APPLICATIONS OF NEAR FIELD OPTICAL MICROSCOPY:

Fluorescence in situ hybridisation, Langmuir-Blodgett films
and integrated optical waveguides.

NIEK VAN HULST, MARCO MOERS & ERIK BORGONIJEN
Applied Optics group, Faculty of Applied Physics
& MESA Research Institute,
University of Twente,
P.O.Box 217, 7500AE Enschede, the Netherlands.

Abstract

Scanning Near-field Optical Microscopy (SNOM), based on metal coated adiabatically
tapered fibres, combined with shear force feedback and operated in illumination mode,
has proven to be the most powerful SNOM arrangement, because of its true localisation
of the optical interaction, its true optical contrast (fluorescence, polarisation, etc.) and
its sensitivity down to the single molecular level. We present the first application of
SNOM to (i) Fluorescence In Situ Hybridisation (FISH) of human metaphase
chromosomes, where the localised fluorescence allows to identify specific DNA
sequences in addition to the topographic force image, and (ii) Langmuir-Blodgett
mono-layers, where the orientation of the polymer backbone and the degree of
polymerisation is visualised in the near-field polarised fluorescence simultaneously with
the topography in the force signal.

Photon Scanning Tunnelling Microscopy (PSTM), based on frustration of total
internal reflection with uncoated dielectric probes and operated in transmission mode, is
experimentally easier than aperture SNOM, but less straightforward in its interpretation
as generally near field and far field scattering are observed mixed with topographic
effects. We have applied combined PSTM/AFM to (i) Langmuir-Blodgett mono-layers,
and (ii) integrated optical ridge waveguides. Both systems have virtually no surface
structure. In the waveguides purely the electric field distribution is probed by coupling
to the evanescent wave. Direct observation by PSTM of TM and TE modal field
distributions, mode beating and application to a Y-junction wavelength (de)multiplexer
is presented.
1. Introduction

Near field optical microscopy has gone through some essential developments since the first demonstration of super-resolution by Pohl et al. [1]. Especially the combination of adiabatic fibre pulling, as introduced by Betzig et al. [2,3], and shear force feedback (Toledo-Crow et al. [4], Betzig et al. [5]) has resulted in a reproducible, relatively efficient aperture probe, which can be operated non-destructively. Using these probes application of near field fluorescence microscopy to biological and chemical samples was recently explored (Betzig et al. [6], Moers et al. [7]). A major step was set by Betzig and Chichester [8] in the observation of single molecular fluorescence using a pulled fibre probe, directly followed by single molecular spectroscopy (Trautman et al. [9]), quantised luminescence (Hess et al. [10]) and picosecond single molecular dynamics (Sunney Xie et al. [11], Ambrose et al. [12]). Clearly the virtues of optics, high spectral resolution, orientational sensitivity and high time resolution, all apply to the near field domain with its high spatial resolution, which adds extensively to the potential of scanning probe microscopy. In this paper we present first results on some new applications of combined near field optical and force microscopy, using both aperture type and dielectric probes.

2. Aperture probe applications

2.1. MICROSCOPE SET-UP

Our near field optical microscope is designed specifically for application to chemical and biological samples [13]. The microscope allows the use of standard microscope object glasses and viewing of the sample by a high NA objective (0.7 NA dry or 1.4 NA immersion oil) which is important for localisation of specific biological samples and efficient collection of fluorescence. The basis of the set-up is a Zeiss axiovert 135TV inverted microscope which was chosen for its high mechanical stability, i.e. three point support of the sample table, and high efficiency of the optical light paths. The inverted microscope rests on an optical table with passive vibration isolation. The sample table was replaced by a home built table with mechanical sample translation using multimorph piezo translators (NEC, type AE0203D08) with 7 μm scan range. The near field part of the microscope is schematically shown in Figure 1. The probe is fabricated by adiabatic tapering of an optical fibre using a commercially available fibre puller (Sutter P2000) and subsequent directional coating with aluminium. About 5 mW laser light of an Ar+-Kr+-laser (Coherent, Innova 70 Spectrum) is coupled into the fibre, where the incident polarisation can be rotated using a λ/4 and a polarisation plate. Typically 1 mW is emitted into the far field for an aperture of ~ 80 nm. The far field signal is collected by a high NA objective. Several exit ports are accessible, accommodating eyepieces, a CCD camera and a point detector. For fluorescence detection a dichroic mirror and long-pass filter are used, which block the excitation light. In near field operation the probe source is confocally imaged onto the point
Figure 1. Schematic set-up of the aperture type scanning near-field optical microscope (SNOM) with metallized adiabatically tapered fibre (inset), scanned sample stage on an inverted optical microscope (Zeiss axiosvert 135TV), shear force feedback on tip sample distance, excitation by Ar\(^{+}\)/Kr\(^{+}\)-laser (Coherent, Innova 70 Spectrum), detection via NA 0.7 objective by a photomultiplier tube (PMT, Hamamatsu R1463-01) or photon counting avalanche photo-diode (APD, EG&G SPCM 2000) and polarising optics [7,13].
detector. For high light levels, > 1 fW, a photo-multiplier tube (PMT, Hamamatsu R1463-01) is used in combination with a 200 μm pinhole in the image plane. For low light levels a 150 μm area photon counting avalanche photo-diode (APD, EG&G SPCM200) is used with ~ 60% quantum efficiency and ~ 5 dark counts/sec. While scanning the distance between probe and sample surface is kept constant at about 3 nm by a feedback system based on shear force detection [4,5]. Hereto the fibre probe is attached to a piezo-electric element which oscillates the fibre with an amplitude of about 30 nm at its resonance frequency (typically 10 kHz) in the lateral direction, i.e. parallel to the sample surface. The oscillation amplitude is measured with a sensitivity of ~ 1 nm by illuminating the fibre with a laser diode (λ = 780 nm) and detecting the diffraction pattern on a quadrant detector. The difference signal of the proper quadrants is amplified and fed to a lock-in amplifier. On approaching the sample surface the lock-in signal decreases due to “shear” forces between tip and sample. The physical origin of these forces is still subject of further study, yet their presence allows the operation of a feedback loop at an effective shear force value (set point). The RC-time of the loop is 1 to 10 msec. The correction signal is fed to the z-piezo element in the scanner and gives simultaneously the sample height. Both optical and height signal are digitised and stored in a personal computer, which also generates the scan pattern and timing for photon counting.

2.2 LANGMUIR-BLODGETT FILMS.

A monolayer of diethylene glycol diamine pentacosa-diynoic amide (DPDA) was investigated [7]. The layer was prepared by the Langmuir-Blodgett technique, polymerised by UV radiation and transferred to a microscope object glass [14]. The polymerised DPDA monolayer is 6 nm high with strong absorption around λ = 500 nm and fluorescence at λ = 550 - 600 nm. Moreover, depending on the lateral pressure during polymerisation and the transfer procedure, several domains are formed with a wide range of dimensions. Figure 2 shows a 4 x 4 μm² scan of the DPDA film. In the shear force image, Figure 2a, several domains and the underlying glass substrate are visible. Figure 2b and 2c show the corresponding near field fluorescence images with mutually perpendicular directions of incident polarisation. The excitation is at the 514 nm Ar⁺-line and the fluorescence is detected at λ > 590 nm. Peak value of the fluorescence intensity is about 1 fW. Comparison of these images clearly demonstrates the advantage of near field optics in combination with force microscopy. The force image shows the presence of monolayer domains with a lateral resolution of ~ 30 nm. The fluorescence images show the high anisotropy of the polymerised diacetylenic films with ~ 100 nm lateral resolution: domains fluorescent for one polarisation direction are dark for the perpendicular direction and vice versa. The absorption and emission dipole moments of polydiacetylenes are oriented parallel to the polymer backbone, where the orientation is uniform over each domain due to the crystallinity of the Langmuir-Blodgett film. Thus from the near field optical images the orientation of the polycarbon backbone and the efficiency of the polymerisation can be determined, additional to the topography from the simultaneously recorded force image.
2.3. FLUORESCENCE IN SITU HYBRIDISATION

Over the last decade the technique of fluorescence in situ hybridisation (FISH) has developed as one of the major cytogenetic detection methodologies for human genetics [15,16]. Using fluorescent labels, FISH enables direct visualisation of topological or positional information of gene sequences under a fluorescence microscope. Thus FISH allows rapid localisation of genomic DNA fragments and identification of chromosomes with a superior resolution and signal-to-noise ratio compared to radioactive in situ hybridisation and chromosome banding techniques. Typically a resolution better than 10^6 basepairs can be obtained using (pro)metaphase chromosomes [17]. Yet the localisation of the fluorescence labels is fundamentally
limited by diffraction in conventional fluorescence microscopy, as schematically indicated in Figure 3. Recently Putman et al. [18] have shown that further improvement can be obtained using force microscopy to detect the morphological features of the in situ hybridisation label after enhancement to about 100 nm by an enzyme cytochemical reaction. Yet fluorescence detection has the advantage of higher specificity and moreover multicolour labelling can be applied [17]. We anticipated that the superior lateral resolution of near field fluorescence might allow improved localisation of the labels while maintaining the potential of multicolour labelling, provided the labels are sufficiently close to the chromosomal surface and the fluorescence level is still detectable. Some preliminary results are presented.

![Diagram of fluorescence in situ hybridisation](image)

Figure 3. Principle of fluorescence in situ hybridisation. A fluorescent label is bound to a specific DNA sequence of a chromosome in the metaphase. The resolution of the fluorescence localisation determines the accuracy of gene sequencing.
Figure 4. A $5 \times 5 \ \mu m^2$ scan of metaphase chromosomes (Chinese hamster lung). (a) Shear force image displaying the topography and (b) near field fluorescence image displaying non-specific propidium-iodide (PI) staining.

Figure 4 shows a typical result on metaphase chromosomes, isolated from Chinese hamster lung cells (V78), using standard procedures for optical microscopy. The chromosomes are air-dried on an object glass. The shear force image (Fig. 4a) displays the topography with a lateral resolution of $\approx 50 \ \text{nm}$, showing the separation of the chromatides, with a height of $\approx 100 \ \text{nm}$, and some DNA material on the glass substrate surrounding the chromosome. The corresponding near field fluorescence image (Fig. 4b) displays a non-specific staining by propidium-iodide (PI), showing complete correlation with the topography, including the chromatide separation. The scan is 200×200 pixels with $25 \ \text{msec/pixel}$, peak fluorescence level is $68 \ \text{cnts/pixel}$ and average background is $3 \ \text{cnts/pixel}$.

Figure 5 shows a scan of human metaphase chromosome #1 with specific labelling of the centromeric area (CY3-p1 fluorophore) by in situ hybridisation. In the shear force image (Fig. 5a) the high spatial frequency filtered piezo feedback signal is displayed, which again shows the chromosome topography with some substructure. The corresponding near field fluorescence image (Fig. 5b) displays the green fluorescence at $\lambda > 570 \ \text{nm}$, using BG39 and KV550 Schott filters, with excitation by the $568 \ \text{nm}$ Kr$^+$-line. The image is 200×200 pixels with $25 \ \text{msec/pixel}$. The speckled background in the fluorescence image reflects the discrete level of 0 to 3 cnts/pixel. The specific labelling of the centromeric chromosome area is clearly visible with 60 to 120 cnts/pixel fluorescence. Beside the chromosome are some locally fluorescent areas due to unbound fluorophore. Based on the signal level ($\leq 10 \ \text{cnts/pixel}$) we estimate ≈ 10 fluorescent molecules to be present in these spots. The full width of these spots is about $150 \ \text{nm}$, which is an indication for the optical resolution.
3. Dielectric probe applications

3.1. MICROSCOPE SET-UP

In photon scanning tunneling microscopy (PSTM) a sharp dielectric probe is used for local conversion of an evanescent wave into a propagating wave. In our PSTM we use a micro-fabricated silicon-nitride (SiN) probe, which is commercially available (Park Scientific Instruments) for conventional AFM applications. For near field optical applications the SiN probe is a suitable high-index optical structure with 20 - 30 nm apex and transparency down to λ = 290 nm. Due to the integrated cantilever the probe can be scanned in close contact with a sample surface with feedback regulation on the force interaction. Generally the gold coating on the commercial cantilevers is removed for PSTM operation. In some applications the probe is sharpened further to ~ 10 nm by e-beam deposition. The sample is placed on a BK7 glass substrate and illuminated by a weakly focused laser beam (10 mW on ~ 100 μm) at an angle larger than the critical angle for total internal reflection, see Figure 6. The light generated by frustrated of the evanescent wave at the SiN apex, ~ 1 nW, is collected by conventional optics. The deflection of the cantilever is detected using a standard optical beam deflection configuration. While scanning the interaction force is kept constant by a feedback on the beam deflection signal, yielding simultaneously a topographic and a near field optical image [19,20].
3.2. LANGMUIR-BLODGETT FILMS

A UV polymerised Langmuir-Blodgett film of 10,12-pentacosa-diyanoic-acid (PCA) was investigated. After transfer to a glass substrate these PCA films display uniform domains with a height of 6 nm and a wide range of lateral dimensions. The domains show strong absorption bands at $\lambda = 505$ and 555 nm and fluorescence around $\lambda = 562$ and 640 nm, where absorption and emission dipole moment are along the highly oriented polycarbon backbone.

A combined PSTM/AFM scan of a $1 \times 1 \, \mu m^2$ area PCA film is shown in Figure 7. The AFM image (Fig. 7a) displays the z-piezo signal in feedback mode, showing mainly the monolayer topography with 6 nm height. The corresponding PSTM image (Fig. 7b) displays the fraction of the incident p-polarised light at $\lambda = 514$ nm which is coupled out via the SiN probe. Monolayer domains are clearly visible in the PSTM image, with an edge steepness of 30 nm, far beyond the diffraction limit. The PSTM signal on the domains is 10% below the signal detected on the surrounding glass, which is in agreement with the measured absorption of a PCA monolayer at 514 nm by far field methods. Consequently the PSTM contrast is mainly caused by absorption for this sample. Yet it should be noted that the expected polarisation anisotropy could not be observed. Also the observed fluorescence turned out not to be confined to the probe dimensions.
3.3. RIDGE WAVEGUIDES

Generally the contrast mechanism in PSTM is rather complicated because a combination of topographic effects, near field optical interactions and far field scattering is detected. Consequently contrast due to optical properties of the sample is only observed on samples with very shallow topography [19-21]. On the other hand for

![Diagram of optical system](image)

Figure 8. "Stand-alone" combined PSTM/AFM with SiN probe suitable for probing field distributions in integrated optical systems. The complete head, featuring force detection by optical beam deflection (laser diode, mirrors and quadrant detector) and optical detection via a compact-disc (CD) player lens, is mounted on a piezo-electric scanner with 100 x 200 μm² scan area.
Figure 9.

Consecutive PSTM/AFM scans (20 x 40 μm²) of a SiON ridge waveguide.

Left: AFM image showing the topography of the ridge, 100 nm in height and 5 μm wide over a total length of 350 μm.

Right: Corresponding PSTM image showing the beat pattern of several waveguide modes while propagating along the optical channel (λ = 632 nm).
the ideal case of total internal reflection at a glass-air transition the PSTM signal shows
good quantitative correspondence with the evanescent field distribution following
Fresnel equations. Consequently PSTM is an appropriate technique to study systems
which display pure evanescent waves, i.e. ideal for application to optical waveguide
systems. This potential was first explored by Tsui et al. [22] using fibre probes. Here we
present the first results of combined PSTM/AFM applied to integrated optical
waveguides.

Coupling of laser light to integrated optical waveguide by prism coupling, end-
fire coupling or fibre coupling is rather critical and does not allow the waveguide to be
scanned for microscopy. Consequently we have developed a "stand-alone" combined
PSTM/AFM by scanning the SiN probe. The set-up is sketched in Figure 8. the
microscope head is miniaturised using a compact-disc player lens (5 mm focus, 0.4 NA)
for light collection, a miniature PMT (Hamamatsu R5600) for detection, and by folding
the optical beam deflection detection system in a U-shape around the light collection
path. The complete head is mounted on a piezo-electrical scanner with (100 x 200 µm²
range), which rests on a tripod mechanical approach system.

Figure 9 clearly illustrates the advantage of the "stand-alone" PSTM/AFM.
The image shows a SiON waveguide fabricated by pressure enhanced CVD on a
thermally oxidised Si-wafer. The SiON ridge, 5 µm wide and 100 nm high, was
fabricated using standard photolithographic techniques. The AFM image to the left
displays the ridge topography and some dust particles. The PSTM image to the right
displays the field distribution of end-fire coupled HeNe-laser light. The presence of
several modes can be recognised in the mode beat pattern winding along the waveguide.
The "stand-alone" feature allows concatenation of several scans, without affecting the
in-coupling conditions. Thus in Figure 9 a beat period of 300 µm can be found,
indicating two modes with 0.0021 difference in effective refractive index. It should be
noted that the scans have a 1:2 aspect ratio in order to magnify the ridge area.

The combination of excited waveguide modes can be selected by changing the
coupling conditions. This is illustrated in Figure 10. A Y₂O₃ waveguide is shown, with
100 nm step height, 8 µm width, over 100 µm length. Laser diode radiation, λ = 1.48 µ
m, is coupled in and detected using a Ge photo-diode. For low NA coupling only TM₀
and TM₁ mode are excited (Fig. 10b), while for high NA TM-modes up to TM₃ are
excited (Fig. 10d). Comparison of corresponding AFM and PSTM scans shows that the
ridge edges cause a dark line in the PSTM images. Interestingly also the extend of the
optical field beside the ridge dimension can be seen. For a quantitative interpretation of
the PSTM images we have calculated the field distribution using the finite difference
beam propagation method (BPM) [23]. In Figure 11 the PSTM image of the Y₂O₃
waveguide is presented together with simulated image for combined TM₀, TM₁ and
TM₃ excitation. The beat patterns show similarities, however the beat period in the
simulation is 1.8 times the observed value. The same discrepancy was found comparing
other mode combinations.
Figure 10. PSTM / AFM scans of a Y$_2$O$_3$ waveguide (100 nm step height, 8 μm width) for different TM modes at λ = 1.48 μm. (a) Topography of the Y$_2$O$_3$ ridge, 100 μm long, by AFM; (b) corresponding PSTM image with mode beat between TM0 and TM1 modes; (c) topography; (d) PSTM image with TM modes up to TM3.

Up to now field distributions in the lateral direction were presented. By approaching the SiN probe towards the waveguide the extend of the evanescent wave in the vertical direction can be probed. This is shown in Figure 12 for the Y$_2$O$_3$ waveguide for TE0 and TM0 mode. The field decays exponentially with the vertical distance. The decay length is in good agreement with the calculated value from the effective index for both modes (see Fig. 12). The TM-mode is more outspread, as expected, and gives a higher PSTM signal due to the higher field at the waveguide surface and the more favourable boundary conditions for this polarisation condition.
Figure 11. Comparison of the field distribution in a Y_2O_3 channel waveguide (100 nm step height, 8 μm width) at $\lambda = 1.48$ μm, (a) as observed by PSTM and (b) as simulated by the finite difference beam propagation method (BPM).

<table>
<thead>
<tr>
<th>mode</th>
<th>theoretical</th>
<th>fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE</td>
<td>80.0</td>
<td>80.5</td>
</tr>
<tr>
<td>TM</td>
<td>83.6</td>
<td>83.2</td>
</tr>
</tbody>
</table>

Figure 12. PSTM signal as a function of the distance of the SiN probe to a Y_2O_3 waveguide, for TE0 and TM0 mode. Solid lines are a single exponential decay as fitted to the experimental data. In the table the fitted decay length is given together with the theoretical value as calculated from the effective index for TE and TM mode, respectively.
Finally application of PSTM/AFM to a Y-junction is presented. The field distribution in the junction is affected by reflection or scattering at the splitting point, resulting in characteristic interference patterns. Clearly the performance of the Y-junction is strongly determined by the behaviour at this critical point. Notice the dust particles appearing as dark spots in the optical image.

![Figure 13. Corresponding (a) AFM and (b) PSTM image of a 15 x 40 μm² area of a Y-junction in SiON, with HeNe laser light (λ = 632 nm) propagating from bottom to top.](image)

4. Conclusions

We have presented applications of two near field optical techniques, both in combination with force microscopy. Aperture SNOM with fluorescence detection gives (bio)chemical specificity and orientational information, down to single molecular sensitivity, in addition to the simultaneously acquired force image. We have shown that DNA sequencing and molecular organisation in mono-layers are interesting application fields. PSTM gives a direct mapping of optical waveguide field distributions, both in lateral and vertical direction, which allows detailed analysis of the performance of integrated optical devices.

5. Acknowledgements

The authors thank Wouter Kalle and Joop Wiegent of RijksUniversiteit Leiden for the preparation of in situ hybridised chromosomes, Uli Hoffmann and Hermann Gaub of the Technical University of Munich for the DPDA and PCA films, Eddy Schipper and Harm van Weerden for the Y-junctions and Y₂O₃ waveguides, and Ton Ruiter, Frans Segerink, Eric Schipper, Kees van der Werf, Ine Segers and Bart de Grooth for their assistance and suggestions. This research is mainly supported by the Dutch Foundation for Fundamental Research (FOM, project 91.942).
6. References

