A probabilistic XML approach to data integration

Maurice van Keulen
m.vankeulen@utwente.nl

Ander de Keijzer
a.dekeijzere@utwente.nl

Wouter Alink
w.alink@ewi.utwente.nl

Faculty of EEMCS, University of Twente
POBox 217, 7500 AE Enschede, The Netherlands

Abstract

In mobile and ambient environments, devices need to be-
come autonomous, managing and resolving problems with-
out interference from a user. The database of a (mobile)
device can be seen as its knowledge about objects in the
‘real world’. Data exchange between small and/or large
computing devices can be used to supplement and update
this knowledge whenever a connection gets established. In
many situations, however, data from different data sources
referring to the same real world objects, may conflict. It is
the task of the data management system of the device to re-
solve such conflicts without interference from a user. In this
paper, we take a first step in the development of a proba-
bilistic XML DBMS. The main idea is to drop the assump-
tion that data in the database should be certain: subtrees
in XML documents may denote possible views on the real
world. We formally define the notion of probabilistic XML
tree and several operations thereon. We also present an ap-
proach for determining a logical semantics for queries on
probabilistic XML data. Finally, we introduce an approach
Sfor XML data integration where conflicts are resolved by the
introduction of possibilities in the database.

1 Introduction

In mobile and ambient environments, devices need to
become autonomous, managing and resolving problems
without interference from a user. This also holds for
the data management component in the device. The
database of a (mobile) device can be seen as its knowl-
edge about objects in the ‘real world’. An XML fragment
(person) (nmyJohn(/nm})(tel)1111(/tel){/person) repre-
sents knowledge about a person in the real world whose
name is “John” and whose telephone number is “1111”.

Data exchange between small and/or large computing
devices can be used to supplement and update this knowl-
edge whenever a network connection gets established. In

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

many situations, however, data from different data sources
referring to the same real world objects, may conflict. Inter-
action with the user to resolve the conflict is not an option.
Imagine your mobile phone beeping every time you get into
Bluetooth range of a friendly device that sends you informa-
tion that partially conflicts with your own. It is the task of
the data management system of the device to resolve such
conflicts without interference from a user.

In this paper, we take a first step in the development of a
probabilistic XML DBMS capable of supporting data inte-
gration. The main idea is to drop the assumption that data in
the database should be certain: subtrees in XML documents
may denote possible views on the real world. For example,
the subtree for our person “John” may contain uncertainty
on his telephone number by enumerating the possibilities
that he either has phone number “1111” or “2222”. In this
way, attempting to integrate data from data sources that con-
flicts on the phone number of “John”, the data management
component need not consult the user, but simply stores his
own uncertainty in the database. Obviously, other data man-
agement components and applications using them need to
support uncertainty in data too. For example, a query for
the phone number of persons named “John” results in an
uncertain answer: it is either “1111” or “2222”.

Although this paper focuses on data integration, there
are other application areas where probabilistic (XML)
databases are useful. For example, in computer vision, im-
age retrieval and document annotation, objects/classes need
to be identified based on text, image or video content. This
is an error-prone process, so the resulting (meta-)data is
uncertain. [11] specifically mentions information extrac-
tion and scientific data management as application areas
for probabilistic databases. In [6], probabilistic data is also
used for the purpose of data integration, but from an infor-
mation retrieval point of view. They construct a probability
tree indicating the level of certainty with which a document
is about a certain topic, or field.

In this first attempt at a probabilistic XML DBMS capa-
ble of managing uncertainty in its data resulting from data

IFI",F

COMPUTER
SOCIETY

integration, we make a few simplifying assumptions. We
believe, that under these assumptions, the system is sim-
ple enough to study the fundamental problems, while it can
still manage uncertainty as a result of data integration ade-
quately.

e The model defined in Section 3 is rather simple. It
is based on enumerating possibilities. More advanced
models are known [8, 9], but this simple one appears
to be adequate for a first attempt at data integration.

e As customary for database, the device assumes for
querying that its database contains all knowledge
(closed world assumption). Only at data integration
time, it acknowledges that other devices may know
more.

e Other devices are assumed to deliver information ac-
cording to the proposed approach in an honest and pre-
dictable way.

e Schemas of documents are available. For now, we also
assume that schemas of to be integrated documents are
the same, so we can concentrate on data integration
rather than schema integration.

Roughly, we propose the following strategy for data in-
tegration. The information in a foreign probabilistic XML
document is used to supplement a device’s knowledge of
the real world. We either find (1) information on previously
unknown real world objects, (2) conflicting information on
already known real world objects, or (3) the same informa-
tion on already known real world objects. In the first case,
that information is simply added. In the second case, we
incorporate existing and new information as distinct possi-
bilities. The last case only confirms what the device already
knows. Note that the fact that information corresponds to
the same real world object can often not be determined with
certainty. We add possibilities to the document accordingly.
We assume the existence of a rule engine that determines
the probability of two elements referring to the same real
world object.

The paper is organized as follows. We first provide some
related research for a large part in the realm of probabilis-
tic relational databases. In Section 3, we formally define
the notion of probabilistic XML tree and several operations
thereon. Section 4 presents an approach for determining
a proper semantics for queries on probabilistic XML data.
The approach for XML data integration is further detailed in
Section 5. In Section 6, we validate our ideas with some ex-
periments. This first attempt at a probabilistic XML DBMS
gave rise to many issues that need to be resolved. We list
them in Section 7.

2 Related research

Our model for representing uncertainty is based on ex-
perience from probabilistic relational databases. A central

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

notion in the relational model is the tuple. Probabilistic rela-
tional databases often associate probabilities with tuples to
indicate the level of confidence in the existence of the entire
tuple. Probabilities are also often associated with individual
attributes to indicate the level of confidence in the value for
that particular attribute. [12] defines these as Type-1 and
Type-2 probabilities, respectively. In XML, probabilities
are associated with elements. This probability, therefore,
indicates the level of confidence in that element, but, at the
same time, also in the existence of the subtree rooted in that
element. As a result, the distinction between Type-1 and
Type-2 disappears in XML.

In [2, 1], dependencies among probabilistic attributes are
not allowed. This is, among others, due to the fact that
dependencies are difficult to express properly in the rela-
tional model. As [11] also discovered, dependencies like
mutual exclusiveness and simultaneous occurrence can be
expressed in a natural way in XML.

In [2], we proposed a probabilistic relational model sup-
porting Type-2 probabilities. The possible world approach
in this case, required exactly one possibility for each real
world object to be present in every possible world, in
other words, it could not express uncertainty about (non-
)existence of an object. This requirement disappears in the
case of probabilistic XML, i.e., we are able to support un-
certainty about existence of real world objects.

In [8, 9], a model for uncertain semistructured data is
proposed. Their approach starts from a graph theoretical
point of view and adds support and constraints to the model
to facilitate uncertain information. Unlike our approach,
they associate probabilities with individual nodes, whereas
we model possibilities as separate nodes in a tree.

3 Formalization of Probabilistic XML

Since order is important in XML, we first introduce some
notation for handling sequences.

Notational convention 1 Analogous to the powerset nota-
tion P, we use a power sequence notation S A to denote the
domain of all possible sequences built up of elements of A.
We use the notation (a1, . . ., ay] for a particular sequence.
We use set operations for sequences, such as U, 3, €, when-
ever definitions remain unambiguous.

We start by defining the notions of tree and subtree as ab-
stractions of an XML document and fragment. We model a
tree as a node and a sequence of child subtrees. We abstract
from the details of nodes. We assume that they incorpo-
rate properties like tag name, node identity, node kind, and,
if appropriate, attribute or text value. Equality on nodes is
defined as equality on the properties.

IFI",F

COMPUTER
SOCIETY

Definition 2 Let N be the set of nodes. Let T; be the set of
trees with maximum level i inductively defined as follows:

Ty = {(n,0)|neN}
Ti1 = TU{(n,ST)[neN
ANST € ST;

ANVT € STeng NT)
ANVYT,T' € STe T # T’
= NTANT =0)}

where NT = {n} U UT’eSTNT/- Let Tgy, be the set of
finite trees, ie, T € Tgn < 31 € No T € 7;. In the
sequel, we only work with finite trees. We sometimes use n
to indicate the root node of a tree.

‘We obtain a subtree from a tree 7" by indicating a node n
in T which is the root node of the desired subtree. We also
define a convenience function child that returns the child
nodes of a given node in a tree.

Definition 3 Ler subtree(T', n) be the subtree within T =
(m, ST) rooted at n.

T ifn=mn
subtree(T,
where T' such that (T',8T') € ST AneNT'. For
subtree(T,n) = (n,[(n1,ST1),..., (%m, STm)]), let
child(T,n) = [n1,. .., nm).

e subtree(T,n) = { n) otherwise

The central notion in our paper is the probabilistic tree.
In an ordinary XML document, all information is certain.
When two XML data sources are integrated, they may con-
flict on information about certain real world objects. There-
fore, after data integration, there may exist more than one
possibility for a certain text node, or in general, for entire
subtrees. We model this uncertainty in a probabilistic tree
by introducing two special kinds of nodes:
1. probability nodes depicted as v/, and
2. possibility nodes depicted as o, which have an associ-
ated probability.
The children of a probability node enumerate all possibili-
ties with a combined probability of 1. Ordinary XML nodes
are depicted as e. A probabilistic tree is well-structured, if
the children of a probability node are possibility nodes, the
children of a possibility node are XML nodes, and the chil-
dren of XML nodes are probability nodes. In this way, on
each level of the tree, you only find one kind of nodes.
Figure 1 shows an example of a probabilistic XML tree.
The tree represents an XML document with a root node
‘persons’ (which exists with certainty). The root node has
either one or two child nodes ‘person’ (with probabilities
.7 and .3, respectively). In the one-child case, the name
of the person is ‘John’ and the telephone number is either

=

[

+ persons

V\g

personl person/o\/ \ person
o 1y

1
nm l tel tel l nm i tel i nm l tel l
John 1111 2222 John 1111 John 2222

Figure 1. Example probabilistic XML tree.

‘11117 or ‘2222’ (with equal probability). In the more un-
likely case of two children, the information of both persons
is certain, i.e., they both have name ‘John’ and one has tele-
phone number ‘1111° and the other 2222’.

This document is a possible result of two documents
having been integrated, one document stating the telephone
number of a person named ‘John’ to be ‘1111°, and the other
stating the telephone number of a person named ‘John’ to be
2222’ It is uncertain if both talk about the same person. A
data integration matching rule apparently determined that,
with a probability of .7, they represent the same person.
Therefore, the combined knowledge of the real world is de-
scribed accurately by the given tree.

A probabilistic tree is defined as a tree, a kind function
that assigns node kinds, and a prob function that assigns
probabilities to possibility nodes. The root node is defined
to always be a probability node. A special type of proba-
bilistic tree is a certain one, which means that all informa-
tion in it is certain, i.e., there is no more than one possibility
for any node.

Definition 4 A probabilistic tree PT = (7T, kind, prob) is
defined as follows

e kind € N — {prob, poss, xml}
NI ={n e NT |kind(n) = k}.
kind(7) = prob where T' = (T, ST)
Vn e NJEvn/ € child(T,n) e n' € N;;ss
Vn € NPZSSVTL €child(T,n)en’ €
Vn e NI Vn' € child(T,n) en' €
prob € NPZSS [0,1]
Vn € Nrob (Zn,&h”d(T’n) prob(n')) = 1.
A probabilistic tree PT = (T, kind, prob) is certain iff
there is only one possibility node for each probability node,
ie., certain(PT) & Vn € N, o |child(T,n)| = 1. To
clarify definitions, we use b to denote a probability node, s
to denote a possibility node, and x to denote an XML node.

xml

prob

H'l"l'

COMPUTER
SOCIETY

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

Subtrees under probability nodes denote /ocal possibili-
ties. In the one-person case of Figure 1, there are two lo-
cal possibilities for the phone number, it is either ‘1111’ or
2222’. The other uncertainty in the tree are the possibilities
that there are one or two persons. Viewed globally and from
the perspective of a device with this data in its database, the
real world could either look like

e one person with name ‘John’ and phone number

‘1111° (probability .5 x .7 = .35),
e one person with name ‘John’ and phone number
2222’ (probability .5 x .7 = .35), or
e two persons with name ‘John’ and respective phone
numbers ‘1111 and ‘2222’ (probability .3).
These are called possible worlds.

Definition 5 A certain probabilistic tree PT’ is a possible
world of another probabilistic tree PT, i.e., pw(PT’', PT),
with probability pwprob(PT', PT) iff
e PT = (T,kind,prob) A PT' = (T’ kind', prob’)
T=@®38Tx) AT = (m,ST%)
ds € child(T,7) e child(T”,7) = [s]
X = child(T,s) = child(T’, s)
Vo € X echild(T,z) = child(T", z)
B =U,cxchild(T, z)
Vb € B e PT}, = subtree(PT,b)
APT), = subtree(PT’, b)
/\pW(PTIb7 PTb)
e Vb € B e p, = pwprob(PTy, PT})
e pwprob(PT’, PT) = prob(s) x [1,cp ps
The set of all possible worlds of a probabilistic tree PT is
PWSpr = {PT' | pw(PT’, PT)}.

A probabilistic tree is a compact representation of the set
of all possible worlds, but there is more than one possible
representation. The optimal representation is the one with
the least number of nodes obtained through a process called
simplification.

Definition 6 Tivo probabilistic trees PT, and PTo are
equivalent iff PWSpr, = PWSpp,. PT; is more com-
pact than PT if [INPTY| < |N'PT2|. The transformation
of a probabilistic tree to an equivalent more compact one is
called simplification.

Figure 2 shows an example of two equivalent probabilis-
tic trees. They both denote the set of possible worlds con-
taining trees with

e two nodes ‘nm’ and ‘tel’ with child text nodes ‘John’

and ‘1111° respectively (probability .8) and

e two nodes ‘nm’ and ‘tel’ with child text nodes ‘John’

and ‘2222’ respectively (probability .2).

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

S
nm ./
|

Lol b N
L[]

John 1111 2222
(b) PT5

T tel

*——
*——
*——

John 1111 John 2222
(a) PT1

Figure 2. Probabilistic XML tree equivalence.

person _e

V. V4
SN\, SN\,
nm l nm l tel l tel l
John Jon 1111 2222
(a) Independence
person . V
! N
" \o person__l__

o
nm '/t(\al\° nm °/te}°
John 1111 Jon 2222

(b) Dependence (c) Uncertainty about

existence

Figure 3. Expressiveness of probabilistic tree
model.

As mentioned earlier, relational approaches often disal-
low dependencies among attributes. The higher expressive-
ness of the probabilistic tree makes such a restriction un-
necessary. Figure 3 illustrates three common patterns: in-
dependence between attributes (Figure 3(a)): any combina-
tion of ‘nm’ and ‘tel’ is possible, dependency between at-
tributes (Figure 3(b)): only the combinations ‘John’/‘1111’
and ‘Jon’/“2222’ are possible, and uncertainty about the ex-
istence of an object (Figure 3(c)): one possibility is empty,
i.e., has no subtree. These patterns can occur on any level
in the tree, which allows a much larger range of situations
to be expressed.

IFI",F

COMPUTER
SOCIETY

4 Query Evaluation
4.1 Approach

For relational probilistic databases, several extensions to
relational algebra to support uncertain data have been pro-
posed [1, 10, 3, 7, 5]. Based on [12], we argued in [2] that
thinking in terms of possible worlds is powerful in deter-
mining a proper semantics of queries. Uncertainty can be
treated as having more than one possible instantiation de-
scribing a particular real world object. Choosing one possi-
ble instantiation, or possibility for short, for each real world
object, results in a possible world. Analogous to the no-
tion of parallel universes, all possible worlds co-exist in the
database and a query should, therefore, be evaluated in ev-
ery possible world separately. This approach is not specific
to relational databases, so we have adopted it for probabilis-
tic XML as well.

The parallel universes analogy also illustrates that a
query on uncertain data may produce a set of possible an-
swers indicating that the answer is uncertain as well. One
obtains one possible answer per possible world. The prob-
ability of a possible answer is simply the probability of the
possible world that gave rise to it.

In short, the correct answer to a query on a probabilistic
XML document can be obtained as follows:

1. enumerate all n possible worlds for the probabilistic
tree,

2. evaluate the query for each possible world according
to ordinary semantics,

3. the resulting n possible answers can be simplified by
merging (partially) equal possible answers.

This approach applies to queries in any query language.
In XPath or XQuery, answers to queries are sequences.
Queries on uncertain data, hence, result in sets of possible
sequences. Assuming that a sequence is represented by a

special sequence node @ , a probabilistic tree can be used
to represent the set of possible answers and simplification
can be used to obtain a compact representation of the an-
swer.

Note that this is just a statement about the semantics of
a query. An implementation can obviously use a more ef-
ficient algorithm for answering queries than by enumerat-
ing all possible worlds. Concerning query evaluation, our
prototype implementation focuses on obtaining insight into
how and to what degree possibilities in the data propagate to
possibilities in the answer. It, therefore, simply follows the
three-step strategy presented above. Performance of query
evaluation is a topic for future research and, hence, beyond
the scope of this paper. We only sketch how the prototype
enumerates all possible worlds in Subsection 4.2 below.

Figure 4 shows an answer to an example query on the
data of Figure 1. We have seen that there are three possi-

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

2

N

LT
ab gl al o]

1111 2222 1111 2222

(a) Query answer

Vv

\30

A

N
tell tell tell teli
1111 2222 1111 2222

(b) Compact answer

Figure 4. Query //person [nm="John"] /tel

ble worlds. Evaluating the query in each of these possible
worlds gives rise to the answer in Figure 4(a). Intuitively,
it states that the answer to telephone numbers of people
named “John” is uncertain: it is either “1111” or “2222”
or there are actually two Johns with a telephone number:
one with “1111” and one with “2222”. Figure 4(b) shows
how we can compactly represent this answer by merging
the first to possibilities, i.e., making the possibilities local,
since in both cases it is certain that the sequence contains
one element.

Note that to applications, it may be more logical to
present the answer to a query as a set of possible answers
where each answer is an ordinary XML sequence with ordi-
nary non-probabilistic XML fragments as elements. Such a
representation coincides with an enumeration of the possi-
ble worlds of the answer. On the other hand, an application
prepared for consuming probabilistic answers may benefit
in performance by the compact representation. The design
of an API is still an open issue.

4.2 Enumerating possible worlds

Generating all possible worlds from a compact proba-
bilistic XML tree can be done recursively. The approach of
our prototype implementation is as follows. Given a node
in the tree, the function produces all possible worlds for the
subtree rooted at that node. Contrary to the formalization, a
possible world is represented by a normal XML tree instead
of a certain probabilistic tree, i.e., it contains only XML

IFI",F

COMPUTER
SOCIETY

nodes and no probability and possibility nodes.

For producing the set of possible worlds for a certain
node, the sets of possible worlds from its children need to be
combined. There are two ways to combine sets of possible
worlds:

e The product of two sets of possi-
ble worlds W; = {A44,...,A,} and
Wo = {Bl7 ey Bm} is Wi ® W, =

{AlBl, AlBQ, . Ale7 AgBh AQBQ, . Aan},
where AB means a world in which both A and B
hold. For example, A and B may correspond to two
distinct children of a certain element, hence, a possible
world combines one possibility for each child.

e The sum of two sets of possible worlds W1 & Wy =

{A1,...,A,,B1,...,Bn}.

Let Wy, ..., W, be the sets of possible worlds for each
child of a given node. The resulting set of possible worlds
for that node depends on the node kind:

e Probability node. The resultis W1 & ... & W,.

e Possibility node. The resultis W1 @ ... Q@ W,.

e XML node. The result is constructed by placing the

given XML node as parent (i.e., root) in each world in
Wi®...0 W,.

5 Data Integration

5.1 General approach

A device’s database is a probabilistic XML document.
When data integration with a foreign probabilistic XML
document is initiated, the foreign document is considered
to be a source of ‘new’ information on real world objects
the device either already knows about or not. New infor-
mation on ‘new’ real world objects is simply added to the
database. Any differences in information on ‘existing’ real
world objects are regarded as different possibilities for that
object. Note that we disregard possibilities concerning or-
der. New information on ‘new’ real world objects is simply
considered to come after information on known objects in
document order.

Since it is often not possible to determine with certainty
that two specific XML elements correspond to the same real
world object, we assume the existence of a rule engine that
determines the probability of two elements referring to the
same real world object. In special cases, this rule engine
may obviously decide on a probability of 0 (with certainty
not the same real world object) or 1 (with certainty the same
real world object). In this paper, we abstract from the details
of this rule engine, but imagine that it uses schema informa-
tion to rule out possibilities. Or it may, for example, consult
a digital street map to declare a certain street name very im-
probable as there exists no such street in that city. Or it may
use Semantic Web techniques to reason away possibilities.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

In our current prototype, the rule engine is very simple
and uses only some basic schema information. It distin-
guishes two cases:

e The schema states that a certain element can ap-
pear only once. We assume that this means that the
elements of both documents refer to the same real
world object, hence, the subtrees are correspondingly
merged. For example, if two person elements refer to
the same real world person, their descendant elements
(e.g., nm and tel) are merged. If two corresponding
descendant elements differ, we store this as two possi-
bilities for that element.

e The schema states that a certain element can appear
multiple times. We assume that this means that the for-
eign document may contain new elements for this list.
For example, the database contains knowledge about
two persons “John” and “Rita”. The foreign document
holds information on a person “Jon”. Note that “Jon”
may be the same person as “John” only misspelled, or
it may refer to a different person. The data integrator
will store both possibilities, i.e., one whereby it merges
“John” and “’Jon”, and one whereby it adds a new per-
son element.

Each possibility is assigned a probability by the rule en-
gine. For example, it is not unthinkable that “Jon” and
“John” are actually the same person. On the other hand,
it is rather improbable that “Rita” and “Jon” are the same
person. Our current prototype is not that clever though, i.e.,
it assigns the same probability to the likelihood that two per-
son elements refer to the same real-life person as to the like-
lihood of both referring to different real-life persons. The
reason for this is that we need it as a base line to determine
the effectiveness of a more clever rule engine. Moreover,
we would like to focus on the data integration mechanism
first. The minimal set of rules used by our prototype also
includes that there can only be one root in an XML docu-
ment and schema’s of integrated documents are the same,
so different tag names are assumed to refer to different real
world objects.

5.2 Integrating sequences

In general, integrating sequences produces possibilities
for all elements referring to either the same or different
real world objects. Since we made an assumption that the
schemas are the same and that elements with different tag
names refer to different real world objects, many of those
possibilities are ruled out. However, this rule does not limit
the possibilities for sequences of elements with the same
tag name. Take for example, the integration of address in-
formation of people. We are confronted with integrating
sequences of person elements. Because we initially chose
for a rather dumb rule engine, any two elements, one from

IFI",F

COMPUTER
SOCIETY

Referral to real world object | resulting sequence
A#B#C#D A, B,C,D
A=C,B#C#D A/C,B,D
A=D,B#C#D A/D,B,C
A#C#D,B=C A,B/C,D
A#+C#D,B=D A,B/D,C

A=C,B=D A/C,B/D
A=D,B=C A/D,B/C

Table 1. Possibilities for merging sequences
x={A,B}and y = {C, D}

each sequence, possibly refer to the same real world object.
Therefore, when merging two sequences, X and Y, the re-
sulting number of possibilities can be huge.

Let, for example, X = [A,B]and Y = [C,D]. The
possibilities to be generated during integration of X and Y
are listed in Table 1. In the table, A = C indicates that A
and C are considered to refer to the same real world object,
hence, they should result in a single possibility where A and
B are merged: A/B. Since the database already represents
all possibilities explicitly, we do not need to consider two
elements from one sequence to refer to the same real world
object, so A = B and C' = D are not valid possibilities.

When all elements of X and Y refer to other real world
objects, the number of resulting possible worlds is 1. But,
when one element from X refers to the same real world
object as an element from Y, there are X X Y possible ways
how this can be done, since every element from X can in
principle be matched with every element from Y.

In general, the number of possible ways to merge 7 el-
ements from X with ¢ elements from Y can be computed
as follows. Choose 7 different elements from X, where the
order of choosing the elements is unimportant, but an ele-
ment cannot be chosen more than once. This can be done in
(be—z')'z' =) ways. Then, we choose 7 elements from Y
to merge with those chosen from X. Since the first chosen
element from X should be merged with the first element of
Y, order is important when choosing elements from Y. The
number of ways to choose the ¢ elements from Y is (yyf'”,

Let x and y be the lengths of X and Y, respectively. The
process of merging sequences is commutative, we assume
x < y. In determining all possibilities, any ¢ (0 < ¢ <
x) elements of X may refer to the same real world object
as elements of Y. Therefore, the resulting total number of
possibilities for a merged sequence is

Zw: <f> ‘W li!i)!

=0

We see from this formula, that merged documents can

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

become huge quite rapidly. If we take, for example, z = 5
and y = 5, then the maximum number of possibilities is
1546. The rule engine, however, may rule out certain possi-
bilities. For example, if in the case of Table 1, A refers to a
person named “John” and C' to a person named “Rita”, the
rule engine may assign probability O to the likelihood that
A = C'. In this way, it rules out two of the seven possibili-
ties.

5.3 Data integration is an equivalence preserving
operation

An interesting property of the data integration approach
described above, is if it preserves equivalence. Let D;
and Dy be two probabilistic XML documents and A =
integrate(D1, D2) the result of integrating them. Suppose
D} and D) are equivalent to Dy and D respectively. Is
then A’ = integrate(D}, D)) equivalent to A? A full proof
goes beyond the scope of this paper, but below we try to
show that it is plausible.

There is a special case for which this property is espe-
cially interesting. The set of possible worlds can be repre-
sented as a probabilistic tree with one probabilistic node as
root and all possible worlds as possibilities directly below it.
Figure 2(a) is of this form. Since the above property holds,
integrating two probabilistic trees amounts to integrating all
combinations of possible worlds of both trees.

Below, we first show an example of integrating two cer-
tain trees to illustrate the recursive process. We then show
the integration of a compact tree with two possibilities with
a certain tree. Finally, we show the integration of an equiv-
alent tree in set-of-possible-worlds representation with the
same certain tree.

The data integration function integrate takes two param-
eters D; and D,. It returns the integration result as a prob-
abilistic XML tree. In the diagrams below, we have omitted
probability and possibility nodes whenever there is only one
possibility.

The example below shows how we can recursively inte-
grate two certain trees.

integrate()
person o e person
John Rita

After the first integration step, we obtain:

/V\

QO (0]
person ./ \o person l person
John Rita integrate()
John @ ® Rita
COMPUTER

SOCIETY

The second integration step integrate(’John’, Rita’) ob-
viously results in:

v
7N

[e]

[0}

John l i Rita

Observe the difference between integrating person ele-
ments, which are specified as being part of a sequence, and
other elements including text nodes for which there can only
be one. The former produces an additional possibility for
the case that there exist two persons. In general, text nodes
are also part of a sequence (e.g., paragraphs in a text docu-
ment). Concatenating names of persons, however, does not
make sense, so our rule engine decides that, for example,
the name of a person can not be “JohnRita”.

Integrating a probabilistic tree and a certain one proceeds
as follows:

integrate()

person e

\

V.
O/ \O
John l Jon l

e person

Rita

We would first integrate both person elements:

O/ V\

Q.
person+ person T/ \I person
integrate() \V/
/ "\ Rita
v [] o 0]
O/ \O Rita l l
John Jon
John Jon
where
integrate()
v .
(E/ \(E Rita
John Jon

intuitively leads to

I
Dol

John Jon Rita

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

The entire resulting tree looks like:

Y%
O/ \o
person ./ \o person

person + ‘

I~ N, Ria
O Y

John Jon Rita John Jon

The resulting tree can be described as:
(Rita v John V Jon) V ((John V Jon) A Rita) (1)

Moving the local possibility upwards in the tree, we get
an equivalent less compact tree that is in all-possible-worlds
representation. The integrate function now behaves as be-
ing applied to each possible world separately.

integrate()
\V/ e person
O/ \O l
person l l person Rita
John Jon

We integrate the person named “Rita” over both possi-
bilities resulting in the following:

o/ V\o

integrate() integrate()
person e e DErson person e e person
John Rita Jon Rita

The final result is:

O% v\o\o
7N\ 7N\

person e Dersgn person ¢ e person
John Rita Jon Rita
person person
V. V.
T/ \(I I/ \I
John Rita Jon Rita

IFI",F

COMPUTER
SOCIETY

The boolean representation is

((JohnARita) V (JohnVRita)) V((JonARita) V (JonVRita))
®)

Note that this is equivalent to the earlier obtained
boolean representation. The trees are equivalent.

5.4 Assigning probabilities and confidence scores

As explained earlier, the rule engine determines in some
way the probability of the various possibilities. Intelligence
and the use of information from schema and other data
sources can be used to limit the number of possibilities, but
also to better assign probabilities.

The most simple scheme for assigning probabilities
would be the following. Whenever the database conflicts
with a foreign document one some element, we assign prob-
ability .5 to each resulting possibility. This approach has
a severe drawback. For example, when a mobile device
has once heard from another device that a person’s name is
“John” and it meets another device which says its name is
“Jon”, the scheme assigns the possibilities “John” and “Jon”
each a probability of .5. But, when it has already heard from
ninety-nine different devices, that the name of the person is
“John”, it should be very suspicious when it meets a device
that says this person’s name is “Jon”. Therefore, it should
give the possibility “Jon” a very small probability of, say,
.01

The rather basic rule engine of our prototype has a still
simple but sufficient scheme for assigning probabilities. It
is based on the premise that what you have seen twice, is
twice as likely to be correct. In other words, a confidence
score should be kept in the data. This factor is an indica-
tion of how certain we are about the data, which helps in
assigning probabilities when integrating new data. Every
time a different device claims a certain possibility is true,
the confidence score is increased by one.

6 Experiments

The aim of our experiments is to gain insight into the ex-
plosion of possibilities in data and query answers, into the
growth in size of the data set, and into the effectiveness of
measures to cope with both problems. We use the two test
documents shown in Figure 5. Schema information the rule
engine uses: each person has only one firstname, lastname,
phone and room number and there is only one persons ele-
ment containing multiple person elements. The implemen-
tation of the prototype is in Java.

Experiment 1a. Integrating the test documents results in
a probabilistic XML document with 3201 possible worlds.
The least compact way of representing the document is in

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

Document 1 (660 bytes)

<persons>

<person>
<firstname >Mark </firstname >
<lastname >Hamburg </lastname >
<phone>1010</phone>
<room>3300 </room>

</person>

<person>
<firstname >Allen</firstname >
<lastname >King </lastname >
<phone>2020 </phone>
<room>3122 </room>

</person>

<person>
<firstname >Stan </firstname >
<lastname >Choice </lastname >
<phone>3030 </phone>
<room>3035 </room>

</person>

<person>
<firstname >John </firstname >
<lastname >Friend </lastname >
<phone>4040 </phone>
<room>3333 </room>

</person>

</persons>

Document 2 (366 bytes)

<persons>
<person>
<firstname >Mark </firstname >
<lastname >Hamburg </lastname >
<phone>1010 </phone>
<room>3301 </room>
</person>
<person>
<firstname >Allen</firstname >
<lastname >Kingship </lastname >
<phone>2020 </phone>
<room>3035 </room>
</person>
</persons>

Figure 5. Test documents

its all-possible-worlds representation (see Section 5.3). In
this representation, the document is 2MB. A more compact
representation (not the most compact way possible) results
in a file size of 310kB. This is a compression factor of 6.6.

Experiment 1b. By dropping the rule that a person can only
have one phone number, the number of possible worlds rises
to 7105 and the file size (all-possible-worlds representation)
grows to 4.4MB. The effect of the rule amounts to a factor
of about 2.2 in number of both possible worlds and file size.

IFI",F

COMPUTER
SOCIETY

Experiment 2a: Query //room[. = "3035"]. In
both test documents, room “3035” is occupied, but by a
different person. Intuition tells us the query answer is cer-
tain, since there is a room “3035” in both test documents.
In the integrated document, however, in only 3009 from
the 3201 possible worlds (94%), someone actually occupies
room “3035”. This is due to the fact that our rule engine is
not clever enough to, for example, exclude the possibility
that Stan Choice is the same person as Mark Hamburg oc-
cupying room “3301” and John Friend is the same person
as Allen Kingship occupying room “3333”. In this possible
world, nobody actually occupies room “3035”. In 1041 of
the 3201 possible worlds (32.5%), the room was occupied
by two persons. Room “3301” is only occupied in the sec-
ond test document. It was listed as occupied in 1633 of the
3201 possible worlds (51%).
Experiment 2b:
Query //personl./firstname="John"]/room.
The person with name “John” appears in 2417 of the 3201
(75.5%) of the possible worlds. In 196 possible worlds, he
occupies room “3301”. In 196 possible worlds, he occupies
room “3035”. And in the remaining 2025 possible worlds,
he can be found in room “3333”.

Since we potentially get a possible query answer per pos-
sible world, there are 3201 possible answers:

e 2025 of the possible answers are “3333”,

e 196 of the possible answers are “3035”,

e 196 of the possible answers are “3301”, and

e 784 of the possible answers are empty.
Note that simplifying this query answer will result in a prob-
abilistic tree with only 4 possibilities. All uncertainty in the
data not relevant for the query results in equal possible an-
swers, that can be simplified easily.

7 1Issues

This paper reports on a first step towards a probabilistic
XML DBMS capable of data integration whereby it resolves
conflicts by treating them as possibilities for how reality ac-
tually may be. We have made several simplifications, as-
sumptions and other measures to be able to make this first
step. The experience gave rise to a number of observations
and problems. In this section, we would like to discuss some
of these.

Evergrowing data set One of the prominent problems is
the evergrowing data set. After every merge, new informa-
tion and new possibilities are added, and nothing is ever
forgotten. Especially in case of sequences being merged,
the number of possibilities can be huge. For example, al-
ready for two small sequences of both 5 elements, there are
1546 distinct possibilities. It is, therefore, important to look
at measures to keep the size of the data set within bounds.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

There are several possible measures that have to be investi-
gated:
e Make the rule engine more intelligent by using schema
and data information.
o Involve the user to rule out possibilities whenever there
is an opportunity.
e Forget possibilities with small probability.

Using schema and data information We already men-
tioned that the rule engine can use schema information and
other data sources to rule out certain possibilities. For ex-
ample, cardinality or other schema constraints rule out those
possibilities that violate those constraints. Integrity con-
straints in a similar way may rule out possibilities. More
advanced techniques for data analysis can also be used. For
example, data analysis on the contents of certain attributes
or elements can establish that a certain content is highly
unlikely, because it doesn’t conform to the observed pat-
tern. Machine learning techniques may be used similarly to
[4]. For example, an (age)-element will contain numbers
between 0 and, say, 150. Statistical analysis on these ele-
ments may come to such conclusion, and hence, decide that
a value of 1000 is highly unlikely.

Involve the user Data integration itself should not require
the involvement of the user, but the user will look at the
data in some future moment. For example, he/she looks up
a person’s address or telephone number. At that time, the
user is capable of deciding what possibility does or does not
correspond with reality. Furthermore, the user is already in
interaction with the system, so that is a nice opportunity to
involve him/her in ruling out possibilities.

In an ambient environment where sensors and other
mechanisms monitor the user and his/her environment, in-
formation about which possibility actually holds in the real
world, may be obtained without involvement of the user.
For example, a user uses his/her mobile phone to call John.
The Phone-application will first determine the phone num-
ber of John. According to Figure 4, the phone number is
either 1111 or 2222 or there are two persons named John. If
the phone actually gets connected and the phone call takes
longer than one would expect from a wrong connection,
the Phone-application may deduce that 1111 is a correct
phone number for John, so the possibility of 2222 may be
removed. Note that the possibility that there are two persons
named John still exists. This way of ruling out possibilities
obviously does not lie in the near future, but this is the kind
of behaviour research on ambient intelligence is aiming for.

Forget possibilities with small probability If, after re-
peated integration with different data sources, a certain pos-
sibility does not get confirmed, its probability goes down.
If it gets below a certain threshold, it becomes very likely

IFI",F

COMPUTER
SOCIETY

that it is simply an error. Furthermore, a possibility with
a small probability will not have significant contribution to
query results.

Since the probabilities of all possibilities belonging to
one probability node should add up to 1, it is not straigfor-
ward to properly forget possibilities. Normalizing probabil-
ities may have undesired consequences. There are, how-
ever, more advanced models of representing uncertainty.
For example, the model of [1] contains the notion of ‘x’,
an unspecified rest probability representing the degree of
ignorance. It allows one to assign one probability to all re-
maining possibilities without storing the details about these
possibilities. One often only assumes a certain probabil-
ity distribution to simplify querying in the presence of ‘x’.
Note that in this way, one distances oneself from the closed
world assumption. Perhaps, an approach based on an open
world assumption is more appropriate on the whole.

Relational probabilistic databases If we compare our
experiences with relational probabilistic databases, we ob-
serve that with XML it is much easier. First, the distinction
between Type-1 and Type-2 disappears. Second, dependen-
cies like mutual exclusiveness and simultaneous occurrence
can be expressed naturally. Finally, XML’s tree structure
more naturally matches decision trees, which is basically
what we are doing here.

Order Another issue is the issue of order in sequences.
Given two sequences to be merged from two distinct data
sources, the number of possibilities for merging these when
order matters and is uncertain, grows even faster than what
we have seen here, where we disregarded order.

Application interface In Section 4, we noted that it might
be more logical to applications to get a query answer in the
form of a set of possible answers. On the other hand, this is
not an optimal query interface with respect to performance.
What a good query API for applications looks like, is still
an open issue. How an application can deal with the uncer-
tainty it is confronted with, is another.

Confidence scores Section 5.4 presents a simple scheme
for assigning probabilities during data integration. Confi-
dence scores should be associated with elements, but, in this
way, they obfuscate the original XML tree. A probabilis-
tic XML document is assumed to represent a closed world.
Within a closed world, confidence scores are not needed,
because all possible worlds are certain worlds. But, when
data integration takes place, the closed world assumption
is dropped momentarily to allow for the foreign data to be
integrated into the existing data. From a software design

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

perspective, it may be better to store confidence scores sep-
arately. Furthermore, more advanced models for determin-
ing the confidence in certain parts of the data can obviously
be developed.

Intelligent agent technology Finally, observe that the
data management system behaves much like an intelligent
agent. It tries to gather information on the real world on
its own, but uses information it retrieves from other agents.
We made the assumption that those other agents deliver in-
formation according to the proposed approach in an honest
and predictable way. Without this assumption, other agents
may have other intentions such as promoting an untruth, or
sabotaging others. To be able to deal with such situations,
a rather elaborate ‘social’ model is necessary where infor-
mation on reliability and other properties of other agents is
also maintained and shared among agents.

8 Conclusion

We presented an approach towards unattended XML data
integration to be used in a mobile and ambient environment.
The basic idea is that, without luxury of interaction with a
user, a data manager should drop the assumption that it can
always make correct choices when confronted with conflict-
ing data. Therefore, we take the approach of allowing un-
certainty in the data, which requires a data manager capable
of handling such data properly.

The paper reports on a first step towards a probabilistic
XML data management component. A formalization of im-
portant concepts like probabilistic tree and possible world
is given. An approach for querying uncertain relational
data that we proposed in earlier work [2], was adapted for
XML context. A practical approach towards data integra-
tion based on probabilistic trees has been sketched. In this
first step, we made several simplifying assumptions and ab-
stractions. Nevertheless, we achieved our goal, an approach
that allows for integrating data in an unattended manner.
Throughout the text, we provided some information about a
prototype that we have built to validate our ideas.

Obviously, there are several problems and possible im-
provements. We outlined several in Section 7 most no-
tably the problem of the explosion of possibilities, hence,
the problem of a fast and evergrowing data set. It is on
this aspect, that we will focus next. Future work also in-
cludes investigating techniques for efficient data integration
and querying, establishing the quality of query results, in-
vestigating how applications should interface with a proba-
bilistic data manager, incorporating schema integration, in-
vestigating the benefit of other models for representing un-
certainty, and investigating ‘social models’ to become more
robust against malicious agents.

IFI",F

COMPUTER
SOCIETY

References

(1]

(2]

[9

—

[10]

[11]

[12]

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

D. Barbard, H. Garcia-Molina, and D. Porter. A probabilis-
tic relational data model. In F. Bancilhon, C. Thanos, and
D. Tsichritzis, editors, Advances in Database Technology -
EDBT’90. International Conference on Extending Database
Technology, Venice, Italy, March 26-30, 1990, Proceedings,
volume 416 of Lecture Notes in Computer Science, pages
60-74. Springer, 1990.

A. de Keijzer and M. van Keulen. A possible world ap-
proach to uncertain relational data. In SIUFDB-04 Interna-
tional Workshop on Supporting Imprecision and Uncertainty
in Flexible Databases, Zaragoza, Spain, Sept. 2004.

D. Dey and S. Sarkar. A probabilistic relational model and
algebra. ACM Trans. Database Syst., 21(3):339-369, 1996.
A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: A machine-learning ap-
proach. In ACM SIGMOD Conference, May 2001.

T. Eiter, T. Lukasiewicz, and M. Walter. A data model and
algebra for probabilistic complex values. Annals of Mathe-
matics and Artificial Intelligence, 33(2-4):205-252, 2001.
D. Florescu, D. Koller, and A. Levy. Using probabilistic
information in data integration. In Proceedings of the 23rd
VLDB Conference, 1997.

N. Fuhr and T. Rolleke. A probabilistic relational algebra
for the integration of information retrieval and database sys-
tems. ACM Transactions on Information Systems, 15(1):32—
66, 1997.

E. Hung. ProbSem: A probabilistic semistructured database
model. Technical report, University of Maryland, 2002.

E. Hung, L. Getoor, and V. Subrahmanian. PXML: A prob-
abilistic semistructured data model and algebra. In Proceed-
ings of the 19th International Conference on Data Engineer-
ing (ICDE), 2003.

L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Sub-
rahmanian. ProbView: a flexible probabilistic database sys-
tem. ACM Transactions on Database Systems, 22(3):419-
469, 1997.

A. Nierman and H. V. Jagadish. ProTDB: Probabilistic data
in XML. In Proceedings of the 28th VLDB Conference,
2002.

E. Zimanyi and A. Pirotte. Imperfect information in rela-
tional databases. Uncertainty Management in Information
Systems, A. Motro and P. Smets, Eds., 1997.

1084-4627/05 $20.00 © 2005 IEEE

IFI",F

COMPUTER

SOCIETY

