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Abstract 
Fast simulation techniques are applied to estimate er- 
ror ra t s  of coherent M-ary phase shift keying (PSK) 
in the presence of co-channel interference ( C m  and 
additive white Gaussian noise (AWGN). This type of 
interfaence occurs o h  in wireless systems that em- 
ploy ftequency reuse. Ermr rates are frequently caicu- 
lated assuming that CCI can be modelled as Gaussian. 
It is shown that this assumption is valid only in noise 
dominated environmentS. Simulation techniques based 
on adaptive impoaance sampling (IS) are developed 
for this problem. Several new numerical results are 
presented and used to calculate cellular capacities. 
Keywords Importance sampling, Co-channel interfer- 
ence, M-ary PSK, Cellular capacity. 

1 INTRODUCTION 
Many digital cO"nicati0n systems are pertrnbed by 
interference that can be modelled as a sum of sinusoids 
with random phases. Mobile wireless systems often 
operate in interference dominated environments which 
can have a limiting effect on performance in terms of 
bit mor rates and cellular capacities. In particulat, 
CCI in such systems arises from kquency reuse in 
certain fixed patterns of geogmphic cells, [ 11-[2]. The 
information bearing signal iii a particular fiwluency 
cell is interfered by signals arriving from surrounding 
cells that use the same frequency. These randomly 
phased interfering si& add up, giving rise to CCL 

Perfbmance analysis in term of bit or symbol error 
rates is usually carried out by making the simplify- 
ing assumption that CCI can be considered Gaussian. 
This yields accurate results only when the signal to 
(additive white Gaussian) noise ratios are low com- 
pared to the corresponding signal to interfmce ra- 
tios. Hence more accurate methods are required m 
interference dominated situations wherein the combi- 
nation of Gaussian noise and interference is decidedly 
non- Gaussian. One fast simulation method, based on 
adaptive IS [3] - [q, is developed here for the coher- 
ent detection of M-ary PSK signalling. It is known 
that properly designed IS simulations can provide re 

markable gains over Monte Carlo (MC) procedures in 
terms of computational effort for the estimation of rare 
event probabilities. In the following sections we adopt 
a simple structure for CCI, develop biasing methods for 
phases of interferers and noise, dcacribe implementa- 
tion of adaptive estimators, present symbol error rates, 

sis is carried out for interfexeme dominated situations 
as well as those consisting of inteal'erence and additive 
white Gaussian noise (AWGN) m nonfading channels. 

and calculate cellular capacity for 1M- ~UY PSK. Analy- 

Binary and M - ~ I Y  PSK are treated1 separately. 

2 CO-CHANNEL INTERFERENCE 
The following assumptions are made on the interfering 
signals: 
0 The carrier signal amplitude of the desired informa- 
tion bit stream is A and that of the interfering signals 
is a A  where a is a positive constmt. The L interfa- 
ers are assumed to have equal amplitudes. 
0 Interfering signals are assumed to be similarly mod- 
ulated as the desired signal but carry different equally 
likely information bits. 

The i-tb interfering signal differs in phase from the 
desired signal by The set (4,)f co~lsists ofrandom 
independent phases, uniformly distributed in (0 ,2~) .  
The interfering carriers are at the same frequency as 
the desired signal. It is assumed that interfering signals 
are bit synchrotlized with the desired signal, resulting 
in all the energy of the interfsrer appearing at the d e  
modulator output. This is a worst-case situation. 

3 BINARYPSK 
The optimum receiver for coherent IPSK is a correlation 
detector or a matched filter-sampler followed by a zero 
threshold decision, It is assumed thi3t a +1 information 
bit is transmitted, un~esponding to a zero phase offset. 
The &cision statistic at the demodulator output with 
L interferers is proportional to 

0-7803-7527-0/02/$17.00 02002 IEEE. 204 

mailto:b.roelofs@ieee.org


where n is Gaussian and has zero mean with variance 
U:. The error probability can be written as 

L 
Pe = P ( A f n + ~ a A ~ 0 8 ~ ,  50) (3.2) 

i= 1 
L 

= E{ l(A + 22 + C a A  COB 4, 5 0)}(3.3) 
i-1 

where the indica- function 1(-) = 1 if the event in 
its argument occurs and is zero otherwise. Each cosine 
term in the above has the probability density function 
shown as the solid l i e  in Figure 1. Calculating the 
density of their sum is a computationally intensive task, 
involving an L-fold convolution. Assuming that the 
sum can be characterized by an equivalent Gaussian 
density (based on the central limit the") leads to 

1s.; 

to bias the phases 4i is to increase the probability mass 
in the vicinity of 4i = ?r. We use a Gaussian biasing 
density with mean at ?r and a common variance of U+. 

An example of the biased density for COSI#J is shown 
dashed in Figure 1 for U+ = 1.5. The Gaussian simu- 
lation samples that fall outside the (0,2n) interval are 
wasted, but the loss in efficiency is small. 

For biasing the noise n, it is clear that endowing it 
with a negative mean would increase the probability of 
making detection errors. While variance scaling can be 
used, in this case it wil l  not be as efficient as translating 
the mean. Denoting translation with parameter c, the 
weighting function is 

I 

To implement the atitnator of (3.4), it remains to 
I 
I 

choose g d  values of the biasing parameters 04 and C. 

2 1 , .  . . . . . . . . " elsewhere 

1 

I( 
This is done in an adaptive 2dimensional Optimization 

(3 .9 

I 
I 
I 
I 

- c- ~ - - - -  - _ _ _ _ _ _  .- 

that determines optimum values such that the variance 
of the estimator is minimid. This has been a& 
quately described in [4] and [5]. They use stochastic 
Newton iecursions that require the partial and mixed 
derivatives aw/au+, aw/ac, a"w/aU$. a2w/a2, 
and a2W/%,$c. At1 these are easily o w e d  fiom 

where the notation "f - f*" denotes that the K-length 
simulation is carried out with the original densities (f) 
of the random variables replaced by biasing densities 
(f*) that increase the frequency of occurrence of m r  
events, The weighthg function W ensura unbiased 
estimates. Biasing densities are chosen such that the 
variances of the estimates are d e r  than those ob- 
tained without any biasing for an MC simulation of 
equal length. 

We consider biasing of interference phases and ad- 
ditive noise separately. The intmkrence cosine terms 
need to have increased probabity mass in the negative 
regions of the support of the density. An effective way 
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simulation as part of the optimization algorithm. Simu- increasingly worse. This illustrate3 the importawe of 
lations have been carried out for L = 6 interferers for a making accurate simulation estimates of performance 
wireless mobile c0"Unications network with hexadi- in interfkmnce limited environments in preference to 
agonal cell structure in which interfixing cells use the using Gaussian approximations. 
same frequency as the cell under study. The 6 cells 
closest to the cell under study are at an equal distance 
while all other cells using the same freguency are at 
a larger distance and assumed to contribute negligible 
inwfa.ence compared to the tirst tier. 
The signal to interference ratio SIR is defined as 

1/La2,  whereas the signal to noise ratio SNR is 
defined as A'/%:. The IS sample size is set to 
K = 10, OOO for all simulations. Results are shown in 
Figure 2 as a function of SIR with SNR as parameter. 
For an SIR of 8 . M  and SNR of BdH, a simulation 

obtained. A relative accuracy better than 6.6% for P, 
estimation is obtained for all cases. For finite S N R  an 
error flm exists as the SIR becomes large. 

gain of 8.6 x 1u8 at an error rate of 2.4 x 10-10 is 

SRlB 

Figure 2: Error probabilities for BPSK with CCI 
AWGN. Parameter is SNR 

and 

'""4 6 8 10 (2 U i o  lo 
sms 

Figure 3: Comparison of Gausliian approximations 
(GA) and IS simulation for BPSK. 

4 M-ARYPSK 
Transmitting M - w  symbols Using PSK, log2 M bits 
are e n d e d  into each symbol in terms of the phases 
ofthe carrier. The optimum receiver is equivalent to a 
phase detector that computes the phase of the received 
signal vector and selects that symbol whose phase ib; 
closest. Assume that zero phase has been transmitted. 
From the signal space diagram of' Figure 4, in which 
L = 1, the phase & of the receivecl vector can be easily 
Obtaind. A correct detection is mlde when &  ati is fie^ 
-T/M 5 & 5 */M. Defining .€(e) = 1 - l(-), the 
probability of a symbol error can be written as 

Pe = P(-n/M $ 4 r  sl w / M )  (4.1) 
= EP(-x /M 5 c#+ _< 7r/M)) (4.2) 

3.1 Gaussian assumpIfion 
The effect of modelling the CCI as Gaussian is ex- and its IS estimate as 
amined by calculating the bit error rate assuming that 
the interfereace catl be replaced by a ~aussian noise pe = + T(-~/M 5 (br 5 (4.3) 
source having the same total power, in addition to ther- w 4 1 ,  - - , h, n i r  n p )  

where n, and nq denote the inphase and quadrature 
noise mmuonents. The indicator for the complement 

mal noise ofcourse. Defining a signal to interference 
and noise ratio SNTR as 

A2 
La2A2 + !2uz 

of the eve& {-TIM 5 & 5 7r/h4} can be skulated 
(3.10) by referring to Figure 4 and noting that the error region 

comprises of the region {ni + A 4- a A  EL, co8 da 5 
0) together with (union) the intersection 

P, M Q(d-1 (3.11) { n , + A + a A C k 1 ~ 4 b ,  > 0} 

SNIR = 

the error rate is approximated as 

n{ {fa 4 r  2 t 4 n / W }  
U(t-4, I -ta(n/M)}} 

(4.4) 
where Q ( x )  = s," t d I 2  dy/&. This is shown in 
Figure 3, together with optimized IS estimates of P, for 
comparison. For low SNRs, that is in noise dominated We note that the distribution of tble received phase #+ 
situations, the Gaussian approximation is close to the is symmetn'c around 4,. = 0 by virtue of the fact that 
IS estimates. As the SNR increases, in the interfa- all the interference phases are hidependent and uni- 
ence dominated situation, the approximation becomes f d y  distributed, the same being true for the p b  
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Figure 4 M-ary PSK signal s& with a single CO- 
channel interkm and AWGN 

of the noise vector. Hence it is sufficient to simulate 
events from only (the upper) half of the error region 
described above. This can be described by considering 
the intersection of the camplete error region and the set 

Consequently, an effective method of biasing is to 
generate all interfiice phases $i such that vectors are 
most likely to be aligned along the line marked 0 in 
Figure 4. This is evident from orthogonality and will 
produce an increase in the frequency of occurrence of 
errors. Hence the biased interf&g phases are chosen 
as Gaussian with their means at p 3 (lr/2) + lr/M 
and common variance a+, optimized through adaptive 
simulation. Increasing the variance of the noise n will 
produce more errors. However this will lead to a more 
than 2-dimensional optimization problem. A simple 
solution is to translate the means of the quadrature 
noise variables along the shortest line to the decision 
boundary, as is done for the interiierers. Denoting the 
biased means of the noise compo~lents as c, and cp, it 
follows from Figure 4 that they should be related as 

{.W, 1 0). 

I I  

(4.5) 

This results in a 2-dimensionlal biasing problem involv- 
ing C, (or cq) and a+. The weighting function is 

ci = -cq tan - . M  

where a = tan(lr/M). The various derivatives can 
easily be obtained. Simulations are carried out in a 
similar manner to the binary PSK case. Results are 
shown in Figure 5. The SNR per bit is defined as 
A2/(%: log2M) and the SIR as 1/(La2 log2M). The 
symbol error rate performances for QPSK differ only 
slightly from those for binary PSK. The same general 
remarks on error rate performance can be made as m 
the case of binary PSK. 

100 , I I I 

B 10 1 1  14 18 18 '20 P 
SR dB 

Figure 5: Error probabilities for 8-PSK with CCI and 
AWGN. Parameter is SNR 

4.1 Capacity 
Using error rate estimates, we can find the capacity 
per cell for M-ary PSK. To calculate this capacity as a 
function of the SNR, SIR and error rate, more parame- 
ters need to be d e f d .  The required bandwidtb is set 
to the null-to-null bandwidth. Hence, bandwidth effi- 
ciency q for M-ary PSK is q = 4 log, M. In the hexa- 
diagonal structure, the number of cells in a reuse pat- 
tern is denoted by the reuse factor K-II. The cell struc- 
ture allows a set of values given by K-11 = i2 +ij +j2,  
where i and j are two non-negative integers [2]. A 
common method to achieve &onmnce better than 
some specified error rate is to increase the ratio D/R, 
where D is the distance between centers of two co- 
channel cells and R the cell radius. The D / R  ratio is 
related to SIR as 

SIR= s 1 (x) D y  
(4.7) 

where 7 is the path loss exponent. The relation be- 
tween D/R and K,u is found by noting that the per- 
pendicular cell diameter is equal to f i R .  This results 
in D/R = G. Substituting in (4.7). with y = 4 
yields SIR = $K,& Finally, capacity per cell is de- 
iined as C = q/Kell. Substitution yields 

[bits / s / Hz / cell] (4.8) 
C=- $log2 

To compare M-ary PSK schemes, it is assumed that 
symbols are equally likely and use Gray encoding. 
Hence, symbol error rate is well approximated by bit 
error rate. The following procedure is used to find the 
capacity per cell as a function of BER. For specified 
SNR and BER, the lowest SIR is found that satisfies 
the BER condition. Capacity per cell then follows from 
(4.8). Results are shown for 8-PSK in Figure 6. The 
capacity per cell is presented in two ways. First, as 
a continuous function of BER, ignoring the fact that 
K-11 only takes -negative integer values. Second, 
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5 CONCLUSION 

6m= 40- 05 

0 . 1 1 .  ' ' ' " " ' 
Figure 6 Capacity per cell as a function of the required 
bit error rate for 8-PSK. Markers indicate the transition 
of K=l,. Kat, values are in parenthesis. Parameter is 
SNR. 
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Figure 7: Comparison of capacity per cell for SNR = 
16 dB. Dashed lines represent the continuous capac- 
ity graphs. Solid lines represent the discrete capacity 
values. 

as a discrete f d o n  of BER, taking into account that 
K-11 E {1,3,4,7,. . .}. For clarity, the latter is only 
shown for SNR = 16 dB. Markers are placed on the 
umtinuous capacity graphs to indicate transitions of 
Kall. Reuse factors are indicated at the discrete ca- 
pacity values, between parenthesis. 

For most combinations of BER and SNR, QPSK 
provides the maximum capacity per cell. This is il- 
lustrated more explicitly for S N R  = 16 dB in Fig- 
ure 7. Comparing discrete capacity values at SNR 
= 16 dB, we conclude that QPSK provides the high- 
est capacity per cell far 
QPSK is outperformed by 8-PSK in a small region 
2 - 5 BER 5 lo-'. For higher S N R ,  the region 
in which 8-PSK outperfoms QPSK extends towards 
lower BER. The opposite occurs for lower SNR. Fur- 
thermore, BPSK is outperformed by QPSK for any 
combination of BER and SNR. 

5 BER 5 2 - 

We have demonstrated how adaptive IS methods can 
be used to solve perfinmance estimation problems that 
are analytically intractable. Thew would be computa- 
tionally intensive if one were to resort to MC simula- 
tions. Although numerical results were displayed only 
for M-ary PSK, results for other signal sets can eas- 
ily be obtained. In particular, it has been shown that 
the assumption of a Gaussian m i e l  in an interference 
dominated situation is not justified for evaluating error 
rates. Theperf~ceresultsafeUSedtocalCulatethe 
cellular capacity of wireless system by incorporating 
propagatim models and bandwidth considerations. It 

for most BER and noise levels. Firther, the techniques 
developed here CBI~ be applied to different modulation 
schemes as also to channels characterized by fading 

nel model was considexed and Gatrssian noise assumed 
absent. By including Gaussian noise in the channel 
model, mcne realistic performance analysis and capac- 
ity results have been obtained. 

W ~ S  found that QPSK ~utperforrrl~ BPSK and 8-PSK 

and multipath. In [6] i n W i n c e  dominated chan- 

References 
[I] Feher, IC: mreless digital communications, 

Prentice-Hall, New Jersey, 1995. 
121 Rappaport, T.S.: Mr~less consmunications: Prin- 

ciples and Practices, Prentioe-Hall, New Jersey, 
1996. 

[3] Remondo, D., Srinivasan, R.:, Nicola, V. F., Van 
Etten, W., and Tattje, H. E. P.: 'Adaptive im- 
portance sampling methods far performance eval- 
uation and parameter optimization of communica- 
tion systems,': I E B  Tranaciions on Communi- 
cation~, Vol. 48, NO. 4, April 2000, pp 557-565. 

[4] Srini~a~an, R: 'Simulation 0fCFAR detection al- 
gorithms for arbittary clutter idistributions,' P ~ c .  
ZEZ, Radar; Sonar and Navigation, Part F, Vol. 
147, Issue 1, Feb 2000, pp 31-40. 

[5] Srinivasan, R.: 'Some results in importance sam- 
pling and an application to detection,' Signal 
Processing, Feb 1998, vol 65, Issue 1, pp 73-88. 

161 Thijs, J,, Haartsen, J., Srinivwan, R., and Van Et- 
ten, w.: 'optimizing cell capacity for cellular sys- 
tems,' IEEE 8th Symposium on Communications 
and Viunrlar Technology in the Benelux, October 
18,2001, Delft The Netherlands, pp 30-35. 

171 Srinivasan, R: 'Estimation and a p p r o W o n  of 
densities of i.i.d. sums via inyportance sampling,' 
Signal Processing, Dec 1998, vol 71, Issue 3, pp 
235-246. 

208 


