of device approval. Among those assessing new/emerging technologies, the majority were completed within 1-year of device approval (56%) and a minority were completed before product approval (22%).

Conclusions: While the reasons for carrying out a MEAs are broad, the main purpose was to assess available evidence. In the majority of reports, the assessment of economic data was excluded and insufficient numbers provided start and completion dates to allow determination of how long these abbreviated reports take to complete.

410. BEYOND DIAGNOSTIC ACCURACY – COST EFFECTIVENESS OF DIAGNOSTIC TESTS

Hanan Bell, Sarah Baggaley and Nick Crabb

NICE, UK.

The UK National Institute for Health and Clinical Excellence (NICE) has recently established the diagnostics assessment programme which applies methods developed specifically for assessing diagnostic technologies. In order to carry out cost-effectiveness analysis and develop recommendations for the best clinical use of diagnostics, decision-makers such as NICE need to consider more extensive evidence than is commonly provided by systematic reviews and meta-analysis of diagnostic accuracy data. The challenges of assessing diagnostic test accuracy and methods for systematic review and meta-analysis are well known and frequently discussed. Using examples from NICE’s early diagnostics guidance, this presentation will cover a number of other technical issues encountered by the programme in producing guidance that is applicable in the real-world setting of the national health service. These include: 1. What costs and benefits are included in the analysis? Most benefits from diagnostic tests come from downstream treatments. This means the entire care pathway usually needs to be included. However, this can make for a complex problem where the cost-effectiveness of a diagnostic may change when the cost of a treatment changes. 2. How do we deal with equipment or tests which are subject to frequent upgrades and modifications, particularly where evidence applies to earlier versions of the test? 3. How is the situation handled where there is no “gold standard”, or where the new test may be more accurate than existing tests? 4. How should the value to the patient of the information supplied by the test be included in the evaluation? This includes the value of prognostic information as well as the anxiety (or relief) created by test results. NICE will use its experience of applying these questions to live topics to further enhance its evaluation methods.

418. USER NEEDS IN KIDNEY DISEASE MONITORING – A USER ORIENTED APPROACH TO HEALTH TECHNOLOGY ASSESSMENT

Janine van Til, Maarten IJzerman and Ron Kusters

University of Twente. Netherlands.

Introduction: The perspective of the end-user is often overlooked in the evaluation of a technology, especially in the development phase. We aim to extent on an existing model to include the needs & wants of actual users into health technology assessment.

Methods: The novel application of the Medimate Multireader® is focused on the monitoring of electrolytes in the blood and is targeted especially at patients at risk of kidney disease. The application should be used by the patient itself. We conducted literature analysis, clinician and patient interviews, and questionnaires to estimate the impact of this technology on the patient, and their willingness and ability to perform self-monitoring tests.

Results: First, we identified that patients with diabetes mellitus were the largest and easiest identifiable target group for the device. Second, the clinical needs of the patient group were identified through literature review, practice guideline analysis and interviews with general practitioners and patients. It was concluded that the clinical benefit of this technology to the patient is limited, but there is a desire among patients to have more frequent checks of kidney function. Third, different “use” cases were developed based on the qualitative data collected. In the fourth phase of this study, which is currently ongoing, we use a conjoint analysis methodology to place values on the different aspects of the technology implementation, to determine which factors are most crucial for future development and ultimately implementation.

Discussion: The model enables active gearing of the technology towards user needs. As implementation of the technology is crucially dependent on user related factors such as acceptance and actual use, this is paramount. With the addition of quantitative data gathering in the last phase, value judgments are made explicit and further development decisions can be based on data that is easy to interpret for the developer.

437. MAPPING THE IDENTIFICATION PROCESS AND COLLABORATION BETWEEN EARLY AWARENESS AND ALERT SYSTEMS

Rosmary Almeida¹, Sue Simpson² and Claire Packe³

¹Univrsidade Federal do Rio de Janeiro. Brazil. ²National Horizon Scanning Centre. University of Birmingham. UK.

Background: EuroScan International Network is a collaborative network of member agencies carrying out early awareness and alert (EAA) activities. Previous surveys amongst EuroScan’s members showed differences in the way they approach the basic steps to achieve their goals, and similarities among the main source of data used. A better understanding of the identification process of each member could help in the discovery of existing tools, the development of appropriate new tools and the improvement of collaboration between members.

Objectives: This study aims to map the identification process of new and emerging technologies and explore the support for and practicalities of developing a more collaborative approach within EAA activities worldwide.

Methods: A survey was carried out amongst INAHTA’s members to identify agencies (other than EuroScan members) developing EAA activities and amongst EuroScan members to identify collaborative work.

Results: The response rate of INAHTA members (excluding EuroScan members) was 26%. The survey revealed nine Non-EuroScan agencies undertaking EAA activities and three who were thinking of starting activities. Four EuroScan members reported collaboration with other agencies related to identification, prioritisation and assessment of new and emerging health technologies. The main reasons reported for the absence of collaboration were: lack of financial or human resources and lack of opportunity. The identification process and existing collaborations between agencies will be explored by means of an interview to investigate further how collaboration can be promoted or assisted.

Conclusions: International collaboration between agencies is important to reduce duplication and use of resources and increase coverage and efficiency. However, our study indicates that despite being part of a collaborative network, collaboration between individual agencies is uncommon.