
Sample-based XPath Ranking for
Web Information Extraction

Oliver Jundt1 Maurice van Keulen2

1 University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands. Email o.jundt@student.utwente.nl
2 University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands. Email m.vankeulen@utwente.nl

Abstract

Web information extraction typically relies on a
wrapper, i.e., program code or a configuration that
specifies how to extract some information from web
pages at a specific website. Manually creating
and maintaining wrappers is a cumbersome and
error-prone task. It may even be prohibitive as
some applications require information extraction
from previously unseen websites. This paper targets
automatic on-the-fly wrapper creation for websites
that provide attribute data for objects in a ‘search
– search result page – detail page’ setup. It is
a wrapper induction approach which uses a small
and easily obtainable set of sample data for rank-
ing XPaths on their suitability for extracting the
wanted attribute data. Experiments show that the
automatically generated top-ranked XPaths indeed
extract the wanted data. Moreover, it appears that
20 to 25 input samples suffice for finding a suitable
XPath for an attribute.

Keywords: Web information extraction, wrappers,
XPath ranking

1. Introduction

Information on web pages is mainly targeted at
humans, whereas in many cases it is desirable that
this information is also available for processing by a
computer. Only in rare cases websites provide ma-
chine interfaces for this purpose. Web information
extraction (sometimes called web scraping or web
harvesting) is an important technology to overcome
this lack of service.

Web information extraction typically relies on
a wrapper, i.e., program code or a configuration
that specifies how to extract some information from
web pages at a specific website. Wrappers work
particularly well when web pages are generated
using a fixed template, which is almost always the
case nowadays. The template puts the same type
of information, e.g., a product title, always at the
same place surrounded by the same tag names and
attributes. Wrappers can effectively exploit this
constant structure.

Manually creating and maintaining wrappers is a
cumbersome and error-prone task. If information is
needed from multiple websites, hence from different
templates, then each website needs its own wrapper.

And, if the template changes, the wrapper is likely
to malfunction. A wrapper programming approach
may even be prohibitive as some applications re-
quire information extraction from previously unseen
websites.

In this paper, we use information extraction
from online bookstores as the running example.
Bookstore websites usually provide a search field
or form producing a so-called search result page
which contains a list of results each carrying a link
to the so-called detail page, a page with detailed
information about one specific book. This ‘search
— search result page — detail page’ setup is very
commonly used in a wide variety of websites, not
just online bookstores. We call the book details, e.g.
‘Title’ and ‘ISBN’, attributes, which have possible
values like ‘Moon Palace’ and ‘0140115854’. The
attribute values are the information we want to
extract. The book itself we call an object. A source
of detail pages for a specific type of objects is called
a provider. For example, Amazon.com is a provider
for book detail pages.

1.1. Problem Statement

This paper approaches the problem of web informa-
tion extraction from a specific angle that enables
automatic on-the-fly wrapper creation. Therefore,
we define our problem statement as follows

How to automatically find a wrapper that,
for every detail page of a given provider,
extracts the attribute data of the objects
described on the detail pages. (Figure 1)

Provider Attribute

?

Wrapper

Figure 1: Abstract problem of automatic informa-
tion extraction

Moon Palace

ISBN: 0140115854

Detail page 1

Robinson Crusoe

ISBN: 0375757325

Detail page 2

Title

Moon Palace

Attribute sample 1

Title

Robinson Crusoe

Attribute sample 2

Combine

Final ranking

Lord of the Flies

ISBN: 0399501487

Detail page n

Title

Lord of the Flies

Attribute sample n

Search

1.00 //img[@id='prodImage']/@alt

0.98 //span[@id='btAsinTitle']/text()

0.66 //form[@id='handleBuy']/h1

Ranking 1

0.99 //img[@id='prodImage']/@alt

0.98 //span[@id='btAsinTitle']/text()

0.70 //form[@id='handleBuy']/h1

Search

0.99 //img[@id='prodImage']/@alt

0.97 //span[@id='btAsinTitle']/text()

0.70 //span[@id='bxgy_x_title']/text()

Ranking 2

Search

1.00 //span[@id='btAsinTitle']/text()

0.97 //img[@id='prodImage']/@alt

0.72 //form[@id='handleBuy']/h1

Ranking n

Figure 2: Approach idea

1.2. Approach

Our approach is illustrated with an example in
Figure 2. The basic idea is to use XPath [1]
as the extraction language and a small set of
easily obtainable sample data to rank automatically
generated XPaths on their suitability for extracting
the wanted attribute values. The ranking score
for a XPath describes how well the content of
the node addressed by the XPath matches the
searched attribute sample. The better the match,
the higher the ranking score. Furthermore, since we
expect that just one detail page is rarely completely
representative for all detail pages of a provider, the
search has to be repeated with more detail pages
to get a more robust ranking result. The final
ranking of XPath wrappers is a combined result
derived from the individual sample rankings. A
more detailed description of the approach is given
in Section 2.

1.3. Related research

In their survey, Laender et al. [2] propose a tax-
onomy for web information extraction tools. Our
approach can be categorized as wrapper induction:
generation of extraction rules derived from a given
set of training samples. This is fundamentally
different from approaches where wrappers have to

be defined by the user, even if this user is assisted
by elaborate tools such as Lixto [3] or XWrap [4],
because a wrapper may fail if the website changes
its layout. Wrapper induction enables automatic
adaptation to a new layout or even extracting
from a previously unseen layout without human
intervention.

Other approaches for wrapper induction distin-
guish themselves mainly in the rule language they
use and the features derived from the training
samples. Stalker [5] automatically learns extraction
rules in their own Simple Landmark Grammar.
SoftMealy [6] learns finite state transducers. DE-
ByE [7] uses two kinds of patterns: (1) object
extraction patterns determining the objects and (2)
attribute value patterns determining the attribute
values of these objects. In our approach, we
use XPath as extraction rule language similar to
Anton [8].

Regarding features, in our approach we use a
combined score for how well the extracted attribute
values from a number of detail pages match the
training samples. Roadrunner [9] analogously relies
on structure similarity between several pages. The
probabilistic tree-edit model by Dalvi et al. [10],
however, relies on different versions of the exact
same page to estimate a robustness score against
layout evolution. The availability of historic ver-

sions reduces its applicability in practice though.
The visual placement of information is also a useful
feature. Visual nesting is used by VisQI [11].
Placement also plays a role in Trieschnigg et al. [12].
Their objective is not to derive an XPath wrap-
per for detail pages, but for search result pages.
The rich set of features including visual placement
makes that only a single page suffices for their
purpose, hence allows unsupervised on-the-fly au-
tomatic wrapper generation.

1.4. Outlook

Section 2 describes our approach in more detail.
It discusses obtaining the input sample data, the
handling of discrepancy problems between sample
data and detail page data, the generation of flexible
and intuitive XPaths, and the calculation and com-
bination of the ranking scores. Section 3 presents
our experiments with real-world data. The data set
covers 7 attributes and 6 providers for book detail
pages. Besides a general validation of our approach,
the experiments also investigate how many input
samples on average suffice for determining a suitable
XPath wrapper.

2. Algorithms

This section describes in more detail the algorithms
involved in our approach. Note that for simplicity
the algorithms are formulated for a given target
attribute and a given target provider. In practice
the approach may be repeated for other attribute
and provider combinations; intermediate results like
generated XPaths for detail pages may be reused.

2.1. Input Data

As input for the approach we require an easily
obtainable small data set of samples. More specif-
ically, each input sample consists of an attribute
sample and its associated object detail page.

Definition 1 Let S be a set of samples (vi, di)
where vi is an attribute sample for the target
attribute a and di is the associated detail page at
the target provider p. Let D = {di | (vi, di) ∈ S} be
the set of sample detail pages from p.

We believe that this sample data can be easily
obtained for the following two reasons. First, there
already exist many data sets containing attribute
samples for a variety of attributes, e.g., lists of
famous books. If the data set does not exist, we
still believe that it is easier to create a small data set
than to manually create and maintain the wrappers.
Second, if combined with an automated approach
for obtaining search results from a provider such as
the one by Trieschnigg et al. [12], attribute samples
can be used to automatically obtain the associated
detail pages. In the use case of online bookstores,
searching for the ISBN of a book is a good strategy

to find associated detail pages. In general, unique
identifiers like ISBN are good candidates for linking
attribute samples to detail pages.

Since we use XPath as our extraction rule lan-
guage, we also require the detail pages to be well-
formed XML. Unfortunately many real world web
pages are not completely valid XML documents,
even when they claim to be XHTML. Luckily,
many tools exist that take (X)HTML web pages as
input, repair them and output a well-formed XML
document. It is therefore assumed that the detail
pages are available in well-formed XML.

2.2. Matching Score Calculation

In the example given in Figure 2, we are search-
ing for the attribute ‘Title’ and one of the input
attribute samples is ‘Lord of the Flies’. Our
approach simply traverses the whole XML tree of
the associated detail page, including all HTML
tag elements, attribute nodes and text nodes. It
compares the text content of each node with the
data sample ‘Lord of the Flies’. With text content,
we mean the XML string value of a node. For text
nodes, the text content is the same as the node’s
content. For all other nodes the text content is
created by concatenating the text contents of all
child nodes or, if they don’t have child nodes, the
empty string.

One complication in this approach is the compari-
son: there may exist a data discrepancy between the
attribute sample and the data on the detail page.
For example, the letter case can be different and
typing errors can exist:

Attribute sample The Lord of the Rings. The
Fellowship of the Ring Part 1

String on page The Fellowship Of The Ring: The
Lord Of The Rings Part 1

A simple string comparison would fail at detect-
ing a match between both book titles. To overcome
this problem, the algorithm is case insensitive and
uses a string similarity measure to determine how
well a node’s text content matches the searched
attribute sample. Two popular string similarity
measures for this purpose are Jaro-Winkler and
Levenshtein. We have chosen Jaro-Winkler, be-
cause earlier research has shown that it seems to be
the preferred choice when it comes to record link-
age [13]. The Jaro-Winkler similarity is transformed
into a matching score between 1 (perfect match) and
0 (no match). Note that, within a detail page, an
attribute sample may be found multiple times with
varying scores.

Definition 2 Let dj = 1
3 (m

|s1| + m
|s2| + m−t

m) be the
Jaro distance between strings s1 and s2 (or 0 if m =
0), where m is the number of matching characters
and t the number of transpositions (matching but in
a different order). Characters are only matching iff

Algorithm 1 XPath generation for node n

procedure XPath(n)
if n is root then

return ""
end if

if n is element with tag e
and has attribute "id"
and its value is not in the ignore set then
return "//e[@id=’id’]"

end if

p← XPath(Parent(n))

if n is element with tag e
and has attribute "class"
and is first sibling with that class then
return p + "/e[@class=’class’]"

end if

if n is element with tag e then
p← p + "/e"

else if n is attribute with name a then
p← p + "/@a"

else if n is text node then
p← p + "/text()"

end if

if n is ith sibling of that node type
and i > 1 then
p← p + "[i]"

end if

return p
end procedure

they are not father apart than b 12max(|s1|, |s2|)c −
1. Let dw = dj + lp(1 − dj) be the Jaro-Winkler
distance, where l is the length of the common prefix
and p a scaling factor (default 0.1).

Definition 3 The individual score for text content
t, score(vi, t) ∈ [0, 1], is equal to the Jaro-Winkler
string distance between vi and t. For convenience,
score(vi, n) = score(vi, tn) where tn is the text
content of node n.

2.3. XPath generation

We have chosen the well known XPath standard as
the rule language for addressing parts of the detail
pages and extracting the wanted information. For
each node in a detail page, we can automatically
generate an XPath, although one has to be careful
to make the XPath neither too precise nor too
flexible. For example, we could construct XPaths
like /html/body/p/h1[.=‘Lord of the Flies’]. While
this XPath wrapper might work for one specific
detail page, it is very inflexible, i.e., it does not
generalize well to other detail pages. The other

extreme is an XPath like //a[3] which selects the
third anchor of a detail page. This XPath likely has
a match on every detail page, but it is unlikely that
it will select the same part of the template in every
detail page. A compromise between those extremes
is needed.

Our XPath generation algorithm (Algorithm 1)
works as follows. Starting at a given XML node,
the corresponding XPath is generated bottom up by
visiting all ancestors one-by-one unless a stopping
condition is met along the way. One stopping condi-
tion is if a visited node has an attribute node called
id. In this case, an XPath like //a[@id=‘booktitle’]
is generated. Note that id attributes are not
always suitable. In some cases, we encountered
ids that were not unique although according to
the HTML standard, there may be only one node
with a certain id. Also in some cases, ids were
generated strings that do not generalize well such
as contributorNameTriggerB000APSP20. Such id
attributes are ignored.

If a visited node does not have a unique id but
has a class attribute and the node is the first sibling
with this class, it is identified by its tag name and
the class (e.g., /div[@class=‘bookInfo’]). Other tag
nodes, text nodes and attribute nodes are handled
with a position index. Only if the position index
equals 1, we omit it from the XPath for brevity.

Note that we evaluate the XPath wrappers under
a slightly different semantics, namely if an XPath
evaluates to more than one node, we only take the
first one. In other words, we assume a ‘[1]’ predicate
at the end of each XPath. The described XPath
generation approach has been designed with this
semantics in mind.

We believe that this approach for generating
XPaths is a good compromise and matches the way
how a human would intuitively write the XPaths.
The following list shows some XPaths generated
with this algorithm. They are short and flexible
but, assuming a constant template, still able to
unambiguously select the same intended part in all
detail pages.

• //input[@id=‘ASIN’]/@value
• //span[@id=‘isbn13’]
• //div[@id=‘bookmetadata’]/strong[2]
• //li[@id=‘edition-details’]/div[@class=‘about’]

/p/text()[3]

2.4. Ranking

From the previous steps, we get two intermediate
results for each input sample: (1) a list of nodes
in the detail page and their matching scores and
(2) XPaths that address the nodes. We arrive at a
combined ranking of XPaths from these results in
two steps.

First, each individual XPath gets as ranking score
the already calculated Jaro-Winkler matching score

of the first node it addresses. This is probably the
most obvious and simple score candidate.

Definition 4 The individual score score(vi, xi) for
XPath xi is equal to score(vi, n) where n is the first
matching node of xi evaluated on di.

Analogously, probably the most obvious and
simple candidate for score combination is taking the
average of the individual scores.

Definition 5 The final score score(a, x) for an
XPath x as a wrapper for attribute a is the
average of the individual scores: score(a, x) =
1
|S|

∑
1≤i≤|S| score(vi, xi) where xi = x.

Note that the combined ranking naturally deals
with many ambiguous situations such as where an
author “John Smith” also appears as editor: this
will only produce a high score for the editor-XPath
in one or two of the rankings in Figure 2, hence the
author-XPath will surely outrank the editor-XPath
in the final ranking.

A drawback of using the string similarity score
as the ranking measure is that many XPaths are
semantically equivalent and get the same score. For
example, the following two XPaths likely result in
the same text content.

• //a[@id=‘booktitle’]
• //a[@id=‘booktitle’]/text()

Therefore we decided to prune the ranking by
discarding all XPaths from the final ranking that
are just more specific versions of another XPath
with the same score. In the mentioned example,
only //a[@id=‘booktitle’] would remain. This opti-
mization is based on the intuition that less specific
XPaths give shorter and more flexible wrappers.

3. Experiments

This section empirically assesses the performance
and limits of the approach with real world data from
the use case example of online bookstores.

Attributes
Title
First author
Publisher
Publication year
Number of pages
ISBN10
ISBN13

Providers
Google Books
Bookdepository
Alibris
Abebooks
Biblio
Amazon (also source
of attribute samples)

Table 1: Data set: 1120 input samples for each
combination of provider and attribute

3.1. Data set

Our data set consists of attribute samples for
7 attributes of 1120 books and, for each book,
6 associated detail pages from different providers
(See Table 1). This data set has been constructed
as follows.

First a list of popular books was obtained from
librarything.com [14]. Then, to obtain the attribute
samples, each ISBN was automatically searched
on amazon.com to find the associated detail page.
The attribute samples were extracted with a man-
ually created wrapper. Note that Amazon is the
source for the attribute samples and also used as
a provider. This is an interesting case where the
attribute samples perfectly match with what is on
the page. More detail pages were obtained from
five other book websites, again automatically by
searching for the ISBN number.

If one of the ISBNs from librarything.com had no
corresponding detail page at one or more providers,
then the sample was discarded. Only book samples
which are known at all providers were retained to
ensure that the book is indeed popular.

Ultimately the data set consisted of 6720 detail
pages (1120 detail pages for each provider) and
each detail page was associated to 7 attribute
samples. The downloaded (X)HTML files were then
converted to well-formed XML with the Java library
HtmlCleaner [15]. Additionally we discarded all
comments, text nodes containing only whitespace,
script and style elements and namespace notations
to simplify and speed up the experiments. No
relevant attribute information was lost with this
simplification.

The whole prototype was implemented in Java
and used well known and tested libraries where pos-
sible. For example the Apache Lucene Spellchecker
library [16] provided the important correct imple-
mentation of the Jaro-Winkler algorithm.

We also applied an additional optimization to
the prototype to further speed up the experiment.
For XPath generation, we apply a light pre-filter
to the nodes: only those nodes are considered,
where the length of the text content is less than
or equal to three times the length of the attribute
sample. Nodes that are excluded with this condition
would have a low Jaro-Winkler score anyway, hence
this optimization does not significantly affect the
ranking.

3.2. Varying sample size

To get an indication of how large the input sample
size needs to be to produce robust XPaths, we vary
the sample size from 1 to 300 and randomly select
subsets of those sizes from the aforementioned data
set. For each such ‘training’ sample, we run our
algorithm and determine the top-3 XPaths for each
attribute. To assess the quality of these XPaths, we
have randomly selected a ‘test’ sample with size 500.

The performance of the XPaths was determined
by calculating the mean Jaro-Winkler string sim-
ilarity between the text content of the extracted
nodes and the attribute data associated with the
test detail pages. To minimize the influence of
the random selection, this procedure was repeated
50 times with different training and test samples.

3.3. Results

Figure 3(a) to Figure 3(e) show five of the 42 ex-
perimental results (one figure for each provider-
attribute combination). The X-axis shows the input
sample size. The Y-axis shows the mean similarity
test score. Three lines are visible, one for each of
the three best ranked XPath wrappers that resulted
from the training. The lines also show the standard
deviation of the mean test scores of the 50 experi-
ment iterations. Note, that only sample sizes up to
30 are included because the mean performance and
deviation did not significantly change with more
input samples.

Figure 3(a) to Figure 3(c) show three results
that are representative for most of the results.
In Figure 3(a) there is clearly one XPath that
achieves significantly better test scores than any
other generated XPath. In Figure 3(b) there are
apparently multiple XPaths that all work quite well.
However, in both cases the best XPath does not
reach the perfect test score of 1.0. This is mainly
due to small differences between the input attribute
data and detail page data. Figure 3(c) shows the
biased case of Amazon where the input attribute
data perfectly matches with the attribute data on
the detail pages. As expected the best XPath
actually reaches the test score of 1.0 in this case.

Figure 3(d) shows a representative case where the
detail pages of a provider contained no data for
a certain attribute. This is reflected in the test
scores as the best XPath not exceeding 0.45 and
the standard deviation remaining quite high even
with high sample sizes. It still reaches a score of
0.45, though, because the best XPath extracts some
‘size’ attribute of an HTML element with integers
in the same range as the target attribute ‘number
of pages’.

Figure 3(e) shows the typical case where the
granularity of nodes in the detail page was not
fine enough. This happens for example when the
algorithm searches for the attribute sample ‘345’
(number of pages) but the finest text content it
can find is the string ‘345 pages’. One can argue
that it still extracts the correct information. The
maximum test score, however, is almost as low as
for the case where no attribute information is found
on the detail pages. Nevertheless, the standard
deviation does become low with higher sample sizes.

What can be observed in all cases is that with
low sample sizes there is a high standard deviation
which usually decreases with more samples. This
standard deviation results from the fact that with

few samples the algorithm cannot be certain that
the best XPath found generalizes to all detail pages.
The algorithm can be lucky and actually find an
XPath that works for all detail pages or it can be
unlucky and find an XPath that applies only to the
training samples. Furthermore, it can be observed,
that in all cases 20 to 25 samples suffice to find the
most suitable XPath.

4. Conclusions

This paper presents an approach for web infor-
mation extraction that provides automatic on-the-
fly wrapper creation. Our approach uses a small
set of data samples for ranking XPaths on their
suitability for extracting attribute information from
the object detail pages of a website. We have shown
with a real world use case of online bookstores
that 20 to 25 samples suffice for finding the most
suitable XPath. The set of candidate XPaths we
generate is chosen to be precise enough to select a
specific node but also flexible enough to generalize
well to all detail pages. It appears that identifiers
typically embedded in the generated HTML of the
detail pages are particularly useful for keeping the
set of candidate XPaths small. We used Jaro-
Winkler similarity to address two problems: (1)
small differences between attribute samples and
detail page data, and (2) evaluating the quality of
the chosen XPaths.

A remaining problem is making the distinction
between the case that the attribute does not exist
on the detail pages of a provider and the case that
the granularity of the (X)HTML structure is not
fine enough. A possible solution to the granularity
problem may be the artificial insertion of nodes into
the detail page.

Furthermore, we intend to investigate other
XPath generation approaches. Our XPath rank-
ing approach can easily consider more candidate
XPaths. Generating more XPaths may improve the
ability to find the most suitable XPath. Also, the
use of a probabilistic database approach may be
able to more robustly address ambiguous situations
[17, 18].

Finally, we plan to investigate other string sim-
ilarity measures and their exact influence on the
ranking. A preliminary experiment showed that
using Levenshtein resulted in a ranking of XPath
wrappers that was similar to the ranking obtained
with Jaro-Winkler. However, the ranking scores
were generally lower, and it seems that Jaro-
Winkler has a bias to finding more true positive
matches while allowing more false positives than
Levenshtein.

References

[1] XML Path Language (XPath) 2.0 (Second Edi-
tion). http://www.w3.org/TR/xpath20, December

(a) Publisher at Bookdepository (b) First author at Alibris

(c) Title at Amazon (d) Number of pages at Abebooks

(e) Number of pages at Google Books

Figure 3: Experimental results

2010.
[2] A.H.F. Laender, B.A. Ribeiro-Neto, A.S.

Da Silva, and J.S. Teixeira. A brief survey
of web data extraction tools. ACM SIGMOD
Record, 31(2):84–93, June 2002.

[3] Robert Baumgartner, Georg Gottlob, and
Marcus Herzog. Scalable web data extraction
for online market intelligence. Proceedings of
the VLDB Endowment, 2(2):1512–1523, Au-
gust 2009. ISSN 2150-8097.

[4] L. Liu, C. Pu, and W. Han. XWRAP: An
XML-enabled wrapper construction system for
web information sources. In Proceedings of the
16th International Conference on Data Engi-
neering (ICDE), pages 611–621. IEEE, 2000.

[5] Ion Muslea, Steve Minton, and Craig
Knoblock. Stalker: Learning extraction rules
for semistructured, web-based information
sources. In Proceedings of AAAI-98 Workshop
on AI and Information Integration, pages
74–81, 1998.

[6] Chun-Nan Hsu and Ming-Tzung Dung. Gen-
erating finite-state transducers for semi-
structured data extraction from the web. In-
formation Systems, 23(8):521–538, 1998. ISSN
0306-4379. DOI 10.1016/S0306-4379(98)00027-1.

[7] A.H.F. Laender, B. Ribeiro-Neto, and A.S.
Da Silva. DEByE: data extraction by example.
Data & Knowledge Engineering, 40(2):121–
154, 2002.

[8] Tobias Anton. XPath-wrapper induction
by generalizing tree traversal patterns. In
Lernen, Wissensentdeckung und Adaptivität
(LWA) 2005, GI Workshops, Saarbrücken,
pages 126–133, 2005.

[9] V. Crescenzi, G. Mecca, P. Merialdo, et al.
Roadrunner: Towards automatic data extrac-
tion from large web sites. In Proceedings of the
International Conference on Very Large Data
Bases (VLDB), pages 109–118, 2001.

[10] Nilesh Dalvi, Philip Bohannon, and Fei Sha.
Robust web extraction: an approach based
on a probabilistic tree-edit model. In Pro-
ceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of Data,
pages 335–348, 2009. ISBN 978-1-60558-551-2.
DOI 10.1145/1559845.1559882.

[11] Thomas Kabisch, Eduard C. Dragut, Clement
Yu, and Ulf Leser. Deep web integration with
VisQI. Proceedings of the VLDB Endowment,
3(1-2):1613–1616, September 2010. ISSN 2150-
8097.

[12] R.B. Trieschnigg, K.T.T.E. Tjin-Kam-Jet, and
D. Hiemstra. Ranking XPaths for extracting
search result records. Technical Report TR-
CTIT-12-08, Centre for Telematics and In-
formation Technology, University of Twente,
March 2012. ISSN 1381-3625.

[13] S.J. Grannis, J.M. Overhage, and C. McDon-
ald. Real world performance of approximate

string comparators for use in patient matching.
Medinfo, 11(Pt 1):43–7, 2004.

[14] Book awards: 1001 books you must read before
you die. http://www.librarything.com/bookaward/
1001+Books+You+Must+Read+Before+You+Die, June
2012.

[15] Htmlcleaner. http://htmlcleaner.sourceforge.net,
June 2012.

[16] Apache. Lucene core.
https://lucene.apache.org/core/, May 2012.

[17] M. van Keulen. Managing uncertainty:
The road towards better data interoper-
ability. IT - Information Technology,
54(3):138–146, May 2012. ISSN 1611-2776.
DOI 10.1524/itit.2012.0674.

[18] M. van Keulen and A. de Keĳzer. Qualitative
effects of knowledge rules and user feedback
in probabilistic data integration. The VLDB
Journal, 18(5):1191–1217, October 2009. ISSN
1066-8888. DOI 10.1007/s00778-009-0156-z.

	Introduction
	Problem Statement
	Approach
	Related research
	Outlook

	Algorithms
	Input Data
	Matching Score Calculation
	XPath generation
	Ranking

	Experiments
	Data set
	Varying sample size
	Results

	Conclusions

