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Abstract

In this paper we focus on the connection between age
and language use, exploring age prediction of Twitter
users based on their tweets. We discuss the construction
of a fine-grained annotation effort to assign ages and life
stages to Twitter users. Using this dataset, we explore
age prediction in three different ways: classifying users
into age categories, by life stages, and predicting their
exact age. We find that an automatic system achieves
better performance than humans on these tasks and that
both humans and the automatic systems have difficul-
ties predicting the age of older people. Moreover, we
present a detailed analysis of variables that change with
age. We find strong patterns of change, and that most
changes occur at young ages.

Introduction

A person’s language use reveals much about their social
identity. A person’s social identity is based on the groups he
or she belongs to, including groups based on age, gender and
political affiliation. Earlier research in sociolinguistics re-
garded male and female, and age as biological variables. Ex-
amples for this are Labov (1966) and Trudgill (1974). How-
ever, current research views them primarily as social vari-
ables. Concepts such as gender and age are shaped differ-
ently depending on an individual’s experiences and person-
ality, and the society and culture a person is part of (Eckert
1997; Holmes and Meyerhoff 2003). To complicate things
even more, the two variables gender and age are intertwined:
studying one of the variables implies studying the other one,
as well. For example, the appropriate age for cultural events
often differs for males and females (Eckert 1997). Besides
linguistic variation based on the groups a person belongs to,
there is also variation within a single speaker as people adapt
their language to their audience (Bell 1984). Thus it follows
that speakers can choose to show gender and age identity
more or less explicitly in language use, depending on peo-
ple’s perception of these variables, on their culture, the re-
cipient of their utterance, etc. From a sociolinguistic per-
spective, language is a resource which can be drawn on to
study different aspects of a person’s social identity at differ-
ent points in an interaction (Holmes and Meyerhoff 2003).
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Early sociolinguistic studies only had access to relatively
small datasets (e.g. a couple of hundred persons), due to time
and practical constraints on the collection of data. With the
rise of social media such as Twitter, new resources have
emerged that can complement these analyses. Compared
to previously used resources in sociolinguistic studies like
face-to-face conversations, Twitter is interesting in that it
collapses multiple audiences into a single context: tweets
can be targeted to a person, a group, or to the general public
(Marwick and Boyd 2011). Twitter offers the opportunity to
gather large amounts of informal language from many in-
dividuals. However, the Twitter population might be biased
and only little is known about the studied persons. To over-
come this, we carried out a large annotation effort to anno-
tate the gender and age of Twitter users. While gender is one
of the most studied variables, the relation between age and
language has only recently become a topic of interest.

In this paper we present work on automatically predict-
ing people’s age. This can offer new insights into the re-
lation between language use and age. Such a system could
also be used to improve targeting of advertisements and to
support fine-grained analyses of trends on the web. So far,
age prediction has primarily been approached by classifying
persons into age categories. We revisit this approach being
the first to approach age prediction from three different an-
gles: classifying users into age categories (20-, 20-40, 40+),
predicting their exact age, and classifying users by their life
stage (secondary school student, college student, employee).
We compare the performance of an automatic system with
that of humans on these tasks. Next, to allow a more fine-
grained analysis, we use the exact ages of Twitter users and
analyze how language use changes with age.

Specifically, we make the following contributions: 1) We
present a characterization of Dutch Twitter users as a re-
sult of a fine-grained annotation effort; 2) we explore differ-
ent ways of approaching age prediction (age categories, life
stages and exact age); 3) we find that an automatic system
has better performance than humans on the task of inferring
age from tweets; 4) we analyze variables that change with
age, and find that most changes occur at younger ages.

We start with discussing related work and our dataset.
Next, we discuss our experiments on age prediction. We then
continue with a more fine-grained analysis of variables that
change with age. We conclude with a summary.
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Related Work

Eckert (1997) distinguishes between chronological age
(number of years since birth), biological age (physical matu-
rity) and social age (based on life events). Studies about lan-
guage and age usually consider chronological age and apply
an etic approach, grouping speakers based on age spans (e.g.
(Labov 1966; Trudgill 1974; Barbieri 2008)). But speak-
ers can have a very different position in society than their
chronological age indicates. Therefore, it might be reason-
able to apply an emic approach, grouping speakers accord-
ing to shared experiences of time, such as school as a shared
experience for teenagers (Eckert 1997).

So far, automatic age prediction has mostly been ap-
proached as a two-class or three-class classification problem
based on age spans with for example boundaries at 30 or
40 years (e.g. (Rao et al. 2010; Garera and Yarowsky 2009;
Goswami, Sarkar, and Rustagi 2009)), thus corresponding
to an etic approach. However, as choosing boundaries still
remains problematic, several researchers have looked more
closely into this issue. For example, Rosenthal and McKe-
own (2011) experimented with varying the binary split for
creating age categories. In contrast, Nguyen, Smith, and
Rosé (2011) approached age prediction as a regression prob-
lem, eliminating the need to create age categories. In our
work, we will experiment with age prediction as a regres-
sion problem, as a classification problem based on age cate-
gories and explore an emic approach, by classifying persons
according to their life stages.

Both content features and stylistic features (such as part-
of-speech and the amount of slang words) have been found
to be useful for predicting the age of users (Nguyen, Smith,
and Rosé 2011; Argamon et al. 2007; Goswami, Sarkar, and
Rustagi 2009). Pennebaker and Stone (2003) found that as
people get older, they tend to use more positive and fewer
negative words, focus more on the future and less on the
past and make fewer self-references. Not much research has
been done yet on investigating the relationship between gen-
der and age from a computational perspective. Argamon et
al. (2007) found that certain linguistic features that increase
with age, also increase more with males. Nguyen, Smith,
and Rosé (2011) incorporated gender using a binary vari-
able, only allowing a simple interaction between gender and
age. Many others have ignored the effect of gender when
predicting the age of users.

Experiments on automatic classification of users accord-
ing to latent attributes such as gender and age have been
done on a wide range of resources, including telephone con-
versations (Garera and Yarowsky 2009), blogs (Sarawgi,
Gajulapalli, and Choi 2011), forum posts (Nguyen, Smith,
and Rosé 2011) and scientific articles (Bergsma, Post, and
Yarowsky 2012; Sarawgi, Gajulapalli, and Choi 2011). Re-
cently, Twitter has started to attract interest by researchers
as a resource to study automatic identification of user at-
tributes, such as ethnicity (Pennacchiotti and Popescu 2011;
Rao et al. 2011), gender (Fink, Kopecky, and Morawski
2012; Bamman, Eisenstein, and Schnoebelen 2012; Rao et
al. 2010; Burger et al. 2011; Rao et al. 2011), geographical
location (Eisenstein et al. 2010) and age (Rao et al. 2010).

Corpus Collection
In this section we describe a large annotation effort we car-
ried out to annotate Dutch Twitter users. Based on the results
we present a characterization of Dutch Twitter users.

Selecting and Crawling Users

Twitter users can indicate information such as their name,
location, website and short biography in their profile. How-
ever, gender and age are not explicit fields in Twitter pro-
files. As a result, other researchers working on identification
of such attributes have resorted to a variety of approaches to
construct a corpus, ranging from focused crawling to using
lists with common names.

For example, Rao et al. (2010) constructed a corpus by fo-
cused crawling. To collect users they used a crawl with seeds
by looking for profiles that had ‘baby boomers’, ‘junior’,
‘freshman’ etc. in their description. However, this leads to a
potential bias by starting with users that explicitly indicate
their age identity in their profile. Burger et al. (2011) sam-
pled users from the Twitter stream and used links to blogging
sites, indicated in their profile, to find the gender. Therefore,
their set of users was restricted to users having blogs and
willing to link them using Twitter. Some approaches used
lists of male and female names, for example obtained using
Facebook (Fink, Kopecky, and Morawski 2012) or from the
US social security department (Zamal, Liu, and Ruths 2012;
Bamman, Eisenstein, and Schnoebelen 2012).

Our goal was to select a set of users as randomly as pos-
sible, and not biasing user selection by searching on well-
known stereotypical behavior or relying on links to explicit
sources. This did create the need for a large annotation ef-
fort, and resulted in a smaller user sample. Using the Twitter
API we collected tweets that contained the word ‘het’, which
can be used as a definite article or pronoun in Dutch. This al-
lowed us to restrict our tweets to Dutch as much as possible,
and limit the risk of biasing the collection somehow. During
a one-week period in August 2012 we sampled users accord-
ing to this method. Of these users, we randomly selected a
set for annotation. We then collected all followers and fol-
lowees of these users and randomly selected additional users
from this set. We only included accounts with less than 5000
followers, to limit the inclusion of celebrities and organiza-
tions. For all users, we initially downloaded their last 1000
tweets. Then new tweets from these users were collected
from September to December 2012.

Het Followe(e/r)s

Annotated 1842 (76%) 1343 (43%)
Not enough tweets 15 (0.6%) 129 (4%)

Not a person 221 (9%) 441 (14%)
Not public 264 (11%) 719 (23%)
Not Dutch 51 (2%) 468 (15%)

Other 46 (2%) 17 (0.5%)
Total 2439 3117

Table 1: Reasons why accounts were discarded/kept by sam-
pling method.
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Dutch Twitter Users

In this section we analyze the effect of our sampling
procedure, and present a characterization of Dutch Twitter
users in our corpus. We employed two students to perform
the annotations. Annotations were done by analyzing a
user’s profile, tweets, and additional external resources (like
Facebook or LinkedIn) if available. In this paper, we only
focus on the annotations that are relevant to this study.

Effect of Sampling Method
The annotators were instructed to only annotate the users
that met the following requirements:
• The account should be publicly accessible.
• The account should represent an actual person (e.g. not an

organization).
• The account should have ‘sufficient’ tweets (at least 10).
• The account should have Dutch tweets (note that this does

not eliminate multilingual accounts).
We separated the reasons why accounts were discarded

by the two sampling methods (het and followers/followees)
that were used (the first requirement in the list that was not
satisfied was marked). The results are reported in Table 1.
We observe that the proportion of actual annotated users is
much higher for the users obtained using the query ‘het’.
The users obtained by sampling from the followers and
followees included more non-Dutch accounts, as well as
accounts that did not represent persons. In addition, there
was also a group of people who had protected their account
between the time of sampling and the time of annotation. In
total, 3185 users were annotated.

Gender
The biological gender was annotated for 3166 persons (for
some accounts, the annotators could not identify the gender).
The gender ratio was almost equal, with 49.5% of the per-
sons being female. However, as we will see later, the ratio
depends on age. The annotation of the gender was mostly
determined based on the profile photo or a person’s name,
but sometimes also their tweets or profile description.

Mislove et al. (2011) analyzed the US Twitter population
using data from 2006-2009. Using popular female and male
names they were able to estimate the gender of 64% of the
people, finding a highly biased gender ratio with 72% being
male. A more recent study by Beevolve.com however found
that 53% were women, based on information such as name
and profile.

Age
Because we expected most Twitter users to be young, the
following three categories were used: 20-, 20-40, 40+. The
age category was annotated for 3110 accounts. The results
separated by gender are shown in Table 21. There are more
females in the young age group, while there are more men
in the older age groups. The same observation was made in
statistics reported by Beevolve.com.

1Note that this table only takes persons into account for who
both age and gender were annotated

20- 20-40 40+

M 796 488 265
F 1078 316 157

Table 2: Age and gender
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Figure 1: Plot of frequencies per age

We also asked our annotators to annotate the exact age.
Sometimes it was possible to get an almost exact estimate,
for example by using LinkedIn profiles, exact age mentions
in the profile, tweets, or mentioning which grade the person
was in. However, since this was not always the case, annota-
tors also indicated a margin (0, 2, 5 or 10 years) of how sure
they were. Figure 1 shows a graph with the frequencies per
year of age. Table 3 reports the frequencies of the indicated
margins. In our data, we find that the margin for young users
is low, and that for older users the margin is much higher.

As discussed earlier in this paper, it may be more natu-
ral to distinguish users according to their life stage instead
of a fixed age category. Life stages can be approached from
different dimensions. In this paper, we use life stages based
on the occupation of people, by distinguishing between stu-
dents, employed, retired etc. The results are displayed in Ta-
ble 4. Unfortunately, the decision to annotate this was done
while the annotation process was already underway; there-
fore the accounts of some users were not available anymore
(either removed or protected).

We find that the most common life stages are associated
with clear age boundaries, although the boundaries are not
the same as for the age categories. We find the following age
spans in which 90% of the persons fall: secondary school
students (12 -16 yrs), college students (16 - 24 yrs), employ-
ees (24 - 52 yrs). However, note that with the life stage ap-
proach, people may be assigned to a different group than the
group that most resembles their age, if this group matches
their life stage better. We have plotted the overlap between
life stage and age categories in Figure 2.

Age estimation margin Frequency

0 703
2 1292
5 918

10 173

Table 3: Frequencies of margins for the exact age annotation
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Life Stage Frequency

Secondary school student 1352
College student 316

Employee 1021
Retired 5

Other 15
Unknown 132

Not accessible 344

Table 4: Life stage frequencies
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Figure 2: Overlap life stage and age categories

Inter-annotator Agreement

We employed two students to perform the annotations. 84
accounts were annotated by both. Inter-annotator agree-
ment was measured using Cohen’s kappa. Generally, a value
above 0.7 is considered acceptable. We found the following
kappa values: gender (1.0), age category (0.83) and life stage
(0.70). For the actual age, the mean absolute difference was
1.59 years.

Age Prediction

Goal

In this section we compare the different ways of approaching
age, by testing how feasible age prediction is using simple
features based only on the text of tweets. We will automati-
cally predict the following:

• Age category: 20-, 20-40, 40+

• Age: continuous variable

• Life stage: secondary school student2, college student,
employee

For the life stage, we only use categories for which we had
a sufficient number of persons. Note that classifying age ac-
cording to age category and life stage are multiclass classifi-
cation problems, while treating age as a continuous variable
results in a regression problem. In addition, we compare our
systems with the performance of humans on this task.

2In Dutch this is translated to scholier, which includes all stu-
dents up to and including high school, there is no direct translation
in English.

Evaluation

We will evaluate the performance of our classification meth-
ods (to predict the age category and life stage) using the F1

measure. We will report both the macro and micro averages.
The regression problem (predicting age as a continuous vari-
able) will be evaluated using the Pearson’s correlation coef-
ficient, mean absolute error (MAE) and accuracy, where a
prediction was counted as correct if it fell within the margin
as specified by the annotators.

Dataset

We restricted our dataset to users who had at least 20 tweets
and for whom the gender, age category and exact age were
annotated. For each user we sampled up to 200 tweets. We
divided the dataset into a train and test set. Each set con-
tains an equal number of males and females, and the same
age distribution (according to the annotated age categories)
across gender categories. This limits the risks of the model
learning features that for example are more associated with
a particular gender, due to that gender occuring more in the
particular age category. Parameter tuning and development
of the features were done using cross-validation on the train-
ing set. The statistics are presented in Table 5.

Train Test
M F M F

20- 602 602 186 186
20-40 231 231 73 73

40+ 118 118 37 37
Total 1902 592

Table 5: Dataset statistics

Learning Algorithm

We use linear models, specifically logistic and linear re-
gression, for our tasks. Given an input vector x ∈ R

m,
x1, . . . , xm represent features (also called independent vari-
ables or predictors). In the case of classification with two
classes, e.g. y{−1, 1}, the model estimates a conditional
distribution P (y|x, β) = 1/(1 + exp(−y(β0 + x�β))),
where β0 and β are the parameters to estimate. We use a
one versus all method to handle multiclass classification. In
the case of regression, we find a prediction ŷ ∈ R for the
exact age of a person y ∈ R using a linear regression model:
ŷ = β0 + x�β. In order to prevent overfitting we use Ridge
(also called L2) regularization. We make use of the liblin-
ear (Fan et al. 2008) and scikit-learn (Pedregosa et al. 2011)
libraries.

Preprocessing & Features

Tokenization is done using the tool by (O’Connor, Krieger,
and Ahn 2010). All user mentions (e.g. @user) are re-
placed by a common token. Because preliminary experi-
ments showed that a unigram system already performs very
well, we only use unigrams to keep the approach simple. We
keep words that occur at least 10 times in the training doc-
uments. In the next section, we will look at more informed
features and how they change as people are older.
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Results

In this section we present the results of the three age predic-
tion tasks. The results can be found in Tables 6 and 7. We
find that a simple system using only unigram features can
already achieve high performance, with micro F1 scores of
above 0.86 for the classification approaches and a MAE of
less than 4 years for the regression approach. We also exper-
imented with applying a log transformation of the exact age
for the regression task. The predicted values were converted
back when calculating the metrics. We find that the MAE
and accuracy both improve. In the rest of this section, when
referring to the regression run, we refer to the standard run
without a log transformation.

Run F1 macro F1 micro

Age categories 0.7670 0.8632
Life stages 0.6785 0.8628

Table 6: Results classification

Run ρ MAE Accuracy

Age regression 0.8845 3.8812 0.4730
Age regression - log 0.8733 3.6172 0.5709

Table 7: Results age regression

A scatterplot of the actual age versus the predicted age can
be found in Figure 3. Figure 4 shows the errors per actual
age. We find that starting from older ages (around 40-50)
the system almost always underpredicts the age. This could
have several reasons. It may be that the language changes
less as people get older (we show evidence for this in the
next section), another plausible reason is that we have very
little training data in the older age ranges.
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Figure 3: Scatterplot age

The most important features for old and young persons
are presented in Tables 8 and 9. We find both content fea-
tures and stylistic features to be important. For example,
content words like school, son, and daughter already reveal
much about a person’s age. Younger persons talk more about
themselves (I), and use more chat language such as haha, xd,
while older people use more conventional words indicating
support or wishing well (e.g. wish, enjoy, thanks, take care).

For the age categories we redid the classification using
only persons for whom the life stage was known to allow
better comparison between the two classification tasks. We
found that people in the 40+ class are often misclassified as
belonging to the 20-40 class, and college students are often
classified as secondary school students. The precision and
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Figure 4: Scatterplot absolute error

Dutch English Weight

school school -0.081
ik I -0.073
:) :) -0.071
werkgroep work group -0.069
stages internships -0.069
oke okay -0.067
xd xd -0.066
ben am -0.066
haha haha -0.064
als if -0.064

Table 8: Top features for younger people (regression)

Dutch English Weight

verdomd damn 0.119
dochter daugther 0.112
wens wish 0.112
zoon son 0.111
mooie beautiful 0.111
geniet enjoy 0.110
dank thanks 0.108
goedemorgen good morning 0.107
evalueren evaluate 0.105
sterkte take care 0.102

Table 9: Top features for older people (regression)

recall for the individual classes are listed in Tables 10 and
11. The performances are comparable. The micro average
for life stages is slightly better (0.86 vs 0.85), the macro av-
erage is worse (0.68 vs 0.75) as the metric is heavily affected
by the bad performance on the students class. Although life
stages are better motivated from a sociolinguistics viewpoint
(Eckert 1997), it is not yet clear which classes are the most
suitable. In our corpus, almost all persons were either sec-
ondary school students or employees. If a more fine-grained
distinction is necessary (for example for personalization), it
is still a question which categories should be used.

Precision Recall

20- 0.9297 0.9775
20 - 40 0.6739 0.7561
40+ 0.8158 0.4493

Table 10: Results per class: Age categories

Precision Recall

Sec. school student 0.8758 0.9853
College student 0.6667 0.1250
Employee 0.8541 0.8977

Table 11: Results per class: Life stages
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Train Test Age categories Regression Life stages
Macro F1 Micro F1 ρ MAE Accuracy Macro F1 Micro F1

All F 0.7778 0.8750 0.9101 3.4220 0.5135 0.7038 0.8765
M 0.7563 0.8514 0.8625 4.3405 0.4324 0.6538 0.8500

Male F 0.6861 0.8277 0.8784 3.9617 0.5135 0.6151 0.8642
M 0.7027 0.8311 0.8431 4.5017 0.4459 0.6116 0.8346

Female F 0.7281 0.8581 0.8965 3.5586 0.5270 0.6438 0.8560
M 0.6373 0.8041 0.8195 5.2099 0.3682 0.6829 0.8538

Table 12: Effect of gender

Treating age prediction as a regression problem elimi-
nates the need to choose boundaries. The main drawback
is that annotating the exact age of users requires more effort
than annotating the life stage or an age category. However, as
mentioned before, our annotators showed that reliable anno-
tations are possible (on average less than 2 years difference).

In summary, we believe that both classifying users
according to their life stage and treating age prediction
as a regression problem are promising approaches. Both
approaches complement each other. Age prediction as a
regression problem relies on chronological age, while life
stages are built on shared experiences between people.
Depending on the practical application, knowing the
chronological age or life stage might be more informative.
For example, groups based on life stage might be more
useful for marketing purposes, while the chronological
age might be more informative when targeting medical
information.

Effect of Gender
In Table 12 we have separated the performance according
to gender. We also experimented with training on data of
only one gender, and reported the performance separated by
gender. Across the three tasks the performance for females
is better than the performance for males. We also find that
across the three tasks, the performance for females is better
when trained on only females, compared to the performance
of males, when trained on only males.

One of the explanations could be that females write
slightly more than men (average #tokens: 2235 versus 2130),
although the differences between the means are small and
there is no significant difference in the number of tweets per
person (note that we sampled up to 200 tweets per person).

Another explanation can be found in sociolinguistic stud-
ies. It has been pointed out that females assert their iden-
tity more through language than males (Eckert 1989; Labov
1990). Hence, they might use all kinds of in-group vocab-
ulary more often, thereby marking their affiliation with a
certain group. Men’s vocabulary, on the contrary, is more
homogenous across the in-groups (Eckert 2000). Consistent
with this, Ling (2005) found that females ‘seem to have
a broader register when using SMS’. Due to this, it might
be easier to determine the age of women. However, neither
Eckert (1989) nor Labov (1990) looked at age specifically,
and the studied people were also not comparable (e.g. Eck-
ert (1989) only studied young people, and social media set-
tings have not been explored much yet).

Error Analysis

As reported in the previous section, not for all cases the
correct age was predicted. This is of course not surprising.
People do not only constitute their identity on the basis of
their age, but they combine various variables in order to
express their selves. For example, a person is not only a
teenager, but also a female, a high school student, a piano
player, etc. (Eckert 2008). Depending on what a person
wants to express at a particular moment and towards a
particular person, certain aspects of his/her identity may
be more emphasized, making age prediction even more
complicated. To illustrate this, we will discuss two Twitter
users for whom the age was incorrectly predicted.

Case study 1
The first person is a 24-year old student, who the system esti-
mated to be a 17-year old secondary school student. The top
10 most frequent words for this user are @USER, RT, •, Ik
(I),�, G, :D, Hahaha, tmi, and jij (you). The use of special
characters like a dot (• ) and the much less than sign (�) is
characteristic for younger Twitter users, who separate state-
ments in their tweets employing these characters. I is one
of the words being the most predictive of younger people as
was presented in the feature analysis (see Table 8) and the
other words like hahaha, you etc. are also highly associated
with younger persons in our corpus. As we can see, this per-
son employs these words with such a high frequency that he
can easily be mistaken for a secondary school student under
20. Examples containing salient words are the ones below:

@USER kommmdan nurd
@USER comeonthen nurd [nerd]

Hahaahhahaha kkijk rtl gemist holland in da hood,
bigga huiltt ik ga stukkk

Hahaahhahaha [I am] wwatching rtl gemist 3 holland
in da hood 4, bigga is cryingg it’s killinggg me

RT @USER: Ook nog eens rennen voor me bus
#KutDag • Ik heb weekend :)

RT @USER: Had to run for my bus too #StupidDay
• I have weekend :)

In addition to the words mentioned above, me (my), and heb
(have) appear, which are indicative for younger persons in
our corpus, as well.

3website where people can watch tv shows online
4Dutch reality show
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Next to the fact that this person employs words rather
associated with teenagers on Twitter, we can also derive
what kind of identity is constituted here. In the tweets,
unconventional punctuation, emoticons, ellipsis, in-group
vocabulary (nurd), and alphabetical lengthening (stukkk) are
used to create an informal, unconventional style particularly
addressing an in-group. It can be concluded that this person
does not appear to stress his identity as an adult, but finds
other aspects of his identity more important to emphasize.
These aspects, however, are expressed with features em-
ployed most frequently by younger persons in our corpus,
resulting in a wrong age prediction for this person.

Case study 2
The second person is a 19-year old student. However, the
system predicted him as being a 33-year old employee. The
top 10 most frequent words for this user are @USER, CDA,
RT, Ik (I), VVD, SGP, PvdA, D66, bij (at) and Groenlinks.
It becomes clear that this person tweets about politics a lot,
with Dutch political parties (CDA, VVD, SGP, D66, Groen-
links) being six out of his ten most frequent words. Tweets
that are characteristic for this user and that relate to some of
his most salient words are, for example:

@USER Woensdagochtend 15 augustus start het lan-
delijke CDA met haar regiotour op Goeree-Overflakkee
i.s.m. @USER.

@USER On Wednesday morning, the 15th of
August the national CDA starts with its tour through
the region in Goeree-Overflakkee in collaboration with
@USER

RT @USER: Vanmiddag met @USER gezellig bij
@USER een wijntje gedaan en naar de Emmaüskerk
#Middelharnis geweest. Mooie dag zo!

RT @USER: Had fun this afternoon had wine at
@USER with @USER and went to the Emmaüschurch
#Middelharnis. Beautiful day!

Almost all of his tweets are (like the first example)
about politics, so we can assume this user wants to stress
his identity as a person interested in politics, or even as
a politician on Twitter. Certainly, this is a more common
topic for users older than a 19-year old. Proof for this is the
fact that words such as ministers, elections, voter etc. are
highly ranked features associated with older people in the
regression model. In addition, the person uses more prepo-
sitions, conventional punctuation, formal abbreviations and
for example mentions wine which is also rather associated
with older people in our corpus. Moreover, beautiful is one
of the top ten features predictive of older people. Thus, not
only the main topic of his tweets (politics) is associated
more with older people, but he also represents himself as a
grown-up person in his other tweets by using which what we
perceive as rather conservative vocabulary and punctuation.

Thus, the discussed cases show that people can emphasize
other aspects of identity than age. This can result in a devia-
tion from style and content from their peers, thereby making
the automatic prediction of age more difficult.

Manual Prediction

In this section we compare the performance of our systems
with the performance of humans on the task of inferring age
only from tweets. A group of 17 people (including males and
females, old and young, active and non-active Twitter users)
estimated the gender, life stage, exact age and age categories
for a random subset of the Twitter users in the test set. Each
person was assigned a different set of about 20 Twitter users.
For each Twitter user, a text file was provided containing the
same text as used in our automatic prediction experiments.
The participants received no additional information such as
the name, profile information etc. They could decide them-
selves how carefully they would read the text, as long as they
could make a serious and informed prediction. On average,
it took about 60-90 min to do the task. In total there are 337
users for whom we both have manual and automatic predic-
tions. The results can be found in Tables 13 and 14.

Run F1 macro F1 micro

Age categories
Manual 0.619 0.752
Automatic 0.751 0.858
Life stages
Manual 0.658 0.778
Automatic 0.634 0.853

Table 13: Results classification - manual vs automatic

Run ρ MAE Acc.

Manual 0.784 4.875 0.552
Automatic 0.879 4.073 0.466

Table 14: Results age regression - manual vs automatic

Using McNemar’s Test we find that the automatic system
is significantly better in classifying according to age cate-
gories (χ2 = 18.01, df=1, p < 0.01) and life stages (χ2 =
9.76, df=1, p < 0.01). The automatic system is also signif-
icantly better in predicting the exact age when comparing
the MAE’s (paired t-test, t(336) = 2.79, p < 0.01). In addi-
tion, for each metric and task we calculated which fraction
of the persons performed equal or better than the automatic
system. This ranged from 0.24 (age cat., all metrics) to 0.41
(life stages, micro F1) and 0.47 (life stages, macro F1), to
0.29 (exact age, MAE’s) and 0.82 (exact age, accuracy).

In addition we find the following. First, humans achieve a
better accuracy for the regression task. The accuracy is based
on margins as indicated by the annotators. Humans were of-
ten closer at the younger ages, where the indicated margins
were also very low and a slightly off prediction would not be
counted as correct. Second, humans have trouble predicting
the ages of older people as well. The correlation between the
MAE’s and exact ages are 0.58 for humans and 0.60 for the
automatic system. Third, humans are better in classifying
people into life stages than in age categories.

To conclude, we find that an automatic system is capa-
ble of achieving better performance than humans, and being
much faster (on average, taking less than a second compared
to 60-90 minutes to predict the age of 20 users).
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Variables that change with age

By analyzing the importance of features in an automatic pre-
diction system, only general effects can be seen (i.e. this fea-
ture is highly predictive for old versus young). However, to
allow for a more detailed analysis, we now use the exact ages
of Twitter users to track how variables change with age.

Variables

We explore variables that capture style as well as content.

Style
The following style variables capture stylistic aspects that a
person is aware of and explicitly chooses to use:
• Capitalized words, for example HAHA and LOL. The

words need to be at least 2 characters long.
• Alphabetical lengthening, for example niiiiiice instead of

nice. Matching against dictionaries was found to be too
noisy. Therefore, this is implemented as the proportion
of words that have a sequence of the same three charac-
ters in the word. The words should also contain more than
one unique character (e.g. tokens such as www are not in-
cluded) and contain only letters.

• Intensifiers, which enhance the emotional meaning of
words (e.g. in English, words like so, really and awful).

The following variables capture stylistic aspects that a per-
son usually is not aware of:
• LIWC-prepositions, the proportion of prepositions such as

for, by and on. The wordlist was obtained from the Dutch
LIWC (Zijlstra et al. 2005) and contains 48 words.

• Word length, the average word length. Only tokens start-
ing with a letter are taken into account, so hashtags and
user mentions are ignored. Urls are also ignored.

• Tweet length, the average tweet length.
References
Pennebaker and Stone (2003) found that as people get older,
they make fewer self-references. We adapt the categories
for the Dutch LIWC (Zijlstra et al. 2005) to use on Twitter
data by including alphabetical lengthening, slang, and En-
glish pronouns (since Dutch people often tweet in English
as well).
• I, such as I, me, mine, ik, m’n, ikke.
• You, such as you, u, je, jij.
• We, such as we, our, ons, onszelf, wij.
• Other, such as him, they, hij, haar.
Conversation

• Replies, proportion of tweets that are a reply or mention a
user (and are not a retweet).

Sharing

• Retweets, proportion of tweets that are a retweet.
• Links, proportion of tweets that contain a link.
• Hashtags, proportion of tweets that contain a hashtag.

Variable Females ρ Males ρ
Style

Capitalized words -0.281∗∗ -0.453∗∗

Alph. lengthening -0.416∗∗ -0.324∗∗

Intensifiers -0.308∗∗ -0.381∗∗

LIWC-prepositions 0.577∗∗ 0.486∗∗

Word length 0.630∗∗ 0.660∗∗

Tweet length 0.703∗∗ 0.706∗∗

References
I -0.518∗∗ -0.481∗∗

You -0.417∗∗ -0.464∗∗

We 0.312∗∗ 0.266∗∗

Other -0.072 -0.148∗∗

Conversation
Replies 0.304∗∗ 0.026
Sharing

Retweets -0.101∗ -0.099∗

Links 0.428∗∗ 0.481∗∗

Hashtags 0.502∗∗ 0.462∗∗

Table 15: Analysis of variables. For both genders n = 1247.
Bonferroni correction was applied to p-values. ∗p ≤ 0.01
∗∗p ≤ 0.001

Analysis

We calculate the Pearson’s correlation coefficients between
the variables and the actual age using the same data from
the age prediction experiments (train and test together), and
report the results separated by gender in Table 15.

We find that younger people use more explicit stylistic
modifications such as alphabetical lengthening and capital-
ization of words. Older people tend to use more complex
language, with longer tweets, longer words and more prepo-
sitions. Older people also have a higher usage of links and
hashtags, which can be associated with information sharing
and impression management. The usage of pronouns is one
of the variables most studied in relation with age. Consis-
tent with Pennebaker and Stone (2003) and Barbieri (2008)
we find that younger people use more first-person (e.g. I)
and second person singular (e.g. you) pronouns. These are
often seen as indicating interpersonal involvement. In line
with the findings of (Barbieri 2008), we also find that older
people more often use first-person plurals (e.g. we).

In Figure 5 we have plotted a selection of the variables
as they change with age, separated by gender. We also
show the fitted LOESS curves (Cleveland, Grosse, and Shyu
1992). One should keep in mind that we have less data in
the extremes of the age ranges. We find strong changes in
the younger ages; however after an age of around 30 most
variables show little change. What little sociolinguistics re-
search there is on this issue has looked mostly at individual
features. Their results suggest that the differences between
age groups above age 35 tend to become smaller (Barbieri
2008). Such trends have been observed with stance (Barbi-
eri 2008) and tag questions (Tottie and Hoffmann 2006). Re-
lated to this, it has been shown that adults tend to be more
conservative in their language, which could also explain the
observed trends. This has been attributed to the pressure
of using standard language in the workplace in order to be
taken seriously and get or retain a job (Eckert 1997).
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Figure 5: Plots of variables as they change with age. Blue: males, Red: females

One should keep in mind, however, that we have studied
people with different ages, and we did not perform a longi-
tudinal study that looked at changes within persons as they
became older. Therefore the observed patterns may not indi-
cate actual change within persons, but could be a reflection
of changes between different generations.

Reflecting on the age prediction task and the analysis pre-
sented in this section, we make the following observations.
First, for some variables there is almost no difference be-
tween males and females (e.g. tweet length), while for some
other variables one of the genders consistently uses that vari-
able more (e.g. the first singular pronouns for females, links
for men). In our prediction experiments, we also observed
differences in the prediction performance between genders.
We also found differences in the gender distribution across
age categories on Twitter. Therefore, we conclude that re-
searchers interested in the relation between language use and
age should not ignore the gender variable.

Second, in the automatic prediction of exact age we found
that as people get older the system almost always underpre-
dicts the age. When studying how language changes over
time, we find that most change occurs in the younger ages,
while at the older ages most variables barely change. This
could be an explanation of why it is harder to predict the
correct age of older people (for both humans and the auto-
matic system). This also suggests that researchers wanting to
improve an automatic age prediction system should focus on
improving prediction for older persons, and thus identifying
variables that show more change at older ages.

Conclusion

We presented a study on the relation between the age of
Twitter users and their language use. A dataset was con-
structed by means of a fine-grained annotation effort of more
than 3000 Dutch Twitter users. We studied age prediction
based only on tweets. Next, we presented a detailed analysis
of variables as they change with age.

We approached age prediction in different ways: predict-
ing the age category, life stage, and the actual age. Our sys-
tem was capable of predicting the exact age within a margin
of 4 years. Compared with humans, the automatic system
performed better and was much faster than humans. For fu-
ture research, we believe that life stages or exact ages are
more meaningful than dividing users based on age groups.
In addition, gender should not be ignored as we showed that
how age is displayed in language is also strongly influenced
by the gender of the person.

We also found that most changes occur when people are
young, and that after around 30 years the studied variables
show little change. This may also explain why it is more
difficult to predict the age of older people (for both humans
and the automatic system).

Our models were based only on the tweets of the user.
This has as a practical advantage that the data is easy to col-
lect, and thus the models can easily be applied to new Twit-
ter users. However, a deeper investigation into the relation
between language use and age should also take factors such
as the social network and the direct conversation partners of
the tweeters into account.
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