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Abstract

Semantic validation of the effectiveness of a schema
matching system is traditionally performed by comparing
system-generated mappings with those of human evalua-
tors. The human effort required for validation quickly be-
comes huge in large scale environments. The performance
of a matching system, however, is not solely determined by
the quality of the mappings, but also by the efficiency with
which it can produce them. Improving efficiency quickly
leads to a trade-off between efficiency and effectiveness.
Establishing or obtaining a large test collection for mea-
suring this trade-off is often a severe obstacle. In this pa-
per, we present a technique for determining lower and up-
per bounds for effectiveness measures for a certain class
of schema matching system improvements in order to lower
the required validation effort. Effectiveness bounds for a
matching system improvement are solely derived from a
comparison of answer sets of the improved and original
matching system. The technique was developed in the con-
text of improving efficiency in XML schema matching, but
we believe it to be more generically applicable in other re-
trieval systems facing scalability problems.

1 Introduction and related
research

Validation of a schema matching system requires large
amounts of human effort. The usual measures for report-
ing effectiveness or quality of a matching system are preci-
sion and recall [6]. These measures, however, are by defini-
tion based on a human evaluator determining the semantic
correctness of a large number of mappings. To construct
an appropriate test collection, a human evaluator has to in-
spect, for each matching problem, the whole search space

and identify all correct mappings. To partly overcome the
problems of this expensive and error-prone activity and to
even out subjective human decisions, it is common to in-
volve many human evaluators in the construction of a test
collection. In large scale environments, such an approach
would require an insurmountable amount of human effort.

Recent work shows that large scale schema matching
systems are gaining importance [2, 9]. At the same time,
the availability of large and properly constructed test col-
lections is rather limited in the schema matching domain.
Currently, validation of the schema matching system is usu-
ally performed using small test collections.

The text document retrieval community has taken the
lead in developing techniques to reduce the required amount
of effort and in the construction of large properly evaluated
test collections. For example, in TREC pooling was used
[10]: for each keyword query, the top 100 documents pro-
duced by each participating system were merged and only
these were evaluated by a human. This works under the as-
sumption that it is highly unlikely that a significant number
of answers are not found by any participating system. Zobel
confirmed that the limit of 100 is adequate [18].

We encountered a large scale validation problem in the
context of XML schema matching [15, 16]. In particu-
lar, we investigate matching of a small user-given schema
against a large repository of XML schemas as part of a
personal schema based querying system. In our research,
we explicitly focus on the efficiency of schema matching,
because the overall performance of a matching system is
not solely determined by the quality of the answers (ef-
fectiveness), but also by the efficiency with which it can
produce them. In XML schema matching, many heuristics
have been proposed for similarity between XML schemas
[12, 7, 11, 8, 4], but applying these on a large scale, e.g.,
matching against XML schemas on the Web, is still an open
problem. By employing clustering techniques, we attempt
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to quickly locate parts of schemas in a large repository that
are likely to contain a match for a given small personal
schema and then focus our search on these parts [16]. The
approach is non-exhaustive, because mappings located (par-
tially) outside a cluster or spanning clusters are not consid-
ered anymore. To validate scalability and the trade-off be-
tween effectiveness and efficiency for this non-exhaustive
search approach, we would need much human effort to man-
ually match personal schemas against a sufficiently large
repository of schemas.

Reducing human effort and at the same time making sure
that effectiveness measures are still reliable is a topic of on-
going research. Sayyadian et al., describe a system for un-
supervised tuning of schema matching systems by means of
synthetic scenarios [14]. The approach requires that a num-
ber of correct mappings is known beforehand. Tuning the
system uses transformation rules on these mappings to syn-
thesize a larger number of different schemas, i.e., synthetic
schemas, which are used in validating the effectiveness and
tuning of schema matching systems. In information re-
trieval systems, Buckley and Voorhees examined techniques
of measuring effectiveness that are robust to massively in-
complete relevance judgments [3]. They also suggest that
their techniques allow studies of operational efficiency by
embedding a small test collection with known judgments in
a much larger test collection of similar documents with no
judgments. Zobel suggested that a shallow pool of about 30
documents could be evaluated to predict the number of rel-
evant documents further down [18]. More recently, Sander-
son and Joho review three methods of test collection con-
struction to see whether or not query and/or system pooling
can be avoided to be able to “build a new test collection
quickly and with limited resources” [13].

These techniques aim at providing an estimate for effec-
tiveness. In this paper, however, we present an approach
to determine effectiveness bounds of non-exhaustive sys-
tem improvements, i.e, a lower and upper bound between
which precision and recall are guaranteed to lie. Among
others, this can be used to (1) provide effectiveness guar-
antees, (2) get an impression on the efficiency-effectiveness
trade-off in an automated way allowing quick evaluation of
many different parameter settings and matching system im-
provements, and (3) assess the accuracy of an effectiveness
estimate acquired using other validation techniques.

The effectiveness bounds technique uses solely:

• measured effectiveness of the original system (e.g., on
a small test set),

• answer sets of both improved and original system on a
large test collection.

The technique can be applied in many unfavorable situ-
ations for low-effort scalability and efficiency research. It

alleviates the need for manual (human) mapping discov-
ery on large schema matching test collections. In case of
research on efficiency improvements of other people’s sys-
tems, the test collection associated with published effective-
ness measures may not be available. Abovementioned tech-
niques [3, 18, 13, 14] can be used to construct new large
test collections that are expected to produce roughly the
same effectiveness measures. Furthermore, it may happen
that an original system for which effectiveness results have
been published, is not available. Since the objective func-
tion of a system determines the actual ranking, a reconstruc-
tion with the same objective function exactly copies its be-
havior, hence effectiveness measures are expected to carry
over to the reconstruction. In our work on applying cluster-
ing techniques on the efficiency of XML schema matching
[15, 16], we encountered each of these problems in experi-
ments aimed at obtaining an indication of the benefit of our
clustering techniques on existing schema matching systems.

The paper is structured as follows. We first define nota-
tion and concepts in Section 2. In Section 3, we present the
effectiveness bounds approach, which handles uncertainty
in the effectiveness of the improved system by strictly ad-
hering to best and worst case analysis. In Section 4, we
examine the restrictions one should consider when using in-
terpolation in the effectiveness bounds technique.

2 Quality measurement of schema matching
systems

2.1 Notation

Let S be a schema matching system used to solve
a schema matching problem Q , in which a user-defined
schema is matched against a large schema repository. Sys-
tem S will search through the search space of all possi-
ble schema mappings SS = {d1, . . . ,dn} and generate a
resulting set of mappings or answers {a1, . . . ,an} ⊆ SS .
A schema mapping maps each element of a user-defined
schema onto one element in the repository. In schema
matching, elements of the search space are schema map-
pings, but in other retrieval systems they can in fact be any-
thing such as images, documents, etc. In schema match-
ing systems, it is not an absolute decision whether or not a
certain mapping will become an answer. Rather, each map-
ping has a certain degree of computed quality by which it is
ranked. Quality of the mappings is determined by the objec-
tive function ∆ : SS → R which, in this paper, computes
how different two schemas are. If ∆(a1) < ∆(a2), a1 is
said to be a better mapping, i.e., it is higher ranked. Since
users are only interested in the most relevant mappings, we
define a threshold δ. The answer set Aδ

S
is the set of map-

pings for which holds that ∀a ∈ Aδ
S
• ∆(a) ≤ δ. A system

S is called exhaustive if it returns all possible mappings for
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Figure 2. Precision and recall.

a certain threshold, i.e., Aδ
S

= {a ∈ SS | ∆(a) ≤ δ}. Con-
sequently, δ1 ≤ δ2 ⇒ Aδ1

S
⊆ Aδ2

S
(see Figure 1). Therefore,

by increasing the threshold, we can increase the number of
answers S produces. Note that we do not exclude a situation
where ∆(a1) = ∆(a2) in which S is indecisive.

2.2 Precision and recall

The quality of a schema matching system S is expressed
in terms of precision P δ

S
an recall Rδ

S
. These measures give

an indication of how well S is able to choose the same map-
pings a human would have chosen for a schema matching
problem Q . Let H be the set of correct solutions manu-
ally determined by a human evaluator. With this set, we can
evaluate the quality of S by distinguishing between correct
and incorrect answers in Aδ

S
. Let T δ

S
= H ∩ Aδ

S
be the set

of correct answers, also called true positives. Precision and
recall are then defined as in Figure 2. Recall is the percent-
age of correct answers found by the system. Precision is the
percentage of correct answers among the answers produced.

2.3 Precision and recall of a non-
exhaustive system

Exhaustive search of schema mappings needs exponen-
tial time [15]. Efficient techniques are often based on
heuristics to quickly, but roughly, restrict the search space.
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Figure 3. Exhaustive (S1) and improved, but
non-exhaustive, system (S2).
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exhaustive system.

Mostly, there are no guarantees that heuristics do not ex-
clude valid answers, hence the improved system becomes
non-exhaustive. We assume here that the improved system
S2 uses the same objective function, i.e., answers produced
by the improved system are ranked in the same way as by
the original exhaustive system S1 (see Figure 3). The beam
search used in iMap [5], and the probabilistic guarantees
approach of [17] are examples of a non-exhaustive system
improvements which do not change the objective function.

Since S2 uses the same objective function as S1, it is
guaranteed that Aδ

S2
⊆ Aδ

S1
(see Figure 4). For example,

Figure 3 depicts correct answers (i.e., answers in H ) in grey
and incorrect answers in black. Improved system S2 appar-
ently misses answers a2, a5, a7, and a8. Note that this ‘im-
proved’ system exhibits rather bad quality: it misses three
correct answers and only one incorrect answer.

2.4 P/R curve

The recall of a schema matching system can be influ-
enced by taking the top-N of highest ranking mappings
or by setting some threshold δ. The natural behavior of a
schema matching system is to loose precision with rising
recall. In producing more mappings, the chance of deliv-
ering wrong mappings increases. The characteristics of the
precision/recall trade-off is captured by a P/R curve. The
intended way of constructing a P/R curve is by determining
the precision at 11 fixed recall levels 0, 0.1, . . . , 1.

Since it is hard to find the right parameters for obtaining
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Figure 5. Measured P/R curve.
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Figure 6. Interpolated P/R curve

these exact recall levels, the P/R curve is often constructed
by varying the threshold and then measuring precision and
recall. We call this a measured P/R curve. See Figure 5 for
an illustration of such a curve.

If required, the 11-point P/R curve can be constructed
from the measured P/R curve by interpolating the precision
at the 11 recall levels. Different interpolation methods can
be used. Figure 6 shows an interpolated P/R curve con-
structed from the measured one in Figure 5.

In this paper, we assume that the effectiveness of a sys-
tem S is defined in terms of either the measured or the in-
terpolated P/R curve. The curve is the starting point for
computing the bounds of the effectiveness of an improved
non-exhaustive matching system. We do, however, make
an important assumption that the thus measured effective-
ness is independent of the size of the search space. In other
words, regardless of the size of the schema repository, we
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assume S will show the same P/R curve. In schema match-
ing so far no research has been done to prove this assump-
tion, but in text retrieval community, this appears to be a
reasonable assumption [1].

We investigate efficiency improvements using large scale
schema repositories. As explained in Section 1, full seman-
tic validation by a human is impractical in such scenarios.
Therefore, H is unknown to us as well as all quality mea-
sures derived from it. In the sequel, we show ways to es-
tablish effectiveness bounds for semantic quality of an im-
proved system that is independent of H .

3 Size-based best and worst-case bounds

3.1 Best and worst-case sizes

With H unknown, the set of true positives T δ
S

for any
system S , is also unknown. Hence, it is not possible to de-
termine the quality of an improved system. What is often
available from literature, however, are precision and recall
figures in a P/R curve and a formulation of the objective
function ∆. As explained in Section 2.3, we assume that
a system that only improves the efficiency of S , uses the
same objective function. Consequently, the improved sys-
tem assigns the same scores to answers; it will only examine
and produce less answers (see Figure 3). Therefore, quality
measures of S can be used to estimate the quality of the im-
proved system. In this section, we examine an approach that
is solely based on unsupervised analysis of answer sets Aδ

S

produced by both S and its non-exhaustive improvement.
Let S1 be an exhaustive matching system and S2 a non-

exhaustive improvement thereof both using objective func-
tion ∆. For a given matching problem Q , we know that
Aδ

S2
⊆ Aδ

S1
. Whether the answers S2 misses are correct or

incorrect is, however, unknown. In the best case, S2 misses



only incorrect mappings, in the worst case the most correct
ones.

Best case scenario. Let Âδ
S2/S1

=
A

δ
S2

Aδ
S1

be the size ratio

of the answer sizes of systems S2 and S1. Two situations
can be distinguished: If Aδ

S2
is small enough, it is fully in-

cluded in T δ
S1

, i.e., Aδ
S2

⊆ T δ
S1

, hence T δ
S2

= Aδ
S2

(see
Figure 7(a)). Otherwise, T δ

S1
⊆ Aδ

S2
, hence T δ

S2
= T δ

S1

(see Figure 7(b)). Consequently, we derive the following
equations for precision and recall of S2 solely in terms of
precision and recall of S1 and the size ratio.

[best case]∣∣T δ
S2

∣∣ = min(
∣∣T δ

S1

∣∣ ,
∣∣Aδ

S2

∣∣) (1)

P δ
S2

=

∣∣T δ
S2

∣∣
∣∣Aδ

S2

∣∣ =
min(

∣∣T δ
S1

∣∣ ,
∣∣Aδ

S2

∣∣)∣∣Aδ
S2

∣∣

= min(

∣∣T δ
S1

∣∣
∣∣Aδ

S2

∣∣ , 1)

= P δ
S1

· min(
1

Âδ
S2/S1

,
1

P δ
S1

) (2)

Rδ
S2

=

∣∣T δ
S2

∣∣
|H |

=
min(

∣∣T δ
S1

∣∣ ,
∣∣Aδ

S2

∣∣)
|H |

= min(Rδ
S1

,

∣∣Aδ
S2

∣∣
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· min(1,
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S2

∣∣
∣∣T δ

S1

∣∣ )

= Rδ
S1

· min(1,
Âδ

S2/S1

P δ
S1

) (3)

Worst case scenario. Again two situations: If Aδ
S2

is
small enough, then it may be fully ‘detached’ from T δ

S1
,

i.e., precision and recall are zero (see Figure 7(c)). Other-
wise, we get the situation depicted in Figure 7(d).
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S1

∣∣
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S2

∣∣))
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1

Âδ
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−
P δ

S1

Âδ
S2/S1

))
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1 − P δ

S1

Âδ
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Note that all formulas for best/worst case precision and
recall for S2 are defined in terms of precision and recall
of S1, which we assumed is known, and the size ratio of
the answer sets of both systems, which is acquired through
experiments.

3.2 Establishing best and worst case
bounds incrementally

The bounds for recall and precision given in the previous
section, can be used for any threshold δ. In this section,
we first show by means of an example that the bounds are
unnessarily pessimistic, and then describe a more accurate
incremental approach.

Figure 8 shows concrete numbers for two hypothetical
systems S1 and S2. S1 is known from literature to have
stable precision P δ1

S1
= P δ2

S1
= 3/8 (37.5%) for two given

thresholds δ1 ≤ δ2. We rebuilt S1 with the published ob-
jective function ∆. For thresholds δ1 and δ2, it produces



40 and 72 answers, respectively. Suppose, we build an im-
proved system (S2) that uses the same objective function
∆, but has a more efficient algorithm that possibly misses
answers in an early search space restricting phase.

Let us look at the worst case for the precision of S2. We
experimentally determine that for thresholds δ1 and δ2, S2

produces 32 and 48 answers. Hence, Âδ1

S1/S2
and Âδ2

S1/S2

are 4/5 and 2/3. Using the formulas from the previous sec-
tion, we obtain for each threshold independently, worst case
bounds P δ1

S2
= 7/32 and P δ2

S2
= 1/16.

The reasoning behind this is as follows. For δ1, P δ1

S1
=

3/8, i.e., we know that, 15 of the 40 answers are correct and
the remaining 25 are incorrect. Increasing the threshold to
δ2 gives 12 additional correct answers and 20 additional in-
correct ones (left part of Figure 8). S2 only misses answers,
so the worst case for δ1 is that all 8 answers missed, were
correct ones. Among the 32 answers, there are at least 7
correct and at most 25 incorrect ones. Worst case bound for
P δ1

S2
= 7/32 (21.9%). Similarly, for δ2, there are among

the 48 answers, at most 45 incorrect and at least 3 correct.
Therefore, the worst case bound for P δ2

S2
= 1/16 (6.3%)

(right part of Figure 8).

The inaccuracy of this reasoning is obvious. If among
the first 32 answers, there are already 7 correct ones, it is
not possible that for δ2 we have in total 3 correct answers,
if the only thing S2 does is add 16 more answers. In the
second increment, i.e., the answers ai with δ1 < ∆(ai) ≤
δ2, S2 can in the worst case miss all 12 correct answers and
4 incorrect ones. In other words, the second increment for
S2 contains 41 incorrect answers and no correct ones (right
part of Figure 8). Hence, a more accurate worst case bound
for P δ2

S2
= 7/48 (14.6%).

Consequently, a gain in accuracy is obtained if the
bounds for precision and recall are computed increment-
by-increment. An increment is defined by two threshold
values δ1 − δ2. The answer set of the increment Âδ1−δ2

S

contains all answers with a ranking between these thresh-
olds, i.e., answers ai with δ1 < ∆(ai) ≤ δ2. The an-
swer set is defined by Âδ1−δ2

S
= Aδ2

S
\Aδ1

S
. Since an in-

crement contains correct and incorrect answers, it makes
sense to speak about precision and recall of an increment.
Let T̂ δ1−δ2

S
= Âδ1−δ2

S
∩H = T δ2

S
\T δ1

S
be the set of correct

answers of increment δ1 − δ2. Precision and recall of an

increment can now be defined as follows

P̂ δ1−δ2

S
=

∣∣∣T̂ δ1−δ2

S

∣∣∣
∣∣∣Âδ1−δ2

S
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S
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R
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P
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−
R
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S

P
δ1
S

(7)

R̂δ1−δ2

S
=

∣∣∣T̂ δ1−δ2

S

∣∣∣
|H |

=

∣∣∣T δ2

S

∣∣∣ −
∣∣∣T δ1

S

∣∣∣
|H |

= Rδ2

S
− Rδ1

S
(8)

In four steps, we can establish the accurate effectiveness
bounds using the above formulas.

1. Determine for which sequence of thresh-
olds 0, δ1, . . . ,δn the original measurements
were made. These determine the increments
0 − δ1, δ1 − δ2, . . . , δn−1 − δn.

2. For a given exhaustive system S1, we have precision
and recall for any two thresholds δ1 and δ2. Using the
above formulas, we can calculate the precision and re-
call for any increment δi − δj (j = i + 1) (P̂ δi−δj

S1
and

R̂
δi−δj

S1
, respectively).

3. Using formulas 2, 3, 5, and 6 of Section 3.1, we can
then calculate the best and worst case precision and
recall for an improved system S2 for each increment
δi − δj (P̂ δi−δj

S2
and R̂

δi−δj

S2
, respectively).

4. Finally, Equations 7 and 8 can be used again, but now
to calculate best and worst case precision and recall
for S2 at each threshold δj based on the precision and
recall bounds at threshold δi. Since the bound of the
first increment 0− δ1 can be established directly using
Equation 5, this allows an incremental derivation of
bounds at all thresholds. In the special case where an
increment δi−δj does not contain any correct answers,
precision and recall are zero for the increment, which
does not allow for calculating precision and recall at
δ2. Instead, note that recall is the same as in δ1 and
precision can be calculated directly from Figure 2.

To illustrate this incremental approach, let us look at the
worst case for S2 in Figure 8 again. (1) This example uses
two increments 0− δ1 and δ1 − δ2. (2) P δ1

S1
= P δ2

S1
= 3/8 is

given. Note that Equation 7 is actually independent of |H |,
i.e., we calculate P̂ δ1−δ2

S1
= 3/8. (3) Using Equation 5, we

obtain a worst case bound P̂ δ1−δ2

S2
= 0. (4) The bound of

a first increment 0 − δ1 can be established directly using
Equation 5 giving P̂0−δ1

S2
= P δ1

S2
= 7/32. Using the second

formula in Equation 7, we finally derive P δ2

S2
= 7/48.
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Figure 9. Best/worst case P/R curve for fixed
Âδ

S2/S1
=0.9

3.3 Best and worse case P/R curve

Using the formulas of the previous sections, we can de-
rive a best and worst case P/R curve by varying the thresh-
old. At each threshold value, the matching is performed by
both the improved and the original system to obtain the re-
sult sizes. The obtained sizes are used to compute both best
and worst case precision and recall values, in this way estab-
lishing effectiveness bounds for that threshold value. The
curves for best and worst case demarcate the area within
which the actual P/R curve should lie. In this section, we
will show some examples of thusly established P/R curves,
to give some insight in the behavior of the process.

The approach is ultimately based on answer sizes, more
concretely on Âδ

S2/S1
. Observe that for Âδ

S2/S1
= 1, the

best and worst case bounds are exactly the same and equal
to the original P/R curve for S1. This is because of our as-
sumptions. If an improved system produces the same num-
ber of answers, then it necessarily produces the same an-
swers, hence has the same precision and recall characteris-
tics.

Figure 9 shows the resulting effectiveness bounds for a
hypothetical system S2 that behaves with a fixed answer
size ratio Âδ

S2/S1
= 0.9 for each threshold δ. In other

words, it misses the same fraction of answers for all incre-
ments.

To give insight into the behavior of the process for
real life systems, we chose two actual improved systems
S2−one and S2−two with different behavior (taken from
our work in XML schema matching). See Figure 10 for
the measured Âδ

S2/S1
for both systems. S2−one shows a

smoothly declining ratio of retrieved answers, with an in-
creasing threshold. At δ = 0.25 about 60% of the answers
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Figure 10. Measured Âδ
S2/S1

for two rather dif-
ferent system improvements

are still retained. S2−two is more rigorous in missing an-
swers. Of the answers with a score higher than 0.13, only
about 25–30% is retained. The answers with the best score
still have a high chance of being retained tough.

The result of determining the best and worst case P/R
curves for both systems can be found in Figure 11 (the ‘ran-
dom case’ is explained in Section 3.4). Notice, that for both
systems, the best and worst case curves are far away from
each other especially at higher recall levels. This does not
mean that the systems are bad, only that we could not estab-
lish tighter effectiveness bounds. For all we know, S2−one

may in fact behave close to its worst case, while S2−two

behaves close to its best case, or vice versa. What we can
see, for example, is that for recall levels up to 0.15, S2−one

guarantees a worst case precision of 0.5.
This analysis also shows that the answer size ratio

Âδ
S2/S1

significantly influences the accuracy, especially the

worst case. The bigger the answer size Aδ
S2

, the better the
chances to acquire narrow bounds. And, as we already men-
tioned, with Âδ

S2/S1
= 1, we have is absolute certainty. On

the other hand, in general the approach provides rather wide
bounds unfortunately.

3.4 Comparing with a ’random’ system

The curves for the best and worst case are rather far
apart. Another interpretation of what a worst case is, may
improve this. If we assume that any non-exhaustive im-
provement that we construct, produces a better set of an-
swers than simply picking them randomly, then we may use
the P/R curve of this hypothetical random system as worst
case bound. In this section, we explore this idea.

Let S1 be an original schema matching system and S2 a
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Figure 11. Best/worst case P/R curve for the
two systems

non-exhaustive improvement of S1. Let Srandom be a ran-
dom system that simply executes S1 and for each increment
selects a certain percentage of answers randomly. Since we
are using the random system to compare with S2, we need
it to produce the same number of answers as S2. In other
words, Srandom has the same answer size ratio curve as S2

(see Figure 10).
The random P/R curve is computed using the incremen-

tal computation described in Sec. 3.2 with the following dif-
ference. In Step 2, the best and the worst case formulas for
precision and recall of an increment are not used. Instead,
the precision and recall of the increment of the random sys-
tem are computed using the following formulas.

[random case]

P̂
δi−δi+1

Srandom
= P̂

δi−δi+1

S1
(9)

R̂
δi−δi+1

Srandom
= R̂

δi−δi+1

S1
·
Â

δi−δi+1

Srandom

Â
δi−δi+1

S1

(10)

These formulas are acquired as follows. When randomly
selecting answers from Â

δi−δi+1

S1
in order to form Â

δi−δi+1

Srandom

the ratio of correct and incorrect answers in these two sets

remains the same, thus

∣∣∣T̂δi−δi+1

Srandom

∣∣∣
∣∣∣Âδi−δi+1

Srandom

∣∣∣
=

∣∣∣T̂δi−δi+1

S1

∣∣∣
∣∣∣Âδi−δi+1

S1

∣∣∣
. When

combining this equation with the ones given in Figure 2 the
result are Equations 9 and 10: precision of the random sys-
tem increment does not change, but the recall is reduced
proportional to its size.

Figure 11 also shows the curves of the random system
corresponding to S2−one and S2−two. Given the expecta-
tion that an improved system performs better than the ran-
dom system, this gives a more useful lower bound, since it
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Figure 12. Best/worst case based on an inter-
polated P/R curve (guess |H | = 15000)

produces a narrower interval. For example, Figure 11 shows
that precision of 0.5 is maintained up to a recall of 0.35 for
S2−one

4 Effects of interpolation on establishing ef-
fectiveness bounds

4.1 An interpolated P/R curve as input

The best/worst case analysis presented above is based on
a measured P/R curve (see Section 2.4) as input. A pub-
lished 11-point P/R curve from literature (called interpo-
lated P/R curve in Section 2.4) seems to be equally suit-
able, but in fact, it lacks one kind of information: the spe-
cific threshold points. Using the equations from Figure 2,

we can derive that
∣∣Aδ

S

∣∣ =
R

δ
S
·|H |

Pδ
S

. Observe that from an

interpolated P/R curve, it is not possible to determine at
which δ-value a certain precision and recall was measured,
because |H | is unknown to us. Without this information, it
is not possible to correlate the published precision and re-
call measures with the answer sets acquired on a different
different, large scale, test collection.

The only missing parameter is the size of H . Given a
value for |H |, it is possible to establish the correspondence
between the δ-values and the 11 points of the given interpo-
lated P/R curve. In other words, with a given value for |H |
one can transform an interpolated P/R curve into a mea-
sured one.

We performed initial experiments investigating the im-
pact of varying |H | on the resulting measured P/R curve.
Figure 12 shows a P/R curve comparable to the one in Fig-
ure 11, but this one was obtained by using the interpolated
P/R curve of Figure 6 with |H | = 15000. It shows that
the impact of varying |H | is that the effectiveness bounds
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Figure 13. Boundaries for interpolation on
sub-increment level (|H | = 100).

become a little bit less accurate. We suspect that in cases
where |H | is unknown, a rough estimate suffices to obtain a
reasonably accurate measured P/R curve. Further research
is needed to confirm this suspicion.

4.2 Sub-increment level bounds

In the previous section, we have seen the need to use
interpolation in order to determine the precision and recall
when the 11-point P/R curve is used as input. A similar
situation occurs when experiments on large collections use
more (finer) threshold points than the measured P/R curve;
the need arises to compute the P/R values for thresholds not
directly specified in the measured P/R curve. This can only
be done by interpolation. Without going into detail about
the effects of different interpolation approaches, we give a
characterization of the boundaries between which interpo-
lated points on the P/R curve are guaranteed to lie. We
analyze this issue by means of an example.

Say, we have obtained from literature results from an ex-
periment with a certain system S and we rebuilt this sys-
tem using the same objective function. Suppose, at two
thresholds δ1 and δ2, literature reports |H | = 100,Rδ1

S
=

30

100
,Rδ2

S
= 36

100
,P δ1

S
= 30

50
,P δ2

S
= 36

70
. This is illustrated

with the two big points in Figure 13. Our rebuilt system pro-
duces 50 and 70 answers for these thresholds, respectively.

Let us examine some intermediary threshold δ1 ≤ δ′ ≤
δ2. We observe that our rebuilt system produces 54 an-
swers. Since there is no quality measurement available,
precision and recall for this threshold are unknown, i.e.,
the location of the point on the P/R curve corresponding
with δ′ is unknown. We do know, however, that at δ1,

there were 30 correct answers among the 50. At δ′, there
are 4 more answers of which it is unknown whether or
not they are correct. In the worst case, they are all incor-
rect (Rδ′

S
= 30,P δ′

S
= 30/54), in the best case they are

all correct (Rδ′

S
= 34,P δ′

S
= 34/54). In other words,

an interpolated point for δ′ should lie on the line between
(30/100, 30/54) and (34/100, 34/54). In Figure 13, this is
depicted with the thick line marked ‘δ′ (54 answers)’.

By varying thresholds between δ1 and δ2, one obtains
many lines that demarcate boundaries for interpolating
points on the P/R curve. Note that taking the point halfway
between worst and best case (small dots in the figure) is not
the same as linear interpolation between δ1 and δ2.

The shape of the boundary can be explained as follows.
Close to the measured points, there are only a few answers
for which it is unknown whether or not they are correct or
incorrect. This establishes restrictions on how good the best
case and how bad the worst case can be. In the figure, this
becomes apparent by the three sections observable in the
halfway-points. The fact that precision can go up in a P/R
curve was also observed in the appendix of [10]. Without
further analysis, the figure shows, that the safest, i.e., with
smallest error, interpolation choice is made by taking the
mid points in the lines.

Finally, because several answers may have the same
score, best and worst case points may not be as evenly dis-
tributed in practice as in the figure.

5 Conclusion

Validating a schema matching system in a large scale en-
vironment is an expensive, if even possible, task because of
the human effort required. In this paper we have shown, that
in certain circumstances, lower and upper bounds can be
given for the effectiveness of a system improvement without
the need for human evaluators. Such effectiveness bounds
can be used, for example, to claim that the trade-off in effec-
tiveness for an efficiency improvement is at most x%, or to
get a quick impression on the trade-off to allow for quickly
evaluating many parameter settings, algorithms, and sys-
tems in a less costly way.

Summarizing, we determine a best and worst case P/R
curve of a non-exhaustive improvement of a certain origi-
nal system that uses the same objective function. The actual
P/R curve of the improvement is unknown, but should lie
between these bounds. Many techniques are known to give
estimates, but the aim of this paper is to give best and worst
case bounds for such estimates. The accuracy of such effec-
tiveness bounds can be increased by using an incremental
approach. We furthermore suggest that our worst case anal-
ysis is perhaps too pessimistic: it can be argued that any
realistic improvement will perform better than a hypothet-
ical ‘improvement’ that simply selects answers randomly



from the original system. Finally, we examine what restric-
tions to consider when trying to apply interpolation to our
technique. Note that the technique is an analytical and exact
result, not an estimate for which experimental validation is
necessary. Moreover, if experimental validation were pos-
sible, the technique would not be needed in the first place.

System improvements that increase query execution per-
formance significantly, need to drastically restrict the search
space by disregarding objects that are unlikely to be an-
swers with considerable relevance. In other words, efficient
but still qualitatively good performing systems show answer
size ratios like S2−two of Figure 10. With this approach,
it often appears to be impossible to obtain narrow effective-
ness bounds for the entire spectrum, because at higher recall
levels, there is inadequate accuracy for making useful worst
case claims. But, for schema matching systems as well as
information retrieval systems in general, the top-N is usu-
ally the most interesting and for such recall levels, we can
give useful, i.e., narrow effectiveness bounds.
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