
A DISTRIBUTED QUERY PROCESSING ENGINE

Supriyo Chatterjea(1), Paul Havinga(2)

(1)Department of Computer Science, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands, Email:

supriyo@cs.utwente.nl
(2)Department of Computer Science, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands, Email:

havinga@cs.utwente.nl

ABSTRACT

Wireless sensor networks (WSNs) are formed of tiny,
highly energy-constrained sensor nodes that are
equipped with wireless transceivers. They may be
mobile and are usually deployed in large numbers in
unfamiliar environments. The nodes communicate with
one another by autonomously creating ad-hoc networks
which are subsequently used to gather sensor data.
WSNs also process the data within the network itself
and only forward the result to the requesting node. This
is referred to as in-network data aggregation and results
in the substantial reduction of the amount of data that
needs to be transmitted by any single node in the
network. In this paper we present a framework for a
distributed query processing engine (DQPE) which
would allow sensor nodes to examine incoming queries
and autonomously perform query optimisation using
information available locally. Such qualities make a
WSN the perfect tool to carryout environmental
monitoring in future planetary exploration missions in a
reliable and cost effective manner.

1. INTRODUCTION

Wireless sensor networks (WSNs) are formed of tiny,
extremely low-powered (typically around 16 milliwatts
compared to the average notebook computer which runs
at around 2 watts) sensor nodes that are equipped with
built-in wireless transceivers. Fig. 1 shows a picture of a
development board of an EYES [1] sensor node together
with some of its specifications. It is currently used for
testing purposes and the final version of an EYES node
should be around the size of a one Euro coin. These
nodes, which may be mobile, can be deployed in large
numbers in unfamiliar environments. Once deployed,
the nodes are capable of communicating with one
another by autonomously creating ad-hoc networks
which are subsequently used to gather sensor data.
Considering the fact that these battery-powered nodes
are supposed to operate for months (possibly even
years) and that it is assumed that battery replacement is
not a viable option due to the large numbers, one of the
primary concerns of wireless sensor networks is how to
extend the longevity of the network to the furthest
possible extent.

In this paper we first give a brief overview of one of the
main techniques, data aggregation, that may be
employed to minimise energy consumption of nodes in
Section 2.1. Section 2.2 describes the architectures used
in a few existing projects dealing with WSNs and
highlights certain deficiencies in their designs with
regards to energy consumption. After the concise primer
on WSNs, section 3.2 explains why and how we feel
wireless sensor networks can play a dominant role in
data gathering operations in future planetary exploration
missions by illustrating with a short example. Keeping
the operational requirements of WSNs in mind, we then
present a framework of a distributed query processing
engine that will allow wireless sensor nodes deployed
on the surface of a planet to autonomously gather and
analyse data on-site in an energy efficient manner. We
finally conclude the paper by stating the work that needs
to be done in the future to build up on the framework
presented.

Our work on WSNs is performed as part of the NWO
funded CONSENSUS project [2] and the European
EYES project (IST-2001-34734) [1] on self-organising
and collaborative energy-efficient sensor networks. It
addresses the convergence of distributed information
processing, wireless communication and mobile
computing.

Specifications: 16-bit, 5MHz processor, 60kB ROM, 2kB RAM,
2MB EEPROM, 115.2kbps data transfer rate,
Power consumption: 16mW (Transmit), 14.4mW (Receive),
0.015mW (Standby)

Fig. 1. A development board of an EYES sensor node

2. BACKGROUND

2.1. Overview of data aggregation
The most energy consuming operation a node can
perform is the transmission of data. In fact, transmitting
just 1Kb of data a distance of 100 metres is
approximately equal to the cost of executing three
million CPU instructions [6]. Keeping this fact in mind,
apart from simply collecting data, WSNs are designed
to process data within the network itself and
subsequently forward the result to the requesting node.
This is referred to as in-network data aggregation and
results in the substantial reduction in the amount of data
that needs to be transmitted within the network as a
whole which in turn translates into substantial energy
savings as shown in Fig. 2 and Fig. 3. Data aggregation
can be performed by intermediate nodes that lie between
the sink (a node that injects a query into a network) and
source (a node that responds to a query by sensing some
physical parameter) node. These intermediate nodes
carry out partial computation of the data obtained from
sensor nodes thus ensuring that each node only has to
transmit one data message. This also implies that
bandwidth requirements between neighbouring nodes
remain constant regardless of their position in the tree.

2.2. Architectures of current query processing
systems

While performing data aggregation within the network
may result in extending the operational lifetime of
sensor nodes, it is important to note that there may be
numerous ways to evaluate any particular query. Out of
all these possibilities, only a handful might actually lead
to energy savings. Thus it is important to develop a
system that can analyse every incoming query and work
out the optimal solution using the current network
dynamics to ensure accurate decision making. In certain
existing query processing systems such as COUGAR
[3] and TinyDB [5], network statistics (or network
metadata) such as patterns of data produced by
individual nodes, location information and energy

reserves of nodes, etc. are sent back periodically to the
central node (server) which originally injected a query
into the node.

Using the centrally collected data, the server, which
now has a detailed overview of the status of the entire
network of nodes, calculates the optimal method in
which the query may be evaluated. So the server
generates a set of instructions that are then sent out to
the individual nodes explaining the role individual
nodes will play in evaluating the query, e.g. the server
may stipulate which specific nodes would be required to
perform aggregation of data.

This central architecture has a number of inherent
drawbacks. Firstly, as stated earlier, transmission of data
is the most energy consuming operation that can be
performed by a node. Thus having every node relay its
network metadata back to the server on a periodic basis
is a very expensive operation due to the high amount of
overhead involved. Also, since network metadata is
only relayed back periodically, it is not possible for the
server to always maintain an updated view of the whole
network. Thus a node which is pre-assigned by a server
to carry out aggregation may not actually be available
once the server sends out the specific instructions to
evaluate a certain query (e.g. a node might die due to
loss of power). Naturally having a continuously updated
view would also mean that traffic would increase
exponentially closer to the server and this would result
in network delays.

3. A DISTRIBUTED QUERY PROCESSING
ENGINE

3.1. Overview

In order to address the problems mentioned above, we
have suggested a new framework for a completely
distributed query processing engine (DQPE) for
wireless sensor networks. The primary difference from
the existing models is that in our framework, we transfer
the task of generating query plans from a central server
to the sensor nodes that lie within the network.

Fig. 2. Data flow without aggregation Fig. 3. Data flow with aggregation

Therefore, instead of query plans being generated using
a single global view, nodes generate query plans using
information that is available locally. The plan that is
eventually generated may not be optimal compared to
the one that is generated centrally but substantial
savings would be made in terms of transmissions. This
is because network metadata from any particular node
would not have to be relayed all the way back to the
server but would only be dissipated in the vicinity of the
node itself. As nodes rely fully on locally available data,
every node would be able to detect changes in its
vicinity and make necessary changes to its query
execution methods almost immediately. Also, the user
who injects the query into the network need not bother
about how to evaluate a certain query in an efficient
manner under the current network conditions, i.e. the
query evaluation procedure is carried out autonomously
by the nodes and is completely transparent to the user.
The user need not be concerned about the current
network dynamics.

3.2. A possible application scenario

We believe that due to the above mentioned properties
of our framework for WSNs, they would fit perfectly
into the niche of gathering data in future planetary
exploration missions where long node lifespan,
reliability, fully autonomous operation and the
possibility of covering large geographic areas without
incurring high costs are of paramount importance. To
illustrate this idea, we build on the BepiColombo
mission as an example [4]. In this mission, it may be
possible for the lander of the Mercury Surface Element
(MSE) to scatter a large number of sensors nodes (by
the hundreds or thousands) seconds before the lander
touches down onto the surface of Mercury. This would
allow a large geographical area to be examined in an
energy-efficient manner without actually requiring a
rover to move around and gather data. Upon landing,
the MSE could send out queries to the thousands of
sensor nodes scattered around it. Once a query has been
received, the nodes within the network will set up routes
and query plans automatically, collect data, aggregate
them and start sending results back to the MSE. Due to
the hostile environmental conditions on the surface of
the planet, and also due to the limited power supply of
each node, the sensor nodes will be prone to failure after
a certain amount of time. However, having a high
density of sensor nodes will allow the nodes to
autonomously modify existing routing mechanisms and
query execution plans to adapt to the volatile network
conditions thus increasing the robustness of the network
as a whole.

3.3. Architecture

The DQPE, which lies on top of the operating system, is
structured as shown in Fig. 4. The seven components
shown in Fig. 4 can be separated into two sections based
on their functionality. Blocks 1, 2, 3 and 7 are the main
components involved in breaking down an incoming
query, analysing it, optimising it and subsequently
sending out a restructured query to a neighbouring node.
Blocks 4, 5 and 6 form a feedback loop that is used by
the DQPE to check if the incoming results match up to
expectations. The feedback loop is also used to update
the network metadata parameters to ensure that
optimisation performed on future queries can be carried
accurately using the most recent network statistics. The
following subsections describe the role of each block in
Fig. 4.

3.3.1. Query Decomposition

This is the first block that encounters an incoming
query. At this stage, it is assumed that incoming queries
are syntactically correct. Queries injected into a network
will be in binary format. We currently assume that the
syntax of the query language will be similar to SQL and
may be modified to support more complex data
aggregation functions, depending on the requirements of
the application. An incoming query is broken down and
analysed semantically to ensure that an incorrect query
is detected and rejected as early as possible. For
instance a query that requests two incompatible tables to
be joined would result in an error. Redundancies in
queries are also eliminated using certain idempotency
rules. In the last stage of query decomposition, a list of
operator trees are generated using transformation rules.
Each operator tree describes a single way in which the
incoming query can be interpreted and subsequently
executed. Although all the operator trees may be
equivalent in terms of the final result obtained, some
might require a higher execution cost than others. In
order to save the Query Optimisation block 7) from
having to compare all the possible trees based on their
predicted cost, transformation rules are used to
restructure operator trees in a systematic way so that
“bad” operator trees are eliminated at the very first stage
itself.

3.3.2. Data localisation

The query decomposition block did not take the
distribution of data into account. The main role of the
data localisation block is to localise the query’s data
using data distribution information which is obtained
from the Fragmentation Schema block.

As data in sensor networks may be flowing as a stream
of data, we plan to cache some of the accumulated data
at certain nodes throughout the network. Naturally, due
to the memory constraints of every node, it will not be
possible to keep all the data cached in a single node.
Thus the collected data needs to be fragmented among
several nodes. More details about fragmentation are
mentioned under the Fragment Schema and Fragment
Allocation blocks in Sections 3.3.3 and 3.3.4
respectively.

Thus data localisation examines the incoming query
from the query decomposition block and determines
which fragments of data are involved in the query. It
also retransforms incoming queries into simpler and
more optimised forms by using different reduction
techniques depending on how the data has been
fragmented. For example, when selections on fragments
are made that have a qualification contradicting the
qualification of a fragmentation rule, empty relations (or
redundancies) are generated. Reduction rules ensure that
such empty relations are eliminated.

3.3.3. Fragmentation schema

Data from sensors may be cached in certain sensors in
tables (also known as relations). As mentioned earlier, it
may not be possible to store all the data in a single node.
Thus relations may be horizontally or vertically
fragmented among several nodes. The purpose of the
Fragmentation Schema is to describe how the various
fragments may be related to one another to form a
complete relation. The Fragmentation Schema extracts
this information from the Fragment Allocation block.
Fig. 5 shows how a relation, R, may be divided into five

separate fragments. Using the fragmentation
information, it would be possible to reconstruct or
materialise the relationship R from the various
fragments.

3.3.4. Fragment allocation

The task of the Fragment Allocation block is to decide
at which node a certain fragment of a relation should be
stored. Suppose there are a set of fragments F = {F1,
F2,…, FN} and a network of sensor nodes, S = {S1,
S2,…, SN}, the Fragment Allocator needs to find the
optimal distribution of F to S. There are numerous
parameters that need to be considered during the
optimisation process, e.g. cost of communication
between any two pairs of sites, Si and Sj, varying access
patterns of various nodes, mobility patterns, cost of
storing each Fi at a site Sj, cost of querying Fi at a site Sj,
remaining energy reserves of a node and performance
parameters such as throughput and response time. The
Fragment Allocator will also have a part to play in
taking care of the reliability issues by deciding on
whether certain fragments need to be replicated, and if
so the strategy of replication required. While the
allocator attempts to minimise the combined cost, it is
important to note that due to the large number of
parameters involved obtaining an optimal solution is not
computationally feasible. This is all the more true when
considering the limited processing power of each
individual node. Thus the main strategy will be to
attempt to find good heuristics which in turn can be
used to provide suboptimal solutions.

Fig. 4. Framework of the distributed query processing

3.3.5. Cost function

The Fragment Allocator makes decisions based on the
inputs it receives from the Cost Function and Network
Metadata Block. The Cost Function block can be
viewed as a database that stores the cost of some of the
parameters considered by the Fragment Allocator such
as inter-node communication cost, cost of storing at and
querying a particular node. There are typically two
categories of cost parameters stored by the cost
function. The first consists of a set of parameters whose
costs are static and are generally defined prior to
deployment of the sensor network. For example, the
nodes may be pre-programmed with a set of MAC and
routing protocols each of which would have a fixed cost
depending on the task at hand. The second category is
made up of parameters whose costs are dynamic and
may change depending on the network conditions, e.g.
the cost of communication between nodes Si and Sj may
vary depending on the current traffic conditions,
distance between the two nodes, etc. The costs of these
dynamic parameters are obtained from the Network
Metadata Block which is described below.

3.3.6. Network metadata

The network metadata block plays a crucial role in the
overall performance of the DQPE as it provides the
input to the Query Optimisation, Fragment Allocation
and Cost Function blocks which together hold the key to
how well a particular node responds to the dynamics of
the network. This block monitors every single query or
result that the node hears, i.e. the query or result may
not be addressed to it specifically but it might overhear
a certain message from a neighbouring node that is
within its transmission range. This allows the node to
gather statistics about other node operations in its local
environment. Sizes of relations, patterns of query flow,
energy reserves of a particular node, mobility issues are
just some of the parameters that may be monitored.
While certain parameters may be specifically broadcast
by a neighbouring node, others may be inferred by the
receiving node by analysing message packets that are

overheard. Since transmission of a message by a node is
such an energy consuming process, eavesdropping on
messages helps to ensure that every message transmitted
is utilised to the maximum.

3.3.7. Query optimisation

The Query Optimisation block receives several
execution strategies (or operator trees) for a single query
from the Data Localisation Block. It is within this block
that the DQPE actually takes into account the
distribution of data fragments, various costs involved
and the current network dynamics in order to generate a
query execution plan.

At this stage, the query is partially optimised and
information about how certain fragments can be
reconstructed using certain inter-fragment relationships
is presented to the Query Optimisation block. The
optimiser tries to perform the most selective operations
that reduce the amount of data involved as early as
possible.

Theoretically, this block should try to choose the best
possible solution in the solution space of all possible
execution strategies by comprehensively predicting the
cost of each and every strategy and subsequently
selecting the strategy with the minimum cost. Since the
solution space may be extremely large (due to the large
number of parameters involved) measures need to be
taken to try and obtain solutions which are “very good”
rather than perfect. The amount of resources spent on
optimising a certain query might well be dependent on
the query itself. For instance, if a certain query is
subsequently followed by multiple executions, it might
be wise to initially spend a little more effort on the
optimisation phase.

4. CONCLUSION AND FUTURE WORK

We have presented a framework that would allow
sensor nodes to execute queries autonomously in an
energy efficient manner so as to extend the longevity of
the network as a whole. This is done by transferring the
process of query optimisation and planning, to within
the network itself. However, there are a number of
issues which require further study. Firstly, we are
assuming that there will be two types of nodes within
the network – nodes which have sensors attached to
them, and nodes which act as gateways. While both
sensor nodes and gateway nodes may be able to perform
query optimisations, preference will be given to the
gateway nodes. The degree of optimisation that can be
performed by each node needs to be examined. Also,
measures need to be introduced to control the number of
nodes that are involved in the query optimisation
process for any single query, as latency issues need to

Fig. 5. Fragmentation of Relation R

be taken into account. While we have mentioned that
the nodes will be making use of only local information,
we have not specifically explained what is meant by
“local information”. This is because simulations need to
be carried out to study the tradeoffs between efficiency
and using local information that may be one, two or
even three hop counts away. Also, considering the
complexity of the framework presented here, the current
memory specifications of the EYES nodes are unlikely
to be adequate. A prototype implementation would
indicate the actual memory requirements and it would
then be possible to measure the tradeoffs between
performance and memory and strike an acceptable
balance.

One of primary considerations of every planetary
exploration mission is to execute the mission using a
small budget and yet it should be a highly reliable
system – one that is unlikely to fail even under the
hostile environmental conditions that may be
experienced in space. We believe that using the
framework presented, WSNs would then provide the
perfect solution as scientists can migrate away from a
system where environmental measurements are obtained
by high cost vehicles such as rovers, which are prone to
mechanical failure and are also unable to cover large
geographical areas.

5. REFERENCES

1. EYES homepage: http://eyes.eu.org.
2. CONSENSUS homepage:
http://www.consensus.tudelft.nl.
3. Bonnet P., Gehrke J. and Seshadri P. Towards
sensor database systems. In 2nd International
Conference on Mobile Data Management, Hong Kong,
January 2001.
4. Grard R., Novara M., and Scoon G.. BepiColombo
– A Multidisciplinary Mission to the Hot Planet. In ESA
Bulletin, 1, pp. 11-19, Aug. 2000.
5. Madden S., Szewczyk R., Franklin M. J. and Culler
D. Supporting Aggregate Queries Over Ad-Hoc
Wireless Sensor Networks. In 4th IEEE Workshop on
Mobile Computing Systems and Applications, Callicon,
NY, June 2002.
6. Pottie G. and Kaiser W., Wireless integrated
network sensors. In Communications of the ACM, 2000.

