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In this paper we present measured in- and output data of a pewslifier (PA). We
compare this data with an AM-AM and AM-PM model. We conclbdea more sophisti-
cated PA model is needed to cope with severe memory effecsuglfest to use memory
polynomials and introduce two approaches to deduce thepotyal coefficients from the
measured data: the Least-Squares and Crosscorrelatiomoagpes. We construct PA
models according to both approaches, using the measured #l¢¢ compare the two PA
models with the original AM-AM and AM-PM model.

Introduction

Power Amplifiers (PAs) are inherently non-linear. There seeeral techniques to lin-
earize PAs in both the analog and digital domain. One of tblertigues is digital predis-
tortion at baseband (see [1]), where the general princgte determine the baseband-
equivalent input-output behavior of the PA and to apply theeise of this relation to the
baseband signal before it is converted from digital to agalo

Because the input-output relation of the PA changes in tioeetd temperature changes
and aging of components, a control mechanism constantiytadiae predistortion. For
that purpose, the behavior of the PA has to be monitored. Adfime intervals, a
baseband-equivalent model of the PA behavior is deducedyuseasured data. The
model obtained is used to adapt the predistortion. In fongta UMTS basestations,
the behavior of the PA can change relatively fast, in the oodenilliseconds and the
creation of a PA model has to be of low computational compyexiowever, for digital
predistortion to be effective, the PA model has to be veryeate.

This paper starts with the presentation of measured badedsgrivalent input- and out-
put data of a real PA and its corresponding AM-AM and AM-PM PAdel. Both are
provided by Philips Semiconductors in Nijmegen. Secondpresent two approaches to
generate PA models: the Least-Squares- and CrosscarreRA modeling approaches.
Third, we compare the PA models obtained via these two appesawith the original
data and the AM-AM and AM-PM PA model. Finally, we draw som@&dasions.

PA data and model
The data provided by Philips Semiconductors Nijmegen cbediof:

e Results of measurements on a PA, consisting of 48k samplastinulus signal
and the corresponding response signal. The specific PA isated to 2.11-2.17
GHz WCDMA operation, biased in class AB. The typenumber @f device is
BLF4G22-100 and it is realized in the Philips fourth generat. DMOST technol-

ogy.
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Figure 1: AM-AM distortion of the Philips data and the Phdimodel

e A model of the PA, based on the measurements. The specific B&lmmovided
by Philips, is described by the following expression:

n) = Flz(m)) - otz . T
y(n) = f(lx(m)) T

(1)
where

f(z) = 0.0204 4 0.8445 z + 0.2918 2% —
0.0588 2* — 0.0729 z* + 0.0175 2°

g(z) = 0.0660 — 0.0388 z + 0.1963 2 —
0.2777 2° 4+ 0.11402* — 0.01462°

The polynomialsf(z) and g(x) describe the so-called AM-AM or Amplitude-
Amplitude distortion and AM-PM or Amplitude-Phase distortrespectively.

Both the measured in- and output samples are used to gerddveeM and AM-PM
plots. Using the PA model described above, measured inpyilsa are used to determine
corresponding output samples. In figure 1, the AM-AM distortfor the original data
and the model provided by Philips are presented.

In figure 2, the AM-PM distortion for the original data and thedel provided by Philips
are presented.

From both figures we see that the original data is rathereseakt in contrast with the
results obtained via the PA model. The scattering is duewersanemory effects, intro-
duced by the PA, which are not covered by the AM-AM and AM-PMrRAdel. A very
general way to model a non-linearity including memory dafds a \Volterra model. A
general Volterra model consists of many parameters andaimplexity of an algorithm
to determine these parameters is high. A simplified Voltercalel is a model consisting
of memory polynomials. Modeling the behavior of a PA, for thepose of digital predis-
tortion by means of a memory polynomial, was introduced Ry A2general description
of a memory polynomial is given in expression 2.

y(t) =Do(x(t)) + Dy(x(t — 1)) + Do(z(t — 2)) + ... (2)
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Figure 2. AM-PM distortion of the Philips data and the Plslipodel

where
DZ(.CE) = a0i¢0($) + Clh‘dil (33) + a2i¢2($)... (3)

In this expression: indicates the sampled baseband equivalent input signddeoPA
andy indicates the output. The functions are polynomials. In our approach we use
orthogonal polynomials because they yield more stablevbehahen applied in a dig-
ital predistortion system compared to 'normal’ polynomiéee [3]). The orthogonal
polynomials are:

ol

1T
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We limit ourselves to polynomials up to the fifth degree wigare satisfactory results in
practical situations.

When using memory polynomials, the behavior of the PA is dedlby estimating the
polymial coefficients:,, given the samples of the inputand the outpuy. A relatively
straightforward way to estimate the polynomial coefficsaistby using the Least Squares
criterion.

Least-Squares PA modeling

In the Least Squares (LS) PA modeling approach, we try to fiedcbefficientsy, in
such way that if we use these coeficients, together with thetisamples:, we obtain an
estimatej of the output signaj in such way that 7(¢)—y(t) |?, summed over all samples,
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is minimized. This approach is elaborated in [3]. The nundééull-precision multiplca-
tions that have to be executed within the LS PA modeling agogirds at leasO(T); it
scales linearly with the number of samples used to estinm@tg@aolynomial coefficients
a. Since the number samples can be relatively large, the axitypis relatively high. An
alternative with reduced complexity is the Crosscorretaf’A modeling approach.

Crosscorrelation PA modeling

To reduce the digital complexity for PA modeling, we develdphe Crosscorrelation PA
modeling algorithm. The algorithm consists of two partsthiafirst part, crosscorrelation
functions are generated without full-precision multiplions being involved. The gener-
ated crosscorrelation functions consist of a fixed numbeterhents (lags), independent
of the number of samples. In the second part we estimate tlyagraial coefficients
using the least-squares solution based on the fourierftnans of the crosscorrelation
functions. In this part, full precision multiplicationseaimvolved but the number of ele-
ments of the crosscorrelation functions is fixed. This apphds explained in more detail
in [4].

In the Crosscorrelation PA modeling approach, the numbspeétral points equals. If

an FFT is used to transform the vectors from the time domaimedrequency domain, the
complexity isO(N log, N). The complexity of the LS PA modeling approactii&r’). In
generalV is much smaller thafi’ so the Crosscorrelation approach has lower complexity
than the LS approach. The reduction of the complexity is @uth¢ crosscorrelation
which does not involve full-precision multiplications aefjuired.

Results

We used both approaches, LS and Crosscorrelation, to detif?A models using the
measured data. Using these PA models, the measured inpat sig used to determine
a corresponding output signal The pairs of signal$z, y) are used to generate AM-
AM and AM-PM pilots. In figure 3, the AM-AM distortion of the mesry polynomials,
determined by the LS- and Crosscorrelation approach, aengi

In figure 4, the AM-AM distortion of the memory polynomialsgtérmined by the LS-
and Crosscorrelation approach, are given.

We see that the PA models result in scattered AM-AM and AM-Abts However,
using these plots it is difficult to determine the quality lbé tPA models. We therefore
determined the spectra of the original measured sigraadd of the estimated outpujs
using the different PA models. The spectra of the Philippaase data, the response of
the model provided by Philips, the response of the PA modabuse LS approach and
the response of the PA model using the Crosscorrelatioroapprare given in figure 5.
The input signal is an oversampled Wideband CDMA signal aazhbse of the PA non-
linearity, there is significant power outside the primargmhel as well. If we concentrate
on these Adjacent Channels, we see that the estimates abwes pf the response of the
Crosscorrelation-based PA model is closest to the poweneofittual Philips response
data.

Besides an analysis of the responses in the frequency dowaianalyzed the responses
in the time domain as well. We determined the Mean Squarer EM8E) between the
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Figure 3: AM-AM for the PA models based on the LS- and Crosstation approach
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Figure 4. AM-PM for the PA models based on the LS- and Crosstairon approach
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Figure 5: Spectra Philips data, Philips model, LS- and @Gasslation model
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Philips response data and the responses based on the thmeed®s. The MSEs are
givenin table 1.

PA model MSE
Philips 4.0231107°
LS based 1.11073
Crosscorrelation baseds.1758 10~*

Table 1: Mean Square Errors of the PA models

We see that the model provided by Philips Semiconductomrssgive best estimate. We
also see that the model which gives the smallest MSE in the domain does not auto-
matically generate a signal with a spectrum that fits thetspecof the original response
data best.

Conclusion

In this paper we presented measured stimulus- and respateséd-onstruct a model of
a PA. The PA model is based on memory polynomials. We usedlstiorward Least
Squares approach toe determine the polynomial coefficiditseduce the complexity,
we developed the Crosscorrelation approach. Both appesaaie used to generate a PA
model and together with the PA model provided by Philipsytaee used to generate
responses using the measured stimulus data as input. Tesgsmees are compared with
the original response data to determine the quality of thenf®Alels. The quality is
determined in the time domain and in the frequency domaithdrtime domain, we use
the Mean Square Error between the measured response andnibi@igd responses as
a measure of the quality. In this case, the PA model provigeBHlips resembles the
behavior of the real PA best. If we use the power in the adjacigannels as an estimate
of the quality of the PA model in the frequency domain, the Pédel obtained via the
Crosscorrelation approach resembles the real PA best. iitalgredistortion of PAs,

it is important that an accurate model of PA can be constdugteng an algorithm with
low complexity. We have shown that the Crosscorrelatiorraggh effectively reduces
the complexity.
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