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Abstract

The software design is one of the most challenging tasks
during the design of a mechatronic system. On one hand,
it has to provide solutions to deal with concurrency and
timeliness issues of the system. On the other hand, it has
to glue different disciplines (such as software, control and
mechanical) of the system as a whole. In this paper, we pro-
pose a model-driven approach to design the software part
of a mechatronic system, which consists of two major parts:
systematic modeling and correctness-preserving synthesis.
The modeling stage is divided into four steps, which focus
on different aspects (such as concurrency, multiple disci-
plines and timeliness) of the system respectively. In partic-
ular, we propose a set of handshake patterns to capture the
concurrent aspect of the system. These patterns assist de-
signers to build up an adequate top-level model efficiently.
Furthermore, they separate the system into a set of concur-
rent components, each of which can be further refined in-
dependently. Subsequently, the multidisciplinary and real-
time aspects of the system are naturally specified and an-
alyzed in a series of refinements. After the important as-
pects of the system are specified and analyzed in a unified
model, a software implementation is automatically synthe-
sized from the model, the correctness of which is ensured by
construction. The effectiveness of the proposed approach is
illustrated by a complex production cell system.

1 Introduction

Nowadays, the industry has to deal with more and more
complex mechatronic systems which involve multiple disci-
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plines and complex functionalities. The software design of
these systems is usually a most challenging and problematic
task, due to the following two major reasons.

• The software design usually starts after the design in
other disciplines (e.g. mechanics and electronics) is
finished, which often results in long design iterations.
Furthermore, since the design of other disciplines is
often fixed during the software design, it is difficult to
obtain an optimal solution for the whole system.

• The software design involves non-trivial interactions
between multiple disciplines and between the different
functional components. The design decisions made on
a single functional component or in one discipline can
have impact on the behaviors of other parts of the sys-
tem. These impacts are often difficult to foresee before
system integration in most existing design approaches.
Therefore, unexpected software behaviors are only ob-
served in a late design stage, which results in long and
costly design iterations.

To overcome these design difficulties and improve the de-
sign efficiency, a systematic approach is required to design
the software part of a mechatronic system, which has the
following characteristics.

• concurrent engineering: the software design is carried
in parallel with the design in other disciplines, which
accelerates the design process and facilitates the opti-
mization of design solutions.

• local refinement: each design step should focus only
partial information (a component or an aspect) of the
system, which reduces the design complexity.

• predictable refinement: when different parts (compo-
nents or aspects) of the system are integrated together,
the original properties of each part should be preserved
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Figure 1. The key models in the approach

in the integration. In this way, design efficiency can be
largely improved.

In this paper, we introduce a model-driven approach for
the software design of mechatronic systems. The approach
starts from a top level abstraction of the system. Then a
sequence of refinements are carried out to focus on differ-
ent aspects (concurrency, multi-disciplines and real-time) of
the system. In the end, the final implementation is automat-
ically generated from the model. In the following part of
the paper, we illustrate how the concurrent engineering, lo-
cal refinement and predictable refinement are supported by
the proposed approach.

The remaining part of the paper is organized as fol-
lows. Section 2 gives an overview of the proposed ap-
proach. Section 3 illustrates a production system which is
used as an example to illustrate the approach in later sec-
tions. Section 4 presents a systematic modeling approach
for the software design of mechatronic systems based on the
POOSL language [4]. The approach consists of three major
steps, which address different aspects of the system respec-
tively. Section 5 briefly reviews the synthesis approach in
[6] used to generate an implementation from a model in a
correctness-preserving way. Section 6 concludes the paper.

2 Overview of the approach

In this paper, we present a model-driven approach, which
consists of two major parts: systematic modeling and
correctness-preserving synthesis. The following discussion
focuses on the first part of the approach. Details of the sec-
ond part can be found in [6].

During the modeling stage, different aspects of the sys-
tem, such as concurrency, multiple disciplines and timeli-
ness need to be investigated based on a series of models.
We show that these aspects can be investigated at different
abstraction levels of the system (see Figure 1). By prop-
erly ordering the investigation sequence, these aspects can
be analyzed in a step-wise and property-preserving way.

The design process starts from an informal description
(called handshake diagrams) of the system, which can be
easily constructed following the proposed guidelines and
gives a natural representation of the system. Based on the

handshake diagram, a C-model can be derived to investigate
the concurrency aspect of the system. Then the multidisci-
plinary aspect is analyzed in a refined model (M-model) of
the C-model. In the end, the real-time aspect is specified
in a refined model (R-model) of the M-model. Further-
more, the consistency between different abstraction levels
can be maintained so that properties analyzed at a higher
level model are still valid at lower level models.

• Handshake diagram In the handshake diagram, the
system is considered as a set of concurrent compo-
nents (called players), which operate independently
and communicate with each other. The identification
of the players in a system is mainly based on its phys-
ical elements. These players interact with each other
to achieve certain functional goals. A set of handshake
patterns are proposed, which ensure the proper inter-
actions between players.

• C-model In the C-model, the system consists of a
set of players derived from the handshake diagram.
The C-model focuses on the untimed interactions be-
tween different players, which requires little informa-
tion from other disciplines. Different from the hand-
shake diagram, the conditions of the handshakes be-
tween players are explicitly defined. In the C-model,
properties (such as deadlock and resource access con-
flicts) relating with the interactions between the con-
current players can be formally analyzed. It is usually
a difficult task to obtain an adequate C-model, which
often relies on the designers’ experience and wisdom.
In this paper, we show that an adequate C-model can
be obtained from the handshake diagram smoothly.

• M-model A mechatronic system typically is built by
different disciplines including software, control and
mechanical engineering. Correspondingly, the inter-
actions between these disciplines are reflected by the
interactions between the high-level discrete control,
the low-level continuous control. In the M-model,
these interactions are first specified and analyzed in a
discrete-event model. We illustrate that the refinement
from the C-model to the M-model can be carried out
locally in a predictable way.

• R-model In previous models, the system behavior is
analyzed qualitatively. However, a mechatronic sys-
tem also involves continuous time behaviors (such
as the continuous movement of its mechanical part)
where its states change over time. To address the quan-
titative aspects of the system, we need to incorporate
the timing information and the continuous time behav-
ior into the model. We show that a consistent refine-
ment from the M-model to the R-model can be carried
out locally.
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Figure 2. The production cell system

After different aspects of a system are incorporated into
a unified model, the gap between requirements and imple-
mentations has been largely filled. The remaining work is
to generate an implementation which has the expected be-
havior as specified in the model. We use the synthesis ap-
proach proposed in [6] to generate the implementation from
the model correctly by construction. A short review of the
synthesis approach will be presented in Section 5.

3 System description

To demonstrate how the proposed approach is applied to
design the software of a complex mechatronic system, we
use a production cell system as the case study, which sim-
plifies a realistic industrial system [3]. There are six actu-
ators and more than a dozen sensors in the system, which
cooperate with each other to manufacture a product.

As shown in Figure 2, the primary products (in this case
the metal blocks) are put into the system at the left-end
of Feeder belt. Feeder belt transports these primary prod-
ucts to Feeder robot, which pushes the primary product into
Container. In the industrial version of the production cell
system, the blocks are pieces of plastics, which are molded
inside a molding machine. In our demo system, the mold-
ing machine is represented by a simple device (called Mold-
ing robot), which opens or closes the door of Container to
emulate the behavior of the molding machine. Before the
blocks are pushed into Container, the door has to be closed.
After the block is processed in Container, the door opens
and Extraction robot picks up the block using an electro-
magnet. Then the block is moved to Extraction belt, which
delivers it to a fixed table (called Extraction buffer). For

the purpose of demonstration, Rotation robot is installed at
the end of Extraction buffer. Using an electromagnet, Rota-
tion robot transfers the block from the table to Feeder belt,
such that the block can enter the production cycle again.

4 System modeling

In this section, we first give a short review of the mod-
eling language used in the paper. Afterwards, each major
step in the modeling stage is introduced in details. The con-
sistency between these steps are also demonstrated by using
the production cell system as a case study.

4.1 Modeling language: POOSL

The POOSL (Parallel Object-Oriented Specification
Language) is a general purpose modeling language, which
integrates a process part based on a timed and probabilistic
extension of CCS [7] and a data part based on the concepts
of traditional object-oriented languages. Therefore, in addi-
tion to the control flow statements in traditional languages
such as loop and choice statements, POOSL provides a set
of primitives to specify e.g. parallelism, non-determinism,
interruption, synchronous communication and time. Here
we give a brief explanation of the language to help in un-
derstanding the examples in the paper. More detailed infor-
mation about the language can be found in [4] [9].

A POOSL model consists of a set of concurrent
processes connected by static channels. Each process has its
own data space. It can only share its information with other
processes through synchronous communication. Communi-
cations between processes are accomplished through ports
connected by static channels. For instance, statement “out!
request” indicates the willingness to send a request message
through port “out” and “in? request” indicates the willing-
ness to receive a request message from port “in”. When the
“in” and “out” ports are connected by a channel, both parts
are synchronized and the communication is performed.

In addition to the parallelism between processes, a finer
grain of parallelism (concurrent activities) can be also spec-
ified inside a process using the par statement (“par S1

and...and Sn rap”). Each activity can share a data space
with other activities, and exchange its information with oth-
ers through shared data. One way for concurrent activities
to interact with each other is through the use of guard state-
ments. For instance, consider an n-size buffer in a producer-
consumer example. The behavior of the buffer can be spec-
ified by two concurrent activities as in Figure 3. Both ac-
tivities interact with each other through a shared variable
“size”. The guard “[size<n]” in the first activity specifies
that the buffer can receive a product from the producer only
when it is not full. After a product is inserted into the buffer,
“size:=size+1” is executed atomically. The second activity
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par
FromProducer()()

and
ToConsumer()()

rap.

FromProducer()()
[size<n] in? insert{size:=size+1};

FromProducer()().
ToConsumer()()

[size>0] out? remove{size:=size-1};
ToConsumer()().

Figure 3. The behavior of the n-size buffer

is enabled when the buffer is not empty. We can also see
that the infinite behavior of both activities can be easily ex-
pressed in a tail-recursive fashion. The POOSL language
provides the “delay” primitive to specify timing information
in the model. Similar to many other formal languages, the
timing semantics of POOSL relies on the two-phase execu-
tion model in [8]. The state of the model can change either
by asynchronously executing actions (Phase 1) or by syn-
chronously consuming time (Phase 2). Time advances only
when no action can be performed. This timing semantics
assumes that actions are instantaneous in the model, which
largely simplifies the analysis of the timing behavior.

Different from the traditional “if” statement, non-
deterministic selection (“sel S1 or...or Sn les”) does not
specify conditions for its branches. This facilitates design-
ers to abstract system behaviors. This is because there are
not always enough details available to determine the condi-
tions when making an abstraction of a system behavior.

4.2 Handshake diagram

A natural way to separate a system is to divide it into a set
of concurrent components, each of which is an autonomous
entity consisting of mechanics, electronics and/or software.
We use the player concept in [10] which abstracts each en-
tity from different disciplines. We classify these compo-
nents into active and passive players. The identification of
active players is mainly based on the active physical ele-
ments of the system (such as the belts and the robots in
the production cell system). Sometimes, these active play-
ers interact with each other through a buffer instead of in
a direct manner. The intermediate between active players
are considered as passive players (such as the container and
the extraction buffer in the production cell system). For in-
stance, the production cell system we mentioned earlier can
be partitioned into 8 players as shown in Figure 2.

These players in the system interact with each other to
achieve manufacturing goals. However, the interactions be-
tween these players cannot occur unconditionally. For in-
stance, Rotation robot is not allowed to put a block at the
left-end of Feeder belt, if there is already a block occupy-
ing the position. To avoid conflicts and operation reliabil-
ity, additional negotiation is required before these players
carry out their interactions. We use the handshake mecha-
nisms to specify these negotiations between players. These

handshakes between players not only define the point where
interactions between players can occur properly, but also
well separate the internal behavior of each player from other
players, which facilitates local refinements in later design
stages. During the handshake process, two players are in-
volved. The one initializing the handshake process is called
requestor and the other is replier. According to different
types and states of the requestor, we propose three different
handshake patterns.

• Two-way handshake This mechanism is used if the re-
questor is a passive player. When the requestor asks
the other player (which must be an active player) to
carry out the interactions between them, it only need
to wait for the end of the interactions. As shown in
Figure 4-a, the requestor first sends a request to the
replier. Then the replier carries out the actual interac-
tion when it is ready. In the end, one player informs
the other about the end of the interaction. For instance,
we can use this handshake mechanism when Container
asks Extraction robot to fetch a block inside it.

• Three-way handshake This mechanism is used in case
that the requestor is an active player but it is in an in-
active state. As shown in Figure 4-b, the requestor first
sends the request to the replier. Then the requestor
waits for the grant from the replier, which indicates
that the replier is also ready for the interaction. After
the interaction between them finishes, one informs the
other about the end of interaction. For instance, when
a block arrives at Feeder robot, Feeder robot starts to
request Container to insert the block. Container may
have another block at the moment. In this case, Con-
tainer does not react to Feeder robot until it is empty.

• Four-way handshake This mechanism is used in the
situation that the requestor is an active player and it is
in an active state. In this case, after the requestor sends
the request to the replier, it has to take actions based
on the state of the replier. Figure 4-c shows two sce-
narios of the four-way handshake. The requestor first
sends the request to the replier. Then the replier imme-
diately replies (postpone or grant) to the requestor ac-
cording to its states. If the request is granted, the inter-
action between them can occur. In case that the request
is postponed, the requestor has to take certain actions
and wait until the partner grants the request. Consider
the scenario when Feeder belt wants to put a block to
Feeder robot. Feeder robot can be either occupied or
not at that moment. Feeder robot has to inform Ro-
tation robot immediately so that the Feeder belt can
either stop or continue moving without intruding the
safety constraint1.

1To avoid breaking the system physically, at most one block can be in
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Figure 4. The synchronization mechanisms
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Figure 5. The handshake diagram of the pro-
duction cell system

It is not difficult to conclude that the two-way handshake
between two participants can be seen as a special case of
the three-way handshake. The same conclusion also holds
for the three-way handshake mechanism and the four-way
handshake mechanism. Despite these facts, the two-way
and three-way handshake mechanisms are still introduced
separately because they have less synchronization overhead.

Using the introduced handshake patterns, we can easily
draw the handshake diagram for a system. For instance,
the handshake diagram of the production cell system can be
constructed as shown in Figure 5.

4.3 C-model

The C-model is the first “formal” model in the design
process in the sense that some properties of the system can

Feeder robot.

be analyzed by using simulation or verification techniques.
To support the concurrent engineering, the C-model is a
high level abstraction of the system, where only “abstract”
interactions between players are considered. The details of
the mechatronic devices such as motor speed and belt length
are not required in the model. To ensure the local refinement
of each player in later design stages, each player should be
always ready to receive the request from other players and it
can also request other players without knowing their states.

Having the handshake diagram, we can derive an ade-
quate C-model from it in two steps.

1. Identify the number of concurrent interactions. Each
player consists of a set of concurrent activities, each of
which performs the handshake with one of other play-
ers. For instance, Rotation robot interacts with two
other players in the system. It has two concurrent ac-
tivities to perform the handshakes with them respec-
tively (see also Example 1).

2. Define the condition for the handshake. Each requestor
and replier perform the handshakes based on its own
states. For instance, Extraction buffer requests to Ro-
tation robot when it is occupied by a block.

In the following, we use several examples to demonstrate
how to make an adequate abstraction for each player in the
C-model.

Example 1 The Rotation robot player
Rotation robot interacts with Extraction buffer and

Feeder belt in the system (as shown in Figure 6-(a)). We use
two POOSL process methods (Input()() 2 and Output()())

2In the POOSL syntax, the two pairs of braces in the definition of a
process method are used to contain an input and a output parameter lists.
In this example, both parameter lists are empty.
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Rotation-robot

Extraction-buffer

Feeder-belt

(a) Physical interactions

Input()()
in? request;
available:=true;
[empty] skip;
[empty=false] skip;
in? end{available:=false};

Input()().
(b) Synchronization with Extrac-
tion buffer

Output()()
[available] out! request;
out? grant
/* pick up the block*/
empty:=false;
/* move the block to Feeder belt */
[available=false]out! end;
/* move back to Extraction buffer*/
empty:=true;

Output()().
(c) Synchronization with Feeder belt

Figure 6. The behavior of Rotation robot

to specify the handshakes between them. More specifically,
Input()() defines the handshake between Extraction buffer
and Rotation robot and Output()() specifies the other. Both
process methods are combined as two concurrent activities.

par
Input()()

and
Output()()

rap.

We use a two-way handshake mechanism to negoti-
ate the interaction between Extraction buffer and Rota-
tion robot. Figure 6-(b) illustrates the handshakes between
Rotation robot and Extraction buffer, where Rotation robot
is always willing to receive the request (no guard is put in
front of “in? request”.). After it receives a request, a flag
“available” is set, which indicates that the delivering block
is in the Extraction buffer area. The consequent behavior is
guarded by a flag “empty” representing that Rotation robot
is ready to pick up a block. After the block is picked up
(“empty” becomes false), Rotation robot receives an end
message from Extraction buffer, which indicates the block
has left the extraction buffer area.

When Extraction buffer interacts with Rotation robot, it
also interacts with Feeder belt at the same time, which is
specified by another parallel activity in Figure 6-(c). Ex-
traction buffer first requests to Feeder belt, when a block is
ready for the delivering. It waits until Feeder belt is ready
to receive the block (out? grant). After that, the block is de-
livered to Feeder belt. A guard ([available=false]) is put in
front of out? end to ensure the logic correctness at this ab-
straction level. Namely, the interaction with Feeder belt is
always finished later than that with Extraction buffer. The

Extraction-robot

Extraction-belt

Extraction-buffer

(a) Physical interactions

Input()()
in? request;
[first=false]in ! grant
in? end{first:=true};

Input()().
(b) Synchronization with
Extraction robot

Output()()
[last]out! request;
sel

out? grant{blocked:=false}
or

out? postpone{blocked:=true};
/* stop the feeder belt*/;
out? grant{blocked:=false}
/*start the feeder belt*/

les;
/*move a block to the feeder robot*/
{last:=false; load:=load-1};

out? end;
Output()().

(c) Synchronization with Extrac-
tion buffer

Remove first()() Add last()()
[first & (blocked=false)] skip; [(last=false) & (load >0)] skip;
/*the right sensor is off*/ /*the left sensor is on*/
{first:=false; load:=load+1}; {last:=true};

Remove first()(). Add last()().
(d) Internal behavior of Extraction belt

Figure 7. The behavior of Extraction belt

comments in Figure 6-(c) guides the refinement in later de-
sign stages.

Example 2 The Extraction belt player
Extraction belt interacts with two other players: Extrac-
tion robot and Extraction buffer. Different from the pre-
vious example, the handshake conditions are changed not
only by the interactions between the players, but also by
the internal behavior of Extraction belt. We use flag “first”
to indicate whether a block is at the right-end of the belt,
flag “last” to indicate whether a block is at the left-end of
the belt and flag “blocked” to represent a block is blocked
at the left-end of the belt. Two additional activities (Re-
move first()() and Add last()()) are given to abstract the in-
ternal behavior of Extraction belt. Remove first()() states
that the block at the right-end can be removed, if no block
is blocked at the left-end. Add last()() specifies that a block
will reach the left-end if there are blocks on the belt.

The above examples illustrate how to abstract a system
in the C-model. By identifying the number of concurrent
interactions, choosing handshake mechanisms for interac-
tions and defining handshake conditions, an adequate ab-
straction of the system can be easily specified. Figure 8
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Figure 8. The C-model of the production cell system

shows the C-model of the production cell system, where the
eight processes correspond to the eight players in Figure 2.
Although this abstraction is at a very high level, many cru-
cial system properties related with resource access conflicts
can already be analyzed. For instance, in the C-model of
the production cell system, the following properties can be
verified.

• The system is always deadlock free, when there are
less than 8 blocks in the system.

• There is at most one block in Extraction Buffer.

• There is at most one block in Container.

• Feeder robot can only push a block into Container
when the door is closed and Container is empty.

As we have mentioned previously, players negotiate with
each other for reliable “physical” interactions between them
(as shown in Figure 4). However, these interactions are not
explicitly specified in the C-model yet. In the next subsec-
tion, we incorporate these interactions into the M-model.

4.4 M-model

A mechatronic system is built by several disciplines. The
software of the system glues these disciplines as a whole.
In general, software engineering mainly addresses the high-
level control of the system, which plans actions for the
physical elements. Control engineering deals with the low-
level control of the system, which derives stable and optimal
control algorithms for the physical elements. Mechanical
engineering applies principles of physics to implement the
physical elements. When a high-level control unit generates
an action for a physical element, the action is interpreted
by a corresponding control algorithm in a low-level control
unit. For instance, when a high-level control unit issues an
action “motor A: start to move”, this action is actually con-
nected to a low-level control loop which ensures that the
physical motor starts to move steadily according to a prede-
fined motion profile. On the other hand, the low-level con-
trol keeps on monitoring the states of the physical elements

and provides events to the high-level control, which trigger
the high-level control to plan next actions for the physical
elements. For instance, a low-level control unit keeps on
monitoring the position of a physical element, and when
the element reaches a crucial position (e.g. Feeder robot
reaches Container), the low-level control unit generates an
event to its high-level control unit. Consequently, the high-
level control unit plans the next action for the physical ele-
ment.

We use an M-model to specify the interactions between
different disciplines. To maintain design consistency, the
M-model is obtained by enhancing the C-model with more
details but keeping the same observable behavior at the
same time. In this way, the properties verified/tested in
the C-model can be preserved in the M-model. Roughly
speaking, each player in the C-model is further split into
two kinds of processes in the M-model, which correspond
to high-level control and low-level control (e.g. the refine-
ment of Rotation robot in Figure 9).

To simplify the analysis of the interactions between dif-
ferent disciplines, the behaviors of the low-level control
units are specified at a discrete event level of abstraction in
the M-model. On one hand, this allows that the major inter-
actions between the different disciplines are analyzed in a
relatively simple model. On the other hand, this model also
provides a framework for later integration of the continuous
time behavior in a straightforward way. In the following,
we use the Rotation robot player as an example to illustrate
the refinement from the C-model to the M-model.

Example 3 Reconsider the Rotation robot player in Exam-
ple 1, where its handshake mechanisms for interactions with
the other two players have been specified. But the actual
interactions between these players are left out. In the M-
model, these behaviors are incorporated in a systematic
way into two layers (high-level and low-level controls).

As shown in Figure 9, Rotation robot is further re-
fined into 3 processes: high ctl, motor low ctl and mag-
net low ctl. The high ctl process performs the high-level
control of the player. Its behavior can be extended naturally
by adding “interactions” to the behavior of Rotation robot
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High-level

control

Low-level

control

Figure 9. The refinement of Rotation robot in
the M-model

Input()()
in? request;
available:=true;
[empty] skip;
[empty=false] skip;
in? end{available:=false};

Input()().
(a)

Output()()
[available] out! request;
out? grant;
magnet! on;
empty:=false;
motor! start;
motor? stop;
magnet! off;
[available=false] out! end;
motor! reverse;
motor! start;
motor? stop;
motor! reverse;
empty:=true;

Output()().
(b)

Figure 10. The high-level control in Rota-
tion robot

Discrete()() motor? start;
motor? start; motor! stop;
motor! stop; motor? reverse;
motor ? reverse; Discrete()().

Figure 11. The behavior of the motor low ctl
process

in the C-model. Recall the handshake mechanisms in Figure
4. The interacting behavior between players are preformed
during their handshakes. For instance, after Rotation robot
receives the grant message from Feeder belt, both of them
are ready to carry out the actual “physical” interaction. As
shown in Figure 10-(b), Rotation robot turns on the mag-
net to pick up the block and then starts its motor to move
the block to Feeder belt. When the robot reaches the feeder
belt (“motor? stop”), it releases the block by turning off the
magnet. After the block is released, Rotation robot reverses
its direction (“motor! reverse”) and then moves back to the
table to pick up the next block.

Since the low-level control processes (e.g. the mo-
tor low ctl and the magnet low ctl process in Figure 9) act
as an interpreter between the high-level control and physi-
cal elements, their discrete-event behavior can be specified
in a rather straightforward way. For instance, Figure 11 il-
lustrates the discrete event behavior of the low-level control
for the rotation motor. It either carries out the actions from
the high-level control on the physical element (e.g. motor?
start;), or triggers discrete events based on the state of the
physical element (e.g. motor! stop;).

4.5 R-model

In the previous models, the system behavior is analyzed
qualitatively. To reason about quantitative properties of the
system such as deadlines and throughput, or to generate the
final control software, we need to incorporate timing infor-
mation into the model.

The timing information for the high-level control can be
specified by the quantitative timing relations between two
adjacent discrete events. For instance, in Figure 10-(a),
Rotation robot turns on the magnet to pick up a block. It
should start to move after the block has been elevated which
takes less than 0.1 seconds in time. This timing relation
can be specified by inserting a time delay statement (“delay
0.1”) in front of “motor! start”.

The timing information for the low-level control can be
added to the model in various ways. When the continuous
time behavior is not the concern of the analysis, the tim-
ing information can be added in the same way as that in
the high level control. However, when the continuous time
behavior is of interest, instead of adding the timing informa-
tion between discrete events, control loops with the timing
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Discrete()()
motor? start {rot Start; running:=true};
[rot Active=false] motor! stop{rot Stop; running:=false};
motor ? reverse{rot SetBackwards};
motor? start {rot Start; running:=true};
[rot Active=false] motor! stop{rot Stop; running:=false};
motor ? reverse{rot SetForwards};

Discrete()().

Continuous()()
[running] position:= rot Read;
nextpos:= rot Calculate (position);
rot Write (nextpos);
delay 0.001;

Continuous()().

Figure 12. The behavior of the motor low ctl process

information are incorporated into the model. By defining
the switch conditions for discrete events based on the state
change in a control loop, the timing relations between the
events are specified indirectly.

During system design, control algorithms in the low-
level control are usually analyzed and generated by other
commercial tools such as simulink [2] or 20-sim [1][5]. To
provide a natural integration of them in the R-model, they
are first represented by data methods, which are replaced by
actual algorithms during system synthesis. A similar idea
can also be used to represent physical communications such
as reading a sensor value in the R-model. The details about
implementing an interface data for POOSL model can be
found in [6]. The following example briefly illustrates how
to add the continuous time behavior into the model and pre-
pare the final blueprint for the system synthesis.

Example 4 The motor low ctl process in Figure 11 incor-
porates the continuous time behavior by specifying a sepa-
rate activity (Continuous()()), which is in parallel with the
discrete one (Discrete()()) as shown in Figure 12. As we
have mentioned perviously, the control algorithm is encap-
sulated into a data class (“rot” in this case), which also
charges physical communications such as reading a value
from the position sensor and writing a value to the actuator.
Therefore, a typical control loop with the frequency 1000
times/s can be specified by the Continuous()() activity as
shown in Figure 12. The data object “rot” only defines com-
munication interfaces in the R-model, which has no direct
communication capability with the physical world. During
software synthesis, it will be replaced by its counterpart in
the C++ implementation, which provides the actual physi-
cal communication with the physical world.

The continuous time behavior does not interact directly
with the high-level control (the high ctl process in Figure 9).
It only interacts with the discrete event behavior inside the
low-level control by imposing switch conditions on events.
For instance, the condition “[rot Active=false]” indicates
that the rotation arm reaches the feeder belt or the extrac-
tion buffer. Consequently, events should be triggered in
the low-level control to stop the physical motor completely
(“rot Stop”) and to inform the high-level control (“motor
! stop”). Therefore, the interactions between the low-level
control (the motor low ctl process) and the high-level con-

Figure 13. A snapshot of the implementation

trol (the high ctl process) remain the same as those in the
M-model.

5 System synthesis

When a model has sufficiently described the system be-
havior, it is desirable during the system synthesis to gen-
erate an implementation which has the same desired prop-
erties as that of the model. However, for analysis conve-
nience, the timing behavior of the system has been idealized
in the model, which cannot be completely implemented in
reality. For instance, actions are instantaneous in the model
but are always durational in the implementation. This tim-
ing mismatch is often neglected by existing synthesis tools.
Consequently, the generated implementation may exhibit
unexpected behaviors. In [6], we have proposed a synthe-
sis approach for real-time systems. Different from existing
approaches, our proposed approach generates an implemen-
tation, the behavior of which can be interpreted in two time
domains, namely, virtual time and physical time. The vir-
tual time associated with an implementation is the same as
the time in the model. The physical time refers to the time in
the environment, which the implementation interacts with.
To ensure that the implementation has almost the same be-
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havior as the model in the physical time domain, the fol-
lowing two techniques are used during the execution of the
implementation.

• The execution of the implementation is based on its
virtual time semantics. In this sense, the implementa-
tion has exactly the same behavior as that of the model.

• The virtual time and the physical time are synchro-
nized. Therefore, the behavior of the implementation
is almost the same as that of the model. The synchro-
nization errors between two time domains can be used
to predict the property deviation of the implementation
in the physical time domain from the model in the vir-
tual time domain.

For the production cell system, the implementation is
generated from the R-model by using the synthesis ap-
proach proposed in [6]. Figure 13 gives a snapshot of the
running system, which is controlled by the synthesized soft-
ware.

6 Conclusions

Fast time to market and dynamics of the market demand
an efficient design process for mechatronic systems. Soft-
ware design is usually most problematic and inefficient part
in the whole design process. In this paper, we proposed a
model-driven approach tailored for software design in these
mechatronic systems to reduce design difficulty and to im-
prove design quality. The proposed approach embeds three
distinguishing characteristics into its design steps: concur-
rent engineering, local refinement and predictable refine-
ment. The software design process starts from the top-level
view of a system, which requires little details of other dis-
ciplines. Furthermore, by using the proposed handshake
mechanisms, an adequate top-level model (C-model) can
be constructed naturally. Inside the C-model, the system
is divided into a set of concurrent players, each of which
can be further refined locally. Although the C-model is at a
high abstraction level, many important safety properties can
already be investigated. In the first refinement (M-model)
of the C-model, each player is independently refined into
high-level and low-level controls, which facilitates the lo-
cal refinement in the R-model. The high-level control plans
actions for the physical elements of the system and the low-
level control operates the physical elements in a stable and
optimal way. The M-model focuses on the interactions be-
tween two control levels. To ensure the predictable refine-
ment, each player has the same observable behavior as that
in the C-model. Consequently, properties of the C-model
can be preserved. In the refinement (R-model) of the M-
model, the continuous time behavior is incorporated inside
the low-level control. Consequently, this refinement can be

carried out locally inside each low-level control. The in-
teractions between high-level and low-level controls remain
the same as those in the M-model, which ensures the R-
model is a predictable refinement of the M-model. The ef-
fectiveness of the proposed approach is illustrated by the
design of an industrial-size production cell system.
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