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Abstract—We consider wireless caches placed in the plane
according to a homogeneous Poisson process. A data file is stored
at the caches, which have limited storage capabilities. Clients
can contact the caches to retrieve the data. The caches store
the data according to one of the two data allocation strategies:
partitioning & coding. We consider the Pareto front of the
expected deployment cost of the caches and the expected cost
of a client retrieving the data from the caches. We show that
there is a strong trade-off between the expected retrieval and the
expected deployment cost under the partitioning and the coding
strategies. We also show that under coding, it is optimal to deploy
a high number of caches, each with low storage capacity.

Index Terms—Wireless communication, networks of caches,
coding, cost optimization

I. Introduction

We consider wireless caches positioned in the plane ac-
cording to a homogeneous Poisson process. The caches store
a large data file. Clients are interested in retrieving the data
from the caches. Due to the limited storage capabilities of the
caches, a single cache cannot store the entire data.

Since the connection clients-caches is wireless, the cost
of retrieving the content of a cache is increasing with the
client-cache distance. This cost can represent, for example, the
data rate that can be achieved or the delay, and is inversely
proportional to the deployment intensity of the caches. One
could reduce the expected cost experienced by clients by
increasing the intensity of the caches, i.e., the average number
of caches per unit area. However, if one also takes into account
the cost of deploying the caches, defined to be proportional
to the storage capacity and the deployment intensity of the
caches, a conflict between minimizing the client’s retrieval cost
and the caches’ deployment cost arises. In the current work,
we analyze the trade-off between these conflicting costs.

Depending on the storage strategy, clients have to contact
different sets of caches. In previous work [1], several storage
strategies were analyzed. The first strategy, partitioning, di-
vides the data into equally-sized fragments. Each cache stores
one particular fragment. In order to retrieve the data, a client
needs to obtain all the different fragments. The second strategy
is based on random linear coding. Each cache stores a random
linear combination of the data fragments. Figure 1 illustrates
the partitioning and the coding data allocation strategy.It was
demonstrated in [1] that under a general cost measure for the
data retrieval, coding outperforms the partitioning strategy.
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Fig. 1: Data allocation strategies

The use of coding was also explored in [2] where it was
shown how to efficiently allocate the data at caches with the
aim of ensuring that any sufficiently large subset of caches
can provide the complete data. The difference with the current
work is that we are taking the geometry of the deployment of
the caches into account. In [3] coding strategies for networks
of caches are presented, where each user has access to a single
cache and a direct link to the source. It is demonstrated how
coding helps to reduce the load on the link between the caches
and the source. We assume that different transmissions from
caches to the clients are orthogonal, for instance by separating
them in time or frequency. In [4] the impact of non-orthogonal
transmissions is considered and scaling results are derived on
the best achievable transmission rates.

Other work on caching in wireless networks is, for instance,
[5]–[7]. In [5] the authors analyze the trade-off between energy
consumption and the retrieval delay of data from caches. In
[6], the authors consider the optimal number of replicas of
data such that the distance between a requesting node and
the nearest replica is minimized. Data sharing among multiple
caches such that the bandwidth consumption and the data
retrieval delay are minimal is considered in [7]. None of [5]–
[7] are considering coded caching strategies.

Our contribution in this paper is a characterization of the
Pareto front of the data retrieval cost and the deployment cost
of the caches. The parameters over which we optimize are:
i) the intensity of the Poisson process with which caches are
deployed and ii) the storage capacity of an individual cache.

We show that the retrieval and the deployment costs exhibit
a strong trade-off both under the partitioning and the coding
strategy, i.e. a small decrease in one of the costs is achieved at
the expense of a significant increase in the other cost. For the
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partitioning strategy, we show that the optimal cost depends
only on the ratio of the deployment intensity and the storage
capacity of the caches. Hence, when deploying caches, one
has some flexibility in either increasing the cache intensity or
the cache capacity. For the coding strategy, however, we show
that the cost is minimized by maximizing the cache intensity
while minimizing the storage capacity. Hence, while coding
offers lower costs, it reduces deployment flexibility. Finally, we
show that for a fixed deployment cost of the caches, the coding
strategy results in a lower retrieval cost than partitioning.

II. Model and Problem Statement

A data file consisting of n symbols, n fixed, is stored at the
caches. The symbols are elements from a finite field Fq.

Caches are positioned in the plane according to a homoge-
neous Poisson process with intensity λ, where 0 < λ ≤ λmax is
a parameter over which we optimize. The caches have limited
capacity that we express in terms of an integer k, which is the
second optimization parameter. A cache can store d n

k e symbols.
To ensure that caches store at least one symbol and at most
all n symbols, we assume that 1 ≤ k ≤ n.

A client placed at a random location in the plane is
interested in retrieving the data from the caches. We assume
that the client has complete knowledge about the content and
the location of the caches in the plane. The client requests data
from a set of k caches that ensures the retrieval of the data.

Which caches are contacted depends on the way the data
is stored at the caches. We consider two data allocation
strategies: partitioning (P) and coding (C).

Partitioning is a data allocation strategy according to which
the data is divided into k different fragments, each of n

k
symbols. Each cache selects uniformly at random a fragment
to store. The client requests data from the k nearest caches
such that each contacted cache has a different fragment than
the other contacted ones.

Coding assumes that each cache stores a random linear
combinations of the k fragments. We assume that the k nearest
caches provide independent linear combinations from which
the original data can be retrieved. While there is a probability
that these linear combinations are not independent, it was
shown in [1] that this has negligible influence on the cost.
Hence, under the coding strategy, we analyze the cost of
contacting the k nearest caches.

Next, we define the relevant cost measures. These cost
measures are a function of the model parameters k and λ, over
which we optimize. Firstly, we consider the cost of retrieving
the data under allocation strategy A ∈ {P,C}. Let the cost of
retrieving data from caches located at distances δ1, . . . , δl be

C̃1(δ1, .., δk) =
n
k

l∑
i=1

δa
i , (1)

where a ≥ 1 is an arbitrary, but fixed, parameter. In (1), δa
i

is the cost of retrieving one symbol at distance δi and n
k

approximates the cost of doing so for d n
k e symbols. We are

interested in the expected cost CA
1 (k, λ), where the expectation

is taken over the Poisson process according to which the
caches are placed in the plane.

As discussed in [1], the above cost function captures several
relevant performance measures. For instance, if a > 2 denotes
the path loss exponent in the wireless medium, then the cost
reflects the maximum achievable throughput, following from
the channel capacity. For a = 1, the cost captures the delay
under the TCP protocol.

Secondly, we consider the expected deployment cost of the
caches in the plane per unit area. The cost of deploying a
single cache is proportional to its storage capacity, which we
approximate by n

k . Therefore, the expected cost per unit of
area of deploying caches with density λ is defined as:

C2(k, λ) =
n
k
λ , (2)

where the expectation is taken over the randomness in the
spatial Poisson process.

We consider the multi-objective optimization problem
which aims at minimizing the deployment cost C2(k, λ) and
the retrieval cost CA

1 (k, λ) under the data allocation strategy A,
min CA

1 (k, λ)
and ,where k ∈ {1, 2, .., n}, 0 ≤ λ ≤ λmax .

min C2(k, λ)
(3)

In general, a single point simultaneously minimizing both
objectives does not exist, in which case the multi-objective
problem (3) does not have a unique optimal solution. Hence,
we characterize the Pareto front as follows [8]: A feasible
solution (k1, λ1) dominates a feasible solution (k2, λ2) if and
only if Ci(k1, λ1) ≤ Ci(k2, λ2), i ∈ {1, 2} with strict inequality
for at least one of the inequalities. A feasible solution is a
Pareto optimal point (kPO, λPO) if there is no point (k, λ) such
that (k, λ) dominates (kPO, λPO). All Pareto optimal solutions
of a multi-objective function is called the Pareto front.

We will make use of the gamma function, which for x > 0 is
represented as Γ(x) =

∫ ∞
0 tx−1e−tdt and the digamma function,

ψ(x) = d
dx ln Γ(x) =

∫ ∞
0

(
e−t

t −
e−xt

1−e−t

)
dt (see, for instance, [9]).

III. Results

Multi-objective methods such as scalarization or goal pro-
gramming can be used to compute the Pareto front. We refer
to [10] for an extensive survey on methods to compute Pareto
solutions. In this paper, the specific structure of the two objec-
tive functions allows us to directly determine the Pareto front.
In our analysis we provide the Pareto front of optimization
problem (3) with the relaxed non-integer constraint 1 ≤ k ≤ n.
By doing so, we identify the general form of the Pareto front
for problem (3), which includes the Pareto optimal points that
can be achieved with k integer.

A. Partitioning Strategy

We start with the following known result.
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Theorem 1 ( [1]). The expected cost of retrieving the complete
data file under the partitioning (P) strategy is:

CP
1 (k, λ) =

n
k

k
(

k
λπ

) a
2

Γ

(
a
2

+ 1
)
. (4)

Our first contribution is the following result:

Theorem 2. The Pareto front for the partitioning (P) strategy
consists of the following points:

[CP
1 (k, λ),CP

2 (k, λ)] =

[
n(1+a/2)

(πα)a/2 Γ

(
a
2

+ 1
)
, α

]
, α ∈ (0, nλmax].

Proof. The two objectives (2) and (4) are related as follows,

CP
1 (k, λ) =

n(1+a/2)

πa/2

Γ( a
2 + 1)

C2(k, λ)a/2 .

If we consider all pairs (k, λ) with 1 ≤ k ≤ n, 0 < λ ≤ λmax

such that C2(k, λ) = α, 0 < α ≤ nλmax, then

CP
1 (k, λ) =

n(1+a/2)

πa/2

Γ( a
2 + 1)
αa/2 .

�

The above results demonstrate that the Pareto optimal costs
CP

1 (k, λ) and CP
2 (k, λ) depend on λ and k only through the ratio

λ
k . Also note that CP

2 (k, λ) takes all values in (0, λmax). Hence,
the Pareto front is a continuous curve.

B. Coding Strategy

Theorem 3 ( [1]). The expected cost of retrieving the complete
data file under the coding (C) strategy is:

CC
1 (k, λ) =

n
k

(
1
λπ

) a
2 Γ( a

2 + 1 + k)
( a

2 + 1)Γ(k)
. (5)

Before the main result, we state the following lemma, which
is proved in the appendix:

Lemma 1. Given k ∈ [1, n] and x > 1, f (k, x) = kψ(k + x) −
kψ(k) − x < 0.

Theorem 4. The Pareto front for the coding strategy consists
of the following points:

[CC
1 (k, λ),CC

2 (k, λ)] =



[
Γ( a

2 + 1 + n)
(πα)a/2( a

2 + 1)Γ(n)
, α

]
, α < λmax αΓ

(
a
2 + 1 + nλmax

α

)
π

a
2 ( a

2 + 1)λ(1+ a
2 )

max Γ( nλmax
α

)
, α

 , λmax ≤ α

where 0 < α ≤ nλmax.

Proof. Consider all pairs (k, λ) with 1 ≤ k ≤ n, 0 < λ ≤ λmax

such that CC
2 (k, λ) = α, 0 < α ≤ nλmax. Then (5) becomes,

CC
1 (k, λ) =

n(1+a/2)Γ( a
2 + 1 + k)

π
a
2 ( a

2 + 1)Γ(k)k(1+a/2)
·

1
α

a
2

= g(k, a)
1
α

a
2
, (6)

where in the last equality g(k, a) =
n(1+a/2)Γ( a

2 + 1 + k)

π
a
2 ( a

2 + 1)Γ(k)k(1+a/2)
.

W.l.o.g. assume (k0, λ0) dominates all points (k, λ) for which
CC

2 (k0, λ0) = CC
2 (k, λ) = α. Then CC

1 (k0, λ0) < CC
1 (k, λ).

Clearly, for all pairs (k, λ) with 1 ≤ k ≤ n, 0 < λ ≤ λmax

such that CC
2 (k, λ) = α, CC

1 (k, λ) = g(k, a)( 1
α

)
a
2 is minimized

when g(k, a) is minimal. Taking the derivative with respect to
k, we have that

∂g(k, a)
∂k

=
n(1+a/2)Γ( a

2 + 1 + k)

π
a
2 ( a

2 + 1)Γ(k)k(2+a/2)
f
(
k, 1 +

a
2

)
< 0

since f (k, x) = kψ(k + x)−kψ(k)− x < 0, 1 ≤ k ≤ n, x = 1+ a
2 >

1, (see Lemma 1). Hence, g(k, a) is a decreasing function.
Therefore, C1(k, λ) is minimized when k is maximal.

Now consider the following cases:
Case 1: 0 < α < λmax

We look for the largest possible k such that C2(k, λ) = α =

n λ
k with 1 ≤ k ≤ n and 0 < λ < λmax. By choosing k = n, the

largest value for k, λ = α and 0 ≤ λ < λmax.
Case 2: λmax ≤ α ≤ nλmax

We look for the largest possible k given that C2(k, λ) = α =

n λ
k . To have the highest possible k, we increase λ as much as

possible. Hence, we consider λ = λmax. Then k = n·λmax
α

and
1 ≤ k ≤ n.

We now show that the front obtained for Cases 1 and 2
does not contain dominated points, i.e., if CC

2 (k0, λ0) = α0 <
CC

2 (k1, λ1) = α1, then CC
1 (k0, λ0) > CC

1 (k1, λ1).
For Case 1, it is obvious that CC

2 (k, λ) and CC
1 (k, λ) are

inversely proportional. We further analyze Case 2, when k =
n·λmax
α

. Using relation (6), we have the following:

CC
1 (k0, λ0)

CC
1 (k1, λ1)

=
g(k0, a)
g(k1, a)

(α1

α0

) a
2

=
Γ( a

2 + 1 + k0)
Γ(k0) · k0

·
Γ(k1) · k1

Γ( a
2 + 1 + k1)

.

Since α0 < α1, it follows that k1 < k0. It only remains to
show that kΓ(k)

Γ(x+k) , x = 1+ a
2 is a decreasing function in k. Taking

the first derivative with respect to k,

∂

∂k
kΓ(k)

Γ(x + k)
= −

Γ(k)
Γ(x + k)

[kψ(x + k) − kψ(k) − 1] < 0,

where in the last inequality we used that kψ(x+k)−kψ(k)−1 >
0, 1 ≤ k ≤ n, x > 1, which follows after similar computations
as for the proof of Lemma 1. Hence, kΓ(k)

Γ(x+k) , x = 1 + a
2 is

decreasing in k. Therefore, CC
1 (k0,λ0)

CC
1 (k1,λ1) > 1 for k1 < k0 or,

equivalently, for α0 < α1. �

The above results show that the Pareto optimal cost CC
1 (k, λ)

is based on either taking the maximum possible k, i.e. it
is optimal to fragment the data as much as possible given
a deployment cost of CC

2 (k, λ) < λmax, or considering the
maximum deployment density λmax, i.e. deploy as densely as
possible the caches in the plane.

Theorem 5. Each of the Pareto points under partitioning are
dominated by a Pareto point under coding, i.e. CP

1
CC

1
> 1, n ≥ 1.

Proof. For n = 1, the entire data is stored at each cache. In this
case, the coding and partitioning strategies coincide. We now
analyze the case when n > 1,CP

2 = CC
2 = α, 0 < α ≤ nλmax.

CP
1

CC
1

=

 nx xΓ(x)Γ(n)
Γ(x+n) = ω(x, n), 0 < α ≤ λmax ,

zx xΓ(x)Γ(z)
Γ(x+z) = ω(x, z), λmax ≤ α ≤ nλmax ,
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where x = a
2 + 1, λmax

α
= y, 1

n ≤ y ≤ 1, 1 ≤ z = ny ≤ n.
Taking the first derivative

∂ω(x, n)
∂n

=
xnx−1Γ(n)Γ(x)[nψ(n) − nψ(n + x) + x]

Γ(x + n)
> 0 ,

where [nψ(n) − nψ(n + x) + x] > 0 (from Lemma 1).
Hence, ω(x, n) is increasing in n and limn→1 ω(x, n) = 1.

Therefore, ω(x, n) =
CP

1
CC

1
> 1, n > 1, 0 < α ≤ λmax. Similarly,

ω(x, z) =
CP

1
CC

1
> 1, n > 1, λmax ≤ α ≤ nλmax. �

IV. Discussion and Conclusions
This paper has provided insight into the trade-off between

the expected deployment cost of caches in the plane and the
expected cost of a client retrieving a large data file from
the caches. For the partitioning strategy, we derived a simple
relation for the Pareto points. For the coding strategy, we
showed that it is optimal to have small-sized caches and to
densely deploy the caches in the plane.

Figure 2 shows the general form of the Pareto front of the
two conflicting objectives under the partitioning and coding
strategy. The two objectives have a trade-off curve with a
steep slope, which indicates that a small decrease in the
expected retrieval cost is achieved at the expense of a large
increase in the deployment intensity of the caches and/or
their storage size, i.e., the expected deployment cost. It was
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Fig. 2: General form of the Pareto front, n = 10.

proved in [1] that coding incurs a lower expected retrieval cost
than partitioning for fixed cache deployment intensity λ and
cache capacity n

k . This property is maintained for the trade-
off of the expected deployment and retrieval cost. This is a
generalization of the results in [1], where the number of caches
k to be contacted and the deployment intensity λ are fixed. In
this paper we also showed that optimizing over k and λ results
in lower retrieval costs under coding than under partitioning.

The Pareto front provides a valuable insight into the overall
cost of the cache storage system. Since the cache deployment
and the data retrieval costs are dependent, optimizing for
one of the objectives necessarily influences the other. The
Pareto front shows to what extent one of the objectives can be
improved at the expense of the other. This allows to optimize
the overall cost of the system.
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Appendix
Proof of Lemma 1

Let f (k, x) = kψ(k + x)− kψ(k)− x, x > 1 and 1 ≤ k ≤ n. We
show that f (k, x) < 0.

f (k, x) = kψ(k + x) − kψ(k) − x

=

∫ ∞

0

ke−kt(1 − e−xt)
(1 − e−t)x

x dt − x

=

∫ ∞

0
h(x, t)(ke−kt)x dt − x ,

where we defined h(x, t) =
(1−e−xt)
x(1−e−t) .

First, we show that h(x, t) < 1 for x > 1, t > 0. This follows
from

∂h(x, t)
∂x

=
e−xt(1 + tx) − 1

x2(1 − e−t)
<

e−xt · ext − 1
x2(1 − e−t)

= 0,

where, for the last inequality we used 1 + tx < ext. Thus,
h(x, t) is a decreasing function in x and limx→1,t→0 h(x, t) = 1.
Consequently, h(x, t) < 1.

Now, since h(x, t) < 1 and
∫ ∞

0 ke−kt = 1,

f (k, x) =

∫ ∞

0
h(x, t) · ke−kt · x dt − x < 0.
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