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ABSTRACT: The use of iterative solvers in implicit forming process simulations is studied. The time
and memory requirements are compared with direct solvers and assessed in relation with the rest of
the Newton–Raphson iteration process. It is shown that conjugate gradient–like solvers with a proper
preconditioning can significantly improve the overall time performance of a forming process simulation
as compared to the use of direct solvers. For the presented examples the time spent in the solver is not
dominating the total solution time anymore.

1 INTRODUCTION

In finite element simulations of forming processes
the size of the models has reached a point where
the direct solution of resulting linear sets of equa-
tions is the bottle-neck. The linear sets of equa-
tions arise from the implicit solution method by
a linearization e.g the Newton–Raphson method.
One way to avoid the excessive demand on com-
puter resources (CPU time and memory space)
is the use of an explicit solution method (Mercer
et al. 1995). A disadvantage of this method is
the conditional stability, necessitating extremely
small time steps or artificial adaptations to the
model. Another way to alleviate the problem is
to use iterative solvers instead of direct solvers,
to solve the linear sets of equations. In the field
of elasto-plastic simulations (Kacou and Parsons
1993), (Mahnken 1995) and (Jefferson and Thomas
1997) have studied the behavior of iterative (multi-
grid) solvers in a Newton–Raphson iteration pro-
cess.

In this presentation different iterative solvers are
assessed in the simulation of a tensile test, deep-
drawing and a 3D thermomechanical compression
test. This includes features that are known to dete-
riorate the convergence of iterative solvers: incom-
pressibility, mixed physics (thermo-mechanical),
shell elements and contact conditions. The be-
havior of iterative solvers at mesh refinement is
verified with the tensile test simulation. With
the deepdrawing example, the influence of the lo-
cal convergence criterion on the global Newton–
Raphson process is examined. Finally with the

compression test simulation the influence of con-
tact stiffness and incompressibility is examined.

2 THE NEWTON–RAPHSON PROCESS

The goal of this study is the speed up of numeri-
cal simulation of forming processes. Therefore the
time and memory usage of different solvers has to
be related to the overall time and memory require-
ments of a Newton–Raphson process. It would be
a waste of time to optimize a part of the code that
only takes a fraction of the total resources.

In relation to direct and iterative solvers in a
Newton–Raphson process it is relevant to note that
for a direct solver, e.g. a Cholesky decomposition,
the time complexity is of order O(n2

b ·n) where nb is
the bandwidth of the matrix and n is the number
of degrees of freedom. The following substitution
phase has a complexity of only O(nb ·n). In the fol-
lowing comparison, the solution time for the direct
solvers is optimized by a bandwidth optimization
algorithm according to Sloan (Sloan 1989).

A direct solver can take advantage of the mod-
ified Newton–Raphson method, where only in the
first iteration a new matrix is set up (and decom-
posed) and in later iterations only the relatively
fast substitution is performed. Iterative solvers
must be used to their full extends in every iter-
ation, even if the matrix does not change.

One full Newton–Raphson iteration can broadly
be split in 3 parts. The calculation of the tan-
gential stiffness matrix, the calculation of the in-
cremental displacement vector and the calculation
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of the internal force vector. Furthermore some
initialization and closure of each increment takes
time, independent of the number of NR-iterations.
In figure 1 the relative CPU-times for tension test
simulations (see 5.1) are presented for increasing
numbers of degrees of freedom. It can be seen
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Figure 1: CPU usage for tension test simulation

that the setup of the matrix, calculation of inter-
nal force vector and the initialization and closure
of an increment are linear in time (mind the loga-
rithmic axis). As could be expected from theory,
the time complexity for a direct solver tends to be
quadratic in the number of dof’s for a 2D analy-
sis. Up to about 10000 dof’s the time in the solver
is negligible compared to the setup of the matrix
and internal force vector. Above approximately
40000 dof’s (in this example) the solver takes more
than half of the solution time. In figure 1 also a
preconditioned Conjugate Gradient solver is pre-
sented. Although initially this solver takes much
more time than a direct solver, the time complex-
ity is only slightly more than linear in the number
of dof’s. Within the presented range the CG solver
takes less time than the setup of the matrix. In this
example systems with more than 20000 dof’s the
CG solver can be advantageously used over the di-
rect solver. From the directions in the logarithmic
graph it can be seen that the advantage is increas-
ing rapidly if the number of dof’s increase.

In a 3D simulations, the bandwidth increases
faster at mesh refinement than in 2D simulations,
therefore the time required by a direct solver can
easily be more than 90% of an iteration.

3 ITERATIVE SOLVERS

The solution of a linear set of equations can be
approximated in an iterative way. Several ex-
amples can be found in (Golub and Van Loan

1989), (Hackbush 1994) and (Barret et al. ).
These solvers become interesting if they produce
an acceptable incremental displacement vector in
a shorter time and using less memory than a direct
solver. The memory requirements are very clear.
Usually only the non-zero components of a matrix
have to be stored, while with direct solvers, due
to fill-in the mean bandwidth times the number of
rows has to be stored. With mesh refinement in
2 directions, the bandwidth increases linearly and
the number of degrees of freedom increase quadrat-
ically. In 3 dimensions the bandwidth increases
quadratically and the number of degrees of free-
dom increase cubically. In both cases the typical
connectivity remains the same and therefore the
number of non-zero’s per row remains the same.
Scaled to the number of dof’s, direct solvers need
a total amount of memory, proportional to n3/2

2D and n5/3 in 3D. Iterative solvers need memory,
proportional to n.

The time requirements for iterative solvers are
not so clear. For every local iteration, the time
is linearly dependent on the number of degrees of
freedom but the number of iterations is not fixed.
The number of iterations depends on the local con-
vergence criterion (see section 4) and the condition
of the matrix. For conjugate-gradient-like solvers
the ratio between the largest and smallest eigenval-
ues determines the convergence rate. Typically the
convergence deteriorates due to high stiffness ra-
tios (stiff contact elements, multiphysics or shell el-
ements), due to decreasing material stiffness (plas-
ticity) and due to singularities (constant volume
constraints). Preconditioning of the matrix can
significantly improve the convergence characteris-
tics.

In the examples presented in 5 several iterative
solvers each with several preconditioners are com-
pared. The iterative solvers are: Symmetric Succe-
sive Over Relaxation (SSOR), Conjugate Gradient
(CG), Generalized Minimum Residual (GMRES),
Quasi-Minimal Residual (QMR) and BiConjugate
Gradient Stabilized (Bi-CGSTAB). Apart from the
first all iterative solvers where used without pre-
conditioner and with Jacobi, SSOR and Incom-
plete Lower Upper (ILU) preconditioning. Pure
SSOR iterations are a kind of generalization of
Gauß–Seidel iterations and are presented for com-
parison. The others are all CG-like solvers, from
which pure CG is derived for symmetric matrices
and the others for non-symmetric matrices. Expe-
rience show however that CG is also very efficient
for some non-symmetric systems and especially Bi-
CGSTAB is sometimes faster and more stable then
CG, even for symmetric matrices. In the experi-
ments also the CG on Normal Equations (CGN),
Conjugate Gradient Squared (CGS) and BiConju-
gate Gradient (BiCG) methods were applied, but
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these performed consistently worse then the earlier
mentioned methods and are not referenced in the
sequel.

4 CONVERGENCE CRITERION

The nonlinear finite element equations are solved
by an incremental iterative procedure. The loads
are prescribed incrementally and in every incre-
ment the increment in displacements ∆u is calcu-
lated.

The iterative solution of the incremental dis-
placements can be performed by e.g. a Newton–
Raphson procedure. During these iterations the
changes in the incremental displacements are de-
noted by ∆(∆u).

Inside the Newton–Raphson procedure a linear
system of equations must be solved. This can be
done by an iterative solver e.g. Gauß–Seidel, Con-
jugate Gradient or GMRES. In the iterative lin-
ear solver once again a variation of the change
in incremental displacement appears leading to
∆(∆(∆u)).

This many deltas makes the description of the
procedure very complex and therefore some new
symbols are introduced.

We can consider increment j of an incremen-
tal procedure. The internal force vector (based
on

∫
BT

σ dV ) must equilibrate the external force
vector (based on the applied loading).

fint(u
j−1 + ∆uj) = f

j
ext (1)

Here fint is the internal force vector that is a func-
tion of the displacements calculated in the previous
increment (j − 1) and the displacement increment
∆uj.

In the sequel of this text we do not consider the
incremental procedure anymore and the index j
is skipped. The displacements at the start of the
increment are fixed values and can be disregarded.
To avoid the many deltas we write the incremental
displacements as d = ∆u leading to:

fint(d) = fext (2)

or equivalently

fext − fint(d) = 0 (3)

Since fint is a nonlinear function of d this equa-
tion is solved iteratively. At iteration i (3) is not
fulfilled completely, but a residual ri remains:

fext − fint(d
i) = ri (4)

We now write the internal force vector as the last
known value at iteration i, a linearized increment
Ki∆di+1 and an error ei+1.

fint(d
i+1) = fint(d

i) + Ki∆di+1 + ei+1 (5)

In the Newton–Raphson process the increment
∆di+1 is calculated by:

∆di = (Ki)−1ri (6)

Substituting (6) into (5) and the result into (4) it
is clear that ri+1 equals ei+1.

The iterations are stopped if the Euclidean norm
of r is less than ε times the Euclidean norm of fint.
The actual ratio in iteration i is designated as εi.

‖ri‖

‖fint‖
= εi ≤ ε (7)

We now consider an iterative solution process
for the linear system of equations, described by
(6). To simplify the derivations ∆di is written as
x and ri as y.

Kx = y (8)

With an iterative solver x is not exactly calculated,
but it is approximated by x∗ so that

Kx∗ − y = ε (9)

The process will terminate if the Euclidean norm of
the error vector ε is less than δ times the Euclidean
norm of y.

‖ε‖ ≤ δ‖y‖ (10)

Relating the convergence to y instead of directly
to fint facilitates the use of ‘of the shell’ solvers as
is done in this research.

It is felt that the value δ should be related to the
required accuracy ε of the global process. If we use
the approximated vector ∆d∗ instead of ∆d in (5)
we get:

fint(d
i+1) = fint(d

i) + Ki∆di+1∗ + ei+1 + ε (11)

The new residue is now formed by ei+1 and ε.

ri+1 = ei+1 + ε (12)

The norm of ri+1 is bounded by:

‖ei+1 + ε‖ ≤ ‖ei+1‖ + ‖ε‖ (13)

We require that ‖ε‖ ≤ δ‖ri‖. The global conver-
gence norm is now:

‖ri+1‖

‖f int‖
= εi+1 ≤

‖ei+1‖

‖f int‖
+ δ · εi (14)

In an exact solution of (8) the new unbalance ratio
would be the first part of the right hand side and
if this would be less than ε the Newton–Raphson
process is considered to be converged. If we achieve
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that δ ·εi is much smaller than ε the global process
is only marginally influenced. We can conclude
that if δ is set to the value of:

δ = η ·
ε

εi
(15)

with a small η, the global iteration process is
only marginally influenced by the linear iteration
process. Several authors have advocated a value
of η = 0.1 (Jefferson and Thomas 1997), (Bla-
heta and Axelsson 1997) and (Kacou and Parsons
1993), based however on different definitions of the
convergence norms. The criterion could be less
strict in the first iteration of every increment if
convergence is not expected in the first iteration
(Mahnken 1995). In section 5.2 the influence of η
on the global convergence will be demonstrated.

5 EXAMPLES

The solvers that were used in the following exam-
ples were taken from the public domain (Skalický
1995), they are also described in (Barret et al. ).
The cited direct solvers did not use pivoting and
the GMRES solver was restarted after every 20 it-
erations. All presented examples were run on a
HP 9000-735 workstation with a PA 7100 proces-
sor and 128 Mb RAM (spec fp92 = 170).

5.1 Tensile test

First a simple tension test problem is used to assess
the rate of convergence in case of large plastic de-
formations and the influence of mesh refinement.
All types of non-stationary iterative solvers per-
formed best with an SSOR preconditioner. The
different solvers are compared at three stages. In
the first step the system represents the fully elas-
tic behavior. In the second stage (at increment
10) the tension bar is fully plastic. In the third
stage (at increment 100) the strain is localized in
a necking zone and the tension bar is partly re-
laxing elastically. In figure 2 the results of the
last stage (localization) are presented for different
mesh densities. The coarsest mesh has 5 elements
in radial direction and 15 in axial direction. The
finer meshes are derived by halving the element
size in both directions. This leads to a finest mesh
of 80 × 240 elements in the finest mesh. A Nadai
hardening curve with exponent 0.13 was taken in
an elastoplastic material model.

It can be seen that for the finer meshes (where
iterative solvers are faster than direct solvers) the
Bi-CGSTAB solver with SSOR preconditioning is
the fastest of the examined solvers in all stages of
the analysis.

For most solvers, the results for the finest mesh
where almost independent of the analysis stage.
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Figure 2: CPU usage for solve step at increment
100

Only the pure SSOR method needed 60% more
time in the second stage (uniformly plastic) than in
the first and last stage (elastic and localized plas-
ticity). The Bi-CGSTAB solver performed about
15% worse in stage 2 than in stage 1 and 3, but
still this method was the best in all stages. The
other solvers differed less.

5.2 Deepdrawing

In the second example the deepdrawing of an S-
shaped rail is simulated. The example originates
from the NumiSheet ’96 conference (Lee et al.
1996). The presented model contains 12000 trian-
gular shell elements and a total of 36968 degrees
of freedom. In the stiffness matrix only the sym-
metric part of the contact elements was taken. In
92 increments a flat piece of sheet metal was simu-
lated to deform into the end geometry as shown in
figure 3. With a direct solver, every iteration took
about 400 s of which 200 were used for the direct
solver. The same simulation was carried out with
a CG solver with ILU preconditioning for different
values of η (see equation 15).

In figure 4 the convergence of the global resid-
ual norm is presented of step number 5. The first
iteration is always performed with a local criterion
δ = 0.01 and should be independent of η. In the
figure the straight horizontal lines represent the
convergence characteristics with the direct solver.
For the second and third iteration δ depends on
the achieved convergence in the previous iteration
and on η. The global criterion was fixed at 0.02.
It can be seen that for η → 1 the global criterion
tends to this norm. For this particular model and
this particular step, global convergence is always
achieved in the third iteration, even with η = 0.9
but in general it can be seen from figure 4 that for
η > 0.05 the global convergence can deteriorate.
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Figure 3: S-Rail final geometry

0.001

0.01

0.1

0.01 0.1 1

gl
ob

al
 r

es
id

ua
l n

or
m

eta

iteration 1
iteration 2
iteration 3

Figure 4: Global convergence at different η

An important difference between the direct sol-
ver and the iterative solver is the memory require-
ment. With the direct solution of the system of
equations the maximum size of the analysis was
186 Mb. With the iterative solver this reduced to
120 Mb.

The time necessary to perform the first 5 steps
with different values of η and with the direct solver
is presented in table 1. For small values of η
the CPU time increases because more local iter-
ations must be performed in the iterative solver.
For larger values of η at some point more global
Newton–Raphson iterations must be performed.
The optimum for this particular example is about
η = 0.3. Since not much more time is needed for
η = 0.1 this last value seems to be a robust and
efficient choice.

With the direct solver the simulation of all 92
steps took 42 hours. Using η = 0.1 the simula-
tion time reduced to 26 hours. In total the same
number of global iterations were needed. In some

Table 1: Influence of η on convergence and time

η NR local CPU time
(s)

direct 11 NA 4518
0.01 11 472 2717
0.05 11 285 2495
0.1 11 237 2466
0.3 11 182 2419
0.5 11 177 2448
0.7 12 172 2603
0.9 12 165 2578

steps one iteration less and in some other steps
one iteration more than with the direct solver was
needed to achieve a global convergence of 0.02 in
the residual norm.

5.3 Compression test

The third example is the full 3D thermomechanical
simulation of a plane strain compression test (see
figure 5). Due to the mixed physics and contact
conditions the matrix is non-symmetric. The pre-
sented model contains 6810 independent degrees of
freedom in 1540 linear hexahedron elements. The
total height reduction of 76 percent is obtained in
380 increments. It will be shown that iterative
solvers can reduce the CPU times in solving con-
siderably. The sensitivity of the iterative solvers
for the contact penalty will also be a point of dis-
cussion. The simulations are performed with a Bi-

Figure 5: Plane strain compression final geometry

CGSTAB solver with SSOR preconditioner. After
starting up a number of 10 increments has been
used to determine the appropriate criterion η. For
a standard penalty factor η = 0.01 proved best
whereas for a penalty three times as high η = 0.001

A.H. van den Boogaard, A.D. Rietman & J. Huétink 5



had to be chosen considering the CPU time as well
as the solution error. Global Newton–Raphson
convergence was reached at ε = 0.005 for both
calculations.

The matrices of the first iterations of increments
2, 20 and 200 were analyzed with different solvers.
In increment 2 the billet was still entirely elastic.
Solver times of the fastest iterative solvers are com-
pared with the direct solver in table 2. For this

Table 2: Influence of penalty and step number on
CPU time for 1 linear solve

step method normal high
penalty penalty

all direct 158 158
2 cg ssor 5.84 4.67
2 gmres ssor 6.87 6.80
2 bicgstab ssor 6.91 5.80

20 cg ssor 7.74 6.30
20 gmres ssor 10.32 7.12
20 bicgstab ssor 7.15 6.89

200 cg ssor 9.09 7.45
200 gmres ssor 10.28 9.06
200 bicgstab ssor 10.87 8.87

relatively small 3D problem, the (nonsymmetric)
iterative solvers where 15 to 30 times as fast as the
direct solver. As in the tensile test example the
SSOR preconditioner again performs better than
the ILU preconditioner.

The penalty factor for the contact elements does
not seem to be of much influence on solving of the
system, the global amount of N–R iterations how-
ever increases considerably with a higher penalty.
This is reflected by the total running times of
7h.48m. and 12h.9m. for the normal and high
penalty respectively.

For both penalty factors the Bi-CGSTAB and
CG solver with SSOR preconditioner perform
best. The CG solver however was mathemati-
cally derived for symmetric systems only so the
Bi-CGSTAB is recommended for the considered
forming problem. For further reduction of CPU
times one should optimize the assembly of the sys-
tem and the force calculation while only 25% is
needed for the solver.

6 CONCLUSIONS

It is shown that significant time and memory sav-
ings can be reached by using iterative solvers with
appropriate preconditioners. Even in the large
deepdrawing and 3D compression examples, the
linear solution stage is not dominating the total

solution process. This means that for these par-
ticular examples a further significant reduction of
the analysis time can not be achieved from the lin-
ear solver alone. Optimization should focus also on
the setup of the matrix and solution of the internal
force vector.
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