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Abstract—Stream processing accelerators are often applied
in MPSoCs for software defined radios. Sharing of these acceler-
ators between different streams could improve their utilization
and reduce thereby the hardware cost but is challenging under
real-time constraints.

In this paper we introduce entry- and exit-gateways that are
responsible for multiplexing blocks of data over accelerators
under real-time constraints. These gateways check for the
availability of sufficient data and space and thereby enable the
derivation of a dataflow model of the application. The dataflow
model is used to verify the worst-case temporal behavior based
on the sizes of the blocks of data used for multiplexing. We
demonstrate that required buffer capacities are non-monotone
in the block size. Therefore, an ILP is presented to compute
minimum block sizes and sufficient buffer capacities.

The benefits of sharing accelerators are demonstrated using
a multi-core system that is implemented on a Virtex 6 FPGA.
A stereo audio stream from a PAL video signal is demodulated
in this system in real-time where two accelerators are shared
within and between two streams. In this system sharing reduces
the number of accelerators by 75% and reduced the number
of logic cells with 63%.

Keywords-real-time applications; stream processing acceler-
ators; dataflow; accelerator sharing; multiprocessing systems

I. INTRODUCTION

Nowadays programmable signal processors are applied in

Software Defined Radios (SDRs). A hardware cost reduction

can be achieved by specialization of the instruction set of

these Digital Signal Processors (DSPs). However, the design

effort and associated cost to create such processors and their

accompanying compilation tool-chains can be significant.

Stream processing hardware accelerators can be an attrac-

tive alternative compared to the use of specialized DSPs.

These accelerators can improve the performance and power-

efficiency at the cost of reduced flexibility.

Sharing of accelerators between data streams could im-

prove their utilization and reduce thereby hardware costs.

Accelerators can be shared by different streams within one

application or by data streams from different radios that

are executed simultaneously on the multiprocessor system.

This work is supported by the SenSafety project in the Dutch COMMIT
program (commit-nl.nl).

However, sharing of accelerators is challenging under real-

time constraints as a system implementation is required which

can be captured in a temporal analysis model. With such

an analysis model the minimum granularity at which blocks

of data, i.e. the block size, must be multiplexed over the

accelerators can be computed given the minimum throughput

requirement of a stream of data of an application. Computa-

tion of the minimum granularity is complicated by the fact

that a larger granularity amortizes accelerator reconfiguration

overhead and thereby increases the throughput of one stream.

However, this results also in a longer occupation of the

accelerators and thereby reduces the throughput of other

streams that share the same accelerator. As such, there is

a mutual dependency between the minimum block sizes

for different streams. Another complicating factor is that

intuitively a smaller block size should result in a smaller

buffer capacity but this is not generally the case because the

required buffer capacities are a non-monotonic function in

the block sizes. As a result the total required memory size

for buffering is a non-monotonic function in the block size

as well.

In this paper we present an approach for sharing ac-

celerators under real-time constraints in a multiprocessor

architecture for stream processing applications. Sharing of

stream processing accelerators is enabled by multiplexing

data streams using so-called entry- and exit-gateways. These

gateway pairs check for sufficient input data and output space

at respectively the input and output of a chain of accelerators

such that the minimum throughput can be derived using a

Cyclo-Static Data Flow (CSDF) model [1]. An abstraction

of this CSDF model is created in the form of a single actor

Synchronous Data Flow (SDF) model. This SDF model

enables the derivation of an Integer Linear Program (ILP)

for the computation of the minimum granularity at which

blocks of data from the streams must be multiplexed over

shared accelerators.

The achieved reduction in hardware cost has been evaluated

by creating a multiprocessor system with shared accelerators

that is implemented on a Virtex 6 FPGA. This system has

been evaluated using a real-time Phase Alternating Line

(PAL) stereo audio decoder application.

The outline of this paper is as follows. In the next

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.147

81



section we will describe related work. The basic idea behind

our approach is described in Section III. In Section IV

we describe our architecture with gateways in detail. The

derivation of the temporal analysis models in the form of

a CSDF and the more abstract SDF model are described in

Section V. The evaluation of our system in terms of hardware

costs and utilization of the accelerators using a real-time PAL

stereo audio decoder application is described in Section VI.

The conclusion is stated in the last section.

II. RELATED WORK

Hardware accelerators can be integrated into systems

as Instruction-Set Extensions (ISEs), by means of Remote

Procedure Calls (RPCs) or by making use of Direct Memory

Access (DMAs). We additionally will describe architectures

designed for accelerator integration which employ DMAs.

ISEs allow fine grained interaction with application specific

accelerator hardware due to a low communication latency

and usually without synchronization overhead. This type

of accelerator integration is applied in (general purpose)

processors [2], [3], [4] and proposed as a way to save power

by integrating so-called conservation cores [5]. A potential

drawback is that the processor is usually stalled until the

accelerator returns the result which limits the maximum

achievable performance gain. An additional drawback is

that accelerators usually belong to a single core, preventing

sharing between cores to improve utilization.

The use of RPCs [6] allows a less tight integration

between processors and accelerators. For communication

with accelerators synchronization needs to be added which

results in some overhead. While concurrent processing of

processor and accelerator is possible in theory, in practice it

is difficult as results from the accelerator are often required

for application progression. Additionally, it is not trivial to

keep the processor occupied during the exact duration of the

RPC call to maximize performance gains [7].

An architecture which makes use of DMAs for the

communication with accelerators is described in [8] and

allows concurrent processing of data streams by processors

and accelerators. In [8] they also describe a CSDF model

for the derivation of the minimum throughput for the case

that accelerators are shared by multiple streams. What is

missing in [8] is the check for space at the output of a chain

of accelerators, before processing of a block of data begins.

Without this check, no correct CSDF model can be derived.

Furthermore, determining an appropriate block size for every

multiplexed stream given a throughput constraint has not

been addressed in [8]. We will introduce a single actor SDF

model for the derivation of the minimum block size which

takes both the overhead caused by the flushing the data out

of a pipeline of accelerators and the time needed for saving

the state of the accelerators into account.

PROPHID [9] is an architecture which uses a crossbar with

a pre-calculated Time Division Multiplex (TDM) schema

PT2 PT3 G2 Acc2 G3 PT4

PT0 G0 Acc0 Acc1 G1 PT1

dual-ring interconnect

Figure 1. Example architecture overview with all types of tiles

to provide real-time guarantees. Accelerators stream data

through FIFO channels, hiding all network aspects. Like our

design, a special bus is used to configure accelerators while

a streaming network handles all data. Processors in [9] are

not connected to the data streaming interconnect, unlike our

approach, making it impossible to integrate them in a stream

processing application directly. Multiplexing of data streams

is supported where state is retained within the accelerators,

limiting the number of multiplexed streams per accelerator.
Eclipse [10] employs a shell to integrate stream processing

accelerators, an approach similar to the network [11] used

in our design. The use of the C-FIFO [12] algorithm in

a hardware shell results in larger hardware costs than our

credit-based hardware flow-control support in our network. A

shell around every accelerator manages arbitration between

multiplexing data streams. Our implementation only requires

logic for arbitration in the gateways instead of in every

accelerator. There is no temporal analysis model presented

and performance is measured instead within a simulator.
Our approach of using a network to stream data between

accelerators and a dedicated bus to save and restore accel-

erator state is similar to [13]. However, the use of a switch

to implement point-to-point connections results in higher

hardware costs compared to the ring-based interconnect

of [14], [11] which is used in this paper. The interconnect

from [13] provides real-time guarantees but lacks support to

share accelerators.

III. BASIC IDEA

In this section we present a high level overview of our

architecture and the relation with the dataflow models used

for the derivation of the minimum block size.
An overview of our hardware architecture is shown in

Figure 1. In this architecture an entry-gateway hardware

block is responsible for scheduling blocks of data from

different streams over a chain of accelerators. Streaming of

a block of data is only allowed if:

1) the exit-gateway has indicated that all data in the chain

of accelerators belonging to the previous block has

been processed so a context switch can be performed,

and:

2) enough space is available at the output buffer such

that a consuming task can receive the next block of

data without having to stall for additional space in this

buffer
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A CSDF model suitable for temporal analysis can be

created for this hardware, which is shown simplified for

clarity in Figure 2. We show that one CSDF model per stream

can be created despite that accelerators are shared. This

CSDF model is a conservative abstraction of the hardware

implementation. We will show that the minimum throughput

can be derived using this model.

We will use the symbol � to indicate that the CSDF model

is a conservative abstraction of the hardware. As such, the

hardware is a temporal refinement of this model, according to

the-earlier-the-better [15], [16] refinement theory. This theory

is applicable if the application is functional deterministic and

for each component it holds that:

∀i, a(i) ≤ â(i)⇒ ∀j, b(j) ≤ b̂(j)

This equation states that an earlier arrival of the i-th input

token at time a(i) in the refined model compared to the arrival

of the corresponding token in the abstraction at â(i) should

not result in a later production of the token by the refined

model at b(j) compared to production of the corresponding

j-th token by the abstraction at b̂(j). This equation can

be generalized for components with multiple inputs and

outputs. If the equation holds we say that component C
refines component C ′ and this is formalized as C � C ′.
A component can be an actor, its corresponding task or

subgraphs of actors or tasks. If the refinement relation holds

per component than it holds also for a complete graph of

components. This means that the worst-case throughput and

latency of the refined graphs is always better than the model

being refined, i.e. the model obtained by abstraction. As such

temporal guarantees concerning maximum token arrival times

derived for the abstract model are always valid for the refined

model and this also holds for subgraphs of these models. As

a result, it is sufficient to show that a schedule of the abstract

model exists that satisfies the temporal requirements.

We can therefore determine the minimum throughput by

creating an admissible schedule for the CSDF graph at design

time. In an admissible schedule actors do not fire before

P0
Entry

Gateway

P1

A0 A1
Exit

Gateway

C0

C1

Reality

vP0
vG0

vA0
vA1

vG1
vC0

〈ρ
P0
〉 〈ρ

G0
〉 〈ρ

A0
〉 〈ρ

A1
〉 〈ρ

G1
〉 〈ρ

C0
〉

�
CSDF

vP0 vA0,1 vC0

〈ρ
P0
〉 〈ρ

A0,1
〉 〈ρ

C0
〉

SDF �

Figure 2. Basic idea for sharing accelerators

they are enabled. Actors are enabled if sufficient tokens

are available in their input queues. During the construction

of this schedule we use worst-case firing durations of the

actors. These firing durations are equal to the maximum

durations between arrival of the data enabling a task such that

it becomes eligible for execution and the actual production

of data by this task. Tasks can be executed by accelerators

or by processors.

The block size determines the number of samples to be

processed by the accelerators before a block of another stream

can be processed. To derive the block size using the dataflow

model we cannot make use of Maximum Cycle Mean (MCM)

analysis techniques [17] as these analysis techniques require

that expansion into an Homogeneous Synchronous Data Flow

(HSDF) graph is possible [1]. However, an HSDF graph with

a fixed topology cannot be derived as the block size remains a

variable parameter in the CSDF model. Instead of computing

the MCM we construct a schedule that is parameterized in

the block size.

We will show that a more compact parameterized SDF

model can be created from this CSDF model with a minimum

loss of accuracy. As such, the CSDF model is a refinement of

the SDF model, as is indicated in Figure 2. Due to transitivity

of the � relation we can conclude that also the hardware is

a refinement of this SDF model. We will show that this SDF

model is suitable for the derivation of the minimum block

size such that the throughput constraint of the application is

satisfied despite overhead of saving the state and flushing

data out of the FIFO buffers between the accelerators.

IV. PROPOSED ARCHITECTURE

In this section we will introduce the heterogeneous

Multiple Processor System on Chip (MPSoC) architecture

for real-time stream processing applications [11] which

was extended with support for sharing stream processing

accelerators. It consists of a number of interconnected “tiles”

which contain processing elements.

In Figure 1 an overview of our architecture is presented.

The “tiles” come in four types: the “Processor Tile” (PT),

which contains a processor and some peripherals, the “Ac-

celerator Tile” (Acc) which contains a configurable stream

accelerator, the “entry-gateway” tile (G0/G2) and the “exit-

gateway” tile (G1/G3). Each pair of entry- and exit-gateways

handles multiplexing of data streams over a specific set of

accelerator tiles. As reconfigurating or replacing state within

the accelerators while data is still being processed in those

accelerators would result in corrupt data, the entry- and exit-

gateway work together to ensure that the pipeline is idle

before another data stream is multiplexed. Such a pair of

gateways is indicated by the dashed boxes in Figure 1. As

interconnect we use the low-cost dual communication ring

network from [11].

We will present the different types of tiles in more detail

in the following sections.
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Figure 3. Overview of Processor and Accelerator tiles

A. Processor Tile

Figure 3a shows an overview of a processor tile. Every tile

contains a RISC Microblaze processor and some peripherals

like a timer for interrupts, a small local memory for a boot-

loader and a small data scratch pad memory. Every processor

is equipped with an instruction and data cache which is

sufficiently large to cache program code of tasks running

on the processor. Tasks are governed by a real-time budget

scheduler [18] from a POSIX compliant kernel with multi-

threading support which was developed for this system.

Every processing tile is connected to a tree-shaped inter-

connect providing fair access to external memory, which

is for the case study presented in this paper unused and

as such is omitted in the rest of this paper. It also has a

connection to a dual-ring interconnect providing streaming

tile-to-tile communication for data streams. In order to keep

hardware costs low, the inter-tile interconnect only supports

posted writes: a write completes for a producer when the

interconnect accepts, it does not wait until the write actually

arrives at its destination memory. The interconnect provides

lossless communication where guaranteed acceptance at every

tile is required to prevent loss of data which removes the need

for hardware flow control for communication with memories.

Tiles can only write data to a remote memory; when data

from a remote tile is needed, both tiles need to work together

to exchange data.

Processor tiles support two types of data streams: software

FIFO communication, using the C-FIFO [12] algorithm,

which allows an arbitrary number of simultaneous streams

between processing tiles or hardware FIFO communication

which is used to communicate directly with accelerator tiles.

To support hardware FIFO communication we use a credit

based flow control mechanism. This is implemented with a

second ring for the communication of credits in the opposite

direction as the data [11]. Currently it is only possible to

dual-ring interconnect

μBlaze
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Timer

R
in

g
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IF
O

DMA

L
M

B

BRAM
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Memory

IRQ

acc. cfg. bus
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(a) Entry-gateway

dual-ring interconnect

DMA

cfg

D A+D

Exit -gateway

(b) Exit-gateway

Figure 4. Overview of both gateway types

receive one data stream from an accelerator tile and send

one data stream to an accelerator tile to minimize hardware

costs.

B. Accelerator Tile

Accelerator tiles, as depicted in Figure 3b, consist of a

coarsely programmable accelerator and a streaming I/O port

to the inter-tile dual-ring interconnect. The network interface

handles the transition from address based communication to

streaming data [11].

As such, the accelerators have no notion of other aspects

of the system: they consume an incoming data stream from

the Network Interface (NI) and produce a data stream which

is returned to the NI. Accelerators can stall the incoming

or outgoing stream of data tokens if they run out of data or

space. To this end, the NIs for accelerators use a credit-based

flow control algorithm.

Each accelerator is connected to a bus to load and save

its state and configuration. This is used to provide context

switches when different data streams are multiplexed.

Accelerators are chained together at run-time by a descrip-

tion written by a programmer which describes the flow of data

between tiles. A support library abstracts the implementation

details and allows a programmer to simply connect blocks

of functionality in a programming language like C.

C. Gateways

Entry-gateways are based on processor tiles and as such

contain the same components plus some components needed

for managing accelerators and multiplexing data streams, as

is shown in Figure 4a. Configuration and state of accelerators

are loaded and saved by means of a configuration bus which

is connected to all managed accelerators. Configuration and

state are stored in the local memory of the entry-gateway

for every multiplexed stream. To prevent the speed of the
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processor becoming a bottleneck in the data path, data is

forwarded to the accelerators by a small DMA.
The entry-gateways handle streams using a Round-Robin

(RR) scheduling policy. The use of RR allows to multiplex

unrelated streams for multiple applications that are being

executed simultaneously on the MPSoC.
Data streams arriving at the entry-gateway use software

FIFOs store their data in the dual ported C-FIFO memory.

The DMA controller copies data for the currently active

stream from this local FIFO memory to an accelerator using

hardware credit-based flow control. Produced data by the

last accelerator in the chain is passed to the exit-gateway,

which converts from hardware to software flow control, to a

processing tile or entry-gateway.
The exit-gateway is an accelerator containing a DMA

converting the hardware flow-controlled data stream to the

address based software flow-controlled FIFO, as is shown in

Figure 4b. When the last sample from a data block passed

through the exit-gateway, the entry-gateway is notified that the

pipeline is idle and another data stream can be multiplexed.

V. DATAFLOW MODEL

In this section the CSDF model of our sharing approach

for accelerators and its SDF abstraction are explained in

detail. We will now first provide a brief introduction into

these models and then present a detailed CSDF model for a

single data stream using a shared accelerator followed by its

abstraction into a SDF model.

A. (C)SDF
An SDF model is a directed graph G = (V,E) with actors

v ∈ V and directed edges e ∈ E. Each edge ei,j describes a

unbounded queue for atomic objects called tokens between

actors vi and vj . The head and tail of each edge is annotated

by quanta which denote the number of tokens an actor will

consume or produce during its firing. Every actor has a firing
duration ρv , which is the duration between the consumption

of input tokens and the production of output tokens. An actor

can fire when its incoming edges have at least the number

of tokens as denoted by their quanta. To prevent concurrent

firing of an actor where this is not desired, a self edge is used

with a single token. Bounded buffers between two actors are

modeled with a forward edge with complementary back edge

containing a number of initial tokens denoting the depth of

the buffer.
CSDF extends SDF by introducing the concept of phases.

Each CSDF actor has by definition an implicit self-edge with

one token. Furthermore, each actor has a cyclic behavior

during which its phases are fired. The firing duration for

every phase p is denoted as ρ
v
[p]. Both firing durations and

quanta are expressed as a list of values with a length equal to

the number of phases of the corresponding actor. To denote a

parametric list of quanta for each phase of a CSDF actor, we

use the notation: 〈z × 1, 0〉, denoting z phases with quanta

1 followed by one phase of quanta 0.

B. CSDF Model

In our approach gateways are used for multiplexing of

data streams over a set of accelerators. For each stream that

is multiplexed over the accelerators a separate CSDF model

is created. A CSDF model for one such stream is shown

in Figure 5. To keep the figure concise we assume, without

loss of generality, that only one accelerator is shared. This

accelerator is modeled with actor v
A

. The values of α1 and

α2 are two tokens and are equal to the capacity of the buffers

in the network interfaces.

In the CSDF model, the entry-gateway is modeled by actor

v
G0

and the exit-gateway is modeled by v
G1

. The first phase

of v
G0

can not start before v
G1

has produced a token on the

edge (v
G1

, v
G0

) which indicates that the previous block of

data has been processed. Additionally v
C

must have produced

ηs tokens to indicate that ηs locations are available in the

input buffer of v
C

. Furthermore at least ηs tokens have been

produced by actor v
P

before the first phase of v
G0

can start.

Actor v
G0

produces ηs tokens, one in each phase. All

phases denote the transfer of a sample to the shared

accelerator v
A

. Actor v
A

will consume each token and

produce a token for the exit gateway actor v
G1

. After v
G1

has

produced ηs tokens for actor v
C

, with each token modeling

an output sample from the shared accelerator to the consumer,

it produces a token to notify v
G0

that the pipeline is idle.

The time that other streams might use the accelerators

before stream s ∈ S can be processed, denoted by �s is

a function in the block sizes of all other streams and is

included in the firing duration of the first phase of actor

v
G0

. The set S contains all streams multiplexed by an entry-

/exit-gateway pair over a set of accelerators. The time Rs

required to reconfigure the accelerators for stream s is also

included as well as the time it takes for v
G0

to copy a sample,

which is denoted by �. As such, the firing duration of ρ
G0

[0]
becomes:

ρ
G0

[0] = �s +Rs + � (1)

The durations of all other phases of v
G0

are �. Similarly, the

time needed to copy a data element by v
G1

is denoted by �′.
Given the CSDF model in Figure 5 we can construct an

execution schedule for the gateways and accelerator that

process a single stream s under the assumption that the

pipeline was initially idle, thus �s = 0, as shown in Figure 6.

This schedule is parameterized in ηs and shows that after ηs
firings of all actors a complete block has been processed and

is ready to be consumed by v
C

. From this schedule we can

conclude that the total processing time of one block of ηs
samples for data stream s is τs time, which is upper bounded

by τ̂s:

τs ≤ τ̂s = Rs + (ηs + 2) ·max(�, ρ
A
, �′) (2)

According to Equation 2, τs consists of the reconfiguration

time plus the time needed to process ηs samples and the time

needed to empty the pipeline of gateways and accelerator(s).
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Figure 5. CSDF model of accelerator multiplexing for a data stream s
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v
A

v
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t→

Figure 6. Execution schedule of stream s processing blocks of ηs samples

The maximum of the firing durations of the gateways and

the accelerator(s) is taken because the actor with the largest

firing duration in the chain determines the time to process a

sample.

Streams are multiplexed in a RR fashion by the entry-

gateway. By applying the theory presented in [19] we can

conclude that when a block of data for stream s is queued,

in the worst-case it has to wait �s time. This is equal to the

processing duration of a block of data for every other stream

that uses the same accelerator, before the block of stream s
is processed. Therefore �s is bounded from above by:

�s ≤ �̂s =
∑

i∈S\s
τ̂i (3)

As a result the maximum time γs it takes before a block of

queued samples of stream s is processed, is equal to the sum

of the processing time of one block of data for all streams

sharing that accelerator:

γs = �̂s + τ̂s =
∑

i∈S

τ̂i (4)

C. Single SDF Actor model

The detailed CSDF model inside the dashed box in

Figure 5 can be abstracted into a single actor SDF model as

shown in Figure 7. The firing duration of this SDF actor is γ̂s.

There is hardly any loss in accuracy because processing of

the next block cannot start before the previous block has been

processed completely. The only loss in accuracy compared

v
P

v
S

v
C

ρ
P γs ρ

C
b ηs

ηsb α0

ηs d

dηs α3
1 1

Figure 7. SDF abstraction for a data stream s over an accelerator vs

to the CSDF model is caused by the fact that the SDF actor

will atomically produce all tokens when the actor finishes

while in the CSDF model tokens for v
C

are produced during

firing of v
G1

and will therefore arrive earlier.

This means that the SDF model is more pessimistic than

the CSDF model and as such, according to the-earlier-the-

better refinement, any throughput guarantees from the SDF

model will hold for the CSDF model and hardware as well.

D. Minimum Throughput Verification

When block sizes are specified by the designer, the firing

duration for actors v
s

denoting shared accelerators can be

determined using Equation 4. The quanta of v
S

are equal

to the block size ηs, except for the quanta of the self-edge.

The resulting graph is an SDF graph and the minimum

throughput and the minimum required buffer capacities given

a throughput constraint can be determined using existing

SDF techniques [20].

E. Non-monotone Behavior

When block sizes are not specified by the designer, they

have to be computed for the application. This computation is

difficult as minimum buffer capacities are not monotone in

the block size. We will illustrate this with an example using

the model from Figure 8a.

We can determine for every value of ηs what the mini-

mum required buffer capacities are using an existing SDF

technique [20] to obtain maximum throughput. When we do

this for the model from Figure 8a for ηs = 2 and ηs = 5, we

see that from Figure 8b the small block size requires a larger

buffer capacity than the larger block size. However, when

considering the required buffer capacities needed for ηs = 1
and ηs = 2, the opposite is true. As such, the minimum

buffer capacities are not monotone in the block size and thus

using the smallest possible block size does not result in the

smallest possible buffer capacities in general. A similar issue

occurs for minimum buffer capacities under a throughput

constraint.

F. Computing Block Sizes

Our SDF model can be used to create an ILP to compute

minimum block sizes and sufficient buffer capacities. This

ILP is correct for graphs with a topology as shown in Figure 7.

For every stream s in an application a certain minimum

throughput μs is specified, expressed in samples/s, which can

be derived from the throughput constraint of the application.
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Figure 8. SDF model showing the buffer size minimization problem

If we consider the SDF model from Figure 7 and assume

that α0 and α3 are sufficiently large to make the self-edge

on v
s

critical, the requirement on the minimum throughput

of stream s can be described by:

1

γs
· ηs ≥ μs (5)

To find the minimum block size for every stream multi-

plexed over a specific accelerator we have to derive ηi which

satisfies Equation 5 for every stream i ∈ S. The values of

ηi can be computed with the following ILP which is created

by substitution of γs in Equation 5.

Algorithm 1 Find smallest total block sizes

Minimize:
min

∑

s∈S

ηs

Subject to:

∀s ∈ S : ηs − c0 · μs ·
∑

i∈S

(ηi + 2) ≥ μs · c1 (6)

∀s ∈ S : ηs > 0 (7)

Given that:

c0 = max(�, ρ
A
, �′) (8)

c1 =
∑

s∈S

Rs (9)

After finding the smallest block sizes, a standard algorithm

for the computation of the minimum buffer capacities [20]

can be used.

To find the optimal block sizes resulting in the smallest

buffer capacities, a computational intensive branch-and-bound

algorithm can be used. This algorithm has to verify whether

the throughput constraint of every stream is satisfied for every

possible block size and must compute the accompanying

minimum buffer capacities to find the total minimum buffer

capacity.

G. Check For Space

As described before, in our model we not only have to

check for space in the FIFO of the first stream processing

accelerator but also in the buffer between the exit-gateway

and the consumer. We will now justify the need for this

check.

In Figure 9 a task graph with two pairs of producers and

consumers is depicted sharing a FIFO. Such a FIFO is found

Stream 0

Stream 1

t1 t2

t3 t4

s0 s0 s0 s1

Figure 9. Task graph showing shared FIFO sharing

between the gateways and accelerators in our architecture.

Task v1 and v2 produce and consume data for stream 0. Tasks

v3 and v4 do the same for stream 1.

Dataflow models like SDF define that the moment of

production of a token is the same instant a token arrives at

the consumer. When this FIFO is shared between streams,

for example when streams are multiplexed, tokens from

another stream can influence when produced tokens arrive

at the consumer because of head-of-line blocking. This is

not allowed in SDF and causes that the-earlier-the-better

refinement is not applicable.

Our sharing approach provides mutual exclusivity: when a

stream s wants to use the FIFO it needs to wait for the current

stream to be emptied from the FIFO. When this happens, a

token produced by s will immediately be available at the

FIFO output, satisfying the conditions of the refinement

theory.

VI. EVALUATION

In this section we will describe our real-time stream

processing application used for the evaluation of our system.

The hardware costs of our gateways and accelerators are

presented which demonstrates the benefits in terms of

hardware costs and utilization of our sharing approach.

A. PAL Stereo Audio Decoder

In order to demonstrate the sharing of accelerators in a

multi-core heterogeneous system under real-time constraints,

a demonstrator application was constructed which performs

real-time decoding of a PAL stereo audio stream.

In the PAL broadcast standard, video is transmitted using

an Amplitude Modulation (AM) signal at baseband. The

audio signal is offset 6 MHz from the base frequency and

consists of one or two Frequency Modulation (FM) signals

for mono, stereo or bilingual sound. For stereo, the first

channel contains a mix of both the left and the right (L+R)

FE

−

CORDIC

FIR+LPF

1

1
1 1

1 8 1 1 1 8

1 1

(L+R)

1 1

(L)

1 1
1 8 1 1 1 8 1

1

(R)

1

Figure 10. Task graph of the stereo audio decoder application
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channel while the second channel only contains the right

channel (R). To obtain normal stereo the left channel (L)

needs to be extracted by removing the second channel (R)

from the first channel (L+R).

A schematic overview of our demonstrator is shown in

Figure 10. Our architecture is implemented on a Xilinx

Virtex 6 FPGA where an Epiq FMC-1RX [21] front-end

(FE) is used to receive a TV signal containing a PAL

broadcast. The radio receiver is connected as an accelerator

to our system, providing a real-time data stream of the TV

broadcast at baseband frequency. A channel mixer accelerator

containing a CORDIC is used to mix this baseband PAL

signal to the carrier frequency of one of the audio channels.

A Low-Pass Filter (LPF) with built-in down-sampler is used

to remove high frequency signals and obtain the FM signal.

Next, an accelerator containing a CORDIC module is used to

convert the data stream from FM radio to normal audio. Once

again, high frequency signals are filtered out and a down-

sample conversion is applied to obtain a normal sample rate

for audio. This processing chain of accelerators is required

for both audio channels. Reconstruction of the left channel

from the (L+R) and (R) channels is performed in a software

task. The resulting two audio channels are sent to a stereo

output (speakers).

In Figure 10 we can see that a CORDIC accelerator and a

LPF+down-converter accelerator are both needed four times.

Instead of duplicating this functionality, our system contains

one CORDIC and one LPF+down-converter accelerator. A

gateway is used to multiplex the resulting four data streams

over both accelerators in real-time.

In our prototype, streams are switched by reading and

restoring state from software. Our accelerators and exit-

gateway have an execution time of one cycle/sample while

the entry-gateway requires 15 cycles/sample. Reconfiguration

time (Rs) is the same for all streams and is done in 4100

cycles. Using our sharing approach, we computed that for

44.1 kHz audio output, the streams at the start of the chain

need to multiplex blocks of 10136 samples while the streams

at the end of the chain will be multiplexed at 1267 samples

(note the 8 : 1 ratio in the block sizes due to down-sampling).

The entry-gateway has the largest influence on throughput

as it is processing data streams 5% of the time, which means

that 95% of the time is spent to save and restore state from

the accelerators. While we are working on techniques to

improve the speed at which state can be saved and restored,

our current implementation is already sufficiently fast for this

application as we meet our real-time throughput constraint

of 44.1 kS/s for continuous audio playback.

B. Hardware Costs

As described in Section IV-C, our entry-gateways are

implemented using a MicroBlaze CPU. As such, the hardware

costs can be mostly attributed to the MicroBlaze processor,

as can be seen in Figure 11.

MicroBlaze

FIR
+ Downsample

CORDIC

Entry-gateway

Exit-g
ateway

0

5

10

C
o
st

s
(×

1
03

)

Slices

LUTs

Figure 11. Hardware costs of various components in a Virtex 6 FPGA

The exit-gateway is fully implemented in hardware and its

costs are also depicted in Figure 11. As such, the hardware

costs for a complete entry and exit pair consists mainly

of the costs of one MicroBlaze, the DMA engine and the

exit-gateway, as shown in Table I.

Our demonstrator requires a 33-taps complex FIR filter

with built-in programmable down-sampler and a CORDIC

block, each four times. Without accelerator sharing this

application would require four instances of each accelerator

type. This would result in a lot of duplicated hardware which

would also have a low utilization. In this case, by having

just one of each type of accelerator, sharing implemented

by the gateways removes the need for duplicate logic. The

demonstrator still meets its throughput constraint while more

than 63% of the hardware costs of the accelerators could be

saved.

VII. CONCLUSION

In this paper we presented an approach for sharing stream

processing accelerators by means of gateways in a heteroge-

neous multi-core stream processing architecture under real-

time constraints. The hardware overhead introduced by the

entry- and exit-gateways is reduced by multiplexing multiple

data streams over various accelerators. This reduces the

Component Slices LUTs
Entry- + Exit-gateway 3788 4445

LPF + down-sampler (F+D) 6512 10837
CORDIC (C) 1714 1882

Non-shared vs Shared
4 * (F+D) + 4 * (C) 32904 50876

Gateways + (F+D) + (C) 12014 17164 -
Savings 20890 33712

(63.5%) (66.3%)

Table I
HARDWARE COSTS AND SAVINGS IN A VIRTEX 6 FPGA

(F = LPF, D = DOWN-SAMPLER, C = CORDIC)
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need for duplicated functionality and improves utilization of

accelerators.

We presented a CSDF temporal analysis model which can

be abstracted into a single SDF node model to describe a

gateway and a chain of accelerators which are shared between

multiple streams. The corresponding model can be used to

check if throughput constraints are satisfied when block sizes

are specified. An ILP is presented to compute minimum block

sizes under a throughput constraint. However, we showed

that minimizing the block sizes reduces the required buffer

capacities but does not necessarily result in the minimal

buffer capacities due to the non-monotonic relation between

block sizes and buffer capacities.

We evaluated the hardware costs and accelerator utilization

by means of a real-time PAL stereo audio decoder application.

In this application an accelerator containing a CORDIC and

an accelerator containing a filter are both shared between

two audio channel decoding paths resulting in a stereo audio

stream. The application satisfies its real-time throughput

constraints and improved accelerator utilization by a factor

of four. A reduction of 20890 slices (63%) and 33712 LUTs

(66%) was observed compared to an implementation with

four CORDICs and four filters.
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