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A B S T R A C T

Often, socio-environmental agent-based models (ABMs) are driven by a host of parameters, and their outputs are
similarly multidimensional or vastly high-dimensional. While this complex data and its inter-relationships may be
rendered tractable, the task is far from trivial. In this paper, we study the multidimensional outcome space of the
socio-environmental, land-use RHEA ABM (Risks and Hedonics in an Empirical Agent-based Land Market), spe-
cifically the inter-distances among the outcome measures, and their reducibility using several well-known di-
mension reduction techniques, variants of multidimensional scalings. In testing the efficacy of several reduction
algorithms, we temporally characterize the model’s reducibility while exposing changes in behavior across a wide
parameter space that can signal sudden or gradual shifts and possible critical transitions. Our findings reveal that
the ABM’s signature reducibility trends exhibit idiosyncrasies and unexpected non-linearity as well as dis-
continuities. These non-linearities and discontinuities are indicative of both gradual and sudden shifts, signaling
potential propensity to internal perturbations induced by parameter settings. Additionally, we related the outcome
space via their inter-distances to the multidimensional input parameter space, effectively assessing outcome “re-
ducibility to model controls”. This analysis reveals that the model’s sensitivity to parameters is not only temporally
dependent, but also can be partitioned by them, some of which suppress variability in this reduction to model
controls, raising questions regarding the extent and structure of endogeneity that yields the distinct temporal
trends in the relationship between inputs and outputs and their connections to outcome reducibility.

1. Introduction

Agent-based models (ABMs) have become increasingly employed in
the study of wide array of complex phenomena in the last few decades,
including ecological ones (e.g., Brede et al., 2008; Filatova et al., 2013;
Grimm and Railsback, 2005; Karsai et al., 2016; Ratzé et al., 2007;
Thiele and Grimm, 2010). Within these models, micro-level agents
make choices while dynamically interacting with one another and their
virtual environments, with varying degrees of spatial and temporal
resolution. The decision-making and interactive dynamics are typically
theoretically or empirically-grounded but the behaviors and outputs
often harbor a range of uncertainty, due to their stochasticity and
complexity (Manson et al., 2012). Thus, the agents’ behaviors and
virtual settings are not fixed but rather guided by a set of input para-
meters, rules guiding interactions and learning, and endogenously
evolving states. Consequently, the complexity of ABMs is exacerbated

not just from its stochasticity, typically accompanying the agents’ be-
haviors and the ABMs trajectories, but by the high dimensional space of
parameters and behavioral strategies, all of which set initial conditions
as well as shape agents’ behaviors, permitting these models to serve as
both exploratory and confirmatory tools for analysis. ABMs constitute
one class of complex adaptive systems that permit the emergence of
complex behavior from heterogeneous agents.

Similarly, complex ABMs tend to produce a large quantity of outputs
(or outcomes), that beg for techniques for offering traction in under-
standing the highly dimensional space of the input parameters and outputs
or outcomes. This is especially relevant when modeling socio-environ-
mental system (SES) dynamics, that are known to exhibit non-linearities
and at times undergo structural shifts when feedbacks between systems’
elements and their macro behavior are changing. Yet, the ABMs exploring
this type of phenomena rarely apply quantitative analysis of the output
data, in which significant behavior such as systemic shifts are obscured
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through the highly multidimensional data. Dimension reduction methods
could be especially useful to detect these shifts – that can signal a system
level loss of resilience – by intelligently reducing the complexity of models’
output data so that the triggers behind this can be uncovered. The plethora
of controllable input parameters as well as the often complex and varying
outcomes challenge these goals. While recent literature highlights some of
the complexities inherent in and current approaches for ABM output
analysis (e.g., Lee et al., 2015), there yet remain many open areas of
analytic inquiry. Hence, this paper aims to examine the effectiveness of
several approaches in reducing the high dimensional outcome space of an
ABM to elicit systemic shifts in model behavior as characterized by
structural changes in the relationships between model inputs and outputs.

1.1. The problem of reducibility

The abundance of ABM outcomes, some of which are deemed more
important than others, challenges researchers to find and apply ap-
proaches for rendering the data tractable and interpretable
(Turati et al., 2016). A structured accounting of a large set of outcomes
can offer insights into the character of the model dynamics. Many
methods exist for reducing this high dimensional space for the purposes
of, for example, identifying clusters of variables, by often exploiting
interdependencies among variables (multi-collinearity) and often pro-
ducing informative two and three-dimensional visualizations. Reduc-
tion algorithms can and have been broadly applied to a wide range of
data types containing data points comprising a feature set which may
include characteristics and structural positional information. We review
some of these later in the paper in Section 1.3.

To address the goal of this paper, we examine a number of ap-
proaches that exploit the distance structure as means for understanding
aspects of the models’ behavior over time, vis-à-vis their reducibility as
well as exposing subtle differences among the examined reduction
methods. Dimension reduction can be relatively straightforward and
visually compelling, allowing for at-a-glance assessment of the data
space. While a host of extant approaches effect a reduction in one form
or another, we focus on those that attempt to retain the distance
structure of the original data. Specifically, we explore a class of di-
mension reduction methods called multidimensional scaling (or MDS),
which seeks latent structure within the inter-distances between data
points and is often employed for the purposes of information visuali-
zation. MDS routines essentially maps a higher dimensional data into a
lower dimensional projection and allow for interpretation often
through two-dimensional or three-dimensional visualization. The dis-
tances between data points in the lower dimensional projection are
intended to be as close as possible to the distances in the original di-
mensions. Alternative dimension reduction techniques exploit addi-
tional information surrounding the data points and the relationships to
one another, such as nearest neighbors.

In our case, this higher dimensional data comes in the form of
multivariate ABM outcome data, each column representative of a key
outcome variable and each row linked to a distinct set of ABM input
parameters that produced the outcomes. MDS (and other dimension
reduction) methods permit a conglomerate treatment of the data space
rather than consign the researcher to focus on a small subset, which is
often the case for typical (univariate) visualizations and statistical
models. However, the reductive capabilities become naturally limited
for larger data spaces. The extent and accuracy of the reduction can
serve as indicators of the complexity of the ABM’s outcomes. That is,
less or even increased reducibility, especially if it is sudden, can in-
dicate higher degrees of complexity (e.g., less collinearity) in the ABM
behavior and outcomes, while in the presence of some structure and
reducibility in those outcomes.1

1.2. Dimension reduction and resilience

There is a direct linkage between dimension reduction of ABM
outcomes and the presence and nature of resilience in an ABM’s dy-
namics. The notion of resilience in environmental ABMs hails from the
traditional definitions of ecological/environmental resilience
(Folke, 2006). Models designed to study this phenomenon represent a
complex adaptive system, and resilience is generically understood to be
a system’s propensity to achieve a former or new stable state after
undergoing internal or external perturbations (Dragicevic, 2016;
Walker and Salt, 2006). Environmental, including spatial SES, ABMs
addressing resilience are sparse; some recent ones include those that
study food web networks (Dragicevic, 2016) and resource consumers
(ten Broeke et al., 2017), as well as land use change (e.g., Carabine
et al., 2014; Kaplan, 2011; Zia et al., 2016), including the ABM that is
used as the example in this paper (Filatova et al., 2015).

In this paper, we argue that the varying extent of reducibility of an
ABM’s dynamic, multidimensional outcomes permits an inference of
resilience or propensity to internal perturbations. While the temporal
variance in reducibility can offer a glimpse into when and how a model
may meander in the spectrum of simplicity and complexity, sudden
shifts in reducibility can be indicative of significant perturbations or
structural systemic shifts in the model outcomes. Once a shift has been
detected, its trigger can then be further investigated. If the outcomes do
not exhibit any dramatic change or remain stable in some fashion after
a shift, then the model might be resilient to internal perturbations, as
detected by the dimension reduction process itself. We elaborate further
on this linkage later in this paper.

1.3. Dimension reduction in ecology and ABM studies

MDS techniques appear in various quantitative fields including en-
vironmental and ecological studies and, to a lesser extent, agent-based
modeling. In ecology, MDS is often labeled as ‘ordination’. In studies
from the last few decades, we find MDS (and dimension reduction)
applications in the study of grassland soil and vegetation
(Prentice, 1977), community changes in marine ecology (Clarke, 1993),
species’ habitat distribution (Guisan and Zimmermann, 2000), forest
data (Giraudel and Lek, 2001), environmental threshold detection
(Qian et al., 2003), life cycle analyses of wastewater and mussels
(Gutierrez et al., 2010), sensitivity analysis of complex watershed
models (Sudheer et al., 2011), water reservoirs (Giuliani et al., 2014),
tree species distributions (Cunze and Tackenberg, 2015), and spider
species and coral assemblages (Hui et al., 2015).

Research comparing MDS techniques have dealt with oceanographic
data (Fasham, 1977) and also have been conducted in the general
context of ecological studies (Kenkel and Orlóci, 1986). Furthermore,
explicit software packages for ecological/environmental analysis that
include MDS have been developed (aside from R and other packages for
statistical language software): for example, PC-ORD (McCune and
Mefford, 1999) and PRIMER-E (Clarke and Gorley, 2015).

The use of MDS in ABM output analysis appears less widespread.
Some examples of MDS use in ABM analysis include ABMs for ancient
urban centers (Jayyousi and Reynolds, 2012), phone center caller
profiles (Schroeder and Noy, 2001), political stability (Garces and
Alcorn, 2012), and greenhouse gas emissions trading market
(Nakada et al., 2011). Murota and Inoue (2014) cursorily mentions
MDS’ value in ABM analysis while Evans et al. (2013) offers a detailed
overview of Sammon’s mapping for ABM results at large. MDS has also
been applied to networks which can emerge from some ABMs (e.g.,
Callahan, 2005). Crouser et al. (2012) incorporates MDS visualization
in his software for ABM analysis.

However, none so far appear to have comparatively examined re-
ducibility, particularly through MDS, as a way to characterize varia-
tions in the complexity of an ABM and its potential to uncover an ABM’s
capacity for resilience. While studies into ABMs’ sensitivities to input

1 Complete irreducibility however could also indicate a lack of structure or
randomness in the model’s behavior.
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parameters may reveal complex variability in behavior (e.g.,
ten Broeke et al., 2016), the goal of this paper is to investigate how
latent structures in outcomes may characterize the ABM and how
changes in these may signal shifts and the ABM’s reactions to those
shifts.

2. Methodology and data

2.1. MDS routines

Several key MDS variants are examined in this paper. These include
the classical metric MDS (CMDS), Sammon’s mapping (SAM), and
variants of non-metric MDS (NMDS).2 MDS operates on a distance
calculation between points in the data sets. Again, the points them-
selves are multidimensional and can represent two- or three-dimen-
sional spatial coordinates or a data/outcome space of many more di-
mensions. While there are several options for calculating inter-point
distance (e.g., Minkowski’s distance), we employ the canonical Eu-
clidean distance. The distance matrix is extracted from a predetermined
number of n data points, each representing a vector of outcomes (or
covariates); each cell is calculated as:

d x x* ( )ij k
m

ik jk1
2= ∑ −

=

where xik is value of the kth outcome variable of the ith data point
(vector) and dij is the cell of the n× n inter-point distance matrix index
by ith row and jth column and indicates the calculated distance be-
tween the outcome values.

MDS approaches seek a lower dimensional projection while at-
tempting to minimize the error between the original data and the
projected data; this error is also called ‘stress’ or ‘strain’. The error
function (E) for CMDS is:

E d d( * )
i j

ij ij
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<

where d *ij is the distance from the distance matrix of the original data.
(Gower, 1966; Torgerson, 1958). CMDS is also known as Principal
Coordinate Analysis (PCoA), Torgerson Scaling, or Torgerson-Gower
scaling. An analytical (rather than iterative) solution is obtained
through eigen-decomposition and its results are identical to the un-
scaled scores from Principal Component Analysis (PCA), which also
employs an eigen-decomposition when the data is standardized.

Sammon’s mapping (SAM) is a non-linear, iterative MDS routine
and extends CMDS’ error function (Sammon, 1969):
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The additional denominator places more focus on the preservation
of small distances than CMDS.

Non-metric MDSes also comprise iterative approaches that employ a
normalization and a dynamically inferred, monotonically-increasing
transformation function f on the original distances (at each iteration) in
order to ensure the distance ranks are maintained. NMDS focuses on
congruent ranking of the distances (between the original and project
space) and is appropriate for ordinal scale data. Its error function is:
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The variants of NMDSes examined in this paper are Kruskal’s iso-metric
MDS (ISO), non-linear monotone MDS under global, local, linear, and
hybrid transformation models (NMDS) (Faith et al., 1987; Minchin,

1987; Oksanen et al., 2016). The global monotone MDS is most similar
to isometric MDS. Local employs a separate f function for each point.
Linear employs a linear regression (rather than a non-linear function)
for f, and hybrid combines local and linear approaches. As each NMDS
is a stochastic, iterative process, its performance is subject to vagaries of
initial conditions, and often the results of one kind of MDS (particularly
CMDS) provides the initial configuration for NMDS. This assists the
optimization and voids the “curse of dimensionality”, which arises in
the case of widely multivariate data.

Various prior studies compare MDS and other dimension reduction
techniques. A few examples of these comparisons include several MDS
methods along with Isomap (Kirt and Vainik, 2007), non-linear di-
mension reduction and solar images (Banda et al., 2012), gene and
protein expression (Lee et al., 2007), and a comparison between linear
(PCA and classical MDS) and graph-based, non-linear techniques
(van der Maaten et al., 2009). However, there has been little com-
parative exploration of these techniques for ABMs.

2.2. Case study: ABM of housing market under environmental hazard risks

In order to understand the irreducibility of ABM behavior, we apply
the aforementioned MDS algorithms on output data from an agent-
based computational economics model of a spatially explicit empirical
housing market, titled “Risks and Hedonics in an Empirical Agent-Based
Land Market” (RHEA) (Filatova, 2015) . This ABM simulates a bilateral
housing market in an empirical landscape. Buyer agents seek and trade
properties with seller agents in a real-life seaside town (Beaufort, South
Carolina, USA), where properties are characterized by typical property
attributes, and additionally coastal and urban amenities and flood risk.
The model is initialized with empirical property prices and character-
istics from the years 2000–2004; empirical data is also used to initialize
households and their trading rules. The properties have empirical
geographic positions and their values are partly dependent on their
geographic proximities to local amenities: the coast, centers-of-business
(CBDs), parks, and highways. Prices are guided by a hedonic evaluation
by a realtor agent, which in turn has been calibrated on a market-based,
empirical regression model (Bin et al., 2008). Further details of the
RHEA ABM are provided in Appendix A. To illustrate the utility of DRM
methods to characterize the emergence of any potential systemic shifts
in the model behavior, we use the output data from the first version of
RHEA. The new version of RHEA employs new higher quality datasets,
improved price expectation procedure and tests market behavior under
various risk perception models (de Koning et al., 2017; 2018).

As is typical of many ABMs, the RHEA model is controlled by a set of
input parameters and produces a host of key outcomes (Appendix B)
including agent utility calculations, trade prices broken down by
property type categories resulting in the properties’ price values, and
counts of the agent subpopulations (i.e., buyers, sellers, and realtors). A
subset of these input parameters and outcome variables are selected for
the MDS analysis in this paper as elaborated in Section 2.4. As for
challenges to the model’s resilience to external shocks, the RHEA ABM
does contain a singular external event, a flood that occurs at a pre-
appointed time. However, this parameter is not engaged in this study,
in order for us to better understand the model’s behavior and the re-
ducibility of its outcomes sans explicit external events. This omission,
however, does not shield the model from internal perturbations, as
demonstrated in prior work that detected trajectories of evolving states
that lead to severe market fluctuations, namely a crash in property
prices and in the subpopulation of buyer agents (Filatova et al., 2015).

2.3. Measures

In the analysis, we first focus on the multivariate outcomes of the
RHEA ABM and assess their complexity across the life cycle of the
model. Through assessing the extent of reducibility afforded by each
MDS routine, we also measure and characterize each routine’s accuracy.

2We employ R’s implementations of these algorithms, which appear in dif-
ferent package libraries: stats, MASS (Venables and Ripley, 2002), and vegan

(Oksanen et al., 2016).
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For accuracy metrics, we employ the Pearson product moment corre-
lation coefficient r (Pearson, 1895),3 the Kendall rank correlation
coefficient τ (Kendall, 1938),4and root-mean-squared error (RMSE).
Each of these is obtained between the upper triangle of the original,
symmetric distance matrix (d*) and the distance matrix calculated from
the dimension reduction projection (d).5These three metrics account for
different qualities of the relationship between distribution of the dis-
tances among the original data points and those of the projection.6

In the last set of analyses, we examine how the ABM input parameters
align with the outcomes as an alternative approach for characterizing the
ABM behavior and its reducibility by the relationship between input
parameter and outcome dissimilarities. This constitutes a different form of
reduction, one in the context of the inputs or controls, and may be labelled
as “reduction to model controls”. That is, a model whose outcomes closely
mirror the variance in model controls (i.e., input parameters) can be said
to be predicted by and reducible to its controls.

2.4. Comparison of MDS routines on empirical RHEA outcomes

We execute and compare the aforementioned multidimensional
scaling methods on the ABM outcomes (i.e., output data). The data
consists of outcomes from 1000 simulation instances (or runs), each
driven by 1000 distinct sets of 11 input parameters. These parameters
initially set and drive the model’s mechanisms and have been of re-
search interest in past work on the model (Filatova, 2015; Filatova
et al., 2015). Thus, each of the 1000 input parameter sets controls a
distinct simulation run that is run for 100 time steps, a temporal hor-
izon long enough to allow for variability in this ABM’s outcomes.

As the RHEA model simulates an empirically-informed real estate/
housing market of an empirical geographic region under flood risk
(Filatova, 2015), the standard time horizon employed has been 30
years, representing the common mortgage for house buyers. Each time
step (or ‘tick’) represents 6 months, which was derived via calibration
of the model in previous work. Thus, the typical number of time steps is
60. For this paper, we extend the time horizon beyond 60 steps to 100,
in order to acquire a more robust understanding of the model in the
context of its outcome reducibility. The 11 input parameters and 19
outcome variables that we assess span important model inputs and
outputs and are described further in Appendix B. As with the input
parameters, the outcome variables selection is guided by their prior
research importance and interest (Filatova, 2015; Filatova et al., 2015;
2011) to the understanding of a housing market under flood risk. These
two sets of variables then define an 11-dimensional input and a 19-
dimensional output space. The input parameters are uniformly sampled
from a 11-dimensional hypercube; the ranges of each dimension are

described in Table B.2 in Appendix B. The uniform distribution is em-
ployed for unbiased sampling as a diffuse prior given that we desire to
explore a dispersed range of parameterizations, that are partly con-
strained by calibrations undertaken in previous work on this model.

3. Results

We first conduct a diagnostic investigation using correlations to ac-
quire some preliminary understanding of how the outcomes are related
throughout the model runs. Fig. 1 displays the inter-variable correlations
(Pearson r) or collinearities among each of the input and outcome variable
sets, at the starting and ending time steps. That is, each colored cell re-
presents pair-wise correlations over all 1000 simulation runs. There ought
not to be any visible structure in Fig. 1a, as the input parameters were
randomly sampled and also remain static through each model’s run as they
only set the initial controls to the ABM. Hence, the heat map is dominated
by dark blue (i.e., no or little correlation). As for the model’s outcomes,
they are highly correlated in the initial time step of the model as the si-
mulation has not had sufficient time for the outcomes to diverge from the
initial conditions. This is largely due to the model outcomes’ aligning
closely with the initial empirical housing prices, and the housing market
has not yet had a chance to fluctuate as transactions among the agents
have barely begun to occur. (Fig. 1b). We naturally expect the model
behavior and outcomes to deviate from these initial conditions in the
subsequent time steps. Specifically, the feedbacks between input para-
meters, including valuation of particular spatial environmental attributes
by agents with heterogeneous incomes and preferences, evolve signaling
either an incremental or structural change at the aggregated level of this
SES. The latter – when identified by means of DRM techniques – indicates
a presence of systemic change in the model behavior.

By the end of the pre-specified time horizon Fig. 1c, we observe a few
clusters of variables that are moderately to highly correlated (collinear).
This diagnostic analysis then signals potential reducibility in the outcomes,
but not all of them. The collinearities indicate that, at least at the end of
the pre-specified time horizon, some outcomes conform despite their dif-
fering ranges and the wide range of random input parameters. Specifically,
the outcomes that appear collinear represent, in separate clusters, the
prices of different kinds of properties and different measures of the seller
population. These two distinct sets raise our expectations that the chosen
model outcomes will exhibit some reducibility, at least by time step 100,
driven by housing property price and seller population indicators. Given
that artifacts in the outcomes could bias these correlations and also be-
come problematic for dimension reduction, it behoves us to further pre-
pare the outcomes data for the reduction.

In preparing the data for the dimension reduction analysis, we perform
several, necessary steps. First, each variable is standardized allowing them
to be aggregated in the distance computations,7 thus eliminating the ex-
treme weighting incurred by several outcome variables that have large
absolute magnitudes. Similarly, we eliminate highly influential outliers:
those cases having any variables that lie beyond 4 standard deviations:
σ>4. Also, due to the difficulties for some of the iterative MDS algorithms
in handling closely occurring points in the outcome distance matrix, we
eliminate these near duplicates. That is, for pairs of points within a stan-
dardized ϵ<0.1, only one is kept in the analysis. Near duplicates occur
only in the initial steps of the model; that is, counts of 9, 2, and 1 near
duplicates are respectively removed from time steps 1, 2, and 3.8

3 The Pearson product-moment correlation coefficient r is calculated as:

r
x x y y

x x y y

( )( )

( ) ( )i
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4 The Kendall τ calculated is as follows:
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where x and y are vectors of length n.
6 While Pearson r is sensitive to outliers, it can be superior to τ in under

Gaussian distributed data (Chok, 2008).

7 In statistical standardization, each variable is 1) centered by its mean and
then 2) scaled (divided) by its standard deviation.
8 The average count of outcome sets removed across all time periods due to

near duplicates and outliers in any of the outcome variable is 27.1 (out of the
1000 data points per time step)(σ 5.9= ). There is a slightly increasing (and
statistically significant) trend of 0.10 outliers per time step. Thus, the size of the
correlated vectors varies from one time period to the next, and lie in the interval
[958,994].
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Furthermore, the iterative MDS routines (SAM and NMDSes) require an
initial starting configuration of the projected space. Preliminary analysis
revealed that using the CMDS results for the initial configuration con-
sistently produces the most accurate results.

3.1. Parameterization of MDS routines

We now focus on the data reduction itself, specifically to a projec-
tion of two dimensions; the choice of two dimensions is partly moti-
vated by the need to often conveniently visualize MDS results. Our
future work on this subject will include testing of extended dimensional
projections, and we discuss the implications of extended dimensions in
the conclusion of this paper. First, we discuss the parameterizations we
employ for the MDS routines themselves (i.e., not of the RHEA model).
Different parameterizations were examined in order to observe the
impacts of the algorithms on the extent of reduction that could be ob-
tained.

For the iterative non-metric procedures, we examine the effects of
stringent and less stringent (or “fast”) stopping/convergence criteria;
the former renders the speed of the algorithms to be slower yet more
accurate.

Fast Slow/Accurate

Algorithm Max.
Iter.

Conv. Crit. Max.
Iter.

Conv. Crit.

Sammon
SAM

100 10 4− 10,000 10 10−

Kruskal
ISO

50 10 3− 10,000 10 10−

monotone 200 {10 , 10 , 10 }4 7 5− − − 10,000 {10 , 10 , 10 }10 10 10− − −

The NMDS employs three distinct convergence criteria/parameters,
hence the set of three values. These are 1) the stress, 2) the scale factor
of the gradient, and 3) the stress ratio, computed as
1 the displayed value− (e.g., 1 10 5− − or 0.99999).

We employ the canonical Euclidean distance among outcome vec-
tors for inter-outcome distance at each time step:9

x xd * Σ( )ijt it jt
2= −

where xit is the vector of 19 outcomes born of the ith sampled input
parameter set at time step t (with j similarly treated); hence, dijt is the

Euclidean distance (a scalar) between vector of 19 outcomes produced
by parameter sets i and j (of the 1000 generated simulation outcome
sets) at time t, and so d denotes the full, symmetric distance matrix
among outcome sets at time t. A matrix of largely low distances would
indicate that the uniformly sampled input parameters produce similar
outcomes and indicate the outcomes’ resistance to varied distances in
input parameters, while high distances would indicate great hetero-
geneity in the model’s behavior and sensitivity to the input parameters.

Each application of an MDS algorithm produces a set of coordinates
in two-dimensions. We then compute the Euclidean distance matrix of
this set to compare against the distances among the original outcomes.
Again, we consider only the upper triangle of the symmetric distance
matrices in calculating the accuracy (correlation and RMSE) metrics.
Specifically, we obtain two vectors of distances, one from the original
and another from a target matrix, e.g., d d d dΔ ( ) ( , , , )kl

u original
12 13= …

where k> l and each indexes the original outcomes of a particular
input parameter set and Δ ( )u … indicates extraction of the upper triangle.
Then, dΔ ( )u reduced represents the upper triangle of the distance matrix
calculated from the two dimensional projection from the application of
an MDS routine.

3.2. Implications of shifts in reducibility

Any temporal change in the quality of dimension reduction of out-
comes (as detected through the aforementioned correlation metrics) has
a specific implication on variation of the outcomes. That is, a sudden
shift in reducibility across time would indicate the sudden departure of
a subset of outcomes from the trend established by other outcomes and/
or by similar outcomes of other input parameter sets, a structural shift.
To illustrate this point, we imagine that there are only four outcome
variables: X, Y, Z, and A. Across all 1000 random input parameter sets,
let us say that outcomes X and Y are perfectly correlated, and Z and A
are also perfectly correlated (at some time t). However, X/Y and Z/A
need not be correlated to one another. A dimension reduction to two
dimensions would result in distances that perfectly align with X/Y and
Z/A as these already span a simple 2-dimensional space. However, if for
some subset of those 1000 simulation runs, any of those outcome
variables departs significantly, due to internal or external perturbations
in the model, the four variables would no longer be perfectly reducible
to two dimensions. Thus, a sudden change in the correlation between
the original and reduced distance matrices would indicate a sudden
shift in some of the outcomes for some of model runs. A shift does not
necessarily have to manifest as a loss in reducibility as it can also confer
greater reducibility (i.e., higher inter-outcome correlations). Whether
or not such shifts are detected and how the model reacts to such shifts
can be indicative of its resilience to some internal or external

Fig. 1. Pearson correlation among variables. The dark blue denotes the minimum correlation of −0.12 and dark red indicates a maximum correlation of 1.0. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

9 A brief investigation into Minkowski’s distance (a generalization of
Euclidean distance) reveals that Euclidean distance is more appropriate for
these analyses.
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perturbations.

3.3. Reducibility of model outcomes

Next, in order to assess the reducibility of model outcomes, we
compare the actual distance matrix of outcomes (per time step) to the
reduced distance matrix using the correlation and RMSE metrics out-
lined earlier in the method section. This comparison confers the accu-
racy of the tested MDS algorithms using correlations, as discussed in
Section 2.3, as well as a characterization of the outcome reducibility
across time. In Fig. 2, the Pearson’s r and Kendall’s τ between the
outcome data and each of the MDS routines, applied on (the upper
triangles of) the distance matrices of the outcome data, are displayed.
The functional notation for r at time step t is then

d dr (Δ ( ), Δ ( ))t t
u original u reduced and similarly for τ.
First, we observe the overall correlations between the distances in

the original outcome space and the projected 2-dimensional space to be
surprisingly quite high, between 0.95 and 1.00 for r and 0.80 and 0.96
for τ. This is partly due to the clusters of collinear outcomes observed in
Fig. 1. Also, r and τ appear to exhibit similar patterns across time, with τ
naturally having lower correlation values.

We also observe that the NMDS and ISO MDS routines are con-
sistently superior to CMDS and SAM. In fact, with the exception of the
“fast” convergence criterion in ISO (dashed green), the former are
nearly identical.10 Also, Sammon’s mapping appears to exhibit far more
variance than CMDS as observed by its greater amplitudes in its oscil-
lations across time. While it can offer on average higher correlative
accuracy than CMDS, its effectiveness appears (at least from these fig-
ures) qualified, especially considering the non-metric routines offer
superior accuracy. Still, the hybrid condition (gray) is consistently less
accurate than the other NMDS routines. While the hybrid condition is
contingent on an exogenous criterion for determining when local or
linear approaches engage for a given distance, it is somewhat surprising
that it underperforms both of those approaches.

The dominant curvature exhibited by all of the MDS routines can be
described as an initial, sudden but transient departure from lower di-
mensional conditions to gradual resurgence of reducibility, followed by
an increase of irreducibility and complexity. As mentioned earlier for
Fig. 1a, the initially high correlations at the first time step is indicative
of the latent lower dimensional structure occupied by the 19 outcomes.
The model initiates from a quiescent state from which further activity is

borne, and market mechanisms in the model are not extremely volatile
at that stage. Furthermore, several count outcomes retain a value of 0
across all parametric conditions in the initial step.

The model then quickly diverges from this homogeneous state as
subsequent activity renders the outcome space to become more com-
plex and and less reducible. Thus, by time step 4, the reducibility of
distance structure reach its first nadir. At this point, the outcomes have
suddenly deviated from another (a structural shift), as cumulative sto-
chasticity impacts the model. Thus, this apparent initial altered dy-
namics is trivial and expected behavior. After this point, the behavior of
the system, as characterized by reducibility in the outcomes, gradually
begins to become lower-dimensional, indicated by the resurging cor-
relations.

With the exception of the scaled monotone MDS, all trajectories
reach a peak (or temporary plateau) of reducibility between steps 25
and 45, after which the outcomes diverge again and in fact continue to
do so. Internal perturbations, dissimilar to the sudden ones observed in
the initial stages of the model, occur resulting in outcomes to gradually
deviate from the others rendering the model less reducible. Recall that
outcome sets that included severely outlying values are removed from
this analysis; thus, the divergent trend is not caused by any outliers.
Further, the CMDS and SAM routines appear to signal the downtrend
given the noticeable dip in reducibility, particularly in CMDS, just prior
to the downtrend. Given that a trajectory of worsening reducibility
follows the dip, we can say that the model (in some of the para-
meterizations) has become susceptible to that emergent shift (i.e., the
aforementioned dip), a vulnerability that had been building up en-
dogenously in the model.

Near the end of the pre-specified time horizon (i.e., near time step
100), there is a minor resurgence in reducibility as the correlations
briefly climb, peak, but then re-conforms to the curvilinear trend. Thus,
for a brief moment, a portion of the outcomes suddenly conform to the
inputs. This shift in reducibility signifies a different kind of loss to re-
silience, one in the context of the pattern of decreasing reducibility in
this phase of the model and emergent from an unknown subset of the
input parameter sets in combination with internal model dynamics.

As mentioned the method section, we also assess the reducibility
accuracy using the root mean-squared error (RMSE). In Fig. 3a, the
original distance matrices are compared to the distance matrices from
each MDS projection, at each time step with this measure. The RMSE is
largely proportionally identical to Euclidean distance and lower RMSE
values, unlike the correlations, indicate greater congruence between the
original and projected distance matrices, hence, reducibility of the

Fig. 2. Reducibility measured by correlations. The colors indicate classical metric MDS, Sammon mapping, Kruskal’s non-metric MDS, and variants of the monotone
MDS: global w/rescaling,global w/o re-scaling, local, linear, hybrid. The dashed line indicates the less rigorous, ‘fast’ stopping criteria. Overlaid lines of the upper curves
are slightly offset in order to render them visible in the plot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

10 ISO ‘fast’ experiences a drop in the correlation near time step 70.
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model outcomes.11

The graph colors in the first two subplots correspond to those in
Fig. 2. The most salient observation is that the raw RMSE error from the
scaled monotone MDS (blue) renders it to be an inaccurate option. This
is not entirely surprising given that the projection is rescaled to the root
mean square for each step of the iteration, thus destroying the span of
the original distance space. Despite this pessimistic finding, the re-
scaled monotone actually produces noticeably better correlations under
different initial configuration conditions (analysis not included), while
the unscaled version is only slightly superior.

Naturally, the reduction patterns offered by RMSE for the other
MDS routines (Fig. 3b) are consistently the converse of the correlation
patterns, as RMSEs represent dissimilarity while r and τ represent si-
milarity: the model’s reducibility initially drastically falls, rises again
only to continue to become less reducible. Also, we notice that Sam-
mon’s mapping is often superior to the other metric and non-metric
routines, while its correlations were only occasionally superior to
classical MDS and inferior to the other non-metric routines. This in-
congruity renders the researcher’s selection of MDS routine to be de-
pendent on the objective: correlation or error minimization. If our goal
is to accurately depict the system’s behavior according to RMSE, we
would opt for Sammon’s mapping. If either of the correlations, r or τ,
has higher importance, then we would select one of the other non-
metric routines. Similarly, CMDS’s performance is only slightly worse
(relatively) here than it is under the correlation metrics, making it a
viable candidate for use if raw accuracy (i.e., RMSE) is more important
than correlation.

As an additional diagnostic, we revisit the relationship among out-
comes (shown earlier in Fig. 1) but here across all time steps. As with
the earlier figure, we focus on the correlation (r), but now report on its
various descriptive statistics. Fig. 3c displays the mean, median, 1st and
3rd quartiles, the minima and maxima statistics of the inter-correlations
(r) among the outcomes themselves. These statistics apply over all the
inter-correlations among the outcomes, i.e., the upper triangle of the
values underlying Fig. 1c, but across all time steps.

Surprisingly, most of the patterns do not fit those of the reducibility
measures. While the mean and median collinearities are initially high
(expected), they gradually drop. If one were to describe a dynamic
system solely based on the pattern of collinearity, one would infer that
the system monotonically increases in its complexity and higher di-
mensionality, rather than the non-linear patterns observed in Figs. 2
and 3b that exhibit multiple local minima and maxima. However, we
observe that the minima of the collinearities (lower correlation bounds,
beyond the initial steps) bear some resemblance to the RMSEs. It

remains possible that the descriptive statistics of the collinearities has a
functional relationship to the MDS and RMSE patterns, one that is
driven by the minimum inter-outcome correlation at each time step.

3.4. Reducibility to model controls

While distance measurements (among outcome sets) when reduced
through dimension reduction reveal latent structure and varying levels
of reducibility across time, they can also reveal subtle relationships
between the simulation input parameters (or model controls) and the
outcomes. Here, we explore the extent to which the distances between
the input parameter sets themselves, which we re-iterate are sampled
randomly, relate to the distances among their resultant outcome sets.
To illustrate this relationship, consider the case when the correlation
between the distances among the parameters and the distances among
the outcomes (at some given time t) is very high, say 0.80. This would
occur if differences (i.e., distances) between pairs of input parameter
sets (from the set of 1000 input parameter sets) correlate highly with
differences among their associated outcome sets (at some given time t).
Such a high correlation indicates that the model outcomes are driven
by, and reducible to, the varied distances in the input parameters and
signals some extent of predictability and adherence of outcomes to
input parameters. Thus, investigation in this relationship can reveal a
different kind of complexity and reducibility, one that is subject to
model controls.

For this analysis, we require a distance matrix of the static input
parameters dinput where ‘input’ here denotes input parameters. Thus,
each cell of this matrix (dij

input) represents the distances between input
parameter sets i and j (out of the 1000 uniformly sampled, randomly
generated input parameters set used in the earlier MDS analyses of this
paper. We can easily correlate the upper triangles of the symmetric
distance matrices: d dr (Δ ( ), Δ ( )t

u input u original where r is the Pearson cor-
relation (substitutable with Kendall’s τ) and again Δ ( )u … extracts the
upper triangle of a matrix. Here, correlations are computed between the
input parameters and both the (a) data with outliers (called ‘full’ data)
and (b) input and outcome sets harboring outliers (at a given time step)
removed (here, labeled ‘nominal’).12

Furthermore, for this exploration, we also explicitly distinguish
outputs induced by variations in a key experimental condition. That is,
we conduct this analysis on two partitions of our initial set of input
parameters based on a key parameter of realtor agent adaptivity (a
binary parameter). This parameter controls the adapativity of the he-
donic function (i.e. regression model for assessing property value) that
the realtor agents, who broker the housing transactions, employ in
setting prices. This partitioning of analysis is motivated by our

Fig. 3. Reducibility measured by RMSE and collinearity. In the right plot, the mean, median, 1st and3rd quartiles, and the lower and upper bounds are plotted. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

11We say “largely” due to the omission of outliers and near duplicates. 12 The removal of outliers is described in earlier in the result section.
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suspicion and prior observations that the model’s behavior differs
substantially when this agent’s adaptivity parameter is engaged
(‘Adaptive’) compared to when it is not engaged (‘Static’).

The correlations for both r and τ vary between 0.10 and 0.37 and are
all statistically significant (p< .001); the significance (p) of each cor-
relation is determined via a permutation test (the Mantel test
(Mantel, 1967)), which generates a null hypothesis that controls for
matrix auto-correlation. This lower range of correlations (as compared
to those from the MDSes) indicates the model outcomes’ being less
reducible to model controls than their own reducibility. The maxima
indicate the time points at which the distribution in the distances be-
tween the input variables (constant) and the output variables are most
congruent.

The features in Fig. 4a, particularly the solid red curve (the nominal
data), partly mirror those of the correlations (Fig. 2). Namely, there is a
striking shift in similarity at the onset of the model runs, followed by a
gradual rise to a peak within ticks 25–45 – indicating the time range at
which the input variables are most predictive of the output – and ul-
timately a decline that falls below any of the initial levels. While much
of the curvilinear trend particularly with the nominal data mirrors the
trends observed for the outcome-only reduction earlier in the paper, the
interpretation of the pattern is not the same here. Here, we infer that
when the correlation is relatively high, the distribution of model out-
comes (specifically, inter-outcome distances) are aligned with the dis-
tribution of the input parameters. Hence, the input parameter distances
are most predictive (for the ‘nominal’ filtered data) not at the starting
stages, but later on when the model has had a chance to mature.

In contrast, the static hedonic condition yields a much more tem-
pered pattern noted by general flatness, the outcomes of which yet
retain a similarity as high as the outcomes from most similar adaptive
time step. That is, the model rises quickly to its highest correlative le-
vels and more-or-less remains at that level. From this, we learn that
dynamism infused into a key decision-making element (i.e., adaptivity
in the hedonic regression) greatly impacts variations in the model’s
reducibility to controls, specifically inducing behavioral regimes in
which there is less association to the variations in the controls, as in-
dicated by the lower correlations in the Adaptivity condition compared
to the Static condition.

Finally, another idiosyncrasy is detected near time step 65 for
nominal data (solid black curve) in which there is a sudden, but

recovered, drop in the outcomes’ correlation to model controls. This
and the previously observed idiosyncratic shift in reducibility near time
step 100 (in Fig. 2) do constitute latent divergent trajectories as the
dominant trends toward less reducibility seems to resume in both cases
and their resumption could signal a different kind of resilience; that is,
in both cases the outcomes surge in their alignment to one another and
to model controls, but this is defeated by the continuing divergent
trajectories of some of the simulation runs. What we observe here is
similar to earlier, a sudden departure in the outcome behavior: a
structural shift in the data born of one or more of the controls, but one
that is not detected from the MDS.

4. Conclusion

This paper investigated ABM outcome reducibility to characterize
varying levels of complexity in its outcomes and their connection or
reducibility to the model’s inputs or controls. As such, we examine the
effectiveness of several approaches in reducing the high dimensional
outcome space of a SES ABM to elicit endogenous systemic shifts in
model behavior as characterized by structural changes in the relation-
ships among the model outcomes and between the outcomes and in-
puts. In order to do so, we first applied several dimension reduction
(MDS) algorithms to the outcomes of the socio-environmental RHEA
ABM and also compared the MDS’ results (i.e., distances born of their
two-dimensional projections) to the distance structure of the model
controls. Consequently, we exposed the extent and timing of re-
ducibility to both a lower dimensional space and to the varied distances
in the randomly sampled input parameters. Simultaneously, these re-
sults can reveal when and how the model exhibits higher levels of
complexity, indicated by outcome regimes of lesser reducibility or
lesser association to model controls. In the case of the outcome data of
this paper, complete irreducibility – that would be detected through the
complete lack of inter-outcome correlation – is not manifest. Thus, one
can argue that the model’s behavior remains within the spectrum of
randomness and perfect deterministic predictability. Still, the focus on
outcomes cannot reveal the complexity (or simplicity) of the model
mechanisms themselves, a limitation of this approach.

The trajectory of reducibility across the model’s time horizon as
measured by the three association measures (i.e., two correlations
measures and RMSE) offers a characterization of the behavior of RHEA

Fig. 4. Reducibility to model controls by conditions. The solid curves indicate Pearson’s r correlation and the dashed, Kendall’s τ. The large dot denotes the maximum of each
curve, while the smaller dot, the sub-maximum. The black and red curves respectively denote the nominal (outliers removed) and full data (including outliers). The lighter color
tones (gray and pink) indicate those runs in which the initial seeds for the model runs were identical. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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ABM. That trajectory exhibits several local extrema and describes the
model’s global behavior as well as raising questions as to the exact
drivers of the curve. This trajectory broadly identifies a region of be-
havior, in which the model outcomes initially are trivially reducible
(high correlation) but then quickly becomes less so until reaching a
local minimum for reducibility. Thus, the model’s stochastic mechan-
isms rendered the outcomes irresilient to any and all of the initial
empirical conditions and the breadth of the tested input parameter sets,
a finding that is largely expected given the model’s mechanisms. Then,
dynamics of the model evolved, gradually increasing collinearity hence
correlations in the MDS, among the outcomes only to diverge again
further down the time horizon, becoming increasingly less reducible.
This reduction in reducibility likely coincides with a critical transition
within a subset of the simulation runs, as indicated by the sudden de-
crease in the correlation for two of the MDS routines: SAM and CMDS.
In fact, such a decrease following a near plateau in the reducibility then
followed by further gradual decrease may indicate a critical threshold
and serve as an early-warning signal for a critical transition, the de-
tection of which has been recognized to be desirable yet difficult to
achieve (Lade and Gross, 2012; Scheffer et al., 2009; SPARCS, 2018).

The observed trajectory is then interrupted briefly by an up-spike
near the end of the measured run cycle, which indicates an additional
structural shift in some of the outcomes, but towards more alignment
rather than the trend of divergence in the outcomes. This however is
dominated by the increasing divergence in outcomes as reducibility
continues to decrease. We can consider the overall curvature and our
interpretation to be precise given that it appears with only minor var-
iations across all three metrics and all eight MDS routines. These var-
iations also highlight the complexity of ABM and the outcome space.
Otherwise, the curves would appear less offset from one another and
smoother. That is, the fact that the MDS routines did not perform
identically, despite the similar temporal pattern, offers another facet of
the model’s complexity. However, the trajectory itself is not overly
complex, and its discontinuity may be defined by two separate func-
tions, suggesting an approach to typifying this particular model’s out-
come space, as portrayed by MDS and the metrics, that might also be
applied to outcomes of other ABMs.

One point of note is that reducibility is rather high as the correla-
tions between the original and the reduced distance matrices are above
0.85 for both correlation measures across all time points. The diag-
nostics earlier in the paper offers indication that two clusters of out-
come variables (regarding property prices and the sellers market) may
primarily drive the overall strong reduction. Thus, one implication of
this finding is that to better understand the model’s behavior under a
wide array of input parameters, these variable sets can be aggregated in
order to uncover a different layer of reducibility, albeit a less precise
one as the non-correlative variables would then dominate the reduc-
tion. However, further aggregation carries the risk of losing resolution
and consequently the opportunities for detecting potential shifts in the
outcome pool.

As this paper’s analysis exposes internal perturbations and what
they may represent (e.g., early warning signals), it omits study of the
RHEA ABM’s resilience to external shocks. However, a mechanism for
an environmental disturbance is integrated and available in the model:
a flood that may be set to occur at a pre-determined time step and can
impact the model’s housing market dynamics. With this mechanism, we
can consider the standard definition of resilience in which a system may
be characterized by its ability to function in the face an external per-
turbation, while maintaining its original configuration or adapting with
a different configuration (Dragicevic, 2016; Folke, 2006). Thus, future
investigation into how the MDS temporally reacts to a natural hazard
event (flood) is feasible and would shed light on resilience in this
coastal housing market model. Sudden irreducibility (i.e., lower cor-
relation or higher RMSE) would then indicate that one or more of the
outcomes from a subset of input parameters exhibit a reaction, or initial
vulnerability, to the shock. Further departure could signify

exacerbation, if a trend of increasing irreducibility is observed, or a new
equilibrium for those input parameter conditions inducing a resilience
to the shock, if the trend stabilizes (i.e., plateaus). We observe the
former pattern in the analysis of this paper, but the pattern is attributed
to internal perturbations, since the external flood mechanism had not
been engaged.

Still, what cannot be easily detected through the MDS would be the
unlikely event of all input parameter sets’ inducing similar resilience, or
conversely vulnerability, in the face of the shock. In this case, not even
a slight shift would be observed in the correlation trajectory, but at the
same the time, the model would be exhibiting a global reaction. By
global, we mean certain outcomes across all parameter sets behaving
similarly. This, in and of itself, is informative as it points to a common
systemic behavior, but precise detection requires additional analytic
tools to discern when this happens. One approach, similar to the dis-
tance method employed in this paper, would be to calculate inter-
temporal distances (relative or absolute) between outcomes, e.g.,
Euclidean distances between each outcome (across all parameter sets)
at time t and time t 1+ or within a temporal window. The resultant
vector at each time pairing – the length of which is the count of in-
dividual model outcomes considered in the MDS – can be either mon-
itored individually or as an aggregate, say standard deviation assuming
normalized distances, in order to detect massive deviations across time
steps.

Given that our focus on both characterizing ABM outcomes via their
reducibility and MDS algorithm performance for data reduction is
limited to projections of two dimensions, a thorough examination might
expand this dimensional testing range to include larger dimensional
spaces, possibly up to one less than the full data space (i.e., number of
outcome variables). There is likely to be a relationship between how
much more information may be derived from larger projection spaces
and the number of outcome variables employed in the reduction. This
relationship is expected to be nonlinear, given that at some point, the
number of reduced dimensions may closely mirror the outcome set it-
self, reducing the variability in the measures, hence their informative-
ness.

However, the limited number of dimensions for our analyses al-
lowed us to uncover how the MDS algorithms can expose shifts in a
model’s behavior that depart from a stable trend, thereby exposing
when the model might be less resilient, due to both internal perturba-
tions and certain parameter settings. As mentioned above, this detec-
tion capability of MDSes is still limited because if all outcomes
throughout all the tested parameters exhibit such departure in similar
magnitudes, then the correlation measures would not detect the de-
parture. While projections into a larger dimensional space (i.e., re-
trieving a larger coordinate space beyond two dimensions) would in-
crease MDS accuracy, its capability for detecting these continuing
departures – that could be signs of internal vulnerability – would di-
minish as the additional degrees of freedom would allow for greater
alignment with original distance data even if one or several outcomes
markedly deviate from a trend. That is, the more dimensions employed
in dimension reduction, the less likely it would be for radical or gradual
departures to be detected.

A more complete survey of the routines’ sensitivities would also
include sampling from several parametric distributional sources of data
with varying levels of noise. Similarly, both the reducibility and con-
gruence (to parameters) is dependent on the breadth of the parameter
and outcome space (i.e., number of input parameters and outcomes
employed in the reduction and congruence analysis). A fuller analysis
should consider the sensitivity of the characterizations and algorithms’
performance to the set variables (size and selection) and their inter-
dependencies. The MDS routines also reveal aberrations in the both
types of reducibility such as the sharp spikes and dips that warrant
further investigation. Still, the analysis of this paper has helped us
identify the outcome regimes of volatility in the model outcomes and
lead us to rethink the level of the model complexity and redesign some
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of its crucial components – in particular a reduction of dimensionality
in the adaptive hedonic mechanism (de Koning et al., 2018) – and also
redesign experimental procedures to focus on areas of relative equili-
brium as confirmed by the MDS (de Koning et al., 2017). Identifying the
triggers behind volatility then becomes the next investigative exercise.
A more comparative approach comprising an omnibus of reductions to
multiple sets of dimensions (i.e., 2 dimensions vs. 3 vs. 4, etc.) would
help in identifying these triggers.

The RHEA ABM is distinct in that its initial states (e.g., housing
prices) are derived from empirical data and are thus initially identical
every simulation run. Many ABMs however do not exhibit this feature,
so how reducibility will manifest when initial states can vary remains
unknown. Still, the fixed initial states of this model offers one level of
parsimony to our analysis. That is, we know the model’s reducibility
patterns under fixed states and can proceed to explore and compare
against additional complexity derived from stochastic initial states.

Also, several of the outcomes in this paper are aggregated (average)
measures and deemed appropriate given prior research on this model.
Deeper exploration into using MDS to characterize ABM outcomes
could operate at a more granular level. For example, in the RHEA ABM,
the properties are fixed geographic locations, the selling prices of which
can serve as separate outcomes. However, one caveat is that the out-
come space will become exceedingly vast, and so dimension reduction
would require significant computing resources. For practical purposes,
we might instead consider incremental increases to granularity (e.g.,
slightly more granular aggregations than the highest levels), to see if
their results deviate from the level of granularity employed in this
paper. Furthermore, using MDS on highly granular outcomes rooted in
changing populations (such as agents entering and leaving the ABM)
may prove difficult as the pool of outcomes will vary significantly be-
tween time steps, possibly rendering any data reduction exercise un-
informative.

Similarly, the choice of which input and outcome variables to in-
clude in the MDS analysis as well as the outcomes’ comparison to model
controls is subject to further discussion. While our selection was largely
guided by previous work that points to input and outputs that are re-
levant to the aims of the RHEA ABM (Filatova, 2015) that serve to
improve our understanding of its housing market as well as detection of
regime shifts (Filatova et al., 2015), additional sensitivity tests using
different input and outcome sets would allow one to better understand

which variables actually drive reducibility for this or any other ABM.
This investigation also achieves a secondary goal. The use of mul-

tiple MDS routines to assess reducibility of this ABM’s outcomes also
exposes those routines’ performance or accuracy. This paper thus ad-
dresses the question of which algorithm (among the ones surveyed) a
researcher should employ. The facile answer is that it depends. The
canonical algorithm, CMDS, is the most expedient yet the least accurate
for all correlations and RMSE. How impactful this trade-off affects al-
gorithm choice will depend on additional factors such as the volume of
the researcher’s data, which we discuss further in the limitations section
of the paper. With the tested data, this trade-off was such that it would
more beneficial to eschew CMDS in favor of the more accurate and
complex methods.

On the opposite end of the cost-benefit spectrum lies the ISO algo-
rithm. While this algorithm performs consistently well across all the
accuracy measures, this benefit is muted by a severe cost in run time
(see Appendix C), and thus its attractiveness as the algorithm of choice
is relegated to the middle of the pack. Thus, one of NMDS routines
appear optimal. Finally, if reduction of error (RMSE) is the primary
objective, then SAM would be the best choice as its average perfor-
mance exceeds all the other routines. The high correlative accuracies
may be suitable for visualization and other similar purposes, but con-
sideration of RMSE is more relevant for numerical accuracy.

Finally, the MDSes and dimension reduction in general are con-
stantly undergoing improvements, so it would behoove us to expand the
comparative analysis to include these advancements. Some of this work
includes further development of the stress function in SAM (Sun et al.,
2012) and approximations of CMDS under sparse conditions
(Brandes and Pich, 2007). While these methods appear at times inferior
to the other algorithms, their apparent ability to serve as an early-
warning signal for systemic shifts warrants their further use and in-
vestigation.
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Appendix A. Description of the RHEA agent-based model

The outputs analyzed in this paper are drawn from an agent-based computational economics model of a spatially explicit empirical housing
market. The model is titled Risks and Hedonics in an Empirical Agent-Based Land-Market, or RHEA, for short. Its development spans several
publications, with its introduction, description, and experimental analysis appearing in Filatova (2015) and earlier developments in
Filatova et al. (2011). The RHEA model simulates a bilateral, heterogeneous housing market in an empirical landscape. Buyers search for residential
properties in the seaside town (Beaufort, North Carolina, USA) where both coastal amenities and environmental risks of flooding are spatially
correlated. A realtor agent serves as a mediating agent that learns about the current market trend and willingness to pay for various spatial attributes
of properties (Filatova, 2015). At each time step, sellers of the properties advertise their ask prices while buyers select and offer bids on properties.
Then, the two groups engage in dyadic (pair-wise) negotiation which may or may not result in a successful transaction (i.e., trade).

The ask prices are primarily market-driven: each seller (1) consults with a realtor on the appropriate price given the current trends as estimated by a
hedonic analysis of the recent simulated transactions and (2) adjusts the ask price if a property remains too long on a market. Buyers bid on the single
property that brings them maximum utility and is affordable for their budgets. A buyer’s budget constraints include their income, preference for
amenities, a necessity to pay insurance premiums for flood-prone properties, and the possibility to activate an annual income growth. Spatial patterns of
price dynamics and intensity of trade for particular types of properties are the emergent outputs of the model. When studying them under various
parameter settings, we noticed that relative market power of buyers and sellers plays a role. The explanation is twofold. Firstly, a parcel that is very
attractive will most likely receive several bid offers, out of which its seller chooses the highest, driving prices for most desirable properties up. Secondly,
sellers of the properties that are less desirable may receive only one or even no bid offers, which can result in their selling at a lower price than initially
planned or reducing their ask prices after a number of unsuccessful trades. Thus, excess demand drives prices up while excess supply pushes them down.
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Appendix B. Descriptions of input parameters and outcome variables

Table B1
Input parameter descriptions.

Input Parameter Description

fraction_on_sale Mean proportion of properties initially on sale
sd_fraction_on_sale The Gaussian standard deviation of proportion of

properties, for random sampling
new buyer coef. Rate at which new buyers enter the market
prefAlfa Household preference for a housing good over a

composite good.
prefGamma Mean for household preference for coastal amenities
Gsd Standard deviation for prefGamma
delta coef. The acceptable difference between bid and ask prices

for a trader during price negotiation, updated the
longer a trader stays in the market

loss coef. Proportion of property value loss due to flood
refused die crit. Number of time steps of unsuccessful bids before

buyer leaves the market
refused price crit. Number of time steps of seller’s property’s not being

sold before seller takes property off the market
Insurance Indicator for availability of flood insurance for

buyers

Table B2
Input parameter notation and sampling ranges.

Parameter Abbrv Notation Distr Range Default

fraction_on_sale fos μ(Pr{sale} ∼ Uniform (0.05,0.60) 0.2
sd_fraction_on_sale sfos σ(Pr{sale} ∼ Uniform (0.005,0.10) 0.01
new buyer coef. nBC κbuyer ∼ Uniform (0.5,1.0) 0.7
prefAlfa pA α ∼ Uniform (0.4,0.6) 0.4
prefGamma pG γ ∼ Uniform (0.4,0.8) 0.5
Gsd Gsd σ(γ) ∼ Uniform (0.005,0.15) 0.05
delta coef. dC δ ∼ Uniform (1.1,2.0) 1.5
loss coef. L L ∼ Uniform (0.01,1.0) 0.15
refused die crit. rDC rD ∼ ⌊Uniform⌋ {2, , 8}… 4
refused price crit. rPC rP ∼ ⌊Uniform⌋ {0, 1, 2} 1
Insurance Ins I ∼ Binomial {0, 1} 0

Table B3
Outcome variable descriptions.

Outcome variable Description

totalPV Total market value of all residential properties
avRent Average of residential property prices
avUtil Average utility of all property owners
avPriceFP0 Average price of properties in the safe zone
avPriceFP100 Average price of flood-prone properties in the 1:100

years flood plain
avPriceFP500 Average price of flood-prone properties in the 1:500

years flood plain
avPriceCoastFront Average price of coastal front properties
NOfTrades Number of trades (sales) per round
nRefusedSellers Number of sellers who were unsuccessful at the end of a

time step
nOfSellersLeft Number of sellers who left the city
nOfSellersOffTr Number of sellers who left the market due to

consecutive unsuccessful trades
nOfBuyersLeft Number of buyers who left the city
nNewSellers Number of new sellers entering the market at the

beginning of a time step
nOldSellers Number of sellers from the previous round
nTotalSellers Number of total sellers (old and new)
nNewBuyersOS Number of new buyers who were sellers in the previous

step
nNewBuyersNC Number of newcomer buyers
nOldBuyers Number of buyers from the previous round
nTotalBuyers Total number of buyers
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Appendix C. Run times of MDS algorithms

In Fig. C.5, we explore an additional performance metric: the run times of the routines. Due to the vagaries of computational processing, run
times are neither exact nor as precise as algorithmic complexity. Still, they can offer a general indication of performance.

The y-axis is on a logarithmic scale, thus the linear increase in the plot maps to an exponential increase in the real run time. The run times expose
both implementation idiosyncrasies as well as algorithmic stabilities. We first notice that ISO and NMDS hybrid run times are severely worse than
other routines. Given that their accuracies are comparable or worse than the other NMDS variants tested, one should consider avoiding them
altogether. Also, the SAM run times exhibits severe variance, which again highlights its instability. The linear NMDS routine appears to be most
efficient, considering both its run time and accuracy over CMDS (refer to Fig. 2).

Table B4
Summary statistics of outcome variables.

Min. Median Mean Max.

totalPV ($M) 201.7 1339.0 1728.0 542200.0
avRent ($K) 1.0 6.3 8.2 2567.0
avPriceFP0 ($K) 61.7 387.9 508.7 160800.0
avPriceFP100 ($K) 5.6 442.9 565.9 162300.0
avPriceFP500 ($K) 3.8 290.5 368.4 130400.0
avPriceCoastFront ($K) 10.2 951.9 1232.0 170000.0
NOfTrades (K) 0.0 0.5 0.5 1.2
nRefusedSellers 0.0 335.0 450.0 2642.0
nOfSellersLeft 0.0 332.0 332.3 835.0
nOfSellersOffTr 0.0 88.0 104.5 705.0
nOfBuyersLeft 0.0 63.0 88.4 7456.0
nNewSellers 0.0 584.0 582.6 1702.0
nOldSellers 0.0 796.0 893.2 2772.0
nTotalSellers 0.0 1320.0 1371.0 3369.0
nNewBuyersOS 0.0 142.0 142.4 367.0
nNewBuyersNC 0.0 431.0 436.3 1466.0
nOldBuyers 0.0 799.0 1247.0 18050.0
nTotalBuyers 0.0 1316.0 1737.0 19240.0

Fig. C1. Run times across time steps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table C1
Ranked run times.

Average
Rank MDS Code Run Time

1 classical CMDS 1.2
2 linear NMDS 2.6
3 global NMDS 3.3
4 global w/scaling NMDS 3.4
5 Sammon SAM 3.6
6 local NMDS 9.5
7 hybrid NMDS 149.4
8 Kruskal ISO 183.5
Run times are in seconds
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