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Abstract—Silicon oxynitride-based arrayed waveguide grating
(AWG) spectrometers were designed for on-chip speet-domain
optical coherence tomography (OCT) systems and Rama
spectroscopy of the skin. A novel geometrical layodor Raman
spectroscopy was introduced to reduce loss. Measunents show
that integrated optics has a good potential for miiaturizing
current OCT systems.
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l. INTRODUCTION

Spectrometers have an important role in a wide wadét
fields. The most important integrated optical implemeoitatif
a spectrometer is the AWG that, with its excellentqgrenbince
and compactness, has a high potential for various sgeofic
applications [1]. Two of these applications are considérere:
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The free spectral range (FSR) and wavelength resolution
(AX) of the AWG were determined according to the depth
resolution and depth range requirements of the OCT system.
For the first device, we aimed at a {18 depth resolution
(determined by the free spectral range of the AWG)lanun
depth range (determined by the wavelength spacing per output
waveguide). Using the standard AWG equations [1], the
remaining design parameters were determined as: opatal
length difference 29.176m; grating order 33; focal length of
the slab regio®393.5um; number of arrayed waveguides 400;
and number of output waveguid@80. We used single-mode
silicon oxynitride (SiON) channel waveguides withra width
and 0.6um height, embedded in SiOThe core and cladding
refractive indices were 1.55 and 1.4485, respectively, &t 1.
um. The minimum bending radius of curved waveguides was
calculated to be 800m. In order to decrease the losguB-
wide and 20Q:m-long linear tapers were applied at the

on-chip spectral-domain OCT systems and confocal Ramadnterfaces between slab and arrayed waveguides. Theedevi

spectroscopy of the skin.

The operation of an AWG [1] is briefly explained, reifiegr
to Fig. la. Light from an input waveguide diverges ifirst
free propagation region (FPR) in order to illumintite input
facets of an array of waveguides with a linearly éasing

geometry was optimized for minimum loss and an adjacent
crosstalk of -10 dB using beam propagation (BPM)
simulations. The simulation result of the final desiggii&n in

Fig. 1b.

The optical transmission measurements were performed by

length. At a central design wavelengthe phase difference at coupling TE-polarized light from a broadband source (Franiu

the output facets of adjacent array waveguides isntager

SC450) into the input waveguide, using a single-mode

multiple of 2T Since these facets are arranged on a circle, Rolarization-maintaining fiber. The output signal was sefin

cylindrical wavefront is formed at the beginning of e
FPR, which generates a focal spot at the central odlyurnel.
Since the phase shift, caused by the length differeretesbn

optical spectrum analyzer (iHR 550, Horiba Jobin Yvon)
through a single-mode fiber. The transmission spectra
measured at the output channels were normalized with tespec

arrayed waveguides, is linearly dependent on wavelength, th@ the transmission of a straight channel waveguide. The
resulting wavelength-dependent phase gradient impliesa til ransmission spectra of four central channels are givéiigin

the cylindrical wavefront at the beginning of the set&PR,

1c. The inset of Fig. 1c represents the complete seDOf 1

which causes the focal spot to shift to a different outputf@nsmission spectra of the device. As predicted, eaahnel

waveguide.

Il.  AWG SPECTROMETER FOR ONCHIP OCT SYSTEMS

works as a bandpass wavelength filter. The resolutiothef

device wasAlh = 0.38 nm and the FSR was 38.8 nm, which are
both very close to the design values of 0.4 nm and 40 nm,
respectively. The measured 3 dB bandwidth of the output

OCT is a widely used optical imaging technology whichchannels was about 0.3 nm and the channel crosstalk was

can provide non-invasive, sub-micrometer

resolutiorapproximately —32 dB. The insertion loss was measured as

diagnostic images [2]. We aimed for a miniaturized OCT-1.5 dB for the central and —6.5 dB for the outer channels,
system operating at 18n, a commonly used wavelength for respectively. For TM polarization, we obtained a slifift of

skin imaging. In the literature there is only limited datathe
implementation of OCT systems on a chip [3-4].

1.36 nm for the central wavelength, which correspondanto
effective refractive index difference of ~1:847> between the
two polarizations due to the waveguide birefringence.
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Figure 1. a) Schematic layout of an AWG. b) Beam propagagionulation result of the designed AWG. c¢) Opticahsmission measurement results for the
central output channels for TE polarization. Theetrshows the complete free spectral range tras&midata. d) AWG layout using identical benad=e(ext).
e) Simulated wavelength response of the AWG foisktie application; the insets show the very low T&-shift.

bend is gradual and can be designed to be adiabatic. In a
. AWG RAMAN SPECTROMETER conventional design, such a replacement would lead to an
In vivo confocal Raman spectroscopy provides a possibilitgXxcessive calculation burden. The layout is shown in Fig

of accurately controlling the skin region from which trenian ~ and the BPM simulation results are given in Fig. le. We
signal is detected [5]. Here, we design an integratempact, observed negligible TE-TM shifts of 0.01 nm for the cdntra
and potentially low-cost device, specifically for theedtion of ~ channels and 0.03 nm in the water band, see inset ifdrig.
water concentration in th&ratum corneum. To this end, it is
needed to measure the ratios between a broad water petak a IV. CONCLUSIONS

narrow lipid and protein peaks in the Raman spectrum. SiON-based AWG spectrometers have been designed and

Our design is based on using SiON channel waveguiddabricated for on-chip spectral-domain OCT systems and
with SiG, cladding, having a cross-section of 1.4 xn@.52 confocal Raman spectroscopy of the skin. The device for
um. The core refractive index is 1.509 at 830 nm. At arRaman spectroscopy presents improvements in the geometrical
excitation wavelength of 671 nm, the relevant Raman spactr layout aimed at reducing losses and is designed to be
extends from 800 to 920 nm. In order to separate the lipid argblarization insensitive. Its optical characterizatiogtsrently
protein peaks the output channel spacing is chosen as 5 numder way. The device for on-chip OCT systems has been
and to guarantee the lowest insertion loss for thd peiak, the optically characterized and the measurement reselts @ood
central wavelength of AWG is chosen at the center ofigiiet | agreement with the simulation results. The spectronséiaws
band (831 nm). To cover the entire Raman signal a minimuvery good performance in terms of insertion loss, crdsstal
free spectral range of 120 nm is required; the best ctufice FSR, and resolution. The OCT depth resolution and the depth
grating order is 3, resulting in 55 output channels. With o range were calculated as 19& and 1.1 mm, respectively,
choice of channel spacing we can place only one channel iusing the measurement results. In future work, weinglude
each of the L and P bands, and several channels atabteai light delivery and collection waveguide channels as \asll
for collecting the water and background signals. detector arrays connected to the AWG output channels.

The Raman signal may be up td® tibnes weaker than the
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