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Abstract

Non-functional properties, such as timeliness, resource

consumption and reliability are of crucial importance for

today’s software systems. Therefore, it is important to know

the non-functional behavior before the system is put into

operation. Preferably, such properties should be analyzed

at design time, at an architectural level, so that changes can

be made early in the system development process.

In this paper, we present an efficient and easy-to-use

methodology to predict – at design time – the availabil-

ity of systems that support local recovery. Our analysis

techniques work at the architectural level, where the soft-

ware designer simply inputs the software modules’ decom-

position annotated with failure and repair rates. From

this decomposition we automatically generate an analytical

model (i.e. a continuous-time Markov chain), from which

various performance and dependability measures are then

computed, in a way that is completely transparent to the

user. A crucial step is the use of intermediate models in the

Input/Output Interactive Markov Chain formalism, which

makes our techniques, efficient, mathematically rigorous,

and easy to adapt. In particular, we use aggressive mini-

mization techniques to keep the size of the generated state

spaces small.

We have applied our methodology on a realistic case

study, namely the MPlayer open source software. We have

investigated four different decomposition alternatives and

compared our analytical results with the measured avail-

ability on a running MPlayer. We found that our predicted

results closely match the measured ones.
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by the EU under grants numbers IST-004527 (ARTIST2) and FP7-ICT-

2007-1 (QUASIMODO).

1 Introduction

Local recovery is an important technique to achieve fault

tolerance. Whereas a global recovery strategy restarts the

whole system upon detection of an error, thus making the

entire system unavailable until its normal operational mode

is reached again, local recovery strategies work at a lower

level of granularity. They partition the system into several

recoverable units (RUs) so that each RU consists of a num-

ber of software modules, and each RU can be recovered in-

dependently. Thus, a better availability is guaranteed: re-

covering a part of the system is usually faster than recover-

ing the whole system and, moreover, the non-affected sys-

tem parts remain operational.

The availability of the system, that is the percentage of

time the system is up, heavily depends on the chosen soft-

ware decomposition, i.e., the way in which the software

modules are grouped into RUs. Since the implementation

of a local recovery strategy is a time-consuming and a non-

trivial task, it is important to have a quick, easy and accurate

method that predicts the system availability of a given de-

composition alternative at design time. In this way, we can

compare various decomposition alternatives and only im-

plement the best one.

This paper presents such a method: We take as input

a software decomposition, together with failure and repair

rates for each module. From this module decomposition,

we generate, in a way that is completely transparent to

the designer an analytical model, that is, a continuous-time

Markov chain (CTMC). We then use standard CTMC anal-

ysis methods to compute the system availability; other per-

formance and dependability measures, such as the average

number of operational units, number of failures during the

first hour of operation, can be obtained as well.

A key step in our framework is that we translate all

architectural elements to a set of Input/Output Interactive

Markov Chains (I/O-IMCs) [14, 2]. I/O-IMCs augment tra-

ditional CTMCs with discrete actions, thus enabling syn-

chronization between them. They have been used success-
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fully to analyze a wide range of applications [15, 4, 2] and

enable powerful analysis methods. In particular, we employ

their compositional-aggregation technique, which is crucial

in avoiding a blow up in the underlying state space.

More specifically, we use the MIOA-syntax [16] to con-

veniently specify and generate: (i) for each software mod-

ule contained in an RU, one I/O-IMC modeling the failure

and recovery behavior of that module; (ii) for each RU, two

I/O-IMCs that serve as interfaces between an RU and the re-

covery manager (RM)1; and (iii) one I/O-IMC correspond-

ing to the RM. By composing all the generated I/O-IMCs

we obtain a CTMC that can be then analyzed. However, to

reduce the size of the generated state space, we incremen-

tally compose one by one the I/O-IMC models and reduce

the intermediate state space (by applying bisimulation min-

imization [3]) after each composition. This is precisely the

compositional-aggregation technique mentioned before.

We have implemented our methodology using JAVA and

the CADP toolset and integrated it into the FLORA frame-

work [13, 21], which facilitates the decomposition and im-

plementation of software architectures for local recovery.

We have carried out our modeling and analysis on a real-life

software system, namely the MPlayer open-source media

player. We have investigated four different decomposition

alternatives, and compared the availability predicted by our

analytical models to the availability measurements obtained

from the actual implementations. It turned out that our ana-

lytical results closely match the measured availabilities.

Thus, the contributions of this paper are the following:

(1) A method to analyze the availability of local recov-

ery architectures, relying on a (novel) translation of a lo-

cal recovery architecture to a set of I/O-IMC models, and

the (existing) compositional-aggregation method. (2) Im-

plementation of this translation into the CADP tool set; in

particular, the implementation involved a translation from

MIOA syntax to CADP. (3) Integration of our methodol-

ogy in FLORA [13, 21] as a part of the ArchStudio envi-

ronment [7]. FLORA supports the implementation of local

recovery for a given software decomposition and now, our

analysis tool within ArchStudio offers a push button tech-

nology to predict the availability of the resulting system. (4)

Experimental validation of our results, by comparing pre-

dicted and measured availability for a real-life application.

This work arose from the need to efficiently, easily, and

automatically conduct quantitative analysis of the availabil-

ity of various module decomposition alternatives in the con-

text of a software recovery mechanism. Our solution based

on the I/O-IMC formalism, as described in this paper, ful-

filled this need.

1An important component used within a software architecture that sup-

ports local recovery.

Related work. There are several modeling techniques to

analyze and improve system availability. For instance, [5]

presents a Markov model to compute the availability of a

redundant distributed hardware/software system comprised

of N hosts; [22] presents a 3-state semi-Markov model to

analyze the impact of rejuvenation2 on software availability

and in [17], the authors use stochastic Petri nets to model

and analyze fault-tolerant CORBA applications. In general

however, these models are specified manually and/or the

methodology lacks a comprehensive tool-support, making

these models less practical to use.

As far as local-recovery strategies are concerned, The

work in [6] improves system availability with local recovery

techniques that is similar to ours. However, their evaluation

techniques are different: whereas we predict the availability

at design time, [6] uses heuristics to choose a decomposition

alternative and evaluate it by running experiments on the

actual implementation.

Organization of the paper. In Section 2, we introduce

the local recovery concept. In Section 3, we present our

modeling approach including the detailed I/O-IMC models

used to model local recovery. In Section 4, we present a

case study along with experimentations and a discussion of

results. Finally, we conclude the paper and suggest future

research directions in Section 5.

2 Local recovery

Recovery of errors is an essential step of fault toler-

ance [1]. Local recovery is an effective approach for recov-

ering from errors, in which the erroneous parts of a system

are recovered while the other parts of the system are kept in

operation. Introducing local recovery to a system imposes

certain requirements to its design.

• Isolation: If an operational module tries to access a

module that has failed or is under recovery, then er-

rors propagate from the failed module to the opera-

tional one. To prevent such propagation of errors, the

system should be separated into a set of Recoverable

Units (RUs) with clear boundaries and isolation be-

tween them.

• Communication Control: Although an RU is unavail-

able during its recovery, other RUs might still need to

access it in the meantime. Therefore, the communi-

cation between RUs must be mediated and controlled

(e.g. through blocking, queuing and retrying of mes-

sages), so that the recovery of an RU is transparent to

2Proactively restarting a software component to mitigate its aging and

thus its failure.
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the other RUs. In [10], for instance, the communica-

tion is mediated by an application server. As a result,

there is a need for a Communication Manager (CM)

that mediates inter-RU communication.

• System-Recovery Coordination: In case recovery ac-

tions take place while the system is still operational,

interference with the normal system functions is in-

evitable and the required recovery actions need to be

coordinated. For this reason, there is a need for a Re-

covery Manager (RM) that controls and coordinates

RUs for recovery.

Note that there can be different implementations of local

recovery: The isolation between the different RUs can be

achieved by running them on separate processes or different

Java components [9, 10]; the RM and CM can be composed

of multiple components or they can all be implemented in

a single component. The specific implementation is how-

ever not relevant for our methodology to estimate system

availability.

The total system availability depends on the availability

of its individual modules and the RUs’ decomposition. Gen-

erally speaking, the module availability depends on its mean

time to failure (MTTF), i.e., the time it takes on average be-

fore a module fails, and its mean time to repair (MTTR), the

average time it takes for the module to restart.

3 Modeling approach

The overall modeling/analysis procedure is divided into

4 steps:

1. The user inputs the software modules decomposition

as a set partition, together with the MTTF and MTTR

for each module.

2. An I/O-IMC model is automatically generated for each

module, each RU3, and the RM.

3. All the generated I/O-IMCs are automatically com-

posed, in a fixed order, into a single I/O-IMC, describ-

ing the behavior of the whole system. During composi-

tion, the compositional-aggregation technique is used

to efficiently generate the state-space.

4. The final I/O-IMC is automatically converted into a

CTMC and analyzed to compute system availability.

As mentioned above, a software system can be divided

into several RUs, and each RU contains a certain number

of modules. The recovery manager (RM) achieves local

recovery by monitoring all the RUs and initiating recov-

ery upon the detection of an RU failure. The RUs do not

3As described later, for each RU, two models are in fact generated.

directly communicate with each other; however, they are

inter-dependent given that they all interact with the RM. We

make the following assumptions in our models:

1. The failure of any module within an RU causes the en-

tire RU failure.

2. Errors of modules are independent and they do not

propagate beyond the boundaries of RUs.

3. The recovery of an RU entails the restart of all its mod-

ules (even the ones that did not fail).

4. The failure of a module is governed by an exponential

distribution (i.e. constant failure rate).

5. The CM is considered to a be part of the RM and as

such it is not modeled separately.

6. The restart (or repair) of a module is governed by an

exponential distribution4. The recovery time includes

the time for restarting failed modules and also the time

for error detection, error notification and diagnosis.

7. The RM always correctly detects a failing RU.

8. The RM does not fail.

9. Only one RU can be recovered at a time and the RM

recovers the RUs on a first-come-first-served basis.

10. The recovery always succeeds.

11. The restart of the modules inside a given RU is sequen-

tial.

It is important to realize that these assumptions are

geared to the applications we had considered (multimedia

applications, like MPlayers and TVs), and that our frame-

work enables one to easily change these assumptions (see

Section 3.3).

Furthermore, the RM only interfaces with RUs and is

unaware of the modules within RUs. To this end, each RU

exhibits two interfaces: a failure interface and a recovery

interface. The failure interface essentially listens to the fail-

ure of the modules within the RU and outputs an RU ‘failure

signal’ upon the failure of a module. Correspondingly, the

failure interface outputs an RU ‘up signal’ upon the suc-

cessful restart of all the modules. The RM listens to ‘fail-

ure’ and ‘up’ signals emitted by the failure interfaces of the

RUs. The recovery interface is in charge of the actual re-

covery of the various RU’s modules. Upon the receipt of

a ‘start recover’ signal from the RM, it starts a sequential

4An exponential distribution might not be, in some cases, a realistic

choice; however, it is also possible to use a phase-type distribution which

approximates any distribution arbitrarily closely.
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recovery of the modules inside the RU. Each module, re-

covery interface, failure interface, and the RM has a corre-

sponding I/O-IMC model. Fig. 1 illustrates the interaction

between these different models.
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Figure 1. Interaction between the various I/O­
IMC models. A dashed box indicates an RU
boundary and a solid box indicates an I/O­IMC

model.

3.1 The underlying I/O­IMC modeling formalism

Input/Output interactive Markov chains (I/O-IMC) [3, 2]

is the underlying state-based modeling formalism we use.

I/O-IMCs are a combination of Input/Output automata (I/O-

automata) [19] and interactive Markov chains (IMCs) [14].

I/O-IMCs distinguish two types of transitions: (1) Interac-

tive transitions labeled with actions (also called signals); (2)

Markovian transitions labeled with rates λ, indicating that

the transition can only be taken after a delay that is governed

by an exponential distribution with parameter λ. Inspired by

I/O-automata, actions can be further partitioned into:

1. Input actions (denoted a?) are controlled by the envi-

ronment. They can be delayed, meaning that a transi-

tion labeled with a? can only be taken if another I/O-

IMC performs an output action a!. A feature of I/O-

IMCs is that they are input-enabled, i.e., in each state

they are ready to respond to any of their inputs a?.

Hence, each state has an outgoing transition labeled

with a?.

2. Output actions (denoted a!) are controlled by the I/O-

IMC itself. In contrast to input actions, output actions

cannot be delayed, i.e., transitions labeled with output

actions must be taken immediately.

3. Internal actions (denoted a;) are not visible to the en-

vironment. Like output actions, internal actions cannot

be delayed.

States are depicted by circles, initial states by an incom-

ing arrow, Markovian transitions by dashed lines (or key-

word ‘rate’), and interactive transitions by solid lines. Fig. 2

(taken from [2]) shows an I/O-IMC with two Markovian

transitions: one from S1 to S2 with rate λ and another from

S3 to S4 with rate µ. The I/O-IMC has one input action

a?. To ensure input-enabling, we specify a?-self-loops in

states S3, S4, and S5.Note that state S1 exhibits a race be-

tween the input and the Markovian transition: in S1, the

I/O-IMC delays for a time that is governed by an exponen-

tial distribution with parameter λ, and moves to state S2. If

however, before that delay ends, an input a? arrives, then

the I/O-IMC moves to S3. The only output action b! leads

from S4 to S5. We say that two I/O-IMCs synchronize if

S1

S2

S3

S4a? a?

a?

a?

S5
b!

λ

µ

a?

Figure 2. Example of an I/O­IMC.

either (1) they are both ready to accept the same input ac-

tion or (2) one is ready to output an action a! and the other

is ready to receive that same action (i.e., has input action

a?). I/O-IMCs can be combined with a parallel composi-

tion operator “||” to build larger I/O-IMCs out of smaller

ones. The behavior of P = Q||R, i.e., the parallel com-

position of I/O-IMCs Q and R, is the joint behavior of its

constituent I/O-IMCs (details can be found in [3]).

Another important operation on I/O-IMCs is aggregation

(or minimization). Aggregation is the process of transform-

ing an I/O-IMC into a smaller and equivalent (i.e. same

behavior) I/O-IMC. This is indeed a state-space reduction

which generalizes the notion of lumping in CTMCs. In this

work, we have used weak bisimulation [3] to aggregate I/O-

IMCs.

The compositional-aggregation technique is a key pro-

cedure, used within the I/O-IMC formalism, for obtaining

the overall system I/O-IMC model by composing, in suc-

cessive iterations, a number of smaller I/O-IMCs (corre-

sponding to the various system components) and reducing

the state-space of the generated I/O-IMC as the composi-

tion takes place. The compositional-aggregation technique
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has proved to be very effective in combating the infamous

state-space explosion problem encountered in such models.

The resulting system I/O-IMC reduces (in many cases) to a

CTMC which can be then analyzed using standard methods

to compute performance and/or dependability measures.

I/O-IMC model specification and generation We use a

formal language called MIOA [16] to describe any I/O-IMC

model. MIOA is based on the IOA language defined by

N. Lynch et al. in [12]. The MIOA language is used to

describe concisely and formally an I/O-IMC in the same

way the IOA language describes I/O automata. The MIOA

(or IOA) language provides programming language con-

structs, such as control structures and data types, to de-

scribe complex system model behaviors. Once a MIOA

specification/description of an I/O-IMC model has been laid

down, an algorithm explores the state-space and automati-

cally generates the corresponding I/O-IMC model. In fact,

automatically deriving the I/O-IMC models becomes es-

sential as the models grow in size. For instance, the RM

I/O-IMC coordinating 7 RUs has 27,399 states and 397,285

transitions. In our framework, the RM I/O-IMC size is

O(n!), where n is the number of RUs. The failure and re-

covery interface I/O-IMC sizes are O(2m) and O(m), re-

spectively, where m is the number of modules within the

RU. The module I/O-IMC size is constant (i.e. 4 states).

Due to the lack of space, we will not go into details

of the MIOA language; however, as an example, we show

the MIOA specification of the failure interface I/O-IMC

model (Figure 3). Any MIOA specification is divided into 3

sections: Signature where input/output/internal signals and

Markovian rates are specified, States where the states of the

I/O-IMC are defined, and Transitions where the I/O-IMC

transitions are defined in a precondition-effect style (i.e.

in order for the transition to take place, the precondition,

which is a true/false expression, has to hold).

In Fig. 3, the signature consists of the failed/up signals of

the n modules belonging to the RU, one output signal of the

RU ‘failed’ signal, and one output signal of the RU ‘up’ sig-

nal. The states of the failure interface I/O-IMC are defined

using Set and Bool data types, where ‘set’ (of size n) holds

the names of the modules that have failed and ‘rufailed’ in-

dicates if the RU has or has not failed. The initial state

is also defined in the States section; for instance, the fail-

ure interface initial state is composed of ‘set’ being empty

and ‘rufailed’ being false. There are four kind of possible

transitions; for example, the last transition indicates that an

RU ‘up’ signal is output if ‘set’ is empty (i.e. all modules

are operational) and the RU has indeed failed at some point

(i.e. ‘rufailed’ = true), and the effect of the transition is to

set ‘rufailed’ to false.

Signature: 
 

  input: failed(n:Int)? 

  input: up(n:Int)? 

  output: failed_RU! 

  output: up_RU! 

 

States: 
  

  set: Set[n:Int] := {} 

    rufailed: Bool := false 

Transitions: 
 

  input: failed(i)? 

    precondition: 

      i ¬∈ set 

    effect: 

      add(i, set) 

 

  input: up(i)? 

    precondition: 

      i ∈ set 

    effect: 

      remove(i, set) 

 

 output: failed_RU! 

   precondition: 

     set.size() > 0 

     ∧ rufailed = false 

   effect: 

     rufailed := true 

 

   output: up_RU! 

   precondition: 

     set.size() = 0 

     ∧ rufailed = true 

   effect: 

     rufailed := false 
 

 

 

 

   

 

Figure 3. MIOA specification of the failure in­
terface I/O­IMC model.

3.2 I/O­IMC models for local recovery

In this section, we provide details on the 4 basic I/O-

IMC models used in our framework, namely the module,

the failure interface, the recovery interface, and the recovery

manager. The running example (fig. 1) consists of two RUs,

RU 1 has one module A and RU 2 has two modules B and C,

and a recovery manager. By convention, the starting state of

any I/O-IMC is state 0 and the RUs are numbered starting

from 1.

The module I/O-IMC. Fig. 4(a) shows the I/O-IMC of

module B. The module is initially operational in state 0,

and it can fail with rate 0.2 and move to state 2. In state

2, the module notifies the failure interface of RU 2 about its

failure (i.e. transition 2 to 1). In state 1, the module awaits

to be recovered (i.e. receiving signal ‘recovered B’ from the

recovery interface), and once this happens it outputs an ‘up’

signal notifying the failure interface about its recovery (i.e.

transition 3 to 0). Signal ‘recovering 2’ is received from the

recovery interface indicating that a recovery procedure of

RU 2 has been initiated. The remaining input transitions are

necessary to make the I/O-IMC input-enabled.

The failure interface I/O-IMC. Fig. 5 shows the I/O-

IMC model of RU 2 failure interface. The failure interface

simply listens to the failure signals of modules B and C,

and outputs an RU ‘failure’ signal (i.e. ‘failed 2’) upon the

receipt of any of these two signals. In fact this interface

behaves as an OR boolean logic. Subsequently, the failure

interface outputs an RU ‘up’ signal (i.e. ‘up 2’) when the

failed module(s) has(have) output its(their) ‘up’ signal(s).

For instance, consider the following sequence of states: 0,

1, 4, 7, and 0; this corresponds to modules B and C being

initially operational, then B fails, followed by RU 2 out-

putting its failure signal, then signal ‘up B’ is received from

module B, and finally RU 2 outputs its own ‘up’ signal.
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0 1

2

3

recovered_B?

recovering_2?
up_B!

recovering_2?

recovered_B?
failed_B!

recovered_B?

recovering_2?

rate 0.2

recovering_2?

recovered_B?

(a) The module I/O-IMC.

4

0

5

1

23

start_recover_2?

start_recover_2?

start_recover_2? recovered_C!

rate 1.0

start_recover_2?

start_recover_2?

rate 1.0

recovered_B!
recovering_2!

start_recover_2?

(b) The recovery interface I/O-IMC.

Figure 4. Module and recovery interface I/O­

IMCs.

The recovery interface I/O-IMC. Fig. 4(b) shows the

I/O-IMC model of RU 2 recovery interface. The recov-

ery interface receives a ‘start recover’ signal from the RM

(transition 0 to 1), allowing it to start the RU’s recovery. A

‘recovering’ signal is then output (transition 1 to 2) notify-

ing all the modules within the RU that a recovery phase has

started (essentially disallowing any remaining operational

module to fail). Then two sequential repairs (i.e. of B and

C) take place both with rate 1 (transitions 2 to 3 and 3 to 4),

followed by two sequential ‘recovered’ notifications (tran-

sitions 4 to 5 and 5 to 0).

The recovery manager I/O-IMC. Figure 6 shows the

I/O-IMC model of the RM. The RM monitors the failure

of RU 1 and RU 2, and when an RU failure is detected, the

RM grants its recovery by outputting a ‘start recover’ sig-

nal. The RM has internally a queue of failing RUs that keeps

track of the order in which the RUs have failed. The RM re-

covery policy is to grant a ‘start recover’ signal to the first

failing RU. In queuing theory literature, this is referred to as

a first-come-first-served (FCFS) policy. For instance, con-

sider the following sequence of states: 0, 1, 4, 7, 2, 6, and

0; this corresponds to both RUs being initially operational,

then RU 1 fails, immediately followed by an RU 2 failure.

Since RU 1 failed first, it is granted the ‘start recover’ signal

(transition 4 to 7), the RM then awaits for RU 1 ‘up’ signal,

and once received, RM grants the ‘start recover’ signal to

4

0

5

1

6

2

7

3

failed_B?

up_B?

up_C?

failed_B?

failed_C?

failed_C?

up_C?

up_B?

up_B?

failed_B?

failed_B?

failed_2!

up_C?

up_C?

failed_C?
failed_C?

up_B?

up_B?

failed_B?

failed_B?

up_C?

failed_2!

up_C?

failed_C?

failed_C?

failed_B?

up_B?

up_B?

up_2!

failed_B?

up_C?

failed_2!

failed_C?

up_C?

up_B?

failed_C?

Figure 5. The failure interface I/O­IMC model.

RU 2 (as RU 2 is still in the queue of failing RUs) (transi-

tion 2 to 6). Finally, the RM receives ‘up 2’ and both RUs

are operational again.
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0

5

1

6

2

7

3

failed_1?

failed_1?

up_2?

up_2?

up_2?

failed_2?

failed_2?

start_recover_1!

failed_2?

up_1?

up_1?

up_1?

failed_1?

failed_1?

failed_1?

up_2?

start_recover_2!

failed_2?

up_2?

start_recover_1!

failed_2?

up_1?

up_1?

failed_1?

failed_1?

start_recover_2!

up_2?

up_2?

failed_2?

up_1?

failed_2?

up_1?

failed_1?

failed_1?

up_2?

up_2?

failed_2?

failed_2?

up_1?

up_1?

Figure 6. The recovery manager I/O­IMC
model.

3.3 I/O­IMC modeling flexibility

Note that any of the four basic I/O-IMC models pre-

sented above can be, to a certain extent, locally modified

without affecting the remaining models. Indeed, this mod-

eling flexibility/extensibility and modularity is a powerful
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feature of the I/O-IMC formalism [4, 2].

In particular, any of the four I/O-IMC models can be in-

dividually and easily altered to reflect the correct system

behavior, e.g. one can change the recovery strategy of the

RM if the FCFS strategy turns out to be not suitable. One

can also alter some or all of the assumptions made above.

For instance, the models can be improved to reflect the real

system behavior by (1) using failure (or repair) distributions

other than the exponential distribution, (2) explicitly model

the communication manager and the various communica-

tion delays, or (3) allow the RM to fail.

3.4 Implementation Details

We have automated the whole modeling and analysis

procedure with a Java program. The program takes as input

the modules decomposition, which is simply specified as

a set partition. For example, the decomposition with three

modules and two RUs, as shown in fig. 1, is specified as {
[A(mttr,mttf)] [B(mttf,mttr), C(mttf,mttr)]}, where mttf and

mttr are values of the module’s MTTF and MTTR. Note that

MTTF(MTTR) is the reciprocal of the failure(repair) rate.

All the modules and RUs (i.e. partitions) in the specifi-

cation are mapped to MIOA specifications, which are used

by an algorithm to explore the state-space and generate the

corresponding I/O-IMCs. Based on the specified decompo-

sition, the program also generates the corresponding I/O-

IMC for the RM. All the generated I/O-IMC models are

output in the Aldebaran .aut file format which can be pro-

cessed with the CADP tool-set [11]. In addition to gen-

erating all the necessary I/O-IMCs, a composition/analysis

script is also generated. This script conforms to the CADP

SVL scripting language. The details about the generation of

the I/O-IMC modes and the composition/analysis script can

be found in [21].

After the generation step, we run the SVL script, within

CADP, which composes/aggregates all the I/O-IMCs based

on the modules decomposition, reduces the final I/O-IMC

into a CTMC, and computes the measure of interest (i.e.

the steady-state availability in this case).

4 Case study

4.1 MPlayer

We have applied local recovery to an open-source soft-

ware, MPlayer [18]. MPlayer is a media player, which sup-

ports many input formats, codecs and output drivers. It has

approximately 700K lines of code and it is available under

the GNU General Public License. In our case study, we

have used version v1.0rc1 of this software that is compiled

on a Linux Platform (Ubuntu version 7.04).
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Figure 7. The modules decomposition view of
the MPlayer software architecture.

To introduce local recovery, we have to decompose the

MPlayer software architecture into a set of RUs. One pos-

sible decomposition of system modules is shown in Fig. 7.

In this example, the system is partitioned into 3 RUs;

• RU AUDIO: wraps the Libao module, which controls

the playing of audio.

• RU GUI: comprises the Gui module, which provides

the graphical user interface of MPlayer.

• RU MPCORE: encapsulates five modules of the sys-

tem; Stream reads the input media and provides buffer-

ing, seek and skip functions. Demuxer separates the

input to audio and video channels. Mplayer connects

the other modules, and maintains the audio-video syn-

chronization. Libmpcodecs embodies the set of avail-

able codecs. Libvo displays video frames.

4.2 The FLORA framework

FLORA [13] is a framework that supports the decompo-

sition and implementation of software architecture for local

recovery. It partitions system modules as defined by RUs

and isolates these modules by assigning each RU to a sep-

arate process5. In addition to the specified RUs, FLORA

introduces a CM6 and a RM. The CM mediates all inter-RU

communication and employs a set of communication poli-

cies (e.g. drop, queue, retry messages). The RM can detect

fatal errors and can restart dead RUs.We have used FLORA

for introducing local recovery to MPlayer for several de-

composition alternatives.

5Interaction between the RUs are redirected through Inter-Process

Communication.
6Modeled as part of the RM as mentioned in Section 3.
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4.3 Experimentation and analysis

We have implemented local recovery for a total of 3

decomposition alternatives of MPlayer. 1) Global recov-

ery, where all the modules are placed in a single RU

({[Mplayer, Libmpcodecs, Libvo, Demuxer, Stream, Gui,

Libao]}) 2) Local recovery with two RUs, where the mod-

ule Gui is isolated from the rest of the modules ({[Mplayer,

Libmpcodecs, Libvo, Demuxer, Stream, Libao] [Gui]}) 3)

Local recovery with three RUs, where the module Gui,

Libao and the rest of the modules are isolated from each

other ({[Mplayer, Libmpcodecs, Libvo, Demuxer, Stream]

[Libao] [Gui]}).
To be able to measure and compare the availability of

these three implementations, we have modified each mod-

ule so that they fail with the specified failure rates (MTTF).

After a module is initialized, it creates a thread that is peri-

odically activated every second to inject errors. The opera-

tion of the thread is shown in Algorithm 1.

Algorithm 1 Periodically activated thread for error injec-

tion

1: time init← currentT ime()
2: while TRUE do

3: time elapsed← currentT ime()− time init
4: p← 1− 1/etime elapsed/MTTF

5: r ← random()
6: if p ≥ r then

7: injectError()
8: break
9: end if

10: end while

The error injection thread first records the initialization

time (Line 1). Then, each time it is activated, the thread

calculates the time elapsed since the initialization (Line

3). The MTTF value of the corresponding module and the

elapsed time is used for calculating the probability of er-

ror occurrence -assuming an exponential distribution- (Line

4). random() returns, from a uniform distribution, a sam-

ple value r ∈ [0, 1] (Line 5). This value is compared to the

calculated probability to decide whether or not to inject an

error (Line 6). Possibly an error is injected by basically cre-

ating a fatal error with an illegal memory operation. This

error crashes the process, on which the module is running

(Line 7).

The RM component of FLORA logs the failure and re-

covery times of RUs to a file during the execution of the

system. For each of the implemented alternatives, we ran

the system for 5 hours. Then, we have processed the log

files to calculate the cumulative time Tavail when the RU

that contains the core system module, Mplayer, has been

operational. The whole system is unavailable if and only if

this RU is unavailable. So, Tavail corresponds, by defini-

tion, to the system availability as a whole. We have calcu-

lated the steady-state availability of the system as the value
Tavail

5
. The results of the measured system availability are

shown in Table 2 for the different alternatives. Table 2 also

shows the estimated system availability based on the ana-

lytical models as described in Section 3. We have used the

MTTF values shown in Table 1 both for the analytical mod-

els and the error injection threads. We have measured the

MTTR values from the actual implementation by calculat-

ing the mean time it takes to restart a process and the cor-

responding modules over 100 runs. The measured MTTR

values are used in the analytical models as listed in Table 1.

Table 1. Measured MTTR values and specified

MTTF values for the MPlayer modules.

Module MTTR (ms) MTTF (sec)

Libao 480 60

Libmpcodecs 500 1800

Demuxer 540 1800

Mplayer 800 1800

Libvo 400 1800

Stream 400 1800

Gui 600 30

Table 2. Comparison between the estimated
and measured system availability.

Decomposition Measured Estimated

Alternative Availability Availability

all modules in 1 RU 83.27 83.60

Gui, the rest 92.31 93.25

Gui, Libao, the rest 97.75 98.70

each module in a separate RU N/A 99.96

For the sake of comparison, the last row shows the esti-

mated availability for the decomposition alternative, where

each module of the MPlayer is placed in a different RU

(i.e. 7 RUs in total). This decomposition isolates all the

modules from each other and hence, leads to the highest

availability that can be achieved (although such an alter-

native might not always be feasible due to constraints im-

posed by the domain, deployment and performance require-

ments). The measured availability is not shown here since

we do not have an implementation for this decomposition

alternative. Implementing local recovery for this decompo-

sition alternative (and for any decomposition in general) is

a time-consuming procedure; however, using the analytical

approach we can easily and quickly get an estimated avail-

ability of such an alternative.
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In Table 2, we observe that the measured availability and

the estimated availability values (in %) are quite close to

each other. In general, the measured availability is lower

than the estimated availability. This is due in part to the

communication delays in the actual implementation which

are not accounted for in the analytical models. In fact,

the various communications between the software modules,

which are modeled using interactive transitions in the I/O-

IMC models, abstract away any communicaion time delay

(i.e. the communication is instantaneous). However, in re-

ality, the recovery time includes the time for error detection,

diagnosis and communication among multiple processes,

which are subject to delays due to process context switching

and inter-process communication overhead.

5 Conclusion and future work

Local recovery is applied to achieve higher system avail-

ability and its effectiveness highly depends on the imple-

mented software decomposition. In this paper, we have

presented an easy-to-use methodology that provides quanti-

tative means to compare different software decomposition

alternatives in terms of their availabilities. We have au-

tomated the whole analysis procedure with a Java/CADP-

based tool. Local recovery was implemented for the open-

source MPlayer software and we have applied our quanti-

tative approach to estimate the availability for four differ-

ent decomposition alternatives. We have implemented three

of these decomposition alternatives and the estimated avail-

abilities turned out to be very close to the actual measured

availabilities.

We have used our I/O-IMC methodology with the

FLORA approach by integrating it into the ArchStudio en-

vironment, which is based on xADL [7]. One can also inte-

grate (given some adjustments) this methodology into other

modeling/analysis frameworks, such as the UML [20] or the

AADL [8] modeling formalisms, to support certain depend-

ability/performance analyses.

As for future directions, one can revisit some or all of

the assumptions made in Section 3 and/or modify any of the

four basic I/O-IMC models to more accurately represent the

real system behavior.
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