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By using non-equispaced grid points near boundaries, we derive boundary optimized first 
derivative finite difference operators, of orders up to twelve. The boundary closures are 
based on a diagonal-norm summation-by-parts (SBP) framework, thereby guaranteeing 
linear stability on piecewise curvilinear multi-block grids. The new operators lead to 
significantly more efficient numerical approximations, compared with traditional SBP 
operators on equidistant grids. We also show that the non-uniform grids make it 
possible to derive operators with fewer one-sided boundary stencils than their traditional 
counterparts. Numerical experiments with the 2D compressible Euler equations on a 
curvilinear multi-block grid demonstrate the accuracy and stability properties of the new 
operators.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Energy-stable numerical methods for partial differential equations (PDEs) often rely on a summation-by-parts (SBP) prop-
erty. The SBP property ensures that the discrete differential operators mimic the integration-by-parts formula for their 
continuous counterparts. Examples of discrete operators with the SBP property include some finite difference (FD), spec-
tral collocation [1,2], and finite volume methods [3]. In this article, we focus exclusively on finite difference operators. SBP 
FD operators [4–6] are routinely combined with the simultaneous approximation term (SAT) method to impose boundary 
conditions.

Traditional SBP FD operators found in the literature are essentially central finite difference stencils, defined on regular 
grids, closed at the boundaries with one-sided difference stencils (independent of the grid-size) that preserve the SBP-
property. Every SBP FD operator is associated with a quadrature rule that defines an inner product—and hence a norm—on 
the space of discrete solution vectors. The structure of the norm matrix is important; for problems with curvilinear grids, 
only diagonal norm matrices facilitate provably stable schemes. Hence, diagonal-norm SBP operators are the obvious choice 
in many applications. Unfortunately, however, traditional diagonal-norm SBP operators suffer from reduced order of accu-
racy near boundaries. It has been shown that diagonal-norm SBP operators where all FD stencils have accuracy at least p
are associated with a quadrature rule of degree at least 2p − 1 [7]. Moreover, if the repeating interior stencil is of order 2p, 
the order of the boundary closure may not exceed p [4], assuming uniform grids. In a recent study [8] this fact has been 
proven to hold also for grids with arbitrary point distributions near domain boundaries. For first order hyperbolic equations, 
this limits the global convergence rate to (p + 1)th order [9].
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In an effort to improve the accuracy of first-derivative diagonal-norm SBP operators, [10] introduced a type of boundary 
optimized operators, of orders up to eight. In the construction of the operators, the authors allowed for a few non-
equispaced grid points near the boundaries. This approach introduces more free parameters that can be tuned for accuracy. 
The grid point locations, as well as the coefficients of the operator, are obtained by solving a non-linear constrained 
optimization problem where the leading order truncation error coefficients are used as objective function. Although the 
optimized 2pth-order operators were closed with pth-order accurate boundary stencils just like their traditional counter-
parts, the leading order error constants were reduced by several orders of magnitude. Numerical experiments indicate that 
this can lead to large gains in the pre-asymptotic convergence regime.

In a recent paper [11] the existence of traditional diagonal-norm SBP operators up to order 2p = 30 is proven. It 
turns out that the minimum number of boundary stencils grows quickly with the order of accuracy; operators of orders 
2p = 10, 12, 30, require 11, 14, 71 boundary stencils, respectively. Wide boundary stencils impact the usefulness of the 
operators in multi-block configurations where some blocks may be small and the operators will not fit unless an excessively 
fine grid is introduced. Further, the number of free parameters that remain after imposing the SBP property and pth order 
boundary accuracy tends to increase rapidly with p. It is important to choose the free parameters well, since they affect the 
leading-order error constants of the boundary stencils and the spectral radius of the operator. Naturally, this optimization 
problem becomes more cumbersome as the number of free parameters increases. For 2p ≥ 8 there is the additional diffi-
culty that some of the parameters reside in the norm matrix so that the condition of positive definiteness constrains the 
optimization problem.

In [10] the mathematical software Maple was utilized to solve the non-linear constrained optimization problem. Due to 
a limitation in Maple, the optimization problem could however only be solved with at most 3 non-equidistant grid-points 
and at most 8 boundary points. The present study revisits the optimization problem. By using the numerical optimization 
software SNOPT 7.2 [12] developed at Stanford University, we are able to improve the previous work. The main results are 
twofold: First, we derive up to 12th order boundary optimized operators. Second, we derive 2pth order diagonal-norm SBP 
operators with less than 2p boundary points, which for p > 1 is impossible for traditional operators on equidistant grids. For 
example: a 12th order optimized operator with only 10 boundary points is derived. Remarkably, the boundary-optimized 
operators do not introduce stiffness; the spectral radii are almost identical to those of the corresponding traditional opera-
tors.

In Section 2 the SBP definitions are introduced. In Section 3, the newly derived SBP operators are applied to the 2D Euler 
equations on a curvilinear multi-block domain. Section 4 summarizes the work. The coefficients of the optimized operators 
are included online as supplementary data for this paper, as described in Appendix A.

2. Definitions

The domain (0 ≤ x ≤ L) is discretized using m grid points:

x = [x1, x2, . . . , xm−1, xm]T ,

i.e., x denotes a vector holding the grid-points. For an equidistant grid we have

xi = (i − 1)h, i = 1,2, . . . ,m, h = L
m−1 .

In the present study we will allow up to 6 grid-points (depending on the order of accuracy) near the boundary to be 
non-equispaced, to improve accuracy. We will use the standard l2 inner product for vectors u, v ∈ Rm , i.e. (u, v)h = huT v. 
The following definition (first stated in [13]) is relevant to the present study:

Definition 2.1. An explicit 2pth-order accurate finite difference scheme with minimal stencil width for the Cauchy problem 
is denoted a 2pth-order accurate narrow-stencil.

2.1. SBP operators

The SBP definitions can be found in earlier papers (see for example [4]). For completeness we restate them below for 
the first derivative:

Definition 2.2. A difference operator D1 = H−1 Q , approximating ∂/∂ x using a repeated narrow-stencil in the interior, is said 
to be a diagonal-norm first-derivative SBP operator if H is diagonal and positive definite, and Q + Q T = diag(−1, 0, . . . , 0, 1).

Let xk denote the projection of the polynomial xk

k ! onto the grid. We will use the convention that x0 = [1, 1, . . . , 1]T and 
x−1 = [0, 0, . . . , 0]T . The following definition (first stated in [10]) is central to the present study.

Definition 2.3. We say that the diagonal-norm first-derivative SBP operator D1 is 2pth-order if the error vector errk =
Hxk−1 − Q xk vanishes for k = 0, . . . , 2 p in the interior and for k = 0, . . . , p near the boundaries.
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Table 1
The number of boundary stencils, comparing the Tra-
ditional and optimized SBP operators (both Accurate 
and Minimal) for 2p = 4, 6, 8, 10, 12. We list the 
number of boundary points and the number of non-
uniform grid spacings in parenthesis for the optimal 
SBP operators.

Traditional Minimal Accurate

4th order 4 3 (1) 4 (2)
6th order 6 5 (2) 7 (4)
8th order 8 6 (2) 8 (4)
10th order 11 8 (3) 10 (5)
12th order 15 10 (4) 12 (6)

Remark. A 2pth-order diagonal-norm first-derivative SBP operator is restricted to pth-order accuracy (see [4]) at the bound-
aries, i.e., errp+1 is the leading order error. This implies [9,14] that the convergence rate drops to (p + 1)th order for first 
order hyperbolic problems, and (p + 2)th order for parabolic and second order hyperbolic problems, assuming null-space 
consistency.

In the traditional first-derivative SBP operators used in the present study, the free parameters have been carefully chosen 
to minimize the discrete l2-norm of the leading order boundary error, ‖errp+1‖2

h for the 2pth order case. The spectral radii 
of the operators are also small. In fact, [13] found a strong correlation between small leading order truncation error and 
small spectral radius. Hence, by minimizing the norm of the leading order truncation error one can expect to also minimize 
the spectral radius of the operator.

2.2. Optimized diagonal-norm SBP operators

To improve the accuracy of traditional diagonal-norm operators we allow for non-uniform grid point distributions near 
boundaries. Let the domain be the interval [0, L] and consider the case with n non-uniform grid spacings. We introduce 
di, i = 1, . . . , n, such that h di is the distance between the ith and (i + 1)th grid point. We also introduce the notation 
ξ j = ∑ j

i=1 di, j = 1, . . . , n. The grid-spacing in the interior is given by h = L/(2 ξn + (m − 2n − 1)), where m is the number 
of grid points. The grid points are thus

x = [0, ξ1h, ξ2h, . . . , ξnh, (ξn + 1)h, . . . , (ξn + m − 2n − 2)h, L − ξnh, L − ξn−1h, . . . , L − ξ1h, L] .

The unknowns in the optimization are the distances di and the coefficients in H and Q . For more details we refer to [10].
In the present study, optimized 4th, 6th, 8th, 10th and 12th order diagonal-norm SBP operators have been constructed. 

Because the objective function may contain many local minima, we can not guarantee that the constructed operators cor-
respond to global minima. Furthermore, it is not obvious how to choose the objective function. We have observed that it 
is often beneficial to include a linear combination of the two leading order errors, i.e. to minimize ‖errp+1‖2

h + ‖errp+2‖2
h

rather than ‖errp+1‖2
h .

We have constructed two kinds of optimized operators. The first kind has the minimum number of boundary points 
that is required to achieve pth order accuracy at the boundary. This kind will be referred to as Minimal. The second kind 
of operators have been constructed to have the best possible accuracy properties and will be referred to as Accurate. The 
Accurate operators typically have a few more boundary points than the corresponding Minimal operators. Table 1 compares 
the number of boundary points for Traditional, Minimal, and Accurate operators of orders four to twelve. We also list the 
number of non-uniform grid spacings n for the optimized operators. In general, for interior order 2p and r boundary stencils, 
n = r − p, as the grid points that are touched by the interior stencil must remain equispaced.

3. The Euler vortex problem

To test the accuracy properties of the optimized operators we consider the nonlinear Euler equations in curvilinear 
coordinates formulated in conservative form,

Jut + F̃ξ + G̃η = 0 , (1)

where ξ and η are the spatial coordinates in the reference domain and

u =

⎡
⎢⎢⎣

ρ
ρu
ρv
e

⎤
⎥⎥⎦ , F̃ =

⎡
⎢⎢⎣

ρU
ρuU + yη p
ρvU − xη p
(e + p)U

⎤
⎥⎥⎦ , G̃ =

⎡
⎢⎢⎣

ρV
ρuV − yξ p
ρv V + xξ p
(e + p)V

⎤
⎥⎥⎦ .
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Fig. 1. The computational domain, consisting of 2 curvilinear grids, with discontinuous metrics along the interface. Here with 21 × 11 grid-points in each 
domain.

Fig. 2. The pressure component of the exact solution at times t = 0 s and t = 4 s. M = 0.5 and ε = 4.

Here x and y are the coordinates in the physical domain and

J = xξ yη − xη yξ , U = yηu − xηv , V = −yξ u + xξ v .

Further, ρ is the density (scaled to free stream density ρ∞); u, v are the velocity components in the x, y directions respec-
tively (scaled to free stream speed of sound c∞); e = ei + ρ

2 (u2 + v2) is the total energy (nondimensionalized with respect 
to ρ∞c2∞) and ei is the internal energy. Pressure is obtained from the equation of state for an ideal gas: p = (γ − 1)ei .

In the experiments below we consider the propagation of a vortex that satisfies (1). The analytic vortex solution is 
steady in the frame of reference moving with the free-stream. (See [10] for the analytic solution in Cartesian coordinates.) 
The vortex is introduced into the computational domain by using the analytic solution as boundary data and initial data. 
We consider a domain that requires a two-block discretization (see Fig. 1) and use SATs to couple the two blocks along the 
interface. Details concerning how to discretize this problem with the SBP-SAT method can be found in [10]. Note that the 
boundary stencils of the operators are used along the block interface in both blocks, as well as near the domain boundaries. 
Fig. 1a shows the grid used by the Traditional operators, while Fig. 1b shows the grid used by the Accurate 8th order 
operator.

3.1. Convergence study

The initial position of the center of the vortex is (x, y) = (−2, −0.5), so that the block interface cuts the vortex (see 
Fig. 2). The vortex is then propagated to the right along the grid interface a distance of 4 units (corresponding to t = 4) 
where we measure the l2-error in the pressure component. For the time-integration we use a 6th-order accurate Runge–
Kutta method [15] with �t = 0.001, to guarantee that temporal errors are small. We set M = 0.5 and ε = 4. (Here ε is a 
parameter that governs the vortex strength and M is the Mach number, see [10].)

In Tables 2, 3, 4 we present convergence results using Traditional and optimized SBP operators, of orders 4, 6, 8, 10 and 
12. Here we include both the Minimal and Accurate operators.
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Table 2
log(l2 − errors), denoted Err , and convergence rates q, for SBP operators of orders 4 and 6. Comparing the Traditional, 
Minimal, and Accurate operators.

Traditional 4 Minimal 4 Accurate 4 Traditional 6 Minimal 6 Accurate 6

N Err q Err q Err q Err q Err q Err q

31 −3.27 −3.77 −4.08 −2.90 −4.34 −4.63
61 −4.27 3.32 −4.76 3.29 −5.16 3.58 −4.15 4.13 −5.71 4.55 −6.23 5.29
91 −4.83 3.16 −5.32 3.19 −5.79 3.58 −5.01 4.91 −6.46 4.30 −7.04 4.60
121 −5.22 3.10 −5.72 3.13 −6.24 3.60 −5.65 5.08 −6.99 4.22 −7.57 4.29
161 −5.60 3.07 −6.10 3.09 −6.68 3.59 −6.29 5.13 −7.51 4.17 −8.09 4.18

Table 3
log(l2 − errors), denoted Err , and convergence rates q, for SBP operators of orders 8 and 10. Comparing the Traditional, 
Minimal, and Accurate operators.

Traditional 8 Minimal 8 Accurate 8 Traditional 10 Minimal 10 Accurate 10

N Err q Err q Err q Err q Err q Err q

31 −2.95 −4.76 −5.30 −2.86 −3.94 −5.45
61 −4.28 4.42 −6.34 5.26 −7.35 6.82 −4.26 4.66 −5.72 5.90 −7.61 7.16
91 −5.12 4.77 −7.23 5.00 −8.47 6.33 −5.27 5.71 −6.84 6.41 −9.06 8.22
121 −5.71 4.77 −7.85 5.00 −9.22 5.99 −5.98 5.74 −7.68 6.70 −10.07 8.14
161 −6.33 4.93 −8.48 5.00 −9.95 5.84 −6.70 5.75 −8.53 6.82 −11.05 7.81

Table 4
log(l2 − errors), denoted Err , and convergence rates q, for SBP 
operators of order 12. Comparing the Traditional, Minimal, and Ac-
curate operators.

Traditional 12 Minimal 12 Accurate 12

N Err q Err q Err q

31 −2.32 −4.70 −5.30
61 −3.52 4.01 −6.73 6.74 −7.65 7.81
91 −5.15 9.22 −8.17 8.19 −9.41 10.03
121 −5.98 6.68 −9.25 8.64 −10.88 11.71
161 −6.82 6.66 −10.16 7.29 −12.28 11.23

3.2. Long-time simulations

To illustrate the importance of improved boundary accuracy for long-time simulations we modify the problem in Sec-
tion 3.1. Instead of imposing the exact solution as boundary data on all of the outer boundaries, we couple the left and right 
boundaries using SATs. As the vortex leaves the domain through the right boundary it re-enters on the left. One revolution 
takes 12 s so that at every integer multiple of 12 s, the exact solution is identical to the initial data. We set M = 0.5 and 
ε = 2.

Fig. 3 compares the Traditional and Accurate 12th order operators by presenting the pressure component after one rev-
olution (Traditional) and after four revolutions (Accurate). Both simulations use m = 51 × 101 grid points in each sub-block 
and the time step �t = 0.004. With the Traditional operator, the vortex is visibly distorted (already at t = 12), whereas it 
keeps its shape (even at t = 48) when the Accurate operator is used.

Remark. A numerical study, not presented here, comparing the Traditional and the optimized (Minimal and Accurate) op-
erators shows that the optimized and traditional SBP operators have almost identical spectral radii, and hence identical 
stability restrictions on the time-step.

4. Conclusion

We have utilized non-uniform grid point distributions near boundaries to construct boundary optimized diagonal-norm 
SBP operators for the first derivative. The first main result is the construction of optimized operators of orders up to twelve. 
While the order of accuracy near the boundaries is no higher than for traditional diagonal-norm operators, the leading 
order error constants are much smaller. Numerical experiments with the 2D compressible Euler equations show that the 
optimized operators can yield several orders of magnitude more accurate results than the traditional versions. While the 
performance of the optimized operators is somewhat problem-dependent, they frequently exhibit higher convergence rates 
than the expected (p + 1)th order down to relative errors of 10−10. In the limit h → 0, however, we expect the convergence 
rates to approach (p + 1)th order.
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Fig. 3. Pressure component of the solution at t = 12 s (one revolution) using Traditional and at t = 48 s (four revolutions) using Accurate 12th order 
operators with m = 51 × 101 grid-points in each sub-block.

The second main result is the construction of 2pth order diagonal-norm SBP operators with less than 2p boundary 
points, which is the lower limit for traditional SBP operators on equidistant grids.
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Appendix A. SBP operators

The Accurate, Minimal and Traditional diagonal-norm SBP operators used in Section 3 are available online as MATLAB 
function files at https://bitbucket .org /martinalmquist /optimized _sbp _operators. The Matlab functions return the differentia-
tion matrix D1, the norm matrix H , the grid point vector x, and the interior grid spacing h. Input to the functions are the 
grid size m and the width L of the domain.
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