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Abstract

The Microflown is an acoustic and thermal flow sensor that
measures the sound particle velocity instead of sound pres-
sure. For most applications the Microflown should be cali-
brated [1-2], which is usually performed acoustically in a
standing-wave-tube [1,3]. Here it is shown that the sen-
sor’s sensitivity and frequency behaviour can be deter-
mined electronically as well, and an electronic method for
determination of the device output response, which is more
convenient, is therefore presented. The method is not only
less complicated, it also makes it possible to cover with
easily the entire acoustic frequency spectrum.

Keywords
Acoustic sensors, flow sensors, MEMS, electronic charac-
terisation

INTRODUCTION

The Microflown consists of two closely spaced thin wires
(1500x2.5x0.4 um) of silicon nitride with an electrically
conducting platinum pattern on top. See Fig.1. These wires
act as temperature sensor and as heater. The wires are elec-
trically powered and heated to about 600K. When a particle
velocity is present, the temperature distribution around the
resistors is asymmetrically altered due to convection, and a
temperature difference between the two wires occurs. Be-
cause of the temperature dependence of the resistance of
the wires, their resistance difference thus quantifies the
particle velocity.

In this paper an electronic method, instead of the usual
acoustic method, for determination of the device sensitivity
function is described. From physical principles and simi-
larities between the governing equations [4,6], it can be
proven that from electronic measurements only, the acous-
tic behaviour can be deduced.
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Fig.1: SEM Photo of a bridge type Microflown

THEORY

In this paper it will be shown that the sensitivity of the Mi-
croflown to acoustic signals can be found using only elec-
trical measurements. The relationship between its sensitiv-
ity and the impedances of the two wires exists for very gen-
eral conditions of the system. There are only two, very ge-
naral, assumptions. The first one is that the heat transfer in
the device can be described by the linear heat equation.
Since the heat conductivity of air depends on temperature,
this assumption restricts the power dissipated in the wires
to about 10 mW [1]. The second assumption is that the
wire width and thickness are much smaller then all the
other geometrical parameters characterizing the Micro-
flown. This is typically true for all Microflowns used in
applications.

Devices of different design are in practical use. The chan-
nel can be closed, half-open (Fig.1), or open (free standing
wires). One can find an analytical solution for the tempera-
ture distribution for a rectangular channel [1] or for free
standing wires [2]. In the general case of arbitrary channel
cross section one can find the solution of the heat equation
in terms of unknown eigenvalues and eigenfunctions de-
scribing the temperature distribution in the channel cross
section.

The statement to be proven here is that the relation between
the acoustic sensitivity and the impedances of the wires
does not depend on the unknown eigenvalues and eigen-
functions and so it has a very general character. It will be
proven that the background temperature, the correction to it
due to time-dependent particle velocity (sound wave) and



that due to a time varying power in a wire, all can be ex-
pressed via the same Green’s function. This property is true
if the wires can be considered as thin. The reason is that all
these values are the solution of the same heat equation with
the same boundary conditions. In this way one can deduce
a relationship between the acoustic sensitivity and the
wires’ impedances as a function of the wires’ positions.
Such a relation is not very helpful in practical sense but the
specific symmetry of the heat equation allows one to relate
the change of the Green’s function with sensor position
with the integral over frequency from this function. In this
way the acoustic sensitivity is connected with the electrical
transfer function of the device averaged over the frequency
band from 0 to a given frequency f.

The Microflown theory has been developed in details in
Ref.[1]. The problem was solved there for a rectanguiar
channel but the proposed method is still valid for more
general geometries. Here we will follow the description
given in that paper and adopt the same notations.

Stationary temperature distribution

Let us consider first the temperature distribution in the
channel of the Microflown (Fig. 1) when the gas inside
does not move. Chose the coordinate system as shown in
Fig.2 with the x-axis along the channel.

Fig.2: Geometry of the sensor used in the analysis

The wires, of length /,, are directed along the y-direction.
The distance between the wires is 2a; one of them is lo-
cated at x=g and the other one at x=-a. If both of them are
heated with a constant power P and there is no gas flow,
then the temperature distribution 7(x,y,z) is found from the
stationary heat equation:

T =P [5(x—b +6)x+a 5(2)

— 1)
y

According to our assumptions in (1) the heat conductivity &

was supposed not to depend on temperature and because

the wires are thin and narrow the heat sources on the right-

hand side can be described by &-functions. Note that the

power is distributed homogeneously along y and the tem-

perature is determined by the power per unit wire length.

It is convenient to introduce the dimensionless coordinates

and parameters
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where [ is any characteristic size of the channel cross sec-
tion and L is half the width of the wire. In the dimen-
sionless coordinates the equation (1) will get the form

2 +viT——Tlole- +o)+ o),

y
where V¥, =& ,+&is the transverse Laplace operator.
At the channel walls, the temperature obeys homogeneous
boundary conditions, for example, 7=T,. Because the de-
vice walls are made of silicon, which has a heat conductiv-
ity ks; much larger then the air conductivity &, we can take
the walls to be at the environment temperature 7, (room
temperature). Even in the situation that the wire is in con-
tact with the silicon substrate it was proven [1] that only a
small part of the heat flux escapes via this contact and that
the main heat flux goes via the air. Therefore, even in the
contact points the same boundary conditions hold. The
situation that there are no walls in any direction can be con-
sidered as a wall at infinity where the same condition
(T=Ty) is true. Eq.(3) is linear and one can redefine the
temperature 7—7-T in such a way that the boundary con-
dition is reduced to 7=0 at the channel walls.
One can define the set of functions (7, {) which obey the
boundary conditions and are the eigenfunctions of the
transverse Laplace operator:

Viv,n.¢)=-4v,n.0) e

with corresponding eigenvalues A7,. Here the index n is
actually a multi-index comprising two numbers (#,m) since
Eq.(4) is two dimensional. These numbers do not need to
be integer; one or both of them can be continuous if the
problem of Eq.(4) has a continuous spectrum. There is no
necessity to have explicit expressions for the functions
wa(11,$) and the values A7, it is quite sufficient to know that
the functions can be chosen orthogonal:

[andcy =, s)

Here &,, is the product of Kronecker symbols if both com-
ponents of the multi index are integer; one or both of the
symbols have to be changed by the &-function if one or
both of these components are continuous. Additionally, one
can prove that for the problem (4) with the boundary condi-
tions y,=0 at the channel boundaries all A%, are positively
defined.

The solution of Eq.(3) can be found by expanding the tem-
perature on these functions y,:

T(Em¢)= D T.(Ww.0.¢)

If one or both components of the multi-index are continu-
ous then the corresponding summation has to be changed
by an integral. Using then the orthogonality condition (5)
one can find the equation for the components 7,,(£):

03T, - 2T, = - [6(e-¢&)+oE+¢),

3)

(6)
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where the constants 4, are 4, = jdr] v,(n,0).



The solution of Eq.(7) should obey the boundary condi-
tions at both ends of the channel 7,—0 when £&—# . This
~ solution can be easily found as

T,(€) = 2 2o fexpl- 2, )¢ - &) +expl- 2,0 +2)) . )

ki, 24,
One can substitute it into Eq.(6) to get the final result for
the temperature distribution. Note that actually we have not
solved the heat equation because the functions i, and the
values of 4, have not been specified. However, Eq.(8) is
everything that is needed to connect the acoustical sensitiv-
ity of the sensor with the electrical measurements.
One important detail should now be mentioned. If one
would like to find the heater temperature, for example at
£=¢£;, one fails because the sum in (6) will diverge. This is
because at large » the eigenvalues A, are proportional to »
but the coefficients 4, can be n-independent. Then the sum
in (6) will be logarithmically diverging. It is quite clear
why this divergence appeares. It results from the approxi-
mation that the wire can be considered as infinitely thin.
There is an easy way to avoid this problem without signifi-
cant complication of mathematics. One should average the
temperature over the heater width in the place where it is
located. For example, if one intends to calculate the heater
temperature at £=£; one can average only the first term in
(8) in the range &-£<&<&;+&, because the second term
does not bring any trouble and is safely converging due to
the presence of the exponent. The averaging then gives us
_ P [1-exp(-1,8) expl- 4,6 +&]

. y né:O n
Comparing it with (8) at £&=¢&; a simple rule to avoid the
divergence problem can be deduced. In the place where the
divergence is possible the following substitution has to be
made:
L - 1- CXp(— /’Lnfo_)_' (9)
A Ak

This change allows taking into account the final width of
the wire and makes the sum in (6) convergent. Indeed, at
" An&y<<I the right hand side of (9) coincides with the left
hand side but at large » it behaves as //4,” providing the
sum in (6) to be convergent.

Analogy between acoustically and electrically in-
duced disturbance

Now one can consider the situation that the gas in the chan-
nel is flowing along the channel with some velocity v(z) de-
fined by a sound wave. This movement breaks the symmetry
in the temperature distribution due to the convection process.
The sound velocity is typically small in comparison with the
heat diffusion velocity D/I~0.1 m/s, where D=k/pc,~1.9-10”
m’/s is the heat diffusion coefficient for air. For this reason
the convection introduces only a small correction T° to the
temperature distribution. This correction can be found from

the nonstationary heat equation when the convective term is
considered as a perturbation [1]

9,0T° - DV?6T* = —v(t)0,T. (10)
For the electrical characterization of the device suppose
that both wires are heated by constant power P, but that
one of the heaters, for example at x=q, is powered addi-
tionally by a small AC componentoP(r) < P .

One is interested in the correction to the sensor’s tempera-
ture ST° due to this additional AC power. It can be found
from the equation

8,8T¢ - DV28T® = iﬂ;i(’—)-lw(x —a)s(z) 11

y P
Of course, the equations (10) and (11) are the same but the
sources on the right hand side, which define the solutions,
are quite different. In the acoustic case a source is distrib-
uted along the channel axis but in the electric case the
source is located on the wire. When the sources are differ-
ent the solutions also will be. However, because the unper-
turbed temperature T obeys the heat equation as well it is
possible to connect 6T° and ST°.

Now consider the case of a sound wave, harmonically
varying in time, and an AC power

W)= vexpliowt), &P(t)= oPexpliwt) (12)
with the corresponding frequency f=w/27x. Introducing the
dimensionless coordinates and frequency

_ 2
F-2 (3

one gets instead of (10) and (11)

V26T® —if6T = -28,T,
Vo

= oP

V2ST® i foT® = —68(¢ -£,)8(¢),
K,

where vy=D/I represents the diffusion velocity. The tem-
perature correction obeys the same boundary conditions as
the temperature itself: it disappears on the channel walls
and is going to zero at £—»+oo. Therefore, we can expand
ST (acoustic or electric) in the same eigenfunctions

ST(&,m,¢)= D T, (W, (m.8). (14)

Substituting it into the equations above one finds
02oT? — K26T7 = le,,aéT,,,
0
B30T ~ K2T¢ = - 4,56 - &),
K,
2 _ 42, .7
where K, =4, +if .
To see the correspondence between ST° and 87° it will be
convenient to write the solutions via the same Green’s
function G,(f, &-&) which, by definition, obeys the equation

03G,(f.6-¢)-K1G,(f.£-¢)=58(¢-¢&) (16)

(15)
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It has a well known solution
T expl- K, |£ - £1).

Using this function the solution of the equations (15) can
be written then as follows

an

o2 = 4, [5G, (1.6 - BT (E),
(A (18)
e__9P -
éj“n = kly A,,Gn(f,§ 51)‘

The unperturbed temperature distribution T,(&) given by
(8) can also be represented via the same Green’s function
but then taken at zero frequency:

T,(&)=-—-4,[G, 0,6 - £)+ G, (0.6 + &)

" kl
¥

Using only general properties of the Green’s function one
can transform the integral in (18) to the form:

—a v P _[GELE +GE+E
if Ol =——A,0;

Yo kly —Gn(fsg_gl)—Gn(f’é*'gl)
Now it is seen that the acoustic and electric corrections to
the temperature are really related to each other. However,
there is no direct proportionality between 6T° and ST°.
Moreover, 6I° depends on the derivative on &, which we
are not able to control. The actual precise relation comes
from a specific property of the Green’s function for the
heat equation

aé[Gn(fsg'('éy

(19

(20)

f
~G)0.¢-¢ == (¢-¢)[dTG,(1.6-¢)
0

(21

which can be checked directly with the help of (17). In this
way a general relation can be deduced, connecting the tem-
perature response of the Microflown to an acoustic wave
with the Green’s function, which, in its turn, is proportional
to the temperature response to the electric signal:

e jdf[ £46 G, fets e 6, ks

n

2kl

(22)
This relation is true for any point along the channel.
For practical purposes one is interested in the temperatures
of the sensors, that are located at z=0 and x=a or x=-a.
Additionally, since the sensor resistances are really impor-
tant, the temperatures have to be averaged over the wire
length. Now these averaged temperatures are denoted as
AT, and AT, for the sensors located at x=a and x=-a, re-
spectively. Using (14), (18), and (22) for the mean wire
temperatures characterized electrically or acoustically one
finds
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v P§

vo kL, f o

AT =TS = ffZlAfG(fZé
(23)

Therefore the final relation between the averaged sensor
temperatures in the acoustical and electrical characteriza-
tion becomes obvious

f
vyPa .[df ATY .
vo OP f ;
It shows that the acoustical response at a frequency f is
proportional to the electrical response averaged over the
frequency range from 0 to £, This is a nontrivial and unob-
vious relation that will be true for any device as long as the
wires are thin and the temperature dependence of the heat
conductivity can be neglected (linear heat equation). For
thin wires it was natural to suppose that their heat capacity
is not important, but in reality the finite heat capacity of
even thin wires becomes still important at high frequencies.
The method to take this finite heat capacity into account
has been proposed in Ref. [1] and can also be applied to the
problem of electrical characterization of the device. It will
be discussed elsewhere but for the moment one should no-
tice that the main equation (24) will be true as long as the
frequency remains small in comparison with the character-
istic frequency f; describing the heat capacity of the sensors

(1
Yy

fi Vw (pC P )w ’

where the volume and heat capacity have the subscript w of
the wire. For the devices in use this frequency is about
1800 Hz.

a_
1=

@9

ki
(25)

Implications for the electrical signals

In practical applications the voltage of a wire is often easily
measured, and in the electrical characterisation one meas-
ures the voltage of the wire(s) as a function of frequency
for a sensor. For this reason the relation (24) has to be ex-
pressed via directly measured values. The voltage is con-
nected with the current / flowing via the sensor by Ohm’s
low:

U = IRy[t +aT(P)],

where R, is the sensor resistance at room temperature, « is
the temperature coefficient, and 7(P) is the sensor tempera-
ture above the room temperature at a given power P=U"1
When the device is operating as an acoustic sensor the sta-
bilized voltage source Uy is used and the signal z* is re-
corded as indicated in Fig. 3.
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Fig.3 Electrical scheme of the Microflown, operating
acoustically; R;=R;=R, u® is the output signal.

In this case the temperature change of the sensor is related
to the external influence: the acoustic wave. If the wave has
a frequency f'then the signal on this frequency can be writ-
ten as

Uo

2

where AT is defined at operating power P=U;%/R and R is
the sensor resistance at operating temperature.

In the case of the electrical characterization a stabilized DC
current Jj is flowing through each wire, while an additional
AC component flows through wire 1 (x=a). The resulting
current for the wire 1 can be written as / = 1 + 6/ cos(cot) .

a_

Ro
=—a—-AT{, 26
R (26)

The amplitude of the AC component &I can always be cho-
sen small not to complicate the analysis. Neglecting then
the higher order terms of AC components, the additional
oscillating power in the wire can be represented as

SP=uily+Uydl, 27
where Uy=U(Iy) is the DC component of the voltage. The

AC voltage measured on wire 1 can be written then using
the Ohm law

uf = ROT + aR, I AT .
Since the sensor temperature is proportional to 6P, we can
express the AC voltage on the wire 1 as

1+8 R P,

uf =6IR-— 20 A2G,(f,0).(28
i — “RH Z 2(£,0).(28)
Here P, represents the DC power. The wire 2 is powered
with only a DC current and the AC voltage on this wire
will be

us = alyRyATS .

The temperature correction is again proportional to the
amplitude of the oscillating 6P, which can be found from
(27). Thus one can find

u; =dR- 25, ,
1 - S]
Using the basic relation (24) one can express now the
acoustic signal (26) via the electric signals (28) and (29)

" {ﬁ

>}

4'v

W=

El

1

b
Rkl

A

«

Z— 4G, (f2£)-(29)

U

va 1po, 4
SIR +uf

S
_J'df

30
D7) (30)
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This is the final relation one has been looking for. It con-
tains the only geometrical parameter of the device, the mu-
tual wire distance a, and only one medium parameter, the
fluid characteristic D. All the other parameters are electri-
cal, and well defined.
The electrical characterizations of the device gives the val-
ues u°; , as functions of frequency. To get the acoustic sig-
nal the integral in (30) should be calculated numerically.
To do this one needs to extrapolate the integrand to small-
est frequencies, which are not accessible in the measure-
ments. The low frequency behavior of #° , is easy to inves-
tigate analyzing the Green’s function (17) in the limit /0.
This analysis gives
F(H=—2
OIR +uy

where 4 and B are some constants. If the experimental cut-
off frequency is fj, then

> (4+iBf) atf—0,

S .

i
farFn= fo{ReF(fo) + EImF(fo)] (31
0
This relation defines the extrapolation procedure and so the
problem can be considered as completely solved.

EXPERIMENTS

In the experimental set-up both wires of the sensor were
connected as shown in Fig.4 ,together with a lock-in ampli-
fier. The two wires were powered using a stabilized DC-
current Jo. Using the current source, the frequency of the
additional current &/ was varied in a range from 10 to 4000
Hz while both the voltage of wire 1 and wire 2 were re-
corded. Using Eq.(30), the theoretical acoustic sensitivity
as a function of frequency was calculated. The low experi-
mental cut-off frequency was taken as 10 Hz. From this
numerical procedure, the theoretic acoustic response of the
sensor was found to be as the graph plotted in Fig.5.

{81(:) }Io {10

b)

Fig. 4 Scheme of the set up used in the electrical charac-
terisation. Now v($)=0 (compare with fig.3) and the ad-
ditional current is 5I(z).



Besides, the sensitivity was determined acoustically, i.e. in
a ‘standing wave tube’ [1,3], an about lm. long tube of
approx. 10 ¢m diameter with at one side a loudspeker gen-
erating a broad frequency band signal, and at the other side
a reference microphone. From the ratio between the output
signals of both sensors, the sensitivity of the Microflown
could be deduced.

-

[Froquency, Hz
Fig.5 Electrically determined points (dots) of the sensi-
tivity, the theoretical prediction for the acoustic sensi-
tivity of the sensor, using the described calculations
(line b) and the really acoustically determined (standing
wave tube) response (line a).

From this figure it can be concluded that there is a satisfy-
ing correspondence between the electrically determined
measurement points of the sensor sensitivity, and the theo-
retical prediction, which is model-independent, and the
acoustically determined sensitivity (determined in the
standing wave tube) as well.

CONCLUSIONS

An electrical characterisation method for the sensitivity of
the Microflown was presented. It is shown to be a more
convenient and less complicated method than the acoustic
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calibration of the Microflown using e.g. a standing wave
tube. It is proven from physical principles and correspon-
dences in physical equations that this method yields all the
required information to deduce the sensor’s acoustic re-
sponse. Besides, the strength of the theoretical description
and prediction of the acoustic response lies in the fact that
it is very general and independent of the precise geometry
of the sensor. The theory has been experimentally verified
up to almost 4 kHz, and a good correspondence between
measurements and theory was found.
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