
Software Architecture Reliability Analysis
using Failure Scenarios*

Bedir Tekinerdoğan, Hasan Sözer, Mehmet Akşit
Department of Computer Science, University of Twente,

P.O. Box 217 7500 AE Enschede, The Netherlands
{ bedir, sozerh, aksit }@cs.utwente.nl

* This work has been carried out as part of the
TRADER project under the responsibility of the
Embedded Systems Institute. This project is partially
supported by the Netherlands Ministry of Economic
Affairs under the Bsik program.

Abstract

We propose a Software Architecture Reliability
Analysis (SARA) approach that benefits from both
reliability engineering and scenario-based software
architecture analysis to provide an early reliability
analysis of the software architecture. SARA makes use
of failure scenarios that are prioritized with respect to
the user-perception in order to provide a severity
analysis for the software architecture and the
individual components.

1. Introduction

Software Architecture Reliability Analysis (SARA)
is an approach which integrates scenario-based
approaches with conventional reliability analysis
techniques. SARA defines a failure scenario model
that is based on the established Failure Modes and
Effects Analysis (FMEA) method in the reliability
engineering domain. Failure scenarios are
systematically derived and expressed using this model.
The developed failure scenarios are utilized to derive a
Fault Tree Set (FTS) in which failures are prioritized
based on severity from the perspective of the user.
Severity analysis is provided for the top-level
architecture and the most relevant fault categories are
identified for the individual components. The method
results in a failure analysis report that can be used for
improving reliability of the software architecture with
respect to user-perceived failures.

2. Reliability Analysis

The steps of SARA are presented in Figure 1. Here,

the rectangles represent the steps and the arrows
represent the control flow.

Figure 1. Software Architecture Reliability Analysis

 Similar to existing software architecture analysis
methods, SARA starts with defining alternative
architectures. The candidate architecture includes the
architectural components and their relationships. The
method does not presume to provide a particular
architectural view. In the mean time, definition of a
relative fault domain model is also necessary since all

potential faults will not be relevant for a given
reliability analysis project. The fault domain model is
utilized to derive failure scenarios which are
represented by means of a failure scenario model. In
this model, each scenario is represented by means of
the tuple <failure id, component acronym, failure
mode, failure cause, failure effect>. For instance, <F9,
DDI, “Data cannot be interpreted”, “Reception of out-
of-spec signals”, “Provide wrong/incomplete
information”> defines a failure scenario corresponding
to Data Decoder & Interpreter (DDI) component. The
failure cause (i.e. “Reception of out-of-spec signals”)
is categorized in accordance with the fault domain
model.

 Failure scenarios that are developed are connected
to each other. That is, failure of a component triggers
failure of another component. To make the connections
explicit, we construct fault trees. A fault tree is a
model for representing the cause-effect relations of
faults, in which the root node represents a system
failure. Since a failure can be caused by a set of faults,
the nodes of the tree are interconnected with logic
gates characterizing the propagation behavior. We
consider multiple system failures which lead to a set of
fault trees. We term this as a Fault Tree Set (FTS).

 Once the FTS is identified, we define the severity
degrees. In conventional fault tree analysis, fault trees
are used in order to calculate the probability that a
failure would take place, based on the probabilities of
fault occurrences ([3]). The severity is defined as a
concept related to faults denoting how severe a fault is
(e.g. faulty component can be repaired or not). In our
model, we take a user-centric approach and define
severity based on the user-perception. System failures
that we consider are not restricted to complete crash-
down of the system and they would not upset the user
in the same way. As a diversion from the usual
approach, we assign severity values to intermediate
failures and faults based on severities of system
failures.

 After calculating severity values, we perform
architecture level analysis in which we pinpoint
sensitive points of the architecture with respect to
reliability. For all components, we analyze associated
failures and their severities. In Figure 2, result of
architectural level analysis is given in which 26
components are compared in terms of weighted
failures impacting them. In component level analysis,
we analyze the categories of faults that impact a
component in accordance with the fault domain model.
In Figure 3, percentage of permanent and transient
faults that impact a component is analyzed. Failure
analysis report summarizes the analysis results and
provides hints for improvements.

0,00

5,00

10,00

15,00

20,00

25,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Architectural Components

W
ei

gh
te

d
Pe

rc
en

ta
ge

 o
f F

ai
lu

re
s

Figure 2. Architecture Level Analysis

0

10

20

30

40

50

60

70

root faults all faults

Pe
rc

en
ta

ge
 o

f F
au

lts

permanent transient

Figure 3. Component Level Analysis

3. Conclusion

We have introduced SARA, software architecture
reliability analysis method that has been developed
after a study of both software architecture analysis
methods and reliability engineering techniques. The
overall scenario elicitation and prioritization is inspired
from the work on software architecture analysis
methods ([2]). The definition of a fault domain model,
utilization of fault trees and failure model are inspired
from the reliability engineering domain ([1], [3]). The
usage of a failure model is beneficial for deriving
scenarios in a systematic way. In fact, we believe that
it is necessary to define quality attribute models to
provide a meaningful and feasible scenario-based
analysis.

References

[1] A. Avizienis, J.-C. Laprie, B. Randell, Fundamental

Concepts of Dependability, LAAS Report No 01145,
LAAS-CNRS, France, April 2001.

[2] L.Dobrica & E.Niemela, A survey on software
architecture analysis methods, IEEE Trans. on Software
Engineering, Vol. 28, No. 7, pp.638-654, July 2002.

[3] M. R. Lyu, Editor, Handbook of Software Reliability
Engineering, McGraw-Hill, New York, NY, 1996.

