spent in
the different simulation steps and shows were we can im-
prove the simulator. The percentages are given as ranges,
because it depends on the type of simulations performed.
The simulation itself is almost zero, because it runs in par-
allel with generation and analysis. The majority of the time
is spent in the generation of the data. For complex simula-
tions we see a large contribution by the analysis of the re-
sults. Those two functions could be optimized in software
and there is no reason to increase the FPGAs delta cycle
frequency.

The minimum number of delta cycles per system cycle is
equal to the number of routers of the NoC. In the extra delta
cycles, unstable routers are re-evaluated as explained in sec-
tion 4.2. The extra number of delta cycles mainly depends
on the load that is offered to the network. The percentage of
extra delta cycles is between 1.5 and 2 times the input load.

7 Discussion

The sequential simulation method described in this pa-
per, can be used to simulate a parallel system on any se-
quential processor. The number of bits that can be updated
in parallel in a delta cycle is much larger in an FPGA com-
pared to a 32-bit processor. It can read and write a large
number of bits in the available internal RAM. Furthermore,
the FPGA has a large amount of logic, which can evaluate
the functionality F (x), G(x), etc. in parallel. This also
makes it possible to do both the evaluation and update of
the registers in parallel. As shown by the case study a delta
cycle can be evaluated in two FPGA clock cycles.

7.1 Flexibility of the FPGA simulator

The simulator on the FPGA is implemented as a homo-
geneous wormhole switching network with virtual channel
flow control with a torus topology. The software on the
ARM can change the network size from 1-by-2 to any 2
dimensional size with a maximum number of 256 routers.
The maximum number of routers is limited by the amount
of RAM that is required for the cyclic buffers and the
router’s state.

In the current simulator we have the same functionality
for all the routers. It is possible to select a different router
functionality depending on the position in the network. The
limiting factor is the number of registers in the router. The

topology of a network can either be a torus or a mesh, which
is determined by software. Other topologies are possible
and only require a change in the addressing function of the
link memories in the FPGA.

The same technique used for the NoC simulator can also
be used for testing other parallel systems on an FPGA. In
particular systolic algorithms with many equal parts with a
small state space. If the source-code for synthesis is avail-
able, it is relatively straight-forward to modify the code in
the sequential framework. Heterogeneous systems can be
supported as well, as long as the required extra combinato-
rial logic fits in the FPGA. In the NoC case, less then 10%
of the logic resources are used for combinatorial circuitry
of the routers. The registers can be mapped in the same
memory space.

8 Conclusion

In this paper we described a simulation method for SoC
designs on FPGAs. The method is especially suitable for
parallel systems were lengthy cycle and bit accurate simu-
lations are required. Those tend to require a considerable
amount of time using a PC. Using an FPGA we are able to
speed-up the simulation with a factor of 80-300 compared to
a SystemC simulation without loss of accuracy and a small
code difference with the original VHDL source code. We
apply the modifications at RTL-level which makes it possi-
ble to run the simulator on any FPGA device.

Although an FPGA cannot handle high frequencies, it
benefits from its large internal memory bandwidth and par-
allel execution of many combinatorial circuitries. This en-
ables us to update large parts of the system state in a single
clock cycle. We used a homogeneous NoC to test the per-
formance of the simulation. For this case study the largest
amount of time was spent in generating stimuli and analyz-
ing the results in software. A simple improvement by of-
floading the random number generation to the FPGA gave
an extra 50% simulation speed. An extra factor 3 to 4 im-
provement of the software is necessary before the FPGA
simulation itself or I/O with the FPGA becomes a bottle-
neck.

Acknowledgement

This research is conducted within the Smart Chips for
Smart Surroundings project (IST-001908) supported by the
Sixth Framework Programme of the European Community.

References

[1] http://www.smart-chips.com.
[2] Open SystemC iniative OSCI, SystemC documentation.

http://www.systemc.org, 2004.

[3] Arvind et al. RAMP: Research accelerator for multiple pro-
cessors - a community vision for a shared experimental par-
allel HW/SW platform. Technical report, MIT, 2005.

[4] L. Benini and G. de Micheli. Networks on chips: A new SoC
paradigm. IEEE Computer, 35(1):70–78, January 2002.

[5] C. Chang et al. Rapid design and analysis of communication
systems using the bee hardware emulation environment. In
Proceedings of 14th IEEE International Workshop on Rapid
Systems Prototyping, pages 148 – 154, June 2003.

[6] M. Coppola, S. Curaba, M. D. Grammatikakis, R. Locatelli,
G. Maruccia, and F. Papariello. OCCN: A NoC modeling
framework for design exploration. Journal of Systems Ar-
chitecture: the EUROMICRO Journal, 50(2-3):129 – 163,
2004.

[7] K. Goossens, J. Dielissen, O. P. Gangwal, S. G. Pes-
tana, A. Radulescu, and E. Rijpkema. A design flow for
application-specific networks on chip with guaranteed per-
formance to accelerate SOC design and verification. In
DATE ’05: Proceedings of the conference on Design, Au-
tomation and Test in Europe, pages 1182–1187, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[8] A. Jalabert, S. Murali, L. Benini, and G. D. Micheli.
xpipesCompiler: A tool for instantiating application specific
networks on chip. In Design, Automation and Test in Europe
(DATE), Paris, France, Februari 2004.

[9] N. Kavaldjiev, G. J. M. Smit, and P. G. Jansen. A virtual
channel router for on-chip networks. In Proceedings of IEEE
International SOC Conference, pages 289–293. IEEE Com-
puter Society Press, September 2004.

[10] N. Kavaldjiev, G. J. M. Smit, P. T. Wolkotte, and P. G.
Jansen. Providing QoS guarantees in a NoC by virtual
channel reservation. In Proceedings of the International
Workshop on Applied and Reconfigurable Computing (ARC
2006), Delft, the Netherlands, March 2006.

[11] T. Kogel et al. A modular simulation framework for archi-
tectural exploration of on-chip interconnection networks. In
CODES+ISSS ’03: Proceedings of the 1st IEEE/ACM/IFIP
international conference on hardware/software codesign
and system synthesis, pages 7–12, New York, NY, USA,
2003. ACM Press.

[12] O. Ogawa et al. A practical approach for bus architecture
optimization at transaction level. In DATE ’03: Proceedings
of the conference on Design, Automation and Test in Europe,
pages 176– 181, 2003.

[13] R. Poloty and D. Borrione. The Conlan project: Status and
future plans. In Proceedings of ACM-IEEE Design Automa-
tion Conference, Las Vegas, Nevada, June 1982.

[14] T. Rissa, A. Donlin, and W. Luk. Evaluation of SystemC
modelling of reconfigurable embedded systems. In Proceed-
ings of Design, Automation and Test in Europe, volume 3,
pages 253– 258, March 2005.

[15] M. H. Wiggers, M. Bekooij, P. G. Jansen, and G. J. M. Smit.
Buffer capacities for multi-rate real-time systems with back-
pressure. In Proceedings of CODES+ISSS’06, Seoul, Korea,
October 2006. ACM.

[16] P. T. Wolkotte, G. J. M. Smit, G. K. Rauwerda, and L. T.
Smit. An energy-efficient reconfigurable circuit-switched
network-on-chip. In Proceedings of the 12th Reconfig-
urable Architectures Workshop (RAW 2005), Denver, Col-
orado, USA, April 4-5 2005.

