
Evaluation of a Connectionless NoC for a Real-Time Distributed
Shared Memory Many-Core System

Jochem H. Rutgers, Marco J.G. Bekooij, Gerard J.M. Smit
University of Twente, Department of EEMCS

P.O. Box 217, 7500 AE Enschede, The Netherlands
j.h.rutgers@utwente.nl

Abstract—Real-time embedded systems like smartphones
tend to comprise an ever increasing number of processing cores.
For scalability and the need for guaranteed performance, the
use of a connection-oriented network-on-chip (NoC) is advo-
cated. Furthermore, a distributed shared memory architecture
is preferred as it simplifies software development for a multi-
core system.

In this paper, experimental evidence is provided, showing
that replacing a connection-oriented NoC by a connectionless
one in a distributed shared memory system reduces the
hardware costs and improves the performance. We observed
that our FPGA could only support an 8-core system with a
connection-oriented NoC. We exchanged the NoC with our
tree-shaped, connectionless network and a ring, allowing a 32-
core system in the same FPGA, mainly because of a reduced
number of physical connections. Although the analytical worst-
case performance slightly decreased, measurements show that
the latency of latency-critical memory reads was reduced by
52% on average.

I. INTRODUCTION

The current trend is that an ever increasing number of
processing cores is integrated on a single chip for real-
time embedded devices, such as smartphones and car-
entertainment systems. Usually, expensive, off-chip memory
communication is avoided by using distributed and non-
uniform memory, such as caches and scratch-pad memories.

Because a traditional bus is unsuitable as infrastructure for
such a many-core architecture, networks-on-chip (NoCs) have
been developed. In particular, to give real-time guarantees,
the use of a connection-oriented, guaranteed-service (GS)
NoC is proposed [1–3]. This allows performance analysis
of applications in isolation because communication of one
application can only have a bounded influence on other
running applications. Nevertheless, software development for
such distributed-memory, many-core system is hard [4].

To reduce the programming effort, the hardware platform
should preferably support a shared-memory programming
model [5, 6]. Other programming models, such as streaming
and message passing, can be emulated on such a system by
means of a software middleware layer [5–8]. A connection-
oriented NoC can be used in a distributed shared memory
(DSM) architecture, but requires connections between every
processor and (local) memory. This is expensive because a

hardware cost is associated with every connection. A connec-
tionless NoC would be less expensive, but the performance
per connection is uncertain.

In this paper, experimental evidence is provided that
confirms that substitution of a connection-oriented NoC by
a connectionless one in a real-time DSM system can reduce
hardware costs significantly. Furthermore, it can improve the
processor utilization, but does compromise the analytically
computed worst-case behavior. However, an increase in the
uncertainty introduced by the connectionless interconnect is
not confirmed by the experimental results.

We designed and built such a system with a connection-
oriented NoC, tailored to streaming applications (Section II).
It turned out that the size of a Virtex-6 LX240-T FPGA only
allowed having 8 MicroBlaze cores (Section III). We replaced
the connection-oriented NoC by a tree-shaped, connectionless
network and a ring (Section IV). The new interconnect is
smaller, and as a result, the same FPGA can contain 32 cores.
Additionally, measurements show improved performance.
Although the analytically calculated worst-case behavior is
slightly worsened, it is bounded (Section V). This makes the
use of a connectionless NoC viable.

A. Related Work

A connectionless NoC is also used in Intel’s 48-core
SCC, which implements both shared memory and message
passing [9]. Another example of a DSM system is the Tilera
TILE-Gx, which incorporates 100 cores and multiple NoCs
for different data streams [10, 11]. For neither system, the
NoC’s influence on the real-time behavior has been analyzed.

MAGALI is a heterogeneous, reconfigurable system with
22 cores and a NoC for baseband processing with hard real-
time properties [12]. Although the system is reconfigurable,
it is optimized for a limited class of applications, where we
target a more general-purpose system.

The CoMPSoC multiprocessor system [13] comprises three
VLIW cores, a GS, connection-oriented NoC and a shared
memory. A key property of this system is that applications
cannot affect each others temporal behaviour. In contrast,
in this paper we target real-time systems for which it is
sufficient that interference is bounded by using starvation-
free schedulers.



...

RAM
(bootcode)

RAM

timer

MB
7

MB
1

UART DVI EthernetDDR

network-on-chip

PLB

MicroBlaze 0
16 KB I$, 8 KB write-back D$

hw multiplier, FPU

Figure 1. Structure of the system with eight identical MicroBlaze tiles,
NOC, memory, and peripherals; arrows indicate master/slave relation

II. SYSTEM ARCHITECTURE

The characteristics of the system we target as mentioned in
Section I, are: 1) a scalable distributed shared memory, many-
core system; 2) streaming, firm real-time applications, where
deadline misses are highly undesirable, but not catastrophic;
and 3) the set of applications to be run at the platform—
and thus the communication pattern—is unknown at design
time, so the architecture must be flexible. We implemented
a tool flow that generates such system for FPGA, with a
configurable number of processing tiles, either a connection-
oriented or a connectionless NoC, and one Xilinx DDR3
memory controller. The structure of an 8-core system is
depicted in Figure 1. The processing tile comprises a
MicroBlaze (not cache coherent) connected to a local bus
with an SRAM and a timer. The MicroBlazes have a global
address map and can access the SRAMs of other MicroBlazes
via the NoC.

All MicroBlazes can execute code from main memory.
Every core runs a small, custom, multi-threaded kernel using
using Time-Division Multiplexing (TDM) scheduling and
supports the newlib C library and implements the Pthread
standard. Kernels communicate by message-passing over the
direct connections between processors.

On top of this kernel, any application can be run. To our
knowledge, there is no streaming or multi-core real-time
application benchmark set. Hence, we use applications from
the SPLASH-2 benchmark set [14] for our experiments; they
are easy to port, and give a decent parallel workload. Because
the lack of cache coherency, all shared application data is
put in an uncached memory region; the caches only cover
code, kernel data structures and the all process’s stacks.

With this setup, we experiment with different NoCs.

III. OBSERVATIONS CONNECTION-ORIENTED NOC

The first system that is evaluated is an 8-core system as of
Section II with the connection-oriented Æthereal NoC [3].
In this NoC, the connections can be configured at run-
time. Because we have a DSM system, the NoC should
allow connections between any two processor tiles. Since
it is not feasible to recompute and reconfigure the network
configuration at run-time when a connection is (to be) used,

Table I
FPGA RESOURCE USAGE OF SYSTEM WITH ÆTHEREAL

LUTS FFS BRAMS

master MicroBlaze 2,664 (3.2%) 2,239 (2.6%) 8
master tilea 2,372 (2.9%) 2,385 (2.8%) 9
7× slave MicroBlaze 2,461 (3.0%) 2,003 (2.3%) 8
7× slave tilea 1,184 (1.5%) 714 (0.8%) 5
interconnect 46,535 (57.0%) 56,274 (65.8%) 0
peripherals 4,542 (5.6%) 5,594 (6.5%) 10
total 81,628 (100.0%) 85,511 (100.0%) 118
a The tile includes a local memory, a timer, PLB and bridges

a single general-purpose configuration is required. Therefore,
we attempted to configure Æthereal to be fully connected.

Surprisingly, synthesis shows that the 8-core design does
not fit in a Virtex-6 LX240-T FPGA because the fully
connected interconnect is too big. As a—naive and non-
generic, but simple—solution, Æthereal is configured such
that every MicroBlaze can communicate with the DDR, one
MicroBlaze that manages startup, one peripheral, and both
neighbors. Æthereal is configured with very low bandwidth
requirements to maximize configuration freedom1 and the
buffer sizes are set to contain one burst of the MicroBlaze’s
cache. This configuration is small enough to fit in the FPGA,
and will be used as reference design in this paper.

A. FPGA Synthesis Results

The synthesis results of the 8-core reference design for a
Xilinx Virtex-6 LX240-T at 100 MHz is shown in Table I.
The table shows that the master MicroBlaze is slightly bigger
than the slaves, which is caused by additional debug support.
The peripherals include the memory controller and UART.

Still, the interconnect is the biggest part of the system.
The NoC contains 1.5 times more look-up tables (LUTs)
and 2.4 times more flip-flops (FFs) than all MicroBlaze tiles
together. Two reasons for that result are that MicroBlazes
are small and Æthereal does not map to an FPGA well.

However, there is a more fundamental problem: every
connection in a connection-oriented NoC has associated
hardware costs. In case of Æthereal, most of the area is used
by buffers. Because we need a fully-connected interconnect,
a connection-oriented network becomes expensive since a
quadratic number of buffers is required.

B. MicroBlaze Utilization

To analyze the performance of the platform, we ported
the SPLASH-2 raytrace, volrend, and radiosity
applications. Table II shows the distribution of cycles during
the main, parallel application loop of each of the applications.
In the table, execution indicates the time that the core executes
instructions, or stalls on uncached data reads and data cache

1In fact, when realistic bandwidth requirements are set, a suitable
configuration cannot be found. Forcing a different internal network structure
or choosing the number of input/output ports differently does not help.



Table II
MICROBLAZE UTILIZATION

event raytrace volrend radiosity

ICache mis 14.0% 6.3% 13.7%
read data 16.7% 14.4% 58.7%
write data 0.5% 0.6% 0.3%
execution 63.4% 73.9% 21.2%
other 5.3% 4.7% 6.1%

misses (read data); uncached writes and data cache flushes
(write data); and instruction cache misses (ICache mis).
Other includes overlapping and indecisive events.

The performance is limited by the high memory read
latency: a read takes 77 clock cycles on average, where
15 cycles are spent in the DDR controller and the rest in
the NoC. Traversing the NoC is expensive, because: 1) one
memory request packet waits for multiple TDM slots (which
are non-contiguous) in the routers, even when the NoC is idle;
and 2) the response has to wait for its slot too, because the
arbitration of the request and response packets are unrelated.

We observe that we have two types of communication
channels: latency-tolerant interprocess channels (typically
FIFO communication, with bandwidth guarantees); and
latency-critical channels (typically for caches). In the latter
type of channel, the performance degrades immediately with
a higher latency, where in the former, sensitivity for latency
depends on the application. The profiling data shows that
Æthereal does not perform well for latency-critical traffic.

IV. IMPROVEMENTS BY CONNECTIONLESS NOC

The previous section identifies two problems: super-
linear scaling of hardware resources and high latency for
memory reads. We designed a connectionless NoC, of which
Figure 2 shows its structure. Latency-tolerant traffic utilizes
the interconnect at the top of the figure. We chose a ring for
it, because of its simplicity, but since the applications hardly
depend on it, a thorough discussion is omitted.

At the bottom, the latency-critical part connects the
memory and peripherals. It must adhere to the following
requirements: 1) starvation-free scheduling; 2) work conserv-
ing to optimize for latency; 3) scale linearly in hardware costs
to the number of cores; and 4) pipelined and decentralized
arbitration to avoid long wires for high performance.

A. Proposed NoC: Arbitration Tree

Figure 2b shows the structure of this new interconnect,
having arbitration of 8 cores to a memory controller and
peripherals. Every read and write request of a processor
is packetized, containing one command, one address, and
multiple data flits. A packet gets a timestamp and processor
ID upon injection. The timestamp can be generated locally
to every core, as long as they are (pseudo-)synchronized, i.e.
during reset. When these timestamp generators are getting

...

DDR peripherals

latency-critical
bus

MB
0

MB
1

MB
7

ring—latency-tolerant

arbitration
tree

(a) System structure

step

b

t

MB
0

MB
1

b

step

b

step

t

... MB
7

...

FCFS
abitration:
binary tree

serialized
packets

input packets

timestamp
added

(b) Arbitration tree structure

Figure 2. Structure of the system with replaced interconnect

ICache m
is

read data

write
 data

execution
other

total

0

20

40

60

80

100

raytrace AE

raytrace new

volrend AE

volrend new

radiosity AE

radiosity newre
la

tiv
e

 ti
m

e
 (

%
)

Figure 3. Comparison of processor utilization of Æthereal (measurements
of Table II are labeled AE) and new arbitration tree

out of sync (by drifting clocks, for example), the First-Come-
First-Served (FCFS)-property cannot be guaranteed.

Next, the packets are sent through a binary arbitration
tree that multiplexes n processors to one bus master, where
every step in the tree does local arbitration of two inputs.
A step lets the packet with the lowest timestamp precede.
Rearbitration only happens between packets. After every step,
a small buffer can be placed for shorter wires or left out for
lower latency. By means of back-pressure, requests can be
stalled by subsequent steps and the bus slave. Because the
network is a binary tree, the number of steps in the network
equals n− 1. Hence, the hardware requirement scales linear
to the number of processors.

Finally, the response will be sent back into a similar tree,
but demultiplexes one to n without arbitration, based on the
processor ID (not shown in the figure).

B. Evaluation

Synthesis of the arbitration tree in the 8-core system shows
that the interconnect consumes 4,603 LUTs and 2,750 FFs.
So, this system uses about half the resources of the one
with Æthereal of Table I. With such resource usage, even a
32-core system fits in the FPGA.

On this 8-core platform, the same applications have been
run as in Section III-B. Figure 3 compares the utilization of
both experiments. As the chart shows, the total execution time
is reduced for all applications, and the time the processor
stalls at the instruction cache misses and reads from the
memory is roughly halved. The read latency of the memory
is reduced to 37 cycles under full load and 25 cycles when
idle (where the memory controller still consumes 15 cycles).



Table III
MEASURED AVERAGE PACKET ISSUE INTERVALS (CLOCK CYCLES)

packet type ` raytrace volrend radiosity

read worda 2 47.6 60.4 10.4
read burstb 2 51.4 100.3 40.7
write wordc 3 6197.0 4187.5 763.2
write burstd 10 7875.2 10049.1 18078.9
a Causes: uncached data read
b Causes: instruction cache mis; data cache mis
c Causes: uncached data write; data cache word flush
d Causes: data cache line flush

V. BOUNDED TEMPORAL BEHAVIOR

FCFS, which is used in our new network, in general is
not known to be fair and can be out-performed by other
schedulers [15]. However, our interconnect has been designed
such that FCFS can be used in a predictable system, which
is proven in this section.

We define the service time S(p) of a packet p with length
`(p), which is the time a packet resides in the network. This
is the time packet p arrives at a leaf of the tree and gets its
timestamp, till the last flit leaves the root and therefore is
serviced. An initiator can only inject a new packet when the
last flit of the previous one is injected in the tree.

A step in the arbitration tree can only process one flit per
time unit, e.g. clock cycle. Traversing a buffer always takes at
least one time unit, even if the buffer is empty. Then, the best-
case service time Sbc of a packet p is Sbc(p) = `(p)+log2 n.

The maximum buffering in the tree is (n− 1)b, where b
denotes the depth of the buffer after a step. Therefore, the
worst-case service time of p is that p must wait for all flits
in the tree and the largest packet possible just being injected
by all other initiators: Swc(p) = Sbc(p) + (n− 1)b+ (n−
1)maxp′∈P `(p

′), where P denotes the set of all possible
packet types. Hence, the service time is bounded and the
arbitration is starvation free.

In the system of Section IV, where b = 2, Swc(read) = 89
cycles, where Sbc(read) = 5. In contrast, the worst-case
service time in the system with Æthereal (as of Section III)
is Swc=84 and the measured average case is Sac=30.66.
Swc for our interconnect is high, because a packet must
wait for the largest packets to complete first. However, the
largest packets are burst writes, which are rare; the measured
average interval between packets are listed in Table III.

Although a single packet could stall according to Swc, it
is not possible that all packets must wait this long, because
there are not enough interfering packets that can be waited
on. For example, within a period τ , raytrace issues q =
1
8 (

τ
47.6 + τ

51.4 ) read packets. These packets could interfere
with at most I = 7

8 (
2τ
47.6 + 2τ

51.4 + 3τ
6197.0 + 10τ

7875.2 ) other
packet flits. So, on average every read packet waits at most for
I
q = 14.3 flits c.q. cycles, which is closer to the measurement.

VI. CONCLUSION

In this paper, a Virtex-6 FPGA implementation of an 8-core
distributed shared memory system with a connection-oriented
NoC is compared to one with a connectionless NoC. This
comparison provides evidence that replacing a connection-
oriented NoC by a connectionless one can significantly
reduce hardware costs and can result in an improved average
performance.

The higher cost of the connection-oriented NoC is mainly
caused by super-linear scaling of the number of buffers
with respect to the number of cores, where our network
scales linearly to the number of cores. Experiments using
SPLASH-2 applications show that the average read latency
reduced from 77 to 37 clock cycles and the core utilization
increased by 38%. Although the worst-case latency from core
to memory increased from 84 to 89 cycles, the worst-case
reduction in performance per core is more than compensated
by having more cores for the same hardware costs.

The experimental evidence provided in this paper indicates
that it can be attractive to use a connectless NoC in real-
time multiprocessor systems with a distributed memory
architecture.

REFERENCES
[1] T. Bjerregaard and S. Mahadevan, “A survey of research and practices

of network-on-chip,” ACM Comput. Surv., vol. 38, no. 1, p. 1, 2006.
[2] G. De Micheli, C. Seiculescu, S. Murali et al., “Networks on Chips:

from Research to Products,” in Proceedings of the 47th Design
Automation Conference (DAC 2010), vol. 1, 2010, pp. 300–305.

[3] K. Goossens and A. Hansson, “The Aethereal Network on Chip after
Ten Years: Goals, Evolution, Lessons, and Future,” in Proc. Design
Automation Conference (DAC), Jun. 2010.

[4] H. Sutter and J. Larus, “Software and the concurrency revolution,”
Queue, vol. 3, no. 7, pp. 54–62, Sep. 2005.

[5] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for
Shared-Memory Programming,” IEEE Computational Science and
Engineering, vol. 5, no. 1, pp. 46–55, 1998.

[6] D. Kranz, K. Johnson, A. Agarwal et al., “Integrating message-passing
and shared-memory: early experience,” ACM SIGPLAN Notices,
vol. 28, no. 7, p. 63, 1993.

[7] P. van der Wolf, E. de Kock, T. Henriksson et al., “Design and program-
ming of embedded multiprocessors: an interface-centric approach,” in
Proceedings of CODES+ISSS ’04. ACM, 2004, pp. 206–217.

[8] D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach, 1998, ISBN 1558603433.

[9] J. Howard, S. Dighe, Y. Hoskote et al., “A 48-Core IA-32 message-
passing processor with DVFS in 45nm CMOS,” in ISSCC, 2010 IEEE
International, 2010, pp. 108–109.

[10] Tilera TILE-Gx,
http://www.tilera.com/products/processors/TILE-Gx Family.

[11] A. Agarwal, “The Tile Processor: A 64-core Multicore for Embedded
Processing,” in Proceedings of HPEC Workshop, 2007.

[12] F. Clermidy, C. Bernard, R. Lemaire et al., “A 477mW NoC-
based digital baseband for MIMO 4G SDR,” in ISSCC, 2010 IEEE
International, 2010.

[13] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “CoMPSoC:
A template for composable and predictable multi-processor system on
chips,” ACM Trans. Des. Autom. Electron. Syst., vol. 14, no. 1, 2009.

[14] S. Woo, M. Ohara, E. Torrie et al., “The SPLASH-2 programs:
characterization and methodological considerations,” in Proceedings
of 22nd Annual Int. Symp. on Comp. Arch., 1995, pp. 24–36.

[15] H. Zhang, “Service Disciplines for Guaranteed Performance Service
in Packet-Switching Networks,” in Proceedings of the IEEE, 1995,
pp. 1374–1396.


