Morphing structures are devices intended to be implemented in specific parts of the aircraft such to improve some aspects of the flight such as performance and maneuverability. More specifically for the wings, the in flight capability of adaptation of airfoil profile and control surfaces bring possibility to the aircraft operate at optimum performance condition during all flight phases. Morphing structures can only lead to optimal flight maneuverability and performance conditions if the morphed geometry leads to an improved flight condition. Aiming at the reduction of the lift induced drag in all flight phases, this research focus on the application of the genetic optimization algorithm for the definition of the camber section of an winglet. This research proposes the optimization at four different flight phases namely: climb, heavy cruise, mid cruise and light cruise. BLWF – a full potential equation solver coupled with 3D boundary layer modelling – is adopted in the aerodynamic performance, e.g. lift and drag ratio, calculation. A conventional genetic algorithm is adopted in the optimization of the camber of the airfoil composing the winglet. This paper describes the optimization procedure and compares geometries showing that the in flight change of the winglet geometry can sensibly contribute to the improvement of the aircraft performance reducing the fuel consumption.

I. Nomenclature

\[
\begin{align*}
 a_{le} & = \text{leading edge parameter} \\
 a_{te} & = \text{trailing edge parameter} \\
 C_D & = \text{drag coefficient} \\
 C_{D_{total}} & = \text{total drag coefficient} \\
 C_{D_{induced}} & = \text{induced drag coefficient} \\
 C_L & = \text{lift coefficient} \\
 D & = \text{drag} \\
 h & = \text{flight altitude} \\
 L & = \text{lift} \\
 \text{Mach} & = \text{Mach number} \\
 M_{\infty} & = \text{Mach number at infinity} \\
 RC & = \text{rate of climb} \\
 T & = \text{thrust} \\
 u_n & = \text{normal velocity component} \\
 V & = \text{airplane true speed} \\
 W & = \text{aircraft weight} \\
 W_{\text{final}} & = \text{aircraft final weight on cruise}
\end{align*}
\]
II. Introduction

Winglets are wing tip devices adopted to reduce the lift induced drag by changing the wing tip vortex structure. The lift induced drag component can correspond for 40% up to 80% of total drag in cruise and climb conditions, respectively [1]. However, winglets also increase the viscous drag component and structural weight leading to a negative impact on the aircraft performance. Computational and wind tunnel investigations show that winglets considerably increase aircraft performance even when the viscous drag and structural changes are considered [2–7].

Morphing structures can increase the overall aerodynamic efficiency and control capabilities [8–12] and morphing winglets showed good results [13–16] improving the wing lift to drag ratio.

A camber morphing winglet aims at reducing the winglet aerodynamic loading accordingly to the flight condition. The camber alterations would reduce the pressure drag on the winglet for conditions of lower lift, when the induced drag component is smaller, reducing the drag component penalty in this flight phase. Optimizing the winglet geometry for different flight conditions would bring reduction of the airplane total drag, improving the aircraft performance. Martins and Catalano [17] developed a morphing mechanism capable of changing the angle of the leading and trailing edge of the airfoil fixing the central part, see Fig. 1. This mechanism aims at improving the winglet stiffness and system integrity keeping the main structural box intact. This design makes the camber morphing winglet feasible for real applications in the aeronautical industry. The morphing system used in this study is similar to the one used by Cosin et al. [18]. Figure 2 shows an image from the constructed morphing system.

![Fig. 1 Winglet morphing device scheme [17].](image)

![Fig. 2 Designed morphing system drawing [18](image)

This paper adopts a genetic algorithm in the optimization of four different winglets to be applied in different flight phases. A Genetic Algorithm (GA) is a meta heuristic method able to find a near optimum solution for a problem independently of the nature of the problem or the shape of the objective function. This method is suitable for complex and multidisciplinary problems, being widely used for wing geometry optimization.

Cosin et al. [18] adopted a genetic algorithm to optimize the camber geometry of a morphing wing aiming at minimizing the wing total drag. Smith et al. [13] adopted a multi-objective genetic optimization aiming at improving drag.
adaptive cant angle of the wing tip for a commercial transport jet. Smith’s analysis improved range and reduced the aircraft’s take-off and landing distances. Cayiroglua and Kilic [19] combined a genetic algorithm with CFD and finite elements structural analyses to optimize a wing geometry composed by NACA 4-digit airfoils sections. Holst and Pulliam [20] implemented a genetic algorithm coupled with a full potential aerodynamic model to optimize a transonic wing section for single and multi-objective shape optimization.

The genetic algorithm is a powerful optimization tool applicable to problems of different nature. This algorithm relies on the capacity of the external solver performing accurate prediction in the entire searching space defined by the individuals to be selected in the algorithm. In the specific case analysed in this research, the capability of convergence of the genetic algorithm towards an optimum solution of physical meaning largely relies on the aerodynamic model fidelity. Therefore, the choice of the aerodynamic solver is decisive to the representativity of the optimization process. Based on this consideration this research adopts the BLWF solver. BLWF is a full potential aerodynamic model, is used for evaluation of airplanes including the capability of considering different winglet configurations. This code, developed at the Central Aerohydrodynamic Institute (TsAGI), provides fast and reliable results in analysis at transonic flow regime and complex wing-body-winglet configurations. This research implements an experimental campaign aiming to validate the aerodynamic results provided by BLWF. In this analysis, four wing+winglet models are 3D printed representing the optimized geometries for climb, heavy, mid and light cruise conditions. The lift and drag components are tested for all models and the experimental results are compared to BLWF simulations.

III. Methodology

A. Aircraft geometry

A generic mid-size business jet shown in Fig. 3 is chosen as the base geometry in this development. For this optimization process a wing-fuselage configuration is used.

Fig. 3 Airplane geometry. Linear dimensions are represented in millimeters and the angles in degrees.

Five control sections along the winglet span are select to place the morphing airfoil. The span position of the sections are based on the winglet coordinate system defined in Fig. 4 are shown in Tab. 1. The airfoil sections camber changes are based on the morphing mechanism developed by Martins and Catalano [17]. In this proposed construction, the airfoil sections are able to change the leading and trailing edges angles. The angles are constrained by the maximum angles that the system can bend and still create a smooth surface, Fig. 2. The leading and trailing edge parameters are contained in the interval \(-0.1 \leq a_{le} \leq 0.05 \) and \(-2.45 \leq a_{te} \leq 1.3 \), respectively. BLWF is able to simulate winglet geometries defined at any point of \(a_{le} \) and \(a_{te} \) interval.
B. Aerodynamic model

BLWF [21] solves the full potential equation coupled with 3D boundary layer calculation [22], allowing fast solutions of complex transonic flows. The conservative full potential equations are presented by Jameson and Caughey [23]. BLWF adopts continuity of the velocity potential, implying continuity of the tangential velocity component and continuity of ρu_n are set as conditions of the shock jump. No conservation of the normal moment component through the shock wave under the isentropic assumption is taken. This imbalance produces a body force that is an approximation to the wave drag. Jameson and Caughey [23] presents the finite volume methodology used to solve the full potential equations. The 3D boundary layer coupled method used on the software is described McLean and Randall [24]. BLWF has a mesh generation method described by Yu [25].

Zhang and Hepperle [26] studied the BLWF application in aerodynamic simulations of wing-body configurations subjected to transonic flow conditions. BLWF estimates aerodynamic coefficients with acceptable uncertainty for preliminary design.

C. Optimization process

The genetic algorithm is an evolutionary algorithm, searching for an optimum solution from an initial random population. Every individual is evaluated by calculating a fitness factor defined by an objective function that determines the fit of individuals to the aimed scenario. In the present study, the winglets are evaluated in four different conditions: climb, heavy, mid and light cruise. The flight speed, altitude and lift for the studied conditions are shown in Tab. 2.
Table 2 Typical flight conditions considered in the optimization.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Altitude [ft]</th>
<th>Mach [-]</th>
<th>C_L [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climb</td>
<td>30000</td>
<td>0.60</td>
<td>0.5150</td>
</tr>
<tr>
<td>Heavy cruise</td>
<td>45000</td>
<td>0.75</td>
<td>0.4885</td>
</tr>
<tr>
<td>Mid cruise</td>
<td>45000</td>
<td>0.75</td>
<td>0.4525</td>
</tr>
<tr>
<td>Light cruise</td>
<td>45000</td>
<td>0.75</td>
<td>0.4165</td>
</tr>
</tbody>
</table>

The objective function defined for the climb flight phase is set such to maximize the airplane rate of climb. Based on the climb performance equations defined by Roskan [27], the rate of climb depends on the inverse of $C_L \div C_D$ (Eq. 1). The climb condition optimization is maximizes the objective function shown in Eq. 2. A geometrical constrain was set such to impose that the angle of the leading or trailing edges are equal or larger than the angle of the previous section, avoiding convergence to optimal geometries that could not be reproduced in a real application.

$$RC = \frac{(T - D)V}{W} = (\frac{T}{W} - \frac{D}{W})V = (\frac{T}{W} - \frac{D}{L})V$$

$$Fitness_{Climb} = 10 \frac{C_L}{C_D}$$

The cruise condition optimization aims to maximize the range. The Breguet’s range equation (Eq. 3) shows that the range is proportional to the lift to drag ratio. The cruise condition optimization targets to maximize the objective function shown in Eq. 4.

$$Range = \frac{h}{g} L \eta_{overall} \ln \frac{W_{initial}}{W_{final}}$$

$$Fitness_{Cruise} = 10 \frac{C_L}{C_D}$$

The fitness factor determine the probability of an individual to reproduce. The better fitted individuals have higher probability of being selected for reproduction. A percentage of the best individuals are selected as part of the next generation (elitism). The individuals are selected for reproduction randomly using a roulette wheel selection. On reproduction the selected individuals exchange parts of their gens (crossover) and random changes on the gen structure (mutation). The new generation is evaluated again using the objective function. The method is considered converged when the worse and best individuals on the population have the same fitness. Further information about genetic algorithms can be found in Goldberg [28].

The first author of this paper developed the algorithm, which was validated by optimization problems with known solutions, such as known polynomial objective function and wing weight optimization varying wing tapper and aspect ratio. A study of the minimum initial population is performed to ensure that the final result corresponds to the optimum solution. Populations of sizes 100 are tested for 10 generations in the winglet optimization for mid cruise condition and compared such to determine the minimum population size that ensures convergence. Elitism and mutation rate are defined based on stability and convergence analyses. Results presented in Fig. 5 and Tab. 3 show that for a population of 300 individuals the converged solution is the same for simulations with larger initial populations with differences of up to 0.0012% which implies negligible difference in the airplane’s $C_L \div C_D$ ratio. The computational time is directly proportional to the population size, once the aerodynamic simulation of each individual is the most time consuming phase of the process. Based on this analysis a population of 300 individuals is adopted such to ensure convergence to a global optimum with minimal computing time.

Table 3 Fitness relation with population size showing the minimum size for optimum convergence

<table>
<thead>
<tr>
<th>Population size</th>
<th>100</th>
<th>300</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness</td>
<td>130.4245</td>
<td>133.1458</td>
<td>133.1473</td>
<td>133.1431</td>
</tr>
</tbody>
</table>

The morphing mechanism is capable to change the leading and trailing edge angles of the five selected winglet sections [17]. The population individual’s gens are composed by 40 bits. Each group of 4 bits form a binary number
Fig. 5 Analysis of the population size showing the minimum size for optimum convergence.

Fig. 6 Binary representation of population individual genetic code structure and optimization variables

that represent the angle of the trailing or leading edge of one winglet section. Therefore, the genetic algorithm works optimizing a group of 10 variables, see Fig. 6.

Thierens and Goldberg [29] showed a study on the minimal population size \(n \) and generations \(g_{\text{conv}} \) necessary to ensure convergence towards a global optimum. Equations (5) and (6) gives the relation between \(n \) and \(g_{\text{conv}} \) with the gen length \(l \), represented in Fig. 6. The gen length for the winglet optimization presented in this paper is \(l = 40 \), therefore \(n = 80 \) and \(g_{\text{conv}} = 18 \) is a reasonable population sizes and number of generations for achieving global optimum convergence. Table 4 shows the parameter used for the genetic optimization. The chosen parameters of this analysis are higher than those suggested by Thierens and Goldberg [29] such to ensure proper convergence.

\[
\begin{align*}
n &= 2l \quad (5) \\
g_{\text{conv}} &= \frac{\pi}{2} \sqrt{\pi l} \quad (6)
\end{align*}
\]

Table 4 Parameters adopted in the genetic optimization.

<table>
<thead>
<tr>
<th>Population size</th>
<th>Gen length</th>
<th>Number of variables</th>
<th>Mutation rate [%]</th>
<th>Elitism [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>4</td>
<td>5</td>
<td>0.25</td>
<td>5.0</td>
</tr>
</tbody>
</table>

D. Wind tunnel experiment

Wind tunnel measurements are performed aiming at assessing the influence capacity of BLWF of reproducing physically meaningful results and to investigate the influence of different winglets on the lift induced drag. Aerodynamic
measurements on the lift, drag and pitching moment were performed in a open circuit closed test section wind tunnel at University of São Paulo. The test section dimensions are 1.05 x 0.8 m2 and 2.1 m long.

A circular end plate is adopted to minimize wall effects on the wing root of the model. An extra measurement is performed adopting only an end plate such to subtract its effects from the raw data. The angle range is chosen such to find the zero lift angle and stall characteristics of all configurations tested. The velocity was set to the wind tunnel maximum speed (Tab. 5).

<table>
<thead>
<tr>
<th>α_i</th>
<th>α_f</th>
<th>$\Delta\alpha$</th>
<th>V [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6°</td>
<td>20°</td>
<td>1°</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 5 Wind tunnel experiment conditions.

The wing and winglets are prototyped using fuse deposition material Stratasys Fortus 360 MC printer at University of São Paulo. Primer finishing is applied to the models followed by a black paint and a water sanding process to improve the surface finishing. A trip strip is added to all surfaces at 10% of the local chord to force boundary layer transition.

IV. Results

A. Winglet optimization

The winglet optimization is performed considering the aforementioned flight conditions. The fitness of the best and worst individuals in each generation and mean fitness of the population along the generations is shown in Fig. 7. After 30 generations the best individual fitness is almost constant. Therefore, the optimization process stopped and the best individual, after 30 generations, and taken as the optimum solution.

Table 6 Drag coefficient component of the baseline and optimized camber morphing geometry. A reduction in the drag coefficient of up to -0.58% is observed. The airfoil sections evolution of the best, median and worst individuals on the population for all configurations are shown in Fig. 8 to 19. The camber adaptive winglet is able to improve the airplane performance when compared to the baseline fixed geometry winglet.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Baseline C_Dtotal [-]</th>
<th>Baseline C_Dinduced [-]</th>
<th>Optimum C_Dtotal [-]</th>
<th>Optimum C_Dinduced [-]</th>
<th>%ΔC_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climb</td>
<td>0.03774</td>
<td>0.00750</td>
<td>0.03752</td>
<td>0.00742</td>
<td>-0.58</td>
</tr>
<tr>
<td>Heavy cruise</td>
<td>0.03626</td>
<td>0.00665</td>
<td>0.03625</td>
<td>0.00661</td>
<td>-0.03</td>
</tr>
<tr>
<td>Mid cruise</td>
<td>0.03432</td>
<td>0.00586</td>
<td>0.03427</td>
<td>0.00582</td>
<td>-0.15</td>
</tr>
<tr>
<td>Light cruise</td>
<td>0.03218</td>
<td>0.00499</td>
<td>0.03213</td>
<td>0.00496</td>
<td>-0.16</td>
</tr>
</tbody>
</table>

Table 6 Drag components for different conditions.
Fig. 7 Individuals fitness per generation for different flight conditions optimizations
Fig. 8 Climb worst individual evolution.

Fig. 9 Climb median individual evolution.
Fig. 10 Climb best individual evolution.

Fig. 11 Heavy cruise worst individual evolution.
Fig. 12 Heavy cruise median individual evolution.

Fig. 13 Heavy cruise best individual evolution.
Fig. 14 Medium cruise worst individual evolution.

Fig. 15 Medium cruise median individual evolution.
Fig. 16 Medium cruise best individual evolution.

Fig. 17 Light cruise worst individual evolution.
B. Wind tunnel experiment

Figures 20 and 21 show the lift and drag polars for the five tested configurations. Based on the drag equation $C_D = C_{D_0} + \frac{C_L^2}{\pi AR}$, the drag polar equations were obtained by a second order polynomial fit of form $C_D = C_{D_0} + kC_L^2$. The fit coefficients are shown in Tab. 7.
Fig. 20 Lift as function of attack angle

Fig. 21 Drag polars
Table 7 Drag polar fit coefficients

<table>
<thead>
<tr>
<th>Winglet geometry</th>
<th>C_D_{0}</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>No winglet</td>
<td>0.02169</td>
<td>0.08592</td>
</tr>
<tr>
<td>Climb</td>
<td>0.03432</td>
<td>0.04736</td>
</tr>
<tr>
<td>Heavy cruise</td>
<td>0.02932</td>
<td>0.05832</td>
</tr>
<tr>
<td>Mid cruise</td>
<td>0.02860</td>
<td>0.05194</td>
</tr>
<tr>
<td>Light cruise</td>
<td>0.02801</td>
<td>0.04890</td>
</tr>
</tbody>
</table>

An increase of C_D_{0} due to the additional area is observed. A reduction of k shows increased effective aspect ratio for all winglets. A reduction of C_D_{0} for smaller C_L conditions is achieved as a result of the morphing feature of the winglets meaning that the winglet load is reduced while the airplane is flying at lower lift conditions without affecting the lift induced drag. This analysis shows that BLWF underestimates the lift and drag components, results in agreement with Zhang and Hepperle [26].

Focusing on the C_L range of interest, Fig. 22, the light cruise winglet configuration shows smallest drag than all the other configurations. Other winglet configurations probably did not show the expected result due to the differences of flow conditions between the wind tunnel test and actual flight conditions.

![Fig. 22 Configurations drag comparison at the region of interest.](image)

V. Conclusions

The genetic optimization results show that the use of a camber morphing winglet can improve the airplane aerodynamic performance, reducing the total drag up to 0.58% over an already optimized fixed geometry winglet. This result shows the capability of the camber morphing winglet to improve aircraft performance when compared to a mission optimized fixed geometry winglet. The results show an encouraging scenario for testing the device on airplanes with higher wing loading, causing a bigger drag and fuel consumption reduction.

The wind tunnel results show that the expected increase on the C_D_{0}, due to the surface area addition, and reduction of the lift induced drag compared to the wing with no tip device. The total drag is reduced in the optimization C_L region, despite the fact some of the winglets showing performance under the expected due to the differences between the experiment and real flight conditions.

Further investigations on the performance of the morphing winglet for a complete flight and the estimation of the fuel consumption for a plane equipped with camber morphing winglets are expected as future steps of this research. Also, the procedure developed may be used for designing a new winglet for a new aircraft project.
VI. Acknowledgments

This work has been funded by the UTwente’s International Strategic Partner Project Bandeirantes and the 4TU FSM center. The authors would like to thank S. Wanrooij and H. Stobbe for the technical support, L. H. Groot Koerkamp, M. M. Nilton, M. F. Cichocki and L. I. Abreu for support in the experiments setup.
References

