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Abstract

Brute-force attacks are omnipresent and manyfold on the Internet, and aim at
compromising user accounts by issuing large numbers of authentication attempts
on applications and daemons. Widespread targets of such attacks are Secure
SHell (SSH) and Web applications, for example. The impact of brute-force at-
tacks and compromises resulting thereof is often severe: Once compromised, at-
tackers gain access to remote machines, allowing those machines to be misused
for all sorts of criminal activities, such as sharing illegal content and participating
in Distributed Denial of Service (DDoS) attacks.

While the number of brute-force attacks is ever-increasing, we have seen that
only few brute-force attacks actually result in a compromise. Those compromised
devices are however those that require attention by security teams, as they may
be misused for all sorts of malicious activities. We therefore propose a new
paradigm in this thesis for monitoring network security incidents: compromise
detection. Compromise detection allows security teams to focus on what is really
important, namely detecting those hosts that have been compromised instead of
all hosts that have been attacked. Speaking metaphorically, one could say that
we target scored goals, instead of just shots on goals.

A straightforward approach for compromise detection would be host-based,
by analyzing network traffic and log files on individual hosts. Although this
typically yields high detection accuracies, it is infeasible in large networks; These
networks may comprise thousands of hosts, controlled by many persons, on which
agents need to be installed. In addition, host-based approaches lack a global
attack view, i.e., which hosts in the same network have been contacted by the
same attacker. We therefore take a network-based approach, where sensors are
deployed at strategic observation points in the network. The traditional approach
would be packet-based, but both high link speeds and high data rates make
the deployment of packet-based approaches rather expensive. In addition, the
fact that more and more traffic is encrypted renders the analysis of full packets
useless. Flow-based approaches, however, aggregate individual packets into flows,
providing major advantages in terms of scalability and deployment.

The main contribution of this thesis is to prove that flow-based compromise
detection is viable. Our approach consists of several steps. First, we select two
target applications, Web applications and SSH, which we found to be important
targets of attacks on the Internet because of the high impact of a compromise
and their wide deployment. Second, we analyze protocol behavior, attack tools
and attack traffic to better understand the nature of these attacks. Third, we
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develop software for validating our algorithms and approach. Besides using this
software for our own validations (i.e., in which we use log files as ground-truth),
our open-source Intrusion Detection System (IDS) SSHCure is extensively used
by other parties, allowing us to validate our approach on a much broader basis.
Our evaluations, performed on Internet traffic, have shown that we can achieve
detection accuracies between 84% and 100%, depending on the protocol used
by the target application, quality of the dataset, and the type of the monitored
network. Also, the wide deployment of SSHCure, as well as other prototype de-
ployments in real networks, have shown that our algorithms can actually be used
in production deployments. As such, we conclude that flow-based compromise
detection is viable on the Internet.
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CHAPTER 1

Introduction

The Internet has become a critical infrastructure that facilitates most digital
communications in our daily lives, such as banking traffic, secure communications
and video calls. This makes the Internet a prime attack target for criminals,
nation-states and terrorists, for example [61]. When it comes to attacks, we there
are two different classes that regularly make it to the news, namely those that
are volumetric and aim at overloading networks and systems, such as Distributed
Denial of Service (DDoS) attacks, and those that are particularly sophisticated,
such as Advanced Persistent Threats (APTs). This is also confirmed by [158],
but interestingly enough, it also reports brute-force attacks to be among the
Top-3 of network attacks on the Internet [158], as shown in Figure 1.1. Although
these attacks exist already for years, their popularity is increasing evermore [145],
[147]. One of the main targeted services of these attacks is Secure SHell (SSH), a
powerful protocol that allows for controlling systems remotely. The compromise
of a target immediately results in adversaries gaining unprivileged control and
the impact of a compromise is therefore remarkably high. With almost 26 million
connected and scannable SSH daemons in November 2015 according to Shodan,1

SSH daemons are a popular and widely available attack target [12].

1https://www.shodan.io
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Figure 1.1: Top network attacks in 2015, from [158].

https://www.shodan.io
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Figure 1.2: SSH brute-force attacks observed by OpenBL, from [133].

The threat of SSH attacks was also stressed by the Ponemon 2014 SSH Secu-
rity Vulnerability Report : 51% of the surveyed companies had been compromised
via SSH in the last 24 months [160]. These compromises can be accounted mostly
to poor key management, causing former employees to still have access to enter-
prise systems after they left the company. It is however also generally known
that compromises can be the result of brute-force attacks. In campus networks,
such as the network of the University of Twente (UT) with roughly 25, 000 ac-
tive hosts, we observe approximately 115 brute-force attacks per day, while in
backbone networks, such as the Czech National Research and Education Net-
work (NREN) CESNET, it is not uncommon to observe more than 700 per day.
Even more attacks may be expected in the future; Several renowned organiza-
tions, such as OpenBL2 and DShield,3 report a tripled number of SSH attacks
between August 2013 and April 2014. In Figure 1.2, we show the number of ob-
served SSH brute-force attacks against sensors deployed by OpenBL worldwide,
which underlines the rapid increase in popularity of these attacks. In April 2015,
the threat intelligence organization Talos, together with Tier 1 network opera-
tor Level 3 Communications, stopped SSH brute-force attacks of a group named
SSHPsychos or Group 93, which generated more than 35% of the global SSH net-
work traffic [157]. Since no legitimate traffic was found to be originating from the
attacking networks, those networks were simply disconnected from the Internet.
Note that this drop is also visible in Figure 1.2.

Besides SSH compromises that typically have a high impact, there is another
class of hacking targets on the Internet that receives lots of attention in brute-
force attacks: Web applications in general and Content Management Systems
(CMSs) like Wordpress, Joomla and Drupal in particular [130]. Web applica-
tions and the aforementioned CMSs are characterized by a very large number
of deployments, as they are used for powering roughly 30% of all Web sites on
the Internet, with Wordpress being the dominant solution with a market share
of 25% [153]. The security company Sucuri visualizes failed login attempts on
Wordpress instances behind their protection services, which shows an increase
month after month, up to a factor eight over six months in 2015 [147], as shown

2http://www.openbl.org
3http://www.dshield.org

http://www.openbl.org
http://www.dshield.org
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Figure 1.3: Brute-force attacks against Wordpress instances behind Sucuri’s pro-
tection service, from [147].

in Figure 1.3. Another security company, Imperva, even acknowledged in Novem-
ber 2015 that CMSs are attacked three times more often than non-CMS Web ap-
plications (Wordpress even 3.5 times more often) and that Wordpress is targeted
seven times more for SPAM and Remote File Inclusion4 attacks than non-CMS
applications [156]. The fact that anybody can use CMSs, even people with lim-
ited technical skills that are unaware of security threats and measures, makes
CMSs a prime attack target, especially with regard to the following aspects:

• Vulnerabilities – Because of the interaction between Web browser and
Web server that is needed for editing remote content, major parts of CMSs
are built using code that is executed dynamically. In contrast to static code,
such as pure HyperText Markup Language (HTML) pages, dynamic code
(e.g., PHP) is executed by the Web server. As such, once an attacker is able
to modify the code, arbitrary commands can be executed and modified con-
tent served to clients. Although patches for the aforementioned CMSs are
released periodically, talks with Dutch Top 10 Web hosting companies have
revealed that approximately 80% of all CMS instances runs on outdated
software.

• Weak passwords – Although it is often advocated to use unique and
random passwords, one per site or instance, people tend to use memorable
passwords. Since memorable passwords limit the level of security that pass-
word authentication can possess [82], weak passwords form a major security
risk. Even though this is true for any service or application that is exposed
to the Internet, the fact that CMSs are designed to be used by people with
limited technical skills worsens this aspect.

4Remote File Inclusion (RFI) attacks exploit poorly crafted ‘dynamic file inclusion’ mecha-
nisms, such that arbitrary code can be loaded into and executed by Web applications.
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CMSs have received an increasing amount of negative attention because of
attacks, vulnerabilities and compromises in recent years. Also the type of attacks
has changed over time. For example, reports initially described large increases
in the number of observed brute-force attacks against CMSs and compromised
CMSs participating in botnets ([132], [144], [152]). In later years, however, the
focus shifted towards misusing (compromised) blogs for amplification in DDoS
attacks ([111], [150]). The fact that CMSs are so widespread make that misuse
can result in a new dimension of attacks, and that any vulnerability or weakness
can be exploited in great extent.

It is clear that attacks against SSH daemons and Web applications are om-
nipresent and manyfold. Detecting all these attacks and acting upon them is not
only a resource-intensive task, but it requires a new paradigm for handling them.
While brute-force attacks may result in severe damage, only few of them are
actually successful in the sense that they result in a compromise. Compromised
devices are the dangerous ones that require attention, as they may be misused for
all sorts of malicious activities. We therefore target these in our novel paradigm
for monitoring networks, which we refer to as compromise detection. Our valida-
tions (presented in Chapter 4 and 5) have shown that we observe only a handful
of compromises in thousands of incidents per month. As such, we conclude that
compromise detection provides much more precise information on compromised
devices and weaknesses than regular attack detection (i.e., a device has been
compromised vs. a device was attacked), and results in a major scalability gain
and complexity reduction in terms of incident handling.

1.1 Compromise Detection

Compromised devices are the core building blocks of illegal activities on the
Internet. Once compromised, they can be used for sending SPAM messages [122],
[143], launching DDoS attacks [111], distributing illegal content [122] and joining
botnets [132], just to name some examples. Reasons for using compromised
devices for such activities are manyfold, such as impersonation to hide illegal
activities, and better technical infrastructure (e.g., network bandwidth) to be
able to perform more illegal activities or reach a wider audience.

Many attacks and incident reports do not require immediate action. For
example, in the case of SSH, our measurements and validations have shown that
in a campus subnetwork with 80 workstations and servers, zero or only a few
compromises occur per month, while more than 10,000 attacks were observed
in total. Similar proportions were observed when validating attacks against Web
applications in the network of a large Web hosting provider: Also in the course of
one month, only one compromise was observed, out of almost 800 attacks. The
observed ratios between attacks and compromises likely stem from the nature
of brute-force attacks; Attack tools often use dictionaries, lists of frequently-
used passwords, so if Web applications are protected using randomly generated
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Host-based
detection

Network-based
detection

Accuracy + –

Scalability – +

View – +

Table 1.1: Host-based vs. network-based detection.

passwords, for example, brute-force attacks are much less likely to succeed. For
this reason, detecting compromises rather than just attacks is an important step
forward for security teams that are overloaded by attacks and incident reports
– a situation that is the rule rather than the exception, as confirmed by the
2015 Black Hat Europe conference’s attendee survey [124].

In the remainder of this section, we address two types of compromise de-
tection: host-based and network-based. The difference is the observation point
where data is collected for performing compromise detection: on end hosts (Sec-
tion 1.1.1) or at central observation points in the network (Section 1.1.2). The
key characteristics of both types are discussed in the following subsections and
summarized in Table 1.1.

1.1.1 Host-based Compromise Detection

Compromise detection is traditionally performed in a host-based fashion, i.e.,
by running Intrusion Detection Systems (IDSs) on end systems like servers and
workstations. As such, IDSs have access to network interfaces and file systems,
allowing them to achieve high detection rates with few false positives and nega-
tives. Due to the availability of fine-grained information, such as network traffic
and log files, they are able to detect various phases and aspects of attacks, ranging
from simple port scans to compromises. A fundamental problem of host-based
approaches is their poor scalability; In environments where IT service depart-
ments and security officers do not have access to every machine, it is infeasible to
install and manage detection software on every device. This can be exemplified
again using the campus network of the UT, with 25, 000 active hosts; Controlling
all these hosts would require an extensive infrastructure and paradigms like Bring
Your Own Device (BYOD) will always yield unsecured devices. For this reason,
network-based approaches may be used for monitoring networked systems, where
information is gathered at central observation points in the network rather than
on end systems. Another problem of host-based approaches is their isolated view
on attacks; Since information can only be gathered about the system on which it
is deployed, a broader view on the attack is missing, e.g., whether multiple hosts
are targeted by the same attacker at the same time. Some works, such as [55],
have worked around this issue by developing a system for information sharing
between individual hosts.
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1.1.2 Network-based Compromise Detection

Network-based IDSs are far behind when it comes to compromise detection, as
they generally report on the presence of attacks (e.g., [28]), regardless of whether
an attack was successful or not. This is mostly because of the coarser-grained
information that is available to network-based solutions; To be able to cope with
high link speeds and large amounts of network traffic, information is typically
collected and analyzed in aggregated form, which means that details are lost
by definition. In this thesis, we investigate how compromise detection can be
performed in a network-based fashion, to overcome the limitations of a host-based
approach: isolated views on attacks as a consequence of host-based observation
points, as well as limited scalability. More precisely, we aim for a network-based
approach that can be deployed at central observation points in the network such
that they have a global view on attacks, without the need to have control over
every monitored device in the network.

To perform network-based compromise detection, it is crucial to have a pow-
erful network monitoring system in place. In the next section, we discuss various
approaches for performing network monitoring.

1.2 Network Monitoring

Network monitoring systems can generally be classified into two categories: ac-
tive and passive. Active approaches, such as implemented by tools like Ping
and Traceroute, as well as management protocols like Simple Network Manage-
ment Protocol (SNMP), inject traffic into a network to perform different types
of measurements. Passive approaches observe existing traffic as it passes by an
observation point and therefore observe traffic generated by users. One passive
monitoring approach is packet capture. This method generally provides most
insight into the network traffic, as complete packets can be captured and fur-
ther analyzed. In situations where it is unknown at the moment of capturing
which portion of the packet is relevant or if parts of packet payloads need to
be analyzed, packet capture is the method of choice. Also, when meta-data like
packet inter-arrival times are needed, packet capture provides the necessary in-
sights. However, the fact that more and more traffic is encrypted diminishes
packet capture. Also, in high-speed networks with line rates of 100 Gbps and be-
yond, packet capture requires expensive hardware and substantial infrastructure
for storage and analysis.

Another passive network monitoring approach that is more scalable for use
in high-speed networks is flow export, in which packets are aggregated into flows
and exported for storage and analysis. Initial works on flow export date back to
the nineties and became the basis for modern protocols, such as NetFlow and IP
Flow Information Export (IPFIX) [2]. Although every flow export protocol may
use its own definition of what is considered a flow, a flow is generally defined for
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Flow exporter Flow collector Analysis application

Flow export protocol
(e.g., NetFlow, IPFIX)

Figure 1.4: High-level overview of a flow monitoring setup.

(NetFlow and) IPFIX in Request for Comment (RFC) 7011 as “a set of IP packets
passing an observation point in the network during a certain time interval, such
that all packets belonging to a particular flow have a set of common properties”.
These common properties may include packet header fields, such as source and
destination IP addresses and port numbers, interpreted information based on
packet contents, and meta-information.

Data exported using flow export technologies has seen a huge uptake since
communication providers are enforced to retain connection meta-data for several
months or years. This is because the retainment policies prescribe exactly the
information that is typically provided in flow data. While the typical data reten-
tion laws are in place for years already, traffic meta-data is still widely discussed
in politics. For example, the Dutch government has passed a bill only in 2015
that introduces an obligation for so-called ‘data controllers’ to notify the Dutch
Data Protection Authority of data security breaches, effective as of January 1,
2016 [126]. This bill forces data controllers to record traffic meta-data, again,
using flow data. So in short, flow data has been in place for a long time already
and is still very relevant in all sorts of telecommunication legislation.

A high-level overview of flow monitoring setups is shown in Figure 1.4. The
figure shows a flow exporter that receives packets, aggregates them into flows and
exports flow data to a flow collector for storage and preliminary analysis. A flow
export protocol, such as NetFlow or IPFIX, is used for transmitting the flow data
to the flow collector. Once the data is recorded by the flow collector, analysis
applications may be used for analyzing the data. An example of how parts of
Internet Protocol (IP) packets are used in flow records is shown in Figure 1.5.

In addition to their suitability for use in high-speed networks, flow export
protocols and technologies provide several other advantages above regular packet
capture.

1. Flow export is frequently used to comply to data retention laws. For exam-
ple, communication providers in Europe are enforced to retain connection
data, such as provided by flow export, for a period of between six months
and two years “for the purpose of the investigation, detection and prosecu-
tion of serious crime” [13], [125].

2. Flow export protocols and technologies are widely deployed, mainly due to
their integration into high-end packet forwarding devices, such as routers,
switches and firewalls. For example, a recent survey among both commer-
cial and research network operators has shown that 70% of the participants
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Figure 1.5: Packet header fields (and content) exported in flow data.

have devices that support flow export [70]. As such, no additional capturing
devices are needed, which makes flow monitoring less costly than regular
packet capture.

3. Flow export is well understood, since it is widely used for security analysis,
capacity planning, accounting, and profiling, among others.

4. Significant data reduction can be achieved – in the order of 1/2000 of the
original volume, as shown in Chapter 2 – since packets are aggregated after
they have been captured.

5. Flow export is usually less privacy-sensitive than packet export, since tradi-
tionally only packet headers are considered and payloads not even captured.
However, since researchers, vendors and standardization bodies are working
on the inclusion of application information in flow data, the advantage of
performing flow export in terms of privacy is fading.
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6. Since flow export was designed to operate mostly on packet header fields, it
is neither hindered by any application-layer encryption, such as Transport
Layer Security (TLS) and recent protocol developments like Google QUIC
that aim at multiplexing streams over User Datagram Protocol (UDP).5

Although flow export provides many advantages over packet-based traffic
analysis, it is also subject to several deficiencies that are inherent to the design
of the respective protocols and technologies:

1. The aggregated nature and therefore coarser granularity of flow data – in
many respects a major advantage – makes certain types of analysis more
challenging. For example, while retransmitted packets, which are a sign of
connectivity issues, can easily be identified in a set of packets, they cannot
be discriminated in regular flow data.

2. The advantages provided by flow export usually excuse the coarser data
granularity, as long as the flow data reflects the actual network traffic pre-
cisely. However, the flow export process may introduce artifacts in the
exported data, i.e., inaccuracies or errors, which may impair flow data anal-
yses.

3. Flow monitoring systems are particularly susceptible to network flooding
attacks. This is because flow records are meant to resemble connections,
but if every connection consists of only one or two packets, the scalability
advantage that was achieved by means of aggregation is lost. Moreover,
depending on the nature of the attack, the attack traffic might even be
amplified by the overhead of (a) every flow record and (b) export proto-
cols like NetFlow and IPFIX. It is therefore important that flow exporters
are resilient against attacks to avoid ‘collapses’ under overload, effectively
‘blinding’ the monitoring infrastructure.

Flow data is a proven source of information for detecting various types of se-
curity incidents, such as DDoS attacks and network scans [20]. However, research
and literature based on flow data analysis does hardly deal with the identified
deficiencies of flow export. This is because validations are often done in lab envi-
ronments or local area networks, where flow export devices operate under ideal
conditions.

1.3 Objective, Research Questions & Approach

1.3.1 Objective

In the previous section, we have made a case for compromise detection, a novel
paradigm that makes security analysts focus on what is really important: actual

5https://www.chromium.org/quic

https://www.chromium.org/quic
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compromises. Or, in analogical terms: We are not so much interested in just
shots, but in scored goals. To perform compromise detection, several network-
based approaches can be used and we have shown that flow monitoring provides
several advantages over packet-based alternatives. Disadvantages can however
be identified as well, which need to be minimized and preferably overcome. The
objective of this thesis can therefore be formulated as follows:

Investigate how compromise detection can be performed on the Internet

using flow monitoring technology.

In other words, the objective of this thesis is to investigate whether com-
promise detection is feasible on the Internet at all, or whether it still is at an
academic stage that allows primarily for lab deployment. We explicitly say on
the Internet to make clear that we do not target lab environments, but (large)
networks that are in daily production usage.

1.3.2 Research Questions & Approach

In light of the objective of this thesis, a first and elementary item to address is
how to perform sound flow monitoring. Flow monitoring is used as the means
for capturing network traffic for use in our compromise detection paradigm, as it
provides a scalable and aggregated means for analyzing traffic in large and high-
speed networks. Even though flow monitoring is widely deployed and typically
well understood, there is a considerable number of pitfalls that hinder reliable
operation and impair flow data analysis. For example, many flow exporters do
not strictly adhere to standards and specifications, and configurations are often
not considered as precisely as one would expect. In this thesis, we investigate all
the various stages present in flow monitoring setups, as well as common pitfalls,
such that we obtain a solid basis for performing sound flow measurements. In
this context, flow measurements are considered sound if the exported flow data
reflects the original network traffic precisely. We summarize our first research
question as follows:

RQ1 – Can flow monitoring technology be used for compromise detection?

Our approach for answering this research question consists of multiple steps.
We start with surveying literature where relevant and applicable. Complemen-
tary to this survey, we include information based on our own experience. This
experience has been gained in a variety of ways: research in the area of flow
export, involvement in the standardization of IPFIX, operational experience by
working for a leading company in the area of flow-based malware detection, talks
with network operators, and experience in developing both hardware-based and
software-based flow exporters. We also include measurements to illustrate and
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provide more examples and insights into the presented concepts. Then, we con-
tinue with analyzing the exported flow data of a range of widely-used flow mon-
itoring devices, to compare the flow data quality to specifications and configura-
tions.

After investigating how to perform sound flow measurements, as well as re-
lated pitfalls, we can work towards the main contribution of this thesis: flow-based
compromise detection. Early work in this area has been shortly addressed in an-
other thesis ([81]). Based on the lessons learned of both [81] and RQ1, we target
flow-based compromise detection in a comprehensive manner in this thesis, such
that it may be used on the Internet. In this context, we define our second research
question as follows:

RQ2 – How viable is compromise detection for application on the Inter-

net?

To address this research question, we focus on two popular brute-force attack
targets: SSH and Web applications. Compromises resulting thereof typically
provide the attacker with system-level access that can be misused for various
purposes. For both SSH and Web applications, which have been selected because
of the large impact of a compromise and wide deployment, respectively, we take
the following approach. First, we investigate the nature of the involved protocol,
to understand the typical protocol messages and message sequences. Then, we
harvest attack tools by operating honeypots, visiting hacker fora and analyzing
code snippets on public code sharing Web sites, to learn about the techniques em-
ployed to compromise hosts. Based on the lessons learned, we develop detection
algorithms and validate them as as follows:

• We compare our detection results with various ground-truth datasets, such
as log files, and perform multiple large-scale validations that enable us to
express the performance of our algorithms in terms of frequently-used eval-
uation metrics. The datasets have been collected on the campus network
of the UT, over the course of one month, and consist of flow data and log
files of almost 100 servers and workstations. It must be stressed here that
the use of realistic datasets that have been collected in open networks is
one of the cornerstones of our validation.

• We implement an open-source SSH intrusion detection system, SSHCure.6

We developed SSHCure as a demonstrator for our compromise detection
algorithms, which allowed us to obtain community feedback on detection
results of our work in other networks, such as NRENs and other backbone
networks.

6To be pronounced as she-cure.
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In the context of this thesis, we consider compromise detection viable if de-
tection accuracies higher than 80% are achieved, and the detection results of
prototypes may be used in production.

The compromise detection algorithms and prototypes presented in this the-
sis work well as long as the flow dataset has been collected in a sound fashion.
However, as explained in Section 1.2, by their nature to make flows resemble con-
nections, flow monitoring systems are susceptible to attacks that consist of large
numbers of connections, especially if those connections are very small in terms
of packets and bytes. In those situations, the scalability gain of flow monitoring
systems is lost, due to the overhead of flow accounting. This is a widely known
problem that has been confirmed by both vendors of flow monitoring devices
and large network operators. Exemplary attacks are very large network scans
and flooding attacks, such as DDoS attacks. To investigate how to overcome
this resilience problem of flow monitoring systems, we define our third and final
research question as follows:

RQ3 – Which components of flow monitoring systems are susceptible to

flooding attacks, how can these attacks efficiently be detected and how can

the resilience of flow monitoring systems be improved?

We address this research question by taking the following approach. First, we
investigate which metrics are significative for flooding attacks and how they can
be retrieved from flow monitoring systems. Since flow data analysis is typically
performed after storage and preliminary analysis on a flow collection device, we
intuitively assume that moving detection closer to the data source, i.e., towards
the flow export device, may enable us to filter out attack traffic before it reaches
the monitoring infrastructure. As such, we develop a lightweight detection algo-
rithm and implement it as part of a prototype that can be deployed on dedicated
flow export devices. In light of a wide deployment and applicability of our ap-
proach, we even investigate the possibility of deploying our prototype on packet
forwarding devices with flow export support. We validate our work in both the
Czech NREN CESNET and the campus network of the UT, for a period of several
weeks.

1.4 Contributions

The main contribution of this thesis is a new network attack detection paradigm
– compromise detection – that targets successful attacks instead of all attacks.
Compromise detection therefore reduces the number of attacks and incident re-
ports to be handled by security teams drastically. We demonstrate that our new
paradigm operates on aggregated network data, i.e., flow data. This flow data
is widely available (in roughly 70% of all networks operated by 135 participants
involved in a large survey in 2013 [70]) and greatly reduces the amount of data
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to be analyzed by monitoring systems, due to the aggregation of individual pack-
ets into flows. We prove that flow-based compromise detection is viable on the
Internet. Moreover, our IDS SSHCure, which includes our compromise detection
algorithms for SSH, has evolved into a real open-source software project that
serves a community, and is deployed in many networks around the world.

Besides our main contribution, we identify the following specific contributions:

• An analysis of artifacts in flow data from widely-used flow export devices
(Chapter 3).

• Algorithms and prototypes for the detection of SSH compromises, validated
on the Internet (Chapter 4).

• Algorithms and prototypes for the detection of Web application compro-
mises, validated on the Internet (Chapter 5).

• Algorithms and prototypes for the detection of flooding attacks, like DDoS
attacks, in an efficient manner using flow export devices and in such a way
that the monitoring infrastructure is resilient against the attack (Chap-
ter 6).

• Demonstration of how measuring Transmission Control Protocol (TCP)
control information and retransmissions is beneficial for any flow data anal-
ysis (Section 4.4).

• Annotated datasets for the evaluation of flow-based IDSs, published as part
of the traces repository on the SimpleWeb.7

• Open-source intrusion detection software SSHCure, the first flow-based IDS
that could report on compromises. Over the last years, we have seen major
interest in SSHCure from many parties, ranging from small network oper-
ators to nation Computer Security Incident Response Teams (CSIRTs).

• Prototype implementations and deployment results of IDSs on forwarding
devices and flow probes, published as open-source software.

Besides these specific contributions, we have developed the first comprehensive
tutorial on flow monitoring using NetFlow and IPFIX, covering the full spectrum
from packet capture to data analysis (Chapter 2).

1.5 Thesis Organization

In light of this thesis’ objective and its supporting research questions, we have
organized this thesis in three parts, each addressing one research question. The
remainder of this section summarizes each thesis part and the chapters they
comprise. Additionally, we visualize the structure of this thesis in Figure 1.6.

7http://www.simpleweb.org/wiki/SSH_datasets

http://www.simpleweb.org/wiki/SSH_datasets
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Part I – Generic Flow Monitoring
The first part of this thesis, consisting of Chapter 2 and 3, fully covers RQ1
and consists of a comprehensive tutorial on flow monitoring and a description of
widely observed flow measurement artifacts. Although the content in this part
of the thesis provides a solid basis for understanding the remainder of this thesis,
it applies to basically any flow monitoring system and its application is therefore
not limited to compromise detection alone.

Chapter 2 – Flow Measurements
Flow export technology can nowadays be found in many networking devices,
mostly integrated in packet forwarding devices or as dedicated flow export
appliances (‘probes’). Although this technology is often presented as being
plug-and-play and the exported flow data as ‘universal’, there are many
pitfalls that may impair the flow data quality. We therefore investigate in
this chapter, from a theoretical point of view, whether flow data is suitable
for use in compromise detection. Then, in Chapter 3, we complement this
investigation with a practical point of view, by analyzing flow data from a
wide range of flow export devices.

Provided that flow monitoring systems are complex and feature many vari-
ables, understanding their components and knowing their pitfalls is key to
performing sound measurements. However, there is no comprehensive tu-
torial available that explains all the ins and outs of flow monitoring. This
chapter bridges this gap. We start with the history of flow export in the
80’s and 90’s and compare flow export by means of NetFlow and IPFIX

Chapter 2
Flow Measurements

Chapter 3
Flow Measure-
ment Artifacts

Chapter 4
Compromise De-
tection for SSH

Chapter 5
Compromise Detection
for Web Applications

Chapter 6
Resilient Detection

Chapter 7
Conclusions

Part I,
RQ1

Part II,
RQ2

Part III,
RQ3

Figure 1.6: Thesis organization.
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with other technologies with flow in the name, such as sFlow and Open-
Flow, which do not solve exactly the same problems as flow export. Then,
we show the core building blocks of any flow monitoring setup, from packet
capture to data analysis, and describe each of them in subsequent sections.
Besides an analysis of specifications and state-of-the-art, we add insights
based on our own experience and complement this with measurements. The
content of this chapter is published in:

• R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sper-
otto, A. Pras. Flow Monitoring Explained: From Packet Capture to
Data Analysis with NetFlow and IPFIX. In: IEEE Communications
Surveys & Tutorials, Vol. 16, No. 4, 2014

Chapter 3 – Flow Measurement Artifacts
Implementation decisions or errors, operating conditions or platform lim-
itations may cause flow data to not resemble the original packet stream
precisely. Inaccuracies or errors in flow data is what we refer to as flow
data artifacts. Although artifacts do not necessarily impair the analysis of
flow data, it is of utmost importance to at least be aware of their presence,
e.g., to avoid interpretation errors. In this chapter, we demonstrate the
omnipresence of artifacts by comparing the flow data of six different and
widely deployed flow export devices. Our measurements show, for exam-
ple, that the quality of flow data of dedicated flow export devices (probes)
is superior in quality to flow data exported by packet forwarding devices,
and that flow data from widely-deployed, high-end devices features plenty
of artifacts. Based on our observations, we conclude whether compromise
detection based on flow data is feasible in practice. The content of this
chapter is published in:

• R. Hofstede, I. Drago, A. Sperotto, R. Sadre, A. Pras. Measurement
Artifacts in NetFlow Data. In: Proceedings of the 14th International
Conference on Passive and Active Measurement, PAM 2013, 18-19
March 2013, Hong Kong, China – Best Paper Award

Part II – Compromise Detection
The second part of this thesis, consisting of Chapter 4 and 5, covers the main
contribution: flow-based compromise detection. We demonstrate the feasibility
of our novel paradigm to detect compromises instead of attacks, and investigate
compromise detection for two widespread targets of brute-force attacks: SSH
daemons and Web applications. Both targets are discussed and validated in their
own chapter.

Chapter 4 – Compromise Detection for SSH
In this chapter, we investigate whether and how well flow-based compromise
detection can be performed for SSH. We start by describing related work
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in this area and analyzing key characteristics of brute-force attacks against
SSH daemons, resulting in a three-phase attack model that will be used
throughout this thesis. This model helps in understanding why compro-
mises are always preceded by a brute-force attack and how the identification
of network scans may improve the detection of compromises. Based on this
model, we present our basic detection approach that aims at identifying
deviating connections in network traffic that could signify a compromise.
This approach is rather generic and can in principle be used for detecting
compromises over other protocols as well. Although it catches many at-
tacks and is taken up by related works as well, we demonstrate how it is
limited by network artifacts like TCP retransmissions and control informa-
tion that cause compromises or even complete attacks to stay under the
radar of IDSs. After that, we proceed in two directions to enhance the
detection results of our approach. First, we investigate network artifacts in
detail and enhance our measurement infrastructure such that we can over-
come any deficiencies caused by artifacts. Second, we enhance our detection
approach by including SSH-specific knowledge, which allows us to identify
protocol behavior that would be marked as a compromise otherwise. We
validate our work based on production traffic of more than 100 devices on
the campus network of the UT. The content of this chapter is published in:

• L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, A.
Pras. SSHCure: A Flow-based SSH Intrusion Detection System. In:
Dependable Networks and Services. Proceedings of the 6th Interna-
tional Conference on Autonomous Infrastructure, Management and
Security, AIMS 2012, 4-8 June 2012, Luxembourg, Luxembourg –
Best Paper Award

• R. Hofstede, L. Hendriks, A. Sperotto, A. Pras. SSH Compromise
Detection using NetFlow/IPFIX. In: ACM Computer Communication
Review, Vol. 44, No. 5, 2014

• M. Jonker, R. Hofstede, A. Sperotto, A. Pras. Unveiling Flat Traffic
on the Internet: An SSH Attack Case Study. In: 2015 IFIP/IEEE In-
ternational Symposium on Integrated Network Management, IM 2015,
May 11-15, 2015, Ottawa, Canada

Chapter 5 – Compromise Detection for Web Applications
We investigate in this chapter how to perform flow-based compromise de-
tection for Web applications. In contrast to SSH, the detection of attacks
against Web applications by means of flow data is an untouched area of
research, meaning that there is hardly any related work to be consulted.
We use our expertise in the area of SSH, including our three-phase attack
model, to approach this challenge. To explore the area of Web applica-
tion attacks, we start again by taking a signature-based approach to detect
brute-force authentication attempts. Then, based on the lessons learned in
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the area of SSH, we develop a new approach: Clustering methods allow us
to group connections in an attack that are similar in terms of packets, bytes
and duration. All these similar connections are likely to feature (failed) au-
thentication attempts, while outliers may be the compromise that we aim
to identify. To validate our work, we use network traffic of a large, Dutch
Web hosting provider that was collected during one month in 2015, and
consists of traffic towards more than 2500 Web applications. The content
of this chapter is published in:

• O. van der Toorn, R. Hofstede, M. Jonker, A. Sperotto. A First
Look at HTTP(S) Intrusion Detection using NetFlow/IPFIX. In: 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment, IM 2015, May 11-15, 2015, Ottawa, Canada

• R. Hofstede, M. Jonker, A. Sperotto, A. Pras. Flow-based Web Appli-
cation Brute-force Attack & Compromise Detection (under review)

Part III – Resilient Detection
One of the deficiencies of flow monitoring systems is that they are susceptible to
flooding (e.g., DDoS) attacks by nature. In the third and last part of this thesis,
we address this deficiency.

Chapter 6 – Resilient Detection
To improve the resilience of flow monitoring systems against flooding at-
tacks, we investigate in this chapter whether we can equip flow export
devices with a lightweight module for detecting and ultimately filtering out
attack traffic. This avoids that flooding traffic will reach data collection
and analysis devices and ensures that monitoring devices are not blinded
by attacks. Moreover, detection results of this approach may even be fed
into a firewall to block the attack not only from reaching the monitoring
infrastructure, but also from reaching regular networked devices. The de-
tection algorithm employed ‘learns’ connection patterns of the observation
point over time and recognizes sudden deviations. We validate our ap-
proach on dedicated flow export devices deployed in the network of a large
European backbone network operator and on packet forwarding devices on
the campus network of the UT. The content of this chapter is published in:

• R. Hofstede, V. Bartoš, A. Sperotto, R.Sadre, A. Pras. Towards Real-
Time Intrusion Detection for NetFlow and IPFIX. In: Proceedings
of the 9th International Conference on Network and Service Manage-
ment, CNSM 2013, 15-17 October 2013, Zürich, Switserland

• D. van der Steeg, R. Hofstede, A. Sperotto, A. Pras. Real-time DDoS
Attack Detection for Cisco IOS using NetFlow. In: 2015 IFIP/IEEE
International Symposium on Integrated Network Management, IM
2015, May 11-15, 2015, Ottawa, Canada
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Chapter 7 – Conclusions
In the last chapter of this thesis, we summarize our findings and contribu-
tions by answering our research questions. Also, we elaborate on various
directions for future work.



Part I

Generic Flow Monitoring





CHAPTER 2

Flow Measurements

Many papers, specifications and other documents on NetFlow and IPFIX have
been written over the years. They usually consider the proper operation of
flow export protocols and technologies, as well as the correctness of the ex-
ported data, as a given. We have however seen that these assumptions often
do not hold. We therefore investigate in Chapter 2 and 3 whether the flow
export technologies NetFlow and IPFIX can be used for compromise detec-
tion. We start in this chapter by analyzing the individual components of flow
monitoring setups, the interworking of these components, configuration op-
tions, and pitfalls. After that, in Chapter 3, we take a similar approach for
investigating the practical suitability of flow export devices for compromise
detection. The objective of this tutorial-style chapter is to provide a clear un-
derstanding of flow export and all stages in a typical flow monitoring setup,
covering the complete spectrum from packet capture to data analysis. Based
on our observations, we conclude whether compromise detection based on flow
data is feasible in theory.

The paper related to this chapter is [11], which was published in IEEE Com-
munications Surveys & Tutorials.

The organization of this chapter is as follows:

• Section 2.1 describes the history of flow export and compares NetFlow
and IPFIX to other related and seemingly-related protocols, such as
sFlow and OpenFlow.

• Section 2.2 introduces the various stages that make up the architecture
of flow monitoring setups.

• Sections 2.3–2.5 cover the first three stages of flow monitoring: Packet
Observation, Flow Metering & Export, and Data Collection. The fourth
and final stage, Data Analysis, is exemplified by Chapter 4 and 5.

• Section 2.6 outlines the most important lessons learned.

• Section 2.7 concludes this chapter.
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2.1 History & Context

In this section, we discuss both the history of flow monitoring and present flow
monitoring in a broader context by comparing it to related technologies. The
chronological order of the main historic events in this area is shown in Figure 2.1
and will be covered in Section 2.1.1. A comparison with related technologies and
approaches is provided in Section 2.1.2.

2.1.1 History

The published origins of flow export date back to 1991, when the aggregation of
packets into flows by means of packet header information was described in [88].
This was done as part of the Internet Accounting (IA) Working Group (WG)
of the Internet Engineering Task Force (IETF). This WG concluded in 1993,
mainly due to lack of vendor interest. Also the then-common belief that the
Internet should be free, meaning that no traffic capturing should take place that
could potentially lead to accounting, monitoring, etc., was a reason for conclud-
ing the WG. In 1995, interest in exporting flow data for traffic analysis was
revived by [6], which presented a methodology for profiling traffic flows on the
Internet based on packet aggregation. One year later, in 1996, the new IETF
Real-time Traffic Flow Measurement (RTFM) WG was chartered with the objec-
tives of investigating issues in traffic measurement data and devices, producing
an improved traffic flow model, and developing an architecture for improved flow
measurements. This WG revised the Internet Accounting architecture and, in
1999, published a generic framework for flow measurement, named RTFM Traf-
fic Measurement System, with more flexibility in terms of flow definitions and
support for bidirectional flows [89]. In late 2000, having completed its charter,
the RTFM WG was concluded. Again, due to vendors’ lack of interest, no flow
export standard resulted.

In parallel to RTFM, Cisco worked on its flow export technology named Net-
Flow, which finds its origin in switching. In flow-based switching, flow informa-
tion is maintained in a flow cache and forwarding decisions are only made in the
control plane of a networking device for the first packet of a flow. Subsequent
packets are then switched exclusively in the data plane [114]. The value of the
information available in the flow cache was only a secondary discovery [119] and
the next step to export this information proved to be relatively small. NetFlow
was patented by Cisco in 1996. The first version to see wide adoption was Net-
Flow v5 [120], which became available to the public around 2002. Although Cisco
never published any official documentation on the protocol, the widespread use
was in part result of Cisco making the corresponding data format freely avail-
able [2]. NetFlow v5 was obsoleted by the more flexible NetFlow v9, the state of
which as of 2004 is described in [92]. NetFlow v9 introduced support for adaptable
data formats through templates, as well as IPv6, Virtual Local Area Networks
(VLANs) and MultiProtocol Label Switching (MPLS), among other features.
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Several vendors besides Cisco provide flow export technology alike NetFlow v9
(e.g., Juniper’s J-Flow), which are mostly compatible with NetFlow v9. The
flexibility in representation enabled by NetFlow v9 made other recent advances
possible, such as more flexibility in terms of flow definitions. Cisco provides this
functionality by means of its Flexible NetFlow technology [116]. Later, in 2011,
Cisco presented NetFlow-Lite, a technology based on Flexible NetFlow that uses
an external packet aggregation device to facilitate flow export on packet forward-
ing devices without flow export capabilities, such as datacenter switches [36].

Partly in parallel to the NetFlow development, the IETF decided in 2004 to
standardize a flow export protocol, and chartered the IPFIX WG [129]. This
WG first defined a set of requirements [91] and evaluated several candidate pro-
tocols. As part of this evaluation, NetFlow v9 was selected as the basis of the
new IPFIX Protocol [93]. However, IPFIX is not merely “the standard version of
NetFlow v9” [22], as it supports many new features. The first specifications were
finalized in early 2008, four years after the IPFIX WG was chartered. These spec-
ifications were the basis of what has become the IPFIX Internet Standard [104]
in late 2013. A short history on flow export and details on development and
deployment of IPFIX are provided in [2].

Note that the term NetFlow itself is heavily overloaded in literature. It refers
to multiple different versions of a Cisco-proprietary flow export protocol, of which
there are also third-party compatible implementations. It refers as well to a
flow export technology, consisting of a set of packet capture and flow metering
implementations that use these export protocols. For this reason, we use the
term flow export in this thesis to address exporting in general, without reference
to a particular export protocol. As such, the term NetFlow is solely used for
referencing the Cisco export protocol.

2.1.2 Related Technologies & Approaches

There are several related technologies with flow in the name that do not solve ex-
actly the same problems as flow export. One is sFlow [142], an industry standard
integrated into many packet forwarding devices for sampling packets and interface
counters. Its capabilities for exporting packet data chunks and interface counters
are not typical features of flow export technologies. Another difference is that
flow export technologies also support 1:1 packet sampling, i.e., considering every
packet for data export, which is not supported by sFlow. From an architectural
perspective, which will be discussed in Section 2.2 for NetFlow and IPFIX, sFlow
is however very similar to flow export technologies. Given its packet-oriented
nature, sFlow is closer related to packet sampling techniques, such as the Packet
SAMPling (PSAMP) standard [100] proposed by the IETF, than to a flow ex-
port technology. Given that this chapter is about flow export, we do not consider
sFlow.

Another related technology, which is rapidly gaining attention in academia
and network operations, is OpenFlow [134]. Being one particular technology
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for Software-Defined Networking (SDN), it separates the control plane and data
plane of networking devices [15]. OpenFlow should therefore be considered a
flow-based configuration technology for packet forwarding devices, instead of a
flow export technology. Although it was not specifically developed for the sake of
data export and network monitoring, as is the case for flow export technologies,
flow-level information available within the OpenFlow control plane (e.g., packet
and byte counters) was recently used for performing network measurements [77].
Tutorials on OpenFlow are provided in [16], [66].

There exists also other flow export technology that is not related to and
incompatible with NetFlow and IPFIX, but is designated to the same task of
exporting network traffic flows. Argus [138] provides such technology, and is
available as open-source software already since the early nineties. In contrast to
software that is compatible with protocols like NetFlow and IPFIX, Argus uses
a dedicated protocol for transferring flow data and therefore requires both Argus
client and server software for deployment.

A data analysis approach that is often related to flow export is Deep Packet
Inspection (DPI), which refers to the process of analyzing packet payloads. Two
striking differences can be identified between DPI and flow export. First, flow
export traditionally only considers packet headers, and is therefore considered
less privacy-sensitive than DPI and packet export. Second, flow export is based
on the aggregation of packets (into flows), while DPI and packet export are
typically considering individual packets. Although seemingly opposing, we show
throughout this chapter how DPI and flow export are increasingly united for
increased visibility in networks.

2.2 Flow Monitoring Architecture

The architecture of typical flow monitoring setups consists of several stages, each
of which is shown in Figure 2.2. The first stage is Packet Observation, in which
packets are captured from an Observation Point and pre-processed. Observation
Points can be line cards or interfaces of packet forwarding devices, for example.
We discuss the Packet Observation stage in Section 2.3.

The second stage is Flow Metering & Export, which consists of both a Meter-
ing Process and an Exporting Process. Within the Metering Process, packets are
aggregated into flows, which are defined as “sets of IP packets passing an obser-
vation point in the network during a certain time interval, such that all packets
belonging to a particular flow have a set of common properties” [104]. After a
flow is considered to have terminated, a flow record is exported by the Exporting
Process, meaning that the record is placed in a datagram of the deployed flow ex-
port protocol. Flow records are defined in [104] as “information about a specific
flow that was observed at an observation point”, which may include both charac-
teristic properties of a flow (e.g., IP addresses and port numbers) and measured
properties (e.g., packet and byte counters). They can be imagined as records or
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Packet Observation

Flow Metering & Export

Data Collection

Data Analysis

Packets

Flow Export Protocol
(e.g., NetFlow, IPFIX)

Figure 2.2: Architecture of a typical flow monitoring setup.

rows in a typical database, with one column per property. The Metering and
Exporting processes are in practice closely related. We therefore discuss these
processes together in Section 2.4.

The third stage is Data Collection, which is described in Section 2.5. Its main
tasks are the reception, storage and pre-processing of flow data generated by the
previous stage. Common pre-processing operations include aggregation, filtering,
data compression, and summary generation.

The final stage is Data Analysis, of which two examples will be discussed in
detail in Chapter 4 and 5. In research deployments, data analysis is often of
an exploratory nature (i.e., manual analysis), while in operational environments,
the analysis functions are often integrated into the Data Collection stage (i.e.,
both manual and automated). Common analysis functions include correlation
and aggregation; traffic profiling, classification, and characterization; anomaly
and intrusion detection; and search of archival data for forensic or other research
purposes.

Note that the entities within the presented architecture are conceptual, and
may be combined or separated in various ways, as we exemplify in Figure 2.3.
We will highlight two important differences. First and most important, the
Packet Observation and Flow Metering & Export stages are often combined in
a single device, commonly referred to as Flow Export Device or flow exporter.
When a flow exporter is a dedicated device, we refer to it as flow probe. Both
situations are shown in Figure 2.3. We know however from our own experience
that the IPFIX architecture [97] was developed with flow export from packet for-
warding devices in mind. In this arrangement, packets are read directly from a
monitored link or received via the forwarding mechanisms of a packet forwarding
device. However, especially in research environments where trace data is ana-
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lyzed, packet capture may occur on a completely separate device, and as such
should not be considered an integral part of the Flow Metering & Export stage.
This is why we consider the Packet Observation and Flow Metering & Export
stages in this work to be separate. A second difference with what is shown in
Figure 2.2, is that multiple flow exporters can export flows to multiple devices
for storage and pre-processing, commonly referred to as flow collectors. After
pre-processing, flow data is available for analysis, which can be both automated
(e.g., by means of an appliance) or manual.

2.3 Packet Observation

Packet observation is the process of capturing packets from the line and pre-
processing them for further use. It is therefore key to flow monitoring. In this
section, we cover all aspects of the Packet Observation stage, starting by present-
ing its architecture in Section 2.3.1. Understanding this architecture is however
not enough for making sound packet captures; Also the installation and config-
uration of the capture equipment is crucial. This is explained in Section 2.3.2.
Closely related to that are special packet capture technologies that help to in-
crease the performance of capture equipment, which is surveyed in Section 2.3.3.
Finally, in Section 2.3.4, we discuss one particular aspect of the Packet Observa-
tion stage in detail that is widely used in flow monitoring setups: packet sampling
& filtering.

2.3.1 Architecture

A generic architecture of the Packet Observation stage is shown in Figure 2.4.
Before any packet pre-processing can be performed, packets must be read from
the line. This step, packet capture, is the first in the architecture and typically
carried out by a Network Interface Card (NIC). Before packets are stored in on-
card reception buffers and later moved to the receiving host’s memory, they have
to pass several checks when they enter the card, such as checksum error checks.

The second step is timestamping. Accurate packet timestamps are essential
for many processing functions and analysis applications. For example, when pack-
ets from different observation points have to be merged into a single dataset, they
will be ordered based on their timestamps. Timestamping performed in hard-
ware upon packet arrival avoids delays as a consequence of forwarding latencies
to software, resulting in an accuracy of up to 100 nanoseconds in the case of the
IEEE 1588 protocol, or even better. Unfortunately, hardware-based timestamp-
ing is typically only available on special NICs using Field Programmable Gate
Arrays (FPGAs), and most commodity cards perform timestamping in software.
However, software-based clock synchronization by means of the Network Time
Protocol (NTP) or the Simple Network Time Protocol (SNTP) usually provides
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Figure 2.4: Architecture of the Packet Observation stage.

an accuracy in the order of 100 microseconds. For further reading, we recommend
the overviews on time synchronization methods in [56], [59].

Both packet capture and timestamping are performed for all packets under
any condition. All subsequent steps shown in Figure 2.4, are optional. The
first of them is packet truncation, which selects only those bytes of a packet
that fit into a preconfigured snapshot length. This reduces the amount of data
received and processed by a capture application, and therefore also the number
of computation cycles, bus bandwidth and memory used to process the network
traffic. For example, flow exporters traditionally only rely on packet header fields
and ignore packet payloads.

The last step of the Packet Observation stage is packet sampling and filter-
ing [99]. Capture applications may define sampling and filtering rules so that
only certain packets are selected for measurement. The motivation for sampling
is to select a packet subset, while still being able to estimate properties of the full
packet stream. The motivation for filtering is to remove all packets that are not
of interest. Packet sampling & filtering will be discussed in detail in Section 2.3.4.

2.3.2 Installation & Configuration

In this subsection, we describe how packet captures should be made in wired,
wireless, and virtual networks, and how the involved devices should be installed
and configured. Most packet captures are made in wired networks, but can also
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be made in wireless networks. Due to the popularity of virtual environments,
packet captures in virtual networks are also becoming more common.

Most network traffic captures are made in wired networks, which can range
from Local Area Networks (LANs) to backbone networks. This is mainly due to
their high throughput and low external interference. Packet capture devices can
be positioned in-line and in mirroring mode, which may have a significant impact
on capture and network operation:

• In-line mode – The capture device is directly connected to the monitored
link between two hosts. This can be achieved by installing additional hard-
ware, such as bridging hosts or network taps [154]. Network taps1 are
designed to duplicate all traffic passing through the tap and provide a con-
nection for a dedicated capture device. They use passive splitting (optical
fiber networks) or regeneration (electrical copper networks) technology to
pass through traffic at line rates without introducing delays or altering
data. In addition, they have built-in fail open capability that ensures traf-
fic continuity even if a tap stops working or loses power. Once a tap has
been installed, capture devices can be connected or disconnected without
affecting the monitored link. In Figure 2.3, Flow probe 1 receives its input
traffic by means of a network tap.

• Mirroring mode – Most packet forwarding devices can mirror packets from
one or more ports to another port, to which a capture device is connected.
This is commonly referred to as port mirroring, port monitoring, or Switched
Port ANalyzer (SPAN) session [121]. Port mirroring requires a change in
the forwarding device’s configuration, but does not introduce additional
costs as for a network tap. It should be noted that mirroring may intro-
duce delays and jitter, alter the content of the traffic stream, or reorder
packets [78]. In addition, care should be taken to select a mirror port with
enough bandwidth; Given that most captures should cover two traffic direc-
tions (full-duplex), the mirror port should have twice the bandwidth of the
monitored port, to avoid packet loss. In Figure 2.3, Flow probe 2 receives
its input traffic by means of port mirroring.

Packet captures in wireless networks can be made using any device equipped
with a wireless NIC, under the condition that the wireless traffic is not encrypted
at the link-layer, or the encryption key is known. Wireless NICs can however
only capture at a single frequency at a given time. Although some cards support
channel hopping, by means of which the card can switch rapidly through all
radio channels, there is no guarantee that all packets are captured [86]. In large-
scale wireless networks, it is more common to capture all traffic at a Wireless
LAN (WLAN) Controller, which controls all individual wireless access points and
forwards their traffic to other network segments by means of a high-speed wired

1Another commonly used name is Test Access Port (TAP).
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WLAN
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High-speed uplink

Router

Figure 2.5: Packet capture in wireless networks.

interface. This is shown in Figure 2.5, where the high-speed uplink suitable with
traffic from and to all access points can be captured. Besides having a single point
of capture, the advantage is that link-layer encryption of wireless transmission
protocols does not play a role anymore and captures can be made as described
above for wired networks.

Deployment of packet capture devices in virtual networks is very similar to
deployment in wired networks, and is rapidly gaining importance due to the
widespread use of virtual machines (VMs). Virtual networks act as wired LANs,
but are placed in virtual environments, e.g., to interconnect VMs. We therefore
do not consider Virtual Private Networks (VPNs) as virtual networks, as they are
typically just overlay networks in physical networks. Virtual networks use virtual
switches [60], which support port mirroring and virtual taps. Furthermore, the
mirrored traffic can be forwarded to dedicated physical ports and captured outside
the virtual environment by a packet capture device.

Key to monitoring traffic is to identify meaningful observation points, ulti-
mately allowing capture devices to gather most information on traffic passing by
the observation point. These observation points should preferably be in wired
networks. Even in wireless networks one should consider capturing at a WLAN
controller to overcome all previously discussed limitations. In addition, deploy-
ment of network taps is usually preferred over the use of mirror ports, mainly due
to effects on the packet trace of the latter. Port mirroring should only be used
if necessary and is particularly useful for ad-hoc deployments and in networks
where no taps have been installed.

2.3.3 Technologies

For most operating systems, libraries and Application Programming Interfaces
(APIs) for capturing network traffic are available, such as libpcap or libtrace [1]
for Linux and BSD-based operating systems, and WinPcap for Windows. These
libraries provide both packet capture and filtering engines, and support reading
from and writing to offline packet traces. From a technical point of view, they
are located on top of the operating system’s networking stack.
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Since the networking stacks of operating systems are designed for general-
purpose networking, packet captures usually suffer from suboptimal performance.
The overall capture performance depends on system costs to hand over packets
from the NIC to the capture application, via a packet capture library; Packets
have to traverse several layers, which increase latency and limit the overall perfor-
mance as they add per-packet processing overhead. Several methods have been
proposed to speed up this process [30]:

• Interrupt mitigation and packet throttling (Linux NAPI) reduce perfor-
mance degradation of the operating system under heavy network loads.
Interrupt mitigation decreases the number of interrupts triggered by NICs
during times of heavy traffic, as all interrupts convey the same message
about a large number of packets waiting for processing. This reduces the
system load. Packet throttling is applied when a system is overloaded with
packets; Packets are already dropped by the NIC, even before they are
moved to the software.

• Network stack bypass techniques, such as PF RING, avoid the per-packet
processing overhead caused by the various OS networking layers.

• Memory-map techniques for reducing the cost of copying packets form
kernel-space to user-space, such as [29].

All these methods provide software-based optimizations for making packet
captures. To be able to deal with higher packet rates, however, hardware-
acceleration cards have been introduced. They use FPGAs to reduce CPU load
during packet capture and guarantee packet capture without loss under mod-
est CPU load [33]. Other capabilities of these cards are precise timestamping
(with GPS synchronization), traffic filtering, and multi-core traffic distribution
by means of multiple receive queues. They use Direct Memory Access (DMA)
to receive and transmit packets. In that way, they also address the problem of
passing packets efficiently from NICs to the capture application.

Modern commodity NICs provide a cost-effective solution for making high
performance packet captures on links with speeds up to 10 Gbps [24]. Features
provided by controllers on these NICs (e.g., Intel 82599, Myri-10G Lanai Z8ES)
include multiple receive queues by means of Receive Side Scaling to distribute
packets across multiple CPUs [40], and a DMA engine to off-load CPU processing.
To be able to use these features, vendors provide a set of libraries and drivers for
fast packet processing, such as Intel DPDK2 and PF RING DNA/Libzero3.

It is important to fully understand the performance of the packet capture pro-
cess to create and operate reliable monitoring applications. Care should be taken
when selecting a packet capture library or system: Most packet capture bench-
marks show throughputs for situations without any further processing, which

2http://www.dpdk.org/
3http://www.ntop.org/products/pf_ring/libzero-for-dna/

http://www.dpdk.org/
http://www.ntop.org/products/pf_ring/libzero-for-dna/
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may overestimate the real performance when some form of packet processing is
used. An example of such packet processing is flow export, which will be dis-
cussed in the subsequent sections. Key to high-performance packet processing
is efficient memory management, low-level hardware interaction, and application
optimizations.

2.3.4 Packet Sampling & Filtering

The objective of packet sampling and filtering is to forward only certain packets
to the Flow Metering & Export stage. A combination of several sampling and
filtering steps can be adopted to select the packets of interest.

Packet sampling4 aims at reducing the load of subsequent stages or processes
(e.g., the Metering Process within the Flow Metering & Export stage) and, con-
sequently, to reduce the consumption of bandwidth, memory and computation
cycles. Therefore, sampling should be used whenever it is expected that the num-
ber of monitored packets will overload the following stage. The ultimate objective
is to turn the uncontrolled loss of packets caused by overload into a controlled
one by using sampling.

Several sampling strategies are defined in [99], where two major classes of
sampling schemes can be distinguished: Systematic sampling schemes determin-
istically decide which packets are selected (for example every Nth packet in a
periodic sampling scheme). In contrast, random sampling selects packets in ac-
cordance to a random process. The main challenge when using sampling is to
obtain a representative subset of the relevant packets. In general, random sam-
pling should be preferred over systematic sampling when both are available, be-
cause the latter can introduce unwanted correlations in the observed data. For
example, a measurement using periodic sampling would be likely biased towards
or against periodic traffic. This restriction can be relaxed when it is known in
advance that the monitored traffic is highly aggregated, i.e., it comprises of traffic
from many different hosts, applications, etc. In such a situation, the influence of
the sampling scheme is less noticeable, although its quantitative impact on the
resulting flow data depends on the nature of the traffic [9].

Packet sampling obviously entails loss of information. Depending on the em-
ployed sampling scheme, some properties of the original packet stream can be
easily recovered. For example, if a simple random sampling scheme is used, the
total number of packets or bytes can be estimated by multiplying the measured
numbers by the inverse of the sampling probability. Reciprocally, it means that
sampling with a rate of 1:N results in a reduction of load to the Metering Pro-
cess (in terms of number of packets and bytes to process) by a factor of N .
Other characteristics of the original data are affected in a more complex way.
For example, longer flows are more likely to be sampled than shorter ones. A
simple scaling would yield a biased estimation of the flow length distribution.

4See [27] and [8] for an introduction to sampling in the context of network management.
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Methods to estimate sampled flow statistics have been discussed in [9]. Several
publications propose new sampling schemes that aim at mitigating the effects of
sampling, for example by automatically adapting the sampling rate according to
the traffic load [39].

The role of packet filtering is to deterministically “separate all the packets
having a certain property from those not having it” [99]. Similar to sampling,
filtering can be used to reduce the amount of data to be processed by the sub-
sequent stages. Again, two major classes can be distinguished: With Property
Match Filtering, a packet is selected if specific fields within the packet (and/or
the router state) are equal to a specified value or inside a specified value range.
Typically, such filters are used to limit packet capturing to specific IP addresses,
applications, etc. Hash-Based Filtering applies a hash function to the packet
content or some portion of it, and compares the result to a specified value or
value range. Hash-Based Filtering can be used to efficiently select packets with
common properties or, if the hash function is applied to a large portion of the
packet content, to select packets quasi-randomly.

2.4 Flow Metering & Export

The Flow Metering & Export stage is where packets are aggregated into flows and
flow records are exported, which makes it key to any flow monitoring system. Its
architecture is shown in Figure 2.6. The packet aggregation is performed within
the Metering Process, based on Information Elements that define the layout of a
flow. Information Elements are discussed in Section 2.4.1. After aggregation, an
entry per flow is stored in a flow cache, explained in Section 2.4.2, until a flow is
considered to have terminated and the entry is expired. Expiration of flow cache
entries is discussed in Section 2.4.3. After one or more optional flow-based sam-
pling and filtering functions, which are discussed in Section 2.4.4, flow records
have to be encapsulated in messages. This is where IPFIX comes in, which is
defined in [22] as “a unidirectional, transport-independent protocol with flexible
data representation”. IPFIX message structures and types are discussed in Sec-
tion 2.4.5. Finally, a transport protocol has to be selected, which is discussed
in Section 2.4.6. For an extensive analysis of open-source and commercial flow
metering and export implementations, we refer the reader to [11].

2.4.1 Information Elements

Fields that can be exported in IPFIX flow records are named IEs. The Internet
Assigned Numbers Authority (IANA) maintains a standard list of IEs as the IP-
FIX Information Element registry [127]. Use of the IANA registry for common
IEs is key to cross-vendor operability in IPFIX. Besides IANA IEs, enterprise-
specific IEs can be defined, allowing for new fields to be specified for a particular
application without any alterations to IANA’s registry. IEs have a name, nu-
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ID Name Description

152 flowStartMilliseconds Timestamp of the flow’s first packet.

153 flowEndMilliseconds Timestamp of the flow’s last packet.

8 sourceIPv4Address IPv4 source address in the packet header.

12 destinationIPv4Address IPv4 destination address in the packet header.

7 sourceTransportPort Source port in the transport header.

11 destinationTransportPort Destination port in the transport header.

4 protocolIdentifier IP protocol number in the packet header.

2 packetDeltaCount Number of packets for the flow.

1 octetDeltaCount Number of octets for the flow.

Table 2.1: Examples of common IPFIX Information Elements, from [127].

Application
HTTP, DNS, etc.

Transport
TCP, UDP

Network
IP

Link
Ethernet

Common Information Elements (IEs)

Figure 2.7: Network layers considered for IEs.

meric ID, description, type, length (fixed or variable), and status (i.e., current
and deprecated), together with an enterprise ID in the case of enterprise-specific
IEs [105].

A subset of IEs defined in [127] is shown in Table 2.1, which is often considered
the smallest set of IEs for describing a flow. These IEs are for transport-layer
and network-layer fields, and supported by most flow exporters. However, in
contrast to what the name “IP flow information eXport” (IPFIX) suggests, IEs
can be defined for any layer, ranging from the link-layer (L2) up to and including
the application-layer (L7), as shown in Figure 2.7. For example, IEs have been
defined for Ethernet [46], such as sourceMacAddress (ID 56) and vlanID (ID
58). We refer to the support for application-layer IEs as application awareness.
In other words, flow exporters with application awareness combine DPI with
traditional flow export.

There are also other IEs that are different from the default transport- and
network-layer IEs shown in Table 2.1 in terms of type and semantic. For example,
since many IEs are identical to what can be retrieved using widely used Simple
Network Management Protocol (SNMP) Management Information Base (MIB)
variables, such as interfaceName (ID 82), a current standardization effort is
working to define a method for exporting SNMP MIB variables using IPFIX [109].
This avoids the repetitive definition of IEs in the IANA registry. Another example
are IEs for exporting octet sequences, such as ipPayloadPacketSection (ID
314), which can be useful for exporting sampled packet chunks.
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Guidelines on the definition of globally unique IEs are provided in [106], which
are intended for both those defining new IEs and reviewing the specifications of
new IEs. Before defining a new IE, one should be sure to define an IE that 1)
is unique within the IANA IE registry, 2) is self-contained, and 3) represents
nonproprietary information. After definition, the IE specification should be sent
to IANA, after which the request for approval is evaluated by a group of experts,
named “IE-Doctors”. Upon approval, IANA is requested to apply the necessary
changes to the IE registry. The same process applies to requests for IE depreca-
tion.

The configuration of Metering Processes in terms of IEs is not standardized
and varies from exporter to exporter. However, flow collectors are always in-
structed by flow exporters by means of templates, which are used to describe
which IEs are used for which flow. This approach is also used by NetFlow v9, al-
though it is not compatible with IPFIX, because of the different message formats
used by the two protocols. NetFlow v5 does not provide template support and is
therefore fixed to its initial specification. This considerably limits the applicabil-
ity of NetFlow v5, since no protocol evolution is possible. NetFlow v5 cannot be
used for monitoring IPv6 traffic, for example. It is however often suggested that
NetFlow v5 is the most widely deployed flow export protocol and therefore still
a relevant source of flow information [7], [136].

In addition to what has been described before, several more advanced mecha-
nisms with respect to IEs have been defined: variable-length encoding and struc-
tured data. Variable-length encoding can be used for IEs with a variable length
in IPFIX, despite of IPFIX’ template mechanism being optimized for fixed-length
IEs [104]. As such, longer IEs can be transferred efficiently since no bytes are
wasted due to a fixed-size reservation. Structured data in IPFIX [102] is useful
for transferring a list of the same IE, by encapsulating it in a single field. A
clear use-case for this are MPLS labels; Since every packet can carry a stacked
set of such labels, one traditionally has to define a dedicated IE for every label
position, e.g., mplsTopLabelStackSection, mplsTopLabelStackSection2, etc.
With structured data, an MPLS label stack can be encoded using a single IE.

2.4.2 Flow Caches

Flow caches are tables within a Metering Process that store information regarding
all active network traffic flows. These caches have entries that are composed of
IEs, each of which can be either a key or non-key field. The set of key fields,
commonly referred to as the flow key, is used to determine whether a packet
belongs to a flow already in the cache or to a new flow, and therefore defines
which packets are grouped into which flow. In other words, the flow key defines
the properties that distinguish flows. Incoming packets are hashed based on the
flow key and matched against existing flow cache entries. A match triggers a flow
cache update where packet and byte counters are tallied. Packets not matching
any existing entry in the flow cache are used to create new entries. Commonly
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used key fields are source and destination IP addresses and port numbers. Non-
key fields are used for collecting flow characteristics, such as packet and byte
counters.

Given that source and destination IP addresses are normally part of the flow
key, flows are usually unidirectional. In situations where both forward and reverse
flows (between a source/destination pair) are important, bidirectional flows [95]
may be considered. Bidirectional flow records have counters for both directions,
and a special IE (biflowDirection, ID 239) to indicate a flow’s initiator and
responder. Since source and destination IP addresses are still part of the flow
key in a setup for bidirectional flows, special flow cache support is needed for
identifying matching forward and reverse flows.

Several parameters should be considered when selecting or configuring a flow
cache for a particular deployment, such as the cache layout, type and size. The
flow cache layout should match the selection of key and non-key fields, as these are
the IEs accounted for each flow. Given that there are many types of IEs available,
flow cache layouts should be able to cope with this flexibility. For example,
application information in flow records is becoming more and more important,
which can be concluded both from the fact that IEs are being registered for
applications in IANA’s IE registry, as well as flow exporters with application
identification support are being developed. Flow caches, thus, should support
flexible flow definitions per application.

Flow caches can also differ from each other in terms of type. For exam-
ple, IPFIX defines flows that consist of a single packet, commonly referred to
as single-packet flows5 [97]. A regular flow cache typically cannot be used for
single-packet flows, as the cache management (e.g., the process that determines
which flow has terminated) of such caches is often not fast enough. To overcome
this problem, some vendors implement dedicated caches for such flows, sometimes
referred to as immediate cache [117]. An example use case for single-packet flows
and immediate caches is a configuration with a very low packet sampling rate,
such as 1:2048, where it is expected that no more than one packet is sampled per
flow. In those situations, one can avoid resource-intensive cache management by
using an immediate cache. Besides caches for single-packet flows, it is possible to
use caches from which flow entries cannot expire, but are periodically exported,
named permanent cache [117]. These caches can be used for simple flow account-
ing, as they do not require a flow collector for collecting flow records; As flow
cache entries are never expired, packet and byte counters are never reset upon
expiration and therefore represent the flow state since the Metering Process has
started.

The size of flow caches depends on the memory available in a flow exporter
and should be configured/selected based on the expected number of flows, the
selected key and non-key fields, and expiration policies. Given that expiration

5In terms of expiration, which is discussed in Section 2.4.3, these flows are said to have a
zero timeout.
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policies have the strongest impact on the required flow cache size, we discuss
them in the next subsection.

2.4.3 Flow Cache Entry Expiration

Cache entries are maintained in the flow cache until the corresponding flows
are considered to have terminated, after which the entries are expired. These
entries are usually expired by the Metering Process according to given timeout
parameters or when specific events have occurred. IPFIX, however, does not
mandate precisely when flow entries need to be expired and flow records exported.
Instead, it provides the following reasons as guidelines on how Metering Processes
should expire flow cache entries [97]:

• Active timeout – The flow has been active for a specified period of time.
Therefore, the active timeout helps to report the activity of long-lived flows
periodically. Typical timeout values range from 120 seconds to 30 minutes.
Note that cache entries expired using the active timeout are not removed
from the cache; Counters are reset, and start and end times are updated.

• Idle timeout – No packets belonging to a flow have been observed for a
specified period of time. Typical timeout values range from 15 seconds to
5 minutes.

• Resource constraints – Special heuristics, such as the automatic reduction
of timeout parameters at run-time, can be used to expire flows prematurely
in case of resource constraints.

Other reasons for expiring flow cache entries can be found in various flow
exporter implementations:

• Natural expiration – A TCP packet with a FIN or RST flag set has been
observed for a flow and therefore the flow is considered to have terminated.

• Emergency expiration – A number of flow entries are immediately expired
when the flow cache becomes full.

• Cache flush – All flow cache entries have to be expired in unexpected situ-
ations, such as a significant change in flow exporter system time after time
synchronization.

The configured active and idle timeout values have impact on the total number
of flow records exported for a particular dataset and the number of flow entries
in the flow cache. On the one hand, using longer timeout values results in a
higher aggregation of packets into flow records, which is generally positive and
desirable to reduce the load on flow collectors. On the other hand, using longer
timeout values means that it takes longer before a flow becomes visible to the
Data Analysis stage.
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(b) Varying active timeout values, idle timeout = 15 seconds

Figure 2.8: Impact of timeouts on the aggregation of packets into flows and flow
cache utilization.

To illustrate the expiration behavior of a typical flow exporter, we have per-
formed several experiments on the campus network of the UT. These experiments
are based on a packet trace consisting of one day of network traffic between the
campus network of the UT and the Dutch NREN SURFnet, accounting for 2.1 TB
of data. Our experiments have been performed on the impact of active and idle
timeout values on 1) the number of resulting flow records, and 2) the maximum
flow cache utilization. nProbe has been used for exporting the flows without sam-
pling. All experiments have been performed twice: Once by varying the active
timeout value while maintaining a fixed idle timeout value, and once by varying
the idle timeout value while maintaining a fixed active timeout value.

The experiment results are shown in Figure 2.8. The figure shows the maxi-
mum number of concurrently used flow cache entries for various timeout values.
Several conclusions can be derived from the experiment results. First, as shown in
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Figure 2.9: Sampling & filtering in a flow exporter.

Figure 2.8a, an increasing idle timeout value results in fewer flow records, which
is the case because of more packets being aggregated into the same flow record.
This implies that flow entries stay in the flow cache for a longer time, resulting
in a higher flow cache utilization. Second, the number of exported flow records
and the maximum flow cache utilization stabilize for an increasing active timeout
value, as shown in Figure 2.8b. This can be explained by the fact that most flow
entries are expired by the idle timeout because of the very large active timeout
value. Third, as soon as the idle timeout value equals the active timeout value
(i.e., 120 seconds for our experiments), as shown in Figure 2.8a, the number of
flow records and the flow cache utilization stabilize again, which is due to the
fact that flow records are expired by the active timeout. We have also measured
the impact of using natural expiration based on TCP flags and conclude that it
barely affects the total number of flow records and the flow cache utilization.

Besides showing the relation between active and idle timeout behavior, the
results in Figure 2.8 provide insight into the minimum flow cache size required
for monitoring the link in this specific example, which has a top throughput of
roughly 2 Gbps. For example, given an active and idle timeout values of 120
and 15 seconds, respectively, the maximum flow cache utilization never exceeds
230k cache entries.

2.4.4 Flow Record Sampling & Filtering

Flow record sampling and filtering provide a means to select a subset of flow
records, to reduce the processing requirements of the Exporting Process and all
subsequent stages. In contrast to packet sampling and filtering, which are per-
formed as part of the Packet Observation stage, flow record sampling and filtering
functions are performed after the Metering Process and therefore work on flow
records instead of packets. This is shown in Figure 2.9. As a consequence, either
all packets of a flow are accounted, or none.

The techniques for performing flow record sampling and filtering are similar
to packet sampling and filtering, which have been described in Section 2.3.4. We
distinguish again between systematic sampling and random sampling [107]. Sys-
tematic sampling decides deterministically whether a flow record is selected (for
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Figure 2.10: IPFIX message (simplified) [104].

example, every Nth flow record in periodic sampling). In contrast, with random
sampling, flow records are selected in accordance to a random process. As for
packet sampling, random sampling should be generally preferred over systematic
sampling when in doubt about the characteristics of the traffic, because the latter
can introduce unwanted correlations in the observed data.

Flow record filtering can be distinguished between Property Match Filtering
and Hash-Based Filtering [107]. Property Match Filtering for flow records works
similarly to Property Match Filtering for packets, but rather than filtering on
packet attributes, filtering is performed on flow record attributes. It is particu-
larly useful when only flow records for specific hosts, subnets, ports, etc. are of
interest. With Hash-Based Filtering, flow records are selected if the hash value of
their flow key lies within a predefined range of values. Hash-Based Filtering can
be used for selecting a group of flow records from different observation points.
Flow records from different observation points can be correlated because the flow
key shared by packets belonging to the same flow results in the same hash value.

2.4.5 IPFIX Messages

A simplified version of the IPFIX message format [104] is shown in Figure 2.10.
The field size in bytes is shown for fields with a fixed size; Other fields have a
variable length. The first 16 bytes of the message form the message header and
include a protocol version number, message length, export time and an observa-
tion domain ID. After the header come one or more Sets, which have an ID and
a variable length, and can be of any of the following types:

• Template Sets contain one or more templates, used to describe the layout
of Data Records.

• Data Sets are used for carrying exported Data Records (i.e., flow records).
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• Options Template Sets are used for sending meta-data to flow collectors,
such as control plane data or data applicable to multiple Data Records [96].
For example, Options Template Sets can be used to inform flow collectors
about the flow keys used by the Metering Process.

Sets are composed of one or more records. The number of records in an IPFIX
message is usually limited to avoid IP fragmentation. It is up to the Exporting
Process to decide how many Records make up a message, while ensuring that
the message size never exceeds the Maximum Transmission Unit (MTU) of a link
(e.g., 1500 bytes) [104]. An exception to this rule is a situation in which IEs with
variable lengths that exceed the link Maximum Transmission Unit (MTU) are
exported.
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Template

Length = 9 IEsTemplate ID = 257

flowStartMilliseconds (ID = 152)

flowEndMilliseconds (ID = 153)

sourceIPv4Address (ID = 8)

destinationIPv4Address (ID = 12)

sourceTransportPort (ID = 7)

destinationTransportPort (ID = 11)

protocolIdentifier (ID = 4)

packetDeltaCount (ID = 2)

octetDeltaCount (ID = 1)

Data Record

Set Header (Set ID = 257)

Record 1

Record n

Flow Record

flowStartMilliseconds = 2013-07-28 21:09:07.170

flowEndMilliseconds = 2013-07-28 21:10:33.785

sourceIPv4Address = 192.168.1.2

destinationIPv4Address = 192.168.1.254

dstTransportPorta = 80sourceTransportPort = 9469

protocolIdentifier = 6

packetDeltaCount = 17

octetDeltaCount = 3329

Figure 2.11: Correlation between IPFIX data types (simplified) [104].

aThis IE has been abbreviated for the sake of space. The full IE name is shown in the
template.
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SCTP TCP UDP

Congestion awareness + + –

Deployability – + +

Graceful degradation + – –

Reliability + + –

Secure transport + + –

Table 2.2: Comparison of transport protocols for IPFIX.

An example of a template, a corresponding Data Record, and a flow record
is shown in Figure 2.11. The template is shown at the top of the figure, and
consists of an ID (257) and 9 IEs. A corresponding Data Record points at the
appropriate template by listing its ID. This is mandatory to provide a means for
flow collectors to associate Data Records with their templates. Also multiple flow
records are included in the Data Record, which must adhere to the full set of IEs
listed in the template.

2.4.6 Transport Protocols

After constructing an IPFIX message for transmission to a flow collector, a trans-
port protocol has to be selected. A key feature of IPFIX is support for multiple
transport protocols [104]. A comparison of transport protocols for IPFIX is pro-
vided in Table 2.2, where ‘+’ stands for supported or good, and ‘-’ for unsupported
or poor.

The Stream Control Transmission Protocol (SCTP) [94] is the mandatory
transport protocol to implement for IPFIX. It provides a congestion-aware and
sequential packet delivery service; Packets are kept in sequence as with TCP, and
packet boundaries are preserved as with UDP, i.e., the receiver can distinguish
between individual packets, rather than a stream of bytes as with TCP. SCTP
also provides multiple streams per connection, which can be used to avoid head-
of-line blocking when multiple logical separate streams (e.g., one per template)
are exported simultaneously [103]. The partial reliability extension [90] to SCTP
provides further flexibility: The Exporting Process can cancel retransmission of
unreceived datagrams after a given timeout. This allows graceful degradation via
selective dropping of exported datagrams under high load, rather than overload-
ing buffers with pending retransmissions.

Despite these advantages, SCTP is currently the least-deployed of the three
supported protocols. The reason is primarily a practical one: IPFIX over SCTP
can be difficult to implement, mainly because support for SCTP lacks on other
operating systems than Linux and BSD. Bindings to DTLS6 for secure transport
may also be hard to find in all but the most recent versions of TLS libraries.

6DTLS is an implementation of TLS for transmission over datagram transport protocols,
such as UDP and SCTP.
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There are also deployment considerations. Since much more effort has gone into
TCP stack optimization than SCTP stack optimization, the latter can be slower
than TCP. It can also be difficult to send SCTP packets across the Internet, as
some middleboxes drop SCTP packets as having an unrecognized IP protocol
number. Also, many Network Address Translation (NAT) devices often fail to
support SCTP. However, given its advantages, we advocate using SCTP for flow
export in every situation in which it is possible to do so.

IPFIX supports transport over TCP as well. TCP provides congestion-aware,
reliable stream transport. It is widely implemented and, as such, it is very easy
to implement IPFIX over TCP on most platforms. Bindings to TLS for secure
transport are also widely available, which makes IPFIX over TLS over TCP
the preferred transport for exporting flow records over the Internet. The pri-
mary problem with IPFIX over TCP is that TCP does not degrade gracefully
in overload situations. Specifically, the TCP receiver window mechanism limits
the Exporting Process’ sending rate when the Collecting Process is not ready
to receive, thereby locking the rate of export to the rate of collection. This
pushes buffering back to the Exporting Process, which is generally the least able
to buffer datagrams. Careful selection of TCP socket receive buffer sizes and
careful implementation of the Collecting Process can mitigate this problem, but
those implementing Collecting Processes should be aware of it.

The most widely implemented and deployed transport protocol for flow export
is UDP. UDP has the advantage of being easy to implement even in hardware Ex-
porting Processes. It incurs almost no overhead, but on its turn provides almost
no service: “Best-effort” (or “unreliable”) delivery of packets without congestion
awareness. As a consequence, UDP should be used for flow export with care.
The lack of any congestion awareness means that high-volume export may incur
significant loss. The lack of flow control means that Collecting Processes must
use very large socket buffers to handle bursts of flow records. As the volume
of exported flow records increases dramatically during Denial of Service (DoS)
attacks or other incidents involving large numbers of very short flows, the lack
of flow control also may make UDP futile for measuring such incidents. Another
serious problem concerns templates. On UDP, Exporting Processes must period-
ically resend templates to ensure that Collecting Processes have received them.
While IPFIX does provide a sequence numbering facility to allow a Collecting
Process to roughly estimate how many flow records have been lost during export
over UDP, this does not protect templates. A Collecting Process that loses a
template, or that restarts in the middle of an export, may be unable to interpret
any flow records until the next template retransmission.

A fourth method provided by IPFIX is the IPFIX File Format [101]. IPFIX
messages are grouped together into files, which can be stored and transported
using any of the various protocols that deal with files (e.g., SSH, HTTP, FTP
and NFS). File transport is not particularly interoperable and therefore not rec-
ommended in general. However, it may be worth considering in specific cases,
such as making IPFIX flow data widely available via a well-known URL.
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2.5 Data Collection

Flow collectors are an integral part of flow monitoring setups, as they receive,
store, and pre-process7 flow data from one or more flow exporters in the net-
work. Data collection is performed by one or more Collecting Processes within
flow collectors. Common pre-processing tasks are data compression [41], [101],
aggregation [108], data anonymization, filtering, and summary generation.

In this section, we discuss the most important characteristics of flow collectors.
We start by describing the various formats in which flow data can be stored
in Section 2.5.1. After that, in Section 2.5.2, we provide best-practices in the
field of data anonymization. Anonymization is a type of data obfuscation that
ensures anonymity of individuals and prevents tracking individual activity. For an
extensive analysis of open-source and commercial flow collection implementations,
we refer the reader to [11].

2.5.1 Storage Formats

The functionality and performance provided by flow collectors depend strongly
on the underlying data storage format, as this defines how and at which speed
data can be read and written. This section discusses and compares the vari-
ous available storage formats, which should allow one to choose a flow collector
that satisfies the requirements of a particular setup or application area. We can
distinguish two types of storage formats:

• Volatile – Volatile storage is performed in-memory and therefore very fast.
It can be useful for data processing or caching, before it is written to per-
sistent storage.

• Persistent – Persistent storage is used for storing data for a longer time
and usually has a larger capacity. However, it is significantly slower than
volatile storage.

Although flow data often has to be stored for a long time (e.g., to comply with
data retention laws), it can be useful to keep data in-memory. This is mostly the
case when flow data has to be analyzed on-the-fly, and only results have to be
stored. In those situations, one can benefit from the high performance of volatile
storage. An example use case is the generation of a time-series in which only the
time-series data itself has to be stored.

When data has to be stored beyond the time needed for processing, it has to
be moved to persistent storage. This, however, results in a bottleneck, due to
the difference in speed between volatile and persistent storage. Depending on the
system facilitating the flow collection, one may consider to compress data before

7We talk about pre-processing here, as we assume that processing is done in the Data
Analysis stage.
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Flat files
Row-oriented

databases
Column-oriented

databases

Disk space + – 0

Insertion
performance

+ – 0

Portability
– (binary),

+ (text)
– –

Query
flexibility

– + +

Query
performance

+ (binary),
– (text)

– +

Table 2.3: Comparison of data storage formats.

moving it to persistent storage (more details are provided in Section 2.6.3). We
distinguish between the following types of persistent storage:

• Flat files – Flat file storage is usually very fast when reading and writ-
ing files, while providing limited query facilities [35]. Examples of flat file
storage are binary and text files.

• Row-oriented databases – Row-oriented databases store data in tables by
means of rows and are frequently used in Database Management Systems
(DBMSs), such as MySQL8, PostgreSQL9, and Microsoft SQL Server10.
Accessing the data is therefore done by reading the full rows, even though
only part of the data may be needed to answer a query.

• Column-oriented databases – Column-oriented databases, such as FastBit11,
store data by column rather than by row. Only fields that are necessary
for answering a query are therefore accessed.

A comparison of these data storage formats is shown in Table 2.3, where ‘+’
stands for good, ‘–’ for poor, and ‘0’ for average. We evaluate each format based on
disk space requirements, insertion performance, portability, query flexibility and
query performance. We consider nfdump a representative option for binary flat
file storage, MySQL for row-oriented databases, and FastBit for column-oriented
databases.

In terms of disk space, flat files have a clear advantage above the database-
based approaches. This is mainly due to the fact that row- and column-oriented
databases usually need indexes for shorter query response times, which consume
more disk space on top of the “raw” dataset. For example, it is described in [45]

8https://www.mysql.com/
9http://www.postgresql.org/

10http://www.microsoft.com/sql/
11https://sdm.lbl.gov/fastbit/

https://www.mysql.com/
http://www.postgresql.org/
http://www.microsoft.com/sql/
https://sdm.lbl.gov/fastbit/
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that MySQL with indexes needs almost twice the capacity of nfdump for a partic-
ular dataset. For the case of FastBit, it is shown to be less capacity-intensive than
MySQL (depending on its configuration) [35], but more than nfdump. High com-
pression rates can be achieved since data in a particular column is usually very
similar, i.e., homogeneous. The highest insertion performance can be achieved
using flat files, as new data can be simply added to the end of a file, without
any additional management overhead, such as updating indexes in the case of
MySQL. When it comes to portability, text-based flat files have the clear advan-
tage of being readable by many tools on any system. However, flat files usually
provide only limited query language vocabulary, which makes databases more
flexible in terms of possible queries.

In contrast to database-based approaches, flat file storage is usually not in-
dexed; Sequential scans over datasets are therefore unavoidable. However, since
many flat file storages create smaller files at regular intervals, this can be consid-
ered a coarse time-based index that limits the size of sequential scans by selecting
fewer input files in a query. Several works have compared the performance of the
various data storage formats in the context of flow data collection. The perfor-
mance of binary flat files and MySQL is compared in [45], where query response
times are measured for a set of queries on subsets of a single dataset. The authors
show that binary storage outperforms MySQL-based storage in all tested scenar-
ios and advocate the use of binary storage when short query response times are
required. A similar methodology has been used in [73], where the performance of
FastBit is compared with binary flat files. It is shown that FastBit easily outper-
forms binary storage in terms of query response times, which is explained by the
fact that FastBit only reads columns that are needed for a query. This results in
fewer Input/Output (I/O) operations. The performance of FastBit- and MySQL
has been compared in [35], where the authors conclude that FastBit-based storage
is at least an order of magnitude faster than MySQL.

The performance of the described approaches can generally be improved by
distributing flow data over multiple devices. For example, it is a common practice
to use storage based on a Redundant Array of Independent Disks (RAID) in a
flow collector, which ensures data distribution over multiple hard drives in a
transparent fashion. Even more performance improvements can be achieved by
deploying multiple flow collectors and distributing the data between them. This,
however, requires some management system that decides how data is distributed
(for an example, see [57]).

2.5.2 Data Anonymization

Flow data traditionally has a significant privacy protection advantage over raw or
sampled packet traces: Since flow data generally does not contain any payload,
the content of end-user communications is protected. However, flows can still
be used to identify individuals and track individual activity and, as such, the
collection and analysis of flow data can pose severe risks for the privacy of end
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users. The legal and regulatory aspects of this privacy risk, and requirements to
mitigate it are out of scope for this work – these are largely a matter of national
law, and can vary widely from jurisdiction to jurisdiction. Instead of surveying
the landscape of data protection laws, we make a general simplifying assumption
that IP addresses can be used to identify individuals and as such should be
protected. Other information available in flows can be used to disambiguate
flows and therefore may be used to profile end users or to break IP address
anonymization.

Best practices for trace data anonymization are laid out by CAIDA in [113],
drawing on the state of the art in anonymization techniques surveyed in [137].
The key tradeoff in IP address anonymization is between privacy risk and data
utility. There is no ‘one-size-fits-all’ flow data anonymization strategy, as data
utility is also dependent on the type of analysis being done. For example, simply
removing IP address information carries with it the lowest risk of identification,
but also makes the data useless for anything requiring linkage of flows to hosts;
For simple statistics on flow durations and volumes, for example, such data can
however still be useful.

In the more general case, since networks are structured, a structure-preserving
anonymization technique such as the Crypto-PAn algorithm [10] allows anonymized
IP addresses to be grouped by prefix into anonymized networks. This preserves
significant utility for analysis, at the cost of restricting the space of possible
anonymized addresses for a given real address, making profiling attacks against
address anonymization easier. Even given this tradeoff, the significantly increased
utility of the results leads to a recommendation for Crypto-PAn.

Given the restricted space of solutions to the anonymization problem, it has
become apparent that unrestricted publication of anonymized datasets is prob-
ably not a tenable approach to the sharing of flow data [3], as attacks against
anonymization techniques scale more easily than strengthening these techniques
while maintaining utility. Technical approaches to data protection are therefore
only one part of the puzzle; Non-technical protection, such as sharing of data
in vetted communities of researchers, or analysis architectures whereby analysis
code is sent to a data repository and only results are returned, must also play a
part in preserving the privacy of network end-users.

2.6 Lessons Learned

In the previous sections, we have discussed how to setup a typical flow monitoring
system. Before the exported flow data can however be used for production or
measurement purposes, the setup has to be verified and calibrated. This section
discusses how hidden problems that impact the resulting data and are caused by
infrastructural problems, can be detected and potentially overcome. We start by
discussing flow exporter overload in Section 2.6.1, followed by transport overload
and flow collector overload in Section 2.6.2 and 2.6.3, respectively. Another source
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of problems with flow data are measurement artifacts, typically related to flow
exporter implementations, which will be covered in detail in Chapter 3.

2.6.1 Flow Exporter Overload

Flow caches in a flow exporter usually have a fixed size that is either constrained
by hardware, or determined at compile-time in the case of flow exporter software.
When this size turns out to be small, flow data loss or low performance can be
the result. The latter is especially the case for software-based solutions, as they
often use linked lists to store different flow cache entries under the same hash
value, which results in longer cache entry lookup times. Given that it is not
always possible to foresee significant changes in the monitored traffic, flow caches
may eventually turn out under-dimensioned.

Since under-dimensioned flow caches usually result in data loss it is important
to be aware of this happening, especially when the exported flow data is used for
critical applications. For those having access to a flow exporter, be it a packet
forwarding device or dedicated probe, it is usually trivial to obtain these data
loss statistics. For example, software exporters often write them to log files,
while the flow cache utilization and loss statistics of hardware flow exporters
can be obtained via a Command-Line Interface (CLI), or SNMP. An example of
how to retrieve such details from Cisco switches is provided in Section 3.2. For
those having only access to the exported flow data, it is much harder to derive
conclusions about data loss. An example of this is also provided in Section 3.4,
where it is shown that indications of an under-dimensioned flow cache can be
retrieved from the dataset with some uncertainty.

Several actions can be taken to reduce flow exporter load, without the need
to replace a flow exporter. First, expiration timeouts can be reduced. Especially
the idle timeout should be considered here, as it expires cache entries of flows
that are inactive anyway. Although reducing timeouts results in a lower flow
cache utilization, which has been shown in Section 2.4.3, this will result in more
flow records. Care should be taken to not overload a flow exporter’s Exporting
Process or a flow collector with this larger number of flow records.

A second action for reducing the load of flow exporters is enabling packet
sampling or decreasing the packet sampling rate, i.e., reducing the number of
packets forwarded to the Metering Process. We have measured the impact of
packet sampling on the resulting flow data based on the dataset presented in the
introductory words of this section. The results are shown in Figure 2.12 and two
conclusions can be derived from this figure. First, the use of packet sampling
does not necessarily reduce the number of flow records, mostly because of the
use of timeout-based expiration and the nature of the traffic; When intermediate
packets in a flow are not sampled and therefore not considered by the Metering
Process, this flow can be split into multiple flows by the applied idle timeout.
This demonstrates that packet sampling reduces the load of the Metering Pro-
cess, but not necessarily of the subsequent stages. Second, the impact of packet
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Figure 2.12: Impact of packet sampling on the number of flow records.

sampling on the number of flow records reduces when the sampling rate is in-
creased (except for very high rates, such as 1:2, in our dataset). In contrast to
packet sampling, flow sampling reduces the number of flow records, but it will
not help to reduce utilization of the flow cache, as it is applied after the Metering
Process. Enabling packet sampling or increasing its rate however results in infor-
mation loss that is in various cases very hard to (mathematically) compensate for.
A flow-based anomaly detection system, for example, which is based on thresh-
olds determined on a non-sampled dataset or datasets captured using another
sampling rate, will function sub-optimally or stop functioning completely. It is
therefore advised to tune flow entry expiration first, before enabling or modifying
sampling parameters.

As soon as a flow exporter is experiencing capacity problems due to resource
constraints, flow records may start to be expired in a different way. That means,
the active and idle timeouts are respected as much as possible, until the utilization
of the flow cache exceeds a threshold (e.g., 90%). At that moment, an emergency
expiration kicks in which expires cache entries prematurely, to free up the flow
cache and to allow new entries to be inserted. This results in more flow records,
and flow data that is not expired consistently, which may impact the subsequent
Data Analysis stage. For example, an IDS that counts the number of flow records
for detecting a particular anomaly may not function properly anymore by raising
false alerts. It is therefore important to be aware of these dynamics in flow export
setups.

2.6.2 Transport Overload

It is not uncommon for flow exporters to export data from links of 10 Gbps and
higher over links of 1 Gbps. This is usually the case because flow data is sent to
collectors of the exporter’s management interface (which usually has a line speed
of 1 Gbps), and because flow collectors are often “normal” file servers that are not
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Sampling rate Protocol Export packets / bytes

1:1 NetFlow v5 1.4 M / 2.1 G

1:1

NetFlow v9

3.5 M / 2.5 G

1:10 1.6 M / 1.1 G

1:100 314.9 k / 222.5 M

1:1000 72.2 k / 49.5 M

1:1 IPFIX 4.3 M / 3.0 G

Table 2.4: Export volumes for the UT dataset (2.1 TB).

equipped with special, high-speed network interfaces. Due to the data reduction
achieved by flow export, flow data exported from high-speed links can generally be
exported over smaller links without data loss. However, in anomalous situations
as described in the previous subsection, such links will become a bottleneck in
a flow monitoring system. This is especially the case in anomalous situations,
where the data aggregation achieved by flow export is constrained, such as under
DDoS attacks. One type of DDoS attack are flooding attacks, which aim at
overloading targets by opening many new connections by sending a large number
of TCP SYN-packets, for example. Due to the definition of a flow, this type of
traffic results in many new flows, because of the changing flow key in every packet
[64]. Moreover, depending on the selected number of IEs for each flow, the data
aggregation usually achieved can change into data export that is neutral in size
(i.e. the exported data has the same size as the monitored data) or even data
amplification; As soon as the overhead of the IPFIX Message is larger than the
monitored packets on the line (e.g., during a flooding attack), amplification takes
place. This is not uncommon, as many flow exporters use by default a set of IEs
that is larger in terms of bytes than a TCP SYN-packet, for example.

We have measured the volume of NetFlow and IPFIX Messages in terms of
packet and bytes for the UT dataset introduced in Section 2.4.3. The results for
various packet sampling rates and export protocols are shown in Table 2.4. Two
main observations can be made. First, the newer the flow export protocol, the
more packets and bytes are sent to the flow collector. This can be explained by
the inclusion of (option) templates in NetFlow v9 and IPFIX, and the increase
in timestamp size from 32 bits relative timestamps (in NetFlow v9) to 64 bits
absolute timestamps12 in IPFIX. Second, regardless of the export protocol used,
NetFlow and IPFIX traffic is roughly 0.1% of the original traffic in a setup without
packet sampling. This is in contrast to [96], where it is claimed that the IPFIX
traffic generated by a flow exporter is 2-5% of the traffic of the monitored link.

Both NetFlow and IPFIX carry sequence numbers in their respective packet
headers, which assist in identifying packet loss when either unreliable trans-

12IPFIX supports timestamps at multiple granularities, ranging from seconds to nanoseconds.
The used flow exporter, nProbe, uses millisecond resolution timestamps by default for IPFIX.
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ports are used (e.g., UDP) or the transport bandwidth is permanently under-
dimensioned. Flow collectors, such as nfdump, keep track of these sequence num-
bers and store the number of sequence failures in the metadata of each file. Before
deriving any conclusion from sequence failure counters, attention should be paid
to the export protocol version. Both NetFlow v5 and IPFIX provide sequence
numbers in terms of flow records, while NetFlow v9 provides these in terms of
export packets. As such, the actual number of missing flow records can only be
estimated when NetFlow v5 or IPFIX are used.

2.6.3 Flow Collector Overload

Flow data collection usually gets least attention of all stages in a typical flow
monitoring setup, although a suboptimal setup can result in severe – and often
unnoticed – data loss. What makes it difficult to dimension a flow collector,
is that in anomalous situations, the number of incoming flow records can be
doubled or even more than that. Considerable over-provisioning and calibration
are therefore needed to ensure that no data is lost. In this subsection, we discuss
how flow collectors should be calibrated by means of performance measurements.

Data loss as part of flow collector overload can be a consequence of both kernel
and application buffer overflows, and disk I/O overload. Kernel buffers store
NetFlow and IPFIX Messages before they are received by a Collecting Process.
Application buffers are part of the flow collector itself and can be used for any
intermediate processing before the flow data is stored. Buffers can be tuned
to a certain extent; Increasing buffer sizes allows more data to be temporarily
stored, but is useless if subsequent system elements are becoming a bottleneck.
In practice, disk I/O will be a bottleneck in such situations, so increasing buffers
provides only limited advantages.

Many flow collectors apply data compression to flow data by default. Whether
or not compression should be enabled depends on the processing and storage
capacities of the system acting as a flow collector. As a rule of thumb, one
can compare the time needed to store a flow data chunk both in compressed and
uncompressed format. If writing compressed data is faster, the storage subsystem
is the bottleneck of the collection system and data compression, which is CPU-
intensive, should be enabled. Otherwise, if writing uncompressed data is faster,
processing capacity is the bottleneck and data compression should be disabled.
This rule of thumb is confirmed by nftest, part of nfdump, which performs these
tests automatically and provides one with an advice on whether or not to enable
data compression.

To get an idea of how much processing capacity is needed to store flow data
of one day, we have performed several measurements on our UT dataset, where
we have used nfdump as the flow collector software. The storage volumes for
various export parameters are listed in Table 2.5. The listed storage volumes are
for compressed datasets and are slightly less than 1 GB per day when no packet
sampling is used. To put this in contrast; The Czech NREN CESNET does not
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Sampling rate Protocol Storage volume Reduction factor

1:1 NetFlow v5 912.7 MB 2301x

1:1

NetFlow v9

1.0 GB 2100x

1:10 503.7 MB 4169x

1:100 103.9 MB 20212x

1:1000 20.4 MB 102941x

1:1 IPFIX 820.4 MB 2560x

Table 2.5: Storage volumes for the UT dataset (2.1 TB).

apply packet sampling either and stores roughly 125 GB of flow data per day,
while SURFnet, the Dutch NREN, stores around 16 GB per day with a packet
sampling rate of 1:100.

2.7 Conclusions

This chapter has shown and discussed all aspects of a full-fledged flow monitor-
ing setup based on NetFlow or IPFIX, covering the complete spectrum of packet
observation, flow metering and export, data collection, and data analysis. The
generic architecture of such setups, as well as the various stages it involves, have
been explained in Section 2.2. Additionally, we have shown that each of these
stages affects the final flow data and consequently, its analysis. Understanding all
these stages is therefore of key importance to anyone performing flow measure-
ments, and for anyone using flow data for compromise detection in particular.

Based on the results presented in this chapter, we conclude that flow mea-
surements can be used for compromise detection if two requirements are satisfied.
First, the exported flow data should reflect the original network traffic flows pre-
cisely. Although this appears trivial for any flow data analysis, there are various
factors that we have explored in this chapter that cause the exported data to not
be a precise representation of the original network traffic. For example, packet
sampling results in packets not being metered at all, resulting in an unfaithful
representation of the original flows by definition. Also, the incorrect configu-
ration of expiration timers may result in multiple flows being merged into the
same flow record, especially if port numbers are reused (e.g., during large attacks
resulting in many connections). Taking the default active timeout value of Cisco
of 30 minutes, for example, would yield many flows to be merged into the same
record. Second, we have shown that overload may occur in various stages of
flow monitoring systems. During attacks that involve many small connections,
the meta-data used for flow accounting may even result in amplification of the
original data. We investigate this in detail in Chapter 6. Given that overload
typically results in data loss, care must be taken to dimension the flow monitoring
system appropriately.
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CHAPTER 3

Flow Measurement Artifacts

Flow data provides an aggregated view of network traffic in which streams of
packets are grouped in flows. The resulting scalability gain usually excuses the
coarser data granularity, as long as the flow data reflects the actual network
traffic precisely. For many applications, such as accounting and profiling,
flow data is a proven and reliable source of information. However, we have
observed that the flow export process may introduce artifacts in the exported
data, which may impair more advanced data analyses, such as compromise
detection. In this chapter, we therefore investigate several artifacts we dis-
covered to impair flow data analysis, by explaining how they can be detected
in datasets and which implementation decisions are causing them. In ad-
dition, we verify the artifacts’ presence in data from a set of widely-used
devices. Our results show that the revealed artifacts are widely spread among
different devices from various vendors. Based on our observations, we con-
clude whether compromise detection based on flow data is feasible in practice,
complementary to our theoretical analysis in Chapter 2.

The paper related to this chapter is [49], which received a Best Paper Award
at PAM 2013.

The organization of this chapter is as follows:

• Section 3.1 introduces existing works in the context of flow data arti-
facts.

• Section 3.2 describes the case study that forms the basis of the artifact
analysis presented in this chapter, by means of the Cisco Catalyst 6500.
This device is widely deployed in many service provider, enterprise and
campus networks, and selected as the basis of our analysis.

• Section 3.3 explains our experiment setup and describes the set of de-
vices from various vendors that was involved in our analysis.

• Section 3.4 discusses results of our artifact analysis for all devices in-
volved in our analysis.

• Section 3.5 concludes this chapter.
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3.1 Related Work

Analyses have shown that the advantages offered by flow export often come at
the expense of accuracy, although the gains of using flow data normally excuse
this. Since IPFIX is still in its early days and NetFlow deployment is far more
mature [70], most literature on flow data artifacts is about NetFlow (especially
NetFlow v9).

Flow data artifacts described in literature can be classified into three cate-
gories:

• Timing, related to the way in which flow exporters put timestamps into
flow records, how these timestamps are stored by export protocols, and
how precise flow exporters are in expiring flow records.

• Data loss, causing irreparable damage to flow datasets.

• Minor inaccuracies that can usually be repaired or ignored.

Artifacts in the first category, timing, are all related to the way in which
NetFlow accounts flow record start and end times. NetFlow v9 in particular uses
two separate clocks: an uptime clock in milliseconds that is used to express flow
record start and end times in terms of a flow exporter’s uptime, and a real-time
clock (UNIX time) that is used to map those uptimes to an absolute time. The
real time is inserted in NetFlow packets together with the uptime before they
are transmitted to a flow collector. It is then up to a flow collector to calculate
the absolute start and end times of flow records based on these two types of
timestamps. The advantage of using only a single real-time clock is that there
are no two clocks that need to remain synchronized all the times. However,
several artifacts related to timing have been reported in literature. First, it is
explained in [53] and [72] that the millisecond-level precision of the flow exporter
uptimes is sacrificed, since only second-level timestamps of the real time can be
stored in a NetFlow v9 packet. This leads to imprecise or incorrect start and
end times of flow records. The same works describe that both clocks are not
necessarily synchronized, resulting in a clock skew in the order of seconds per
day. In addition, two timestamps are not necessarily inserted into the NetFlow
packet at exactly the same moment either due to resource exhaustion or explicit
export rate limiting, resulting in an additional delay [72]. Another category of
timing artifacts is the imprecise or erroneous expiration of flow records, resulting
in periodic patterns in the flow dataset and erroneously merged flow records [32].

The second category of artifacts is related to data loss. For example, it is
described in [32] that gaps may be present in flow data, usually caused by an
under-dimensioned flow cache, as described in Section 2.6.1. As a consequence,
packets cannot always be accounted to flow records in the flow cache, effectively
resulting in data loss.
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The remainder of this chapter describes five more artifacts that extend the
set of known artifacts in the second and third category. Also, where possible,
artifacts reported in related works are verified.

3.2 Case Study: Cisco Catalyst 6500

The Cisco Catalyst 6500 is a widely deployed series of switches that can be found
in many service provider, enterprise and campus networks [123]. In this section,
we discuss five artifacts that are present in flow data from a specific device of this
series1, located in the campus network of the UT. This knowledge is therefore
gained from our operational experience. It is important to note that this list is by
no means comprehensive, since artifacts are load- and configuration-dependent.
Moreover, artifacts related to clock imprecisions discussed by previous works,
which we have observed as well, are not covered.

Imprecise Flow Record Expiration – Expiration is the process of remov-
ing flow records from the NetFlow table (i.e., flow cache). This can be done for a
variety of reasons, such as timeouts and exporter overload. However, according
to the documentation, flow records can be expired as much as 4 seconds earlier
or later than the configured timeout [115] when the device is not overloaded.
Moreover, the average expiration deviation should be within 2 seconds of the
configured value. This is because of the way in which the expiration process is
implemented: A software process scans the NetFlow table for expired flow records.
Due to the time needed for scanning all flow records, expiration is often pre- or
postponed.

TCP Flows Without Flag Information – TCP flags are accounted for
few TCP flows, since they are solely exported for software-switched flows [115].
These flows are processed by a generic Central Processing Unit (CPU), while
hardware-switched flows are processed using Application Specific Integrated Cir-
cuitss (ASICs). Whether a flow has been switched in hardware or software can
be concluded from the engineID field in the flow records. Since most packets
are hardware-switched, only few TCP flows with flags can be found in the ex-
ported data. Another observation can be made regarding the handling of flags
of hardware-switched TCP flows: In contrast to what is specified in [115], TCP
FIN and RST flags trigger the expiration of flow records. As such, TCP flags are
considered in the expiration process, even though they are not exported.

Invalid Byte Counters – It has been observed before that byte counters in
flow records are not always correct [53]. The counters represent the number of
bytes associated with an IP flow [92], which is the sum of IP packet header and
payload sizes. IP packets are usually transported as Ethernet payload, which
should have a minimum size of 46 bytes according to IEEE 802.3-2008. If the

1The exact configuration can be found in Table 3.1 (Exporter 1).
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payload of an Ethernet frame is less than 46 bytes, padding bytes must be added
to fill up the frame. However, stripping these padding bytes is not done for
hardware-switched flows, resulting in too many reported bytes.

Non-TCP Flow Records With TCP ACK Flag Set – The first packet
of a new flow is subject to Access Control List (ACL) checks, while subsequent
packets bypass them for the sake of speed. Bypassing ACL checks could also be
done by fragmenting packets, since packet fragments are not evaluated. To over-
come this security problem, Cisco has implemented a poorly documented solution
that has two implications on software-switched flows. Firstly, flag information in
flow records is set to zero for all packet fragments, which are always software-
switched. Secondly, flag information in flow records of all other software-switched
traffic is set to a non-zero value, and TCP ACK was chosen for that purpose.

Gaps – Similarly to the devices analyzed in [32], this exporter often measures
no flows during short time intervals. This is caused mostly by hardware limita-
tions, combined with a configuration that is not well adjusted to the load of the
network. When a packet has to be matched to a flow record, its key fields are
hashed and a lookup is done in a lookup table (NetFlow TCAM ). In our setup,
both the lookup table and the table storing the flow records (NetFlow table) con-
sist of 128k entries with a hash efficiency of 90%, resulting in a net utilization
of roughly 115k entries. A table (named alias CAM or ICAM ) with only 128
entries is available to handle hash collisions, so that up to two flows with different
keys but identical hashes can be stored. The event in which a packet belonging
to a new flow cannot be accommodated because of hash collisions is called flow
learn failure. The evolution of flow learn failures in this device can be monitored
using the CISCO-SWITCH-ENGINE-MIB (SNMP).

3.3 Experiment Setup

To understand whether the artifacts presented in the previous section can also
be identified in flow data from other flow exporters, several devices from three
vendors, installed in campus and backbone networks throughout Europe, have
been analyzed. Table 3.1 lists these devices, together with their hardware con-
figuration and software (versions). Given the variety of hardware configurations,
we cover a wide range of hardware revisions of widely used devices.

The first two devices, both from the Cisco Catalyst 6500 series, have iden-
tical hardware configurations and similar software versions, but are exposed to
different traffic loads. We can therefore analyze whether the load of these devices
affects the presence of artifacts. The third Cisco Catalyst 6500 has a significantly
different hardware configuration and software version. The Cisco Catalyst 7600
series, represented by our fourth device, is generally similar to the Cisco Cata-
lyst 6500 series, but uses different hardware modules. Device 1, 2 and 4 use the
same hardware implementation of NetFlow (EARL7), while Device 3 is signifi-
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Exporter Model Modules Software

1 Cisco Catalyst 6500
WS-SUP720-3B (PFC3B,

MSFC3)
IOS 12.2(33)SXI5

2 Cisco Catalyst 6500
WS-SUP720-3B (PFC3B,

MSFC3)
IOS 12.2(33)SXI2a

3 Cisco Catalyst 6500
VS-SUP2T-10G-XL

(PFC4XL, MSFC5) +
WS-X6904-40G

IOS 15.0(1)SY1

4 Cisco Catalyst 7600
RSP720-3C-GE (PFC3C,

MSFC4)
IOS 15.2(1)S

5 Juniper T1600 MultiServices PIC 500 JUNOS 10.4R8.5

6
INVEA-TECH
FlowMon Probe

– FlowMon Probe 3.01.02

Table 3.1: Assessed flow exporters and their configurations.

cantly newer (released in 2012) and uses Cisco’s EARL8 ASIC. The fifth analyzed
device is a Juniper T1600, which has also been analyzed in [32]. The inclusion
of this device allows us to extend the results in [32]. Finally, we have included
a dedicated flow exporter (probe) from INVEA-TECH. In the remainder of this
chapter, we denote each of the devices by its number in the table.

3.4 Artifact Analysis

Section 3.2 described a set of artifacts present in flow data from a Cisco Cata-
lyst 6500 (Exporter 1). This section evaluates whether these artifacts are also
present in flow data from the other exporters listed in Section 3.3. For each
artifact, we define the experiment methodology, followed by a description of our
observations in both flow and SNMP data. After that, we show some examples
in which the artifacts have impact on specific analysis applications. Also, we
discuss whether the artifacts are repairable or not.

Imprecise Flow Record Expiration – Flow exporters are expected to
expire flow records at the configured active timeout Tactive and idle timeout Tidle,
and possibly after a packet with TCP FIN or RST flag set has been observed. We
perform the following experiments to evaluate the behavior of the flow exporters:

• Active timeout: We send a series of packets with identical flow key to
the flow exporter for a period of Tactive + d. The inter-arrival time of the
packets is chosen to be less than Tidle. The experiment is performed for
d = −2,−1, . . . , 16 seconds. For each value of d, we repeat the experiment
100 times and count how often the flow exporter generates two flow records
from the received packets. Ideally, one should see only one flow record per
experiment for d < 0 and always two flow records per experiment for d ≥ 0.
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• Idle timeout: We send two packets with identical flow key to the exporter,
separated by a time difference of Tidle + d. The rest of the experiment is
performed as for the active timeout. Again, one ideally sees only one flow
record per experiment for d < 0 and always two flow records for d ≥ 0.

• TCP FIN/RST flag: We send one packet with the FIN or RST flag set,
followed by another packet after d time units. The rest of the experiment
is performed as for the active timeout (only for d = 0, 1, . . . , 16). Ideally,
the exporter always generates two flow records.

For all experiments, the packets are generated such that they are processed in
hardware by the exporter, if applicable2. In addition, several initial packets
are generated where necessary, to avoid that special mechanisms for the early
expiration of records of small and short flows (such as Cisco’s fast aging [115])
are applied. All exporters use an active timeout between 120 and 128 seconds,
and an idle timeout between 30 and 32 seconds. Note that we do not rely on
the timestamps in flow records, which means that we are not susceptible to the
errors described in [72]. Instead, we use the system time of the hosts running the
measurement scripts, which are placed close to the analyzed exporters.

The experiment results are shown in Figure 3.1a-3.1c for the three expiration
mechanisms, respectively. For each value of d (in seconds, on the X-axis) we give
the fraction of experiment runs (on the Y-axis) for which the flow exporter has
generated two flow records. With regard to the active timeout (Figure 3.1a),
Exporter 1-3 behave similarly: The number of experiments with two flow records
increases linearly for d ∈ [0, 8]. Although this timespan of 8 seconds is in line
with Cisco’s documentation, the center of the timespan is incorrect: Instead of
being at d = 0, our experiments show that it is at d = 4. Exporter 4 behaves
similarly to the previous exporters, although the linear increase takes place for
d ∈ [−2, 6]. Exporter 5 shows unexpected behavior: Even for d = 16, only 20% of
the experiments result in two flow records. Additional experiments have shown
that the expiration does not stabilize at all. Moreover, incorrect start times
are reported for flow records expired by the active timeout (which confirms the
findings in [32]). Finally, only Exporter 6 works as expected and always generates
two flow records for d ≥ 0.

The results obtained from the idle timeout experiments are shown in Fig-
ure 3.1b. Exporter 1-4 show identical behavior and the linear increase of the
curve for d ∈ [0, 4] confirms that the flow record expiration works according to its
specification [115]. Exporter 5 performs better compared to the active timeout
experiments: For d ≥ 11 always two flow records are generated, which is in line
with the findings in [32]. Flow records from Exporter 6 are expired up to 15s
after the idle timeout, approximately linearly with d ∈ [0, 15]. We have observed
that the behavior of this exporter also depends on the absolute value of the idle

2http://www.cisco.com/en/US/products/hw/switches/ps708/products_tech_

note09186a00804916e0.shtml

http://www.cisco.com/en/US/products/hw/switches/ps708/products_tech_note09186a00804916e0.shtml
http://www.cisco.com/en/US/products/hw/switches/ps708/products_tech_note09186a00804916e0.shtml
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Figure 3.1: Results of the flow record expiration experiments.

timeout. In Figure 3.1d, we show for different idle timeouts the value of d (on
the Y-axis) where 50% of the experiments yield two flow records, comparing the
behavior of Exporter 1 and Exporter 6. While these values are always close to
2s for Exporter 1, they increase with the timeout for Exporter 6.

Figure 3.1c shows the results for the expiration based on TCP flags. The
expiration behavior of Exporter 3 differs from the other Cisco devices, due to
a different implementation of NetFlow (see Section 3.3). Overall, the number
of correctly exported flow records increases linearly with d. The deviation d for
which Exporter 5 wrongly exports only one flow record, is small: Three seconds
after the FIN/RST flag was sent, always two records are exported. Exporter 6
does not expire flow records based on TCP flags by specification.

The flow record expiration behavior of Exporter 1-4 shows a clear linear slope
in Figure 3.1a-3.1c, which suggests the presence of a cyclic process to expire and
export the (hardware) flow tables. The fact that flow records are not expired
exactly on the defined timeouts may not be a problem if flows are aggregated
afterward. This is especially the case for flow records expired by the active
timeout. However, when the idle timeout or TCP flags are used to signal the end
of a flow, this artifact may result in irreparable data damage. For example, in [67]
it is shown that some applications (e.g., peer-to-peer clients) often reuse sockets
shortly after a TCP connection attempt failure. When timeouts and TCP flags
are not observed strictly, packets from different connections may be merged into
a single flow record.



64 FLOW MEASUREMENT ARTIFACTS

Exporter TCP Flows Without Flag Information Invalid Byte Counters

1, 2 No flags exported for hardware-switched flows Invalid byte counters
for hardware-
switched flows

3 Flags exported

4 No flags exported for hardware-switched flows

5, 6 Flags exported Byte counters OK

Table 3.2: Artifact analysis results.

TCP Flows Without Flag Information – Our analysis results for this
artifact are summarized in Table 3.2. The oldest assessed devices, Exporter 1,
2 and 4, do not export flags for hardware-switched TCP flows. Since the vast
majority of flows is hardware-switched, TCP flags are rarely exported. We have
observed that approximately 99.6% of all TCP flow records exported by Ex-
porter 1 and 2 have no flag information set during a measurement period of one
week. However, flags are respected for flow record expiration, even in the case of
hardware-switched TCP flows. In the case of Exporter 3, 5 and 6, TCP flags are
exported.

The lack of TCP flag information in flow records can be problematic for several
types of data analysis. From a network operation perspective, TCP connection
summaries can help to identify connectivity or health problems of services and
devices. From a research perspective, many works rely on TCP connection state
information. For example, [9], [38], [43] use it for inferring statistics from sampled
flow data and [54] for optimizing sampling strategies. None of these approaches
works on flow data without TCP flags.

Invalid Byte Counters – The results for this artifact are also summarized
in Table 3.2. None of the Cisco devices strips the padding bytes from Ethernet
frames of hardware-switched flows. Exporter 5 and 6 strip these bytes properly.
The impact of this artifact depends on the fraction of Ethernet frames that carry
less than 46 bytes of payload. To understand the distribution of packet sizes in
current networks, we analyzed a packet trace of the UT campus network (1 day
in 2011), and a trace from the CAIDA ‘equinix-sanjose’ backbone link3 (1 day
in 2012). In both traces, around 20% of the frames contains less than 46 bytes of
payload, which would be reported incorrectly. The number of incorrectly counted
bytes lies around 0.2% of the total number of bytes in both cases. The impact of
this artifact on accounting applications is, therefore, very small.

Non-TCP Flow Records With TCP ACK Flag Set – Our analysis has
shown that only flow data from older Cisco devices (i.e., Exporter 1, 2 and 4)
contains this artifact. On average, the number of non-TCP flow records with
TCP ACK flag set accounts for approximately 1% of the total number of flow
records on Exporter 1 and 2.

3The CAIDA UCSD Anonymized Internet Traces 2012 - 16 February 2012
http://www.caida.org/data/passive/passive_2012_dataset.xml

http://www.caida.org/data/passive/passive_2012_dataset.xml
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Figure 3.2: Impact of flow learn failures and NetFlow packet loss on flow time-
series.

When analysis applications do not use properly-defined filters on flow data
containing this artifact, this can lead to unexpected results and misconceptions.
For example, a filter for flow records with the TCP ACK-flag set includes also UDP
flows in the case of Exporter 1, 2 and 4. Popular analysis applications, such as
nfdump,4 accept these filters without showing any warning to the user. As long
as the transport-layer protocol is specified in the filter together with the flags,
this artifact will not have any semantic impact on data analysis.

Gaps – In this section we characterize the effects of flow learn failures on
flow data. This helps to understand whether this artifact is also present in data
from other exporters, without having access to any flow cache statistics. Our
experiments have shown that the first packets of flows are more likely to be
subject to flow learn failures, because subsequent packets of accounted flows
are matched until the records are expired. Smaller flows are therefore more
likely not to be accounted at all, while larger flows may have only their first
packets lost. Figure 3.2a shows a time-series of the number of flow records in
intervals of 100ms. This data has been collected early in the morning, when
Exporter 1 normally starts to run out of capacity. A constant stream of flow
records without gaps can be observed until around 7:25, when the number of
records increases. Simultaneously, flow learn failures (in packets/s) start to be
reported by SNMP agents, and several short gaps appear in the time-series. Note
that the series are slightly out of phase, because of the higher aggregation of the
SNMP measurements.

Interestingly, the gaps caused by flow learn failures are periodic, especially
when the network load is constantly above the exporter’s capacity. When analyz-
ing data from Exporter 1 for two weeks, we have observed that the distribution
of the time between gaps is concentrated around multiples of 4s. Furthermore,
gaps are not larger than 2s in 95% of the cases. This confirms our assumption
about the presence of a cyclic process for expiring records from the flow cache.

4http://nfdump.sourceforge.net

http://nfdump.sourceforge.net
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Gaps can also be caused by other factors, such as the loss of NetFlow packets
during their transport from exporters to collectors, or packet loss on the mon-
itored link. Both are typically random events that tend to result either in a
homogeneous reduction in the number of flow records, or in non-periodic gaps.
Figure 3.2b illustrates the example NetFlow packet loss by showing the time-
series of flow records observed at a highly overloaded collector. NetFlow packet
sequence number analysis confirms that more than 5% of the NetFlow packets
have been lost by the collector during this interval. Several short periods with a
reduced number of flow records can be observed, but the series never reaches zero
in this example. This demonstrates that gaps in flow data cannot be irrefutably
traced back to flow learn failures.

We can confirm the existence of gaps in flow data from Exporter 1 and 2.
Exporter 3-5 could not be tested, either because they were used in production
or because we were not able to exhaust their flow capacity. Exporter 6 handles
collisions in software using linked lists and is, therefore, not subject to flow learn
failures. Under extreme load, it exports flow records earlier, ignoring timeout
parameters completely.

Although this artifact has a severe impact on any analysis because of the
resulting incomplete data set, we discuss only two examples: anomaly detection
and bandwidth estimation. The detection of anomalies (especially flooding at-
tacks) is often based on large sets of small flows. Since the first packets of a flow
are especially susceptible to flow learn failures, they are more likely to be lost
during the flow export process. Anomalies can therefore stay undetected. Besides
dropped flow records, peaks in the network traffic may be smoothed due to the
load-dependency of the artifact. Since the identification of peaks is essential for
bandwidth estimation, traffic analysis may provide invalid estimates.

3.5 Conclusions

In this chapter we have identified, analyzed and quantified five different artifacts
in flow data exported by six widely-deployed devices. These artifacts are related
to the way in which these devices handle the flow expiration, TCP flags and byte
counters, and to imprecisions in the number of exported flow records.

Our analysis shows that the impact of the identified artifacts on the quality
of flow data varies, and that in some cases mitigation and recovery procedures
can be considered. For example, non-TCP flow records with TCP ACK flag set
can be repaired easily. The imprecise flow record expiration artifact can in many
cases be ignored if the flow collector aggregates records belonging to the same
flow before analysis. However, the remaining artifacts cannot easily be mitigated
and they adversely impact the quality of the exported flow data.

The severity of the identified artifacts ultimately depends on their impact
on the applications that are using the data. Although analysis applications are
usually designed and built to be generic and applicable to any flow data, the
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experience gained during our study convinced us that a better way for designing
flow-based applications would be to take data artifacts into account. Since the
types of artifacts differ from exporter to exporter, we believe that researchers
and operators need to be aware of these artifacts to build more robust analysis
applications. Moreover, for flow data to be usable for compromise detection, we
conclude that dedicated flow export devices (probes) must be used to safeguard
the quality of the data.
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Compromise Detection





CHAPTER 4

Compromise Detection for SSH

Although attacks against SSH daemons exist already for years, they are still
omnipresent in today’s networks and their popularity is every-increasing; In
campus networks like the UT’s we observe more than 100 large brute-force
attacks per day, and many hundreds per day in backbone networks. The fact
that SSH is a powerful protocol that allows for remote administration makes
that adversaries may use compromised devices for all sorts of malicious ac-
tivities, such as joining in DDoS attacks and distributing SPAM. Detecting
compromises is therefore of utmost importance. In this chapter, we investi-
gate how to detect SSH compromises using flow data. We start by analyzing
current SSH attacks to determine their behavior and define an attack state
model that is used throughout this thesis. Our approach is based on signa-
tures that allow for detecting phase transitions in several types of brute-force
attacks. We start by demonstrating that an elementary approach may result
in false positives and negatives due to the presence of network artifacts and
specific features of the SSH protocol and related tools. After that, we add two
crucial components to our elementary approach. First, we analyze network
artifacts and investigate how to improve our detection approach such that
it is able to cope with these artifacts. Second, we investigate the effect of
including SSH-specific knowledge in our detection algorithm to make it rec-
ognize specifics of the SSH protocol and related tools. The main contribution
of this chapter are SSH compromise detection algorithms, of which we have
validated the correct functioning using our open-source IDS SSHCure. This
software was not only used by us, but also by quite a number of companies,
governments, CSIRTs and researchers.

The papers related to this chapter are [12], [44], [52], of which [44] received
a Best Paper Award at AIMS 2012. Our open-source IDS SSHCure that
implements the presented material also received an award, namely the 2015
Communication System Award of the German Association for Computer Sci-
ence (GI), and contributed to become a co-winner of the Dutch National Cyber
Security Research Agenda (NCSRA) in the Ph.D. student competition.

The organization of this chapter is as follows:

• Section 4.1 motivates the research presented in this chapter and states
our contributions.

• Section 4.2 describes and explains various types of SSH attacks and their
flow-level characteristics.
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• Section 4.3 presents our elementary detection approach, which aims at
identifying attack phase transitions by identifying so-called ‘flat’ net-
work traffic in flow data.

• Section 4.4 presents improvements to the detection of the brute-force
phase. We investigate how network artifacts impair our detection and
demonstrate how we can improve detection results by enhancing our
measurement infrastructure.

• Section 4.5 presents our findings as to how we can improve our detec-
tion of the compromise phase by including SSH-specific knowledge for
identifying compromises.

• Section 4.6 concludes this chapter.
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4.1 Background

Brute-force attacks against SSH daemons on the Internet are omnipresent and
their popularity is increasing evermore [145]. These attacks, which can be par-
ticularly harmful due to a compromise often resulting in full system access, may
be fostered by the following facts:

• The number of SSH daemons connected to the Internet is huge. Shodan, for
example, reports 26 million connected and scannable daemons in Novem-
ber 2015. In many cases, the actual number of reported daemons will be
larger than the number reported, due to system administrators trying to
hide the daemon by moving it to another port or firewalling the common
port to prevent access from the Internet.

• Although password managers are rapidly gaining popularity and awareness
about the use of unique passwords per site or application is improving,
people still prefer to use passwords that are relatively easy to remember.
These relatively simple passwords can typically be found in dictionaries,
lists of frequently-used passwords that are used by attackers during brute-
force attacks.

• Brute-force attacks against SSH daemons are well-understood and many
attack tools are available. These tools are easy to find and simple to use,
resulting in powerful tools to be used by a large audience.

Despite the fact that brute-force attacks form a major security threat for many
devices connected to the Internet, their mitigation is rather simple. For example,
simply prohibiting password-based authentication and switching to key-based au-
thentication would render most attacks useless. Key-based authentication works
by storing a public key on a remote device and using a private key to authenti-
cate against it. While it is theoretically possible to try many different keys when
key-based authentication is enabled, the number of possible combinations is much
larger than with password-based authentication. Another type of mitigation that
is typically easier to employ than enforcing key-based authentication is the use
of authentication monitors, such as fail2ban1 and denyhosts2. These tools scan
authentication logs for failed authentication attempts and, once a threshold is
exceeded, block the source/attacking host.

While mitigation of attacks against SSH daemons appears simple, the alarm-
ing number of compromises clearly indicate that the listed mitigation mecha-
nisms are not deployed widely enough. It was only in 2014, for example, when
the Ponemon 2014 SSH Security Vulnerability Report revealed that 51% of their
survey respondents, i.e., Global 2000 companies, admitted to have seen a com-
promise in the last 24 months [160]. Provided that it is difficult to generally

1http://www.fail2ban.org
2http://denyhosts.sourceforge.net

http://www.fail2ban.org
http://denyhosts.sourceforge.net
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secure all devices connected to the Internet, we take another approach: By de-
ploying an IDS at central observation points in the network, we monitor all SSH
daemons without the need of changing any end system. Moreover, by focussing
on compromises rather than just attacks, we drastically reduce the number of
incident reports to be analyzed by security teams.

4.1.1 Related Work

The core contribution of this thesis is the detection of compromises. By the
nature of brute-force attacks, compromises must be preceded by (brute-force)
authentication attempts. Therefore, reliable detection of compromises requires
solid brute-force attack detection algorithms. Three Ph.D. theses and related
publications have focussed on the flow-based detection of brute-force attacks be-
fore:

• The work in [81] (2010) aims at defining a theoretical model of SSH brute-
force attack behavior. It was found that these attacks typically consist
of three phases, namely a scan, brute-force and compromise phase. The
evaluation of the proposed model was mainly performed on a manual and
theoretical basis. Due to the lack of datasets for evaluating the work, the
authors have generated their ground-truth datasets in two complementary
manners, namely by manually creating the datasets using data collected
from honeypots, and by generating datasets in an automated manner using
Hidden Markov Models (HMMs). The work is used as the starting point
for this thesis and a more extensive description of the three attack phases
will be provided in Section 4.2.

• While the work in [81] is completely based on the three brute-force attack
phases, the work in [83] (2013) focusses mostly on the brute-force phase: Its
main contribution is summarized as a “design, implementation and long-
term evaluation of flow-based detection of brute-force attacks in high-speed
networks”. The authors aim at identifying connections belonging to brute-
force authentication attempts in flow data by observing connections that
are alike in terms of packets, bytes and duration. In this respect, the
detection of the brute-force phase is very similar to observations of the
authors in [81]. Additionally, the authors use a clustering approach for
grouping similar connections.

• Similar to the work in [83], the work in [79] (2015) does not specifically
target the compromise phase. It describes its contribution as focussing on
“the detection of dictionary attacks and their distributed variants”. The
authors investigated various types of SSH brute-force attacks and devel-
oped a new attack model to cover those. This allows them to predict, up
to a certain extent, which attacks are theoretically possible in the future,
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but have not been observed so far ‘in the wild’. Based on a survey of exist-
ing datasets, the authors use their own platform to construct datasets for
validating their work. The actual detection algorithm is based on sketches,
data structures that enable compact representation of processed data, to
identify anomalies in network traffic and conclude the presence of attacks.

We can derive the following conclusions from this enumeration. First, all three
works are based on the observation that traffic for authentication attempts, i.e.,
referred to as traffic in the brute-force phase in [81], is alike in terms of pack-
ets, bytes and duration. This is not very surprising, given that authentication
attempts are identical application-layer events, where only the length of the user-
names and password may change. These changes however cause only marginal
deviations in network traffic. Second, the detection of compromises is targeted
neither by [83], nor by [79]. While both works cite and elaborate on the work pre-
sented in [81], the focus on the detection of brute-force attacks and distributed
dictionary attacks, respectively. Similarly, even though the ideas of detecting
compromises in network traffic were born in [81], they are presented as no more
than an observation, without realizing its great potential and advantages above
regular attack detection. Third, the work in [81] can be considered a general-
ization of the works in [83] and [79]. While the latter two mostly target the
attack phase that features the authentication attempts, they acknowledge that
this phase is often preceded by one or more network scans. Moreover, the work
in [83] even uses the observation of a network scan to increase the detection
confidence and reduce false positive detections.

4.1.2 Challenges & Contributions

Despite that the three discussed theses have already targeted a similar area of
research as the work presented in this thesis, we are targeting several open chal-
lenges. The most important challenge is the flow-based detection of compromises,
which has not been targeted by any related work before. We therefore define the
objective of this chapter as to investigate how to detect devices that are compro-
mised by means of SSH brute-force attacks on the Internet. We use the findings
presented in [81] as a starting point for analyzing and describing SSH brute-force
attacks in Section 4.2, where we explain our three-phase attack model in detail,
as well as modifications we made to the original model presented in [81] based on
measurements in various open networks. Based on our SSH attack analysis, we
present our detection approach in Section 4.3. This approach aims at identifying
attack state transitions and is therefore generic enough to detect attacks against
other protocols than SSH as well. We implemented the detection algorithm that
was developed for this approach as part of our open-source IDS SSHCure, as
a way to demonstrate that flow-based compromise detection is actually feasible
and has potential for production usage. Based on many deployments in networks
all over the world, we have analyzed false positive and negative detections and
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discovered that network artifacts are a major cause of these. We then follow-up
on this in two directions:

1. We investigate in Section 4.4 whether enhancements of our measurement
infrastructure allow us to overcome any impairments caused by network
artifacts.

2. We investigate in Section 4.5 whether the inclusion of domain-specific knowl-
edge on SSH in our detection algorithm allows us to be more resilient against
false detection caused by peculiarities of the SSH protocol. Additionally, we
expect this to make our detection algorithm more resilient against network
artifacts as well, since we do not fully depend on attack state transitions
anymore.

Finally, we close this chapter in Section 4.6, where we draw our conclusions.

4.2 SSH Attack Analysis

Brute-force attacks aim at compromising user accounts by trying many combi-
nations of usernames and passwords. One particular type of brute-force attack
is the dictionary attack. Attacks using dictionaries are particularly effective, due
to the fact that dictionaries feature the most common usernames and passwords.
Also, purely random passwords, which are typically not found in dictionaries, are
difficult to remember and therefore less common than passwords that are simple
and easy to remember. A recent study on SSH brute-force attacks has shown
that the vast majority of attacks is fully automated using software tools and that
attackers rely on heavily shared dictionaries [26].

Before targets can be attacked, they must be discovered. This can be done
by scanning a network, e.g., using tools like nmap,3 or by using publicly available
lists of potential targets, such as those provided on PasteBin,4 or gathered by
services like Censys.io5 and Shodan.6 Once potential targets have been discovered
and selected, brute-force attacks can be launched. Eventually, targets may be
compromised, depending on whether a valid pair of credentials was used. To
describe these multi-phase attacks, we define the following attack phases:

• Scan phase – An attacker performs horizontal scans over a network to
find targets, i.e., active daemons on a particular port. In the case of SSH
daemons, the scanned port is usually TCP port 22. A list of attackable
targets can of course also be obtained using scanning services, as explained
before.

3https://nmap.org
4https://pastebin.com
5https://censys.io
6https://shodan.io

https://nmap.org
https://pastebin.com
https://censys.io
https://shodan.io
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Fig. 2. Temporal visualization of a brute-force SSH scan (a) and variation of packets per flow
during the scan (b)

A different view on the attacks is given by Figure 2(a). Each mark in the graph ei-
ther represents a malicious connection from the attacker to a victim or the answering
connection from the victim back to the attacker. The y-axis gives the 65,535 possible
destination addresses in the university network. We identify three attack phases. During
the scanning phase (first 1000 seconds), the attacker performs a sequential SSH scan
spanning over the entire network address space. In this phases, the attacker gathers in-
formation on which hosts run a vulnerable SSH service. Only few victims respond to the
attack. Once this phase is completed, the attacker initiates a brute-force user/password
guessing attack (brute-force phase). In this phase, only a small subset of the hosts in

Figure 4.1: Time-series of SSH attack over IP address space, from [68].

Start End

Scan Brute-force Compromise

Figure 4.2: Brute-force attack phase transitions.

• Brute-force phase – An attacker performs many authentication attempts
on target hosts, using a large number of username and password combina-
tions, either based on dictionaries or using randomly generated passwords.

• Compromise phase7 – An attacker has gained access to a target host by
using a correct pair of credentials. The host may either be actively misused
right-away or left aside for misuse at a later point in time.

To avoid any confusion between the denotation of the nature of an attack (i.e.,
brute-force attack) and attack phases (e.g., brute-force phase), we consistently
use italics to denote attack phases throughout this thesis.

A typical SSH brute-force attack, monitored at the campus network of the
UT, is visualized in Figure 4.1. The figure shows how an attacker connects to
most IP addresses in the UT’s class B IPv4 address block, consisting of 216 IPv4
addresses. Every point in the plot corresponds to a flow record from the attacker
to the campus network, or to a flow records from campus hosts back to the
attacker. For the specific case depicted in Figure 4.1, the scan phase takes place

7We use the more intuitive compromise phase to denote the phase that is named die-off
phase in [68].
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Fig. 2. Temporal visualization of a brute-force SSH scan (a) and variation of packets per flow
during the scan (b)

A different view on the attacks is given by Figure 2(a). Each mark in the graph ei-
ther represents a malicious connection from the attacker to a victim or the answering
connection from the victim back to the attacker. The y-axis gives the 65,535 possible
destination addresses in the university network. We identify three attack phases. During
the scanning phase (first 1000 seconds), the attacker performs a sequential SSH scan
spanning over the entire network address space. In this phases, the attacker gathers in-
formation on which hosts run a vulnerable SSH service. Only few victims respond to the
attack. Once this phase is completed, the attacker initiates a brute-force user/password
guessing attack (brute-force phase). In this phase, only a small subset of the hosts in

Figure 4.3: Time-series of SSH attack in terms of Packets per flow (PPF),
from [68].

from the beginning of the attack until t ≈ 1000, immediately followed by the
brute-force phase, which terminates at t ≈ 1750. Finally, residual traffic, i.e., the
compromise phase, is present on the network until t ≈ 2750 after the beginning
of the attack.

All supported SSH attack state transitions are shown in Figure 4.2. Although
these attack phases feel rather natural, they were formalized for the first time
in the context of network flows only in 2009 in [68], where it was found that
the aforementioned attack phases could be easily identified in flow data by the
number of PPF, as shown in Figure 4.3. Here, the scan phase features a very
low number of packets per flow, since it merely consists of one or two TCP
SYN packets. The brute-force phase, however, is characterized by a significantly
higher number of PPF, due to the SSH connection initiation and one or more
authentication attempts. In literature, traffic in the brute-force phase is often
described as being flat, because repeated application-layer actions/events (e.g.,
authentication attempts) result in connections that are alike in terms of packets,
bytes and duration. In case of a compromise, we may either observe a number
of PPF that is higher than the brute-force phase’s in case the target is being
actively misused, or a lower, in case the connection to the target is maintained
but idle.

We consider the work in [68] as one of the cornerstones of this thesis, but use
its findings and contributions with two modifications. First, attacks can also start
in the brute-force phase for the following reasons, because (a) the scan phase can
have taken place in the past, e.g., before traffic observation has started, and (b)
our investigation of attack tools (Section 4.5) has shown that attacks can start
directly from the brute-force phase, as scans can have been performed by another
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host or the target may be known in advance by an attacker. Second, rather than
the suggested range r = [10, 15] for brute-force phase traffic, we use the range
r = [11, 51]. Here, 11 is the minimum number of packets needed for a single
authentication attempt, and 51 the highest number of PPF observed for brute-
force phase traffic. These numbers are backed up by measurements and higher
than reported by related works, which report maximum values of around 30 [75],
[83]. We have found that Cisco appliances and Mac OS X are the main cause of
these high values.

Although our attack analysis presented is presented here in the context of
SSH, it is very similar for other services for which attacks look similar on the
network-level [83]. For a service to correspond with the presented analysis, it
should feature some sort of authentication mechanism that is required to advance
in the protocol state, similar to SSH. Exemplary services are Remote Desktop
Protocol (RDP) and Virtual Network Computing (VNC), but we consider these
services out of scope of this thesis.

4.3 Detecting SSH Brute-force Attacks

In the previous section we have analyzed brute-force attacks against SSH daemons
and shown that they typically consist of three phases. Based on this attack phase
model, visualized in Figure 4.2, we present in this section our first approach to
detecting SSH attacks, aiming at the identification of the three attack phases in
network traffic.

4.3.1 Algorithm

The objective of our detection algorithm is to classify attacks into one or more
subsequent attack phases, according to our brute-force attack model. In the
remainder of this section, we present how the algorithm detects each attack phase.
All presented algorithm parameters based on traffic metrics are calculated with
a time granularity of 1 minute, unless indicated differently.

The detection of network scans and brute-force attacks was already discussed
by multiple other works, such as [79], [83]. In this section, we use very similar
algorithms to those described in literature, which differ only in terms of imple-
mentation details and thresholds. All thresholds described here are subject to
change if deployed in networks of a different nature than the campus network of
the UT.

Scan phase

During the scan phase, an attacker probes for the presence of specific services on
one or more hosts in a network, which results in several clearly distinguishable
characteristics. Since attacks are assumed to originate from a single attacker,
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many small flows from the attacking host to a large number of targets is an indi-
cation of an attack in the scan phase. The detection algorithm selects suspicious
traffic by means of the following two metrics:

• PPF – The algorithm uses an upper limit of 2 PPF during the scan phase,
which is a typical feature of a port scan. Unlike attack traffic, regular
SSH connections will use the same TCP connection once established, which
results in a higher value for the PPF metric.

• Minimum number of flow records – If only the PPF metric was used
for distinguishing scan traffic, regular SSH traffic could still be classified
erroneously as scan traffic. This is for example the case with SSH sessions
involving sporadic activity, because flow monitoring devices export long-
lived flows using multiple flow records (due to the use of timeouts). This
is not a limitation of our algorithm, but inherent to the design of flow
export devices and technologies. To overcome this deficiency, we define
a threshold for the number of flow records per attack in the scan phase,
Ns. Based on measurements in the campus network of the UT in 2011,
Ns = 200 flow records per time interval of 1 minute was chosen. This
threshold corresponds to roughly 200 SSH connection attempts per minute,
which is almost guaranteed not to be regular SSH usage.

Brute-force phase

The detection of the brute-force phase is typically performed by comparing the
characteristics of two or more flow records to identify possible attacks. During
the brute-force phase, a high-intensity brute-force attack is performed on one or
more targets on which a service is found active. The brute-force phase typically
contains many flow records with an equal number of PPF, since flows featuring
an equivalent number of login attempts between the same client and server typ-
ically consist of the same number of packets. Should a compromise ensue, the
compromise phase is reached.

The brute-force phase is the only phase where flat traffic should be predom-
inant. The concept of an equal number of PPF, i.e., flat traffic, for brute-force
attack detection forms the basis of our brute-force phase detection algorithm,
which considers the number of PPF in consecutive flow records. The algorithm
starts with a preselection of source and destination IP address pairs for which flow
records have a PPF value of x ∈ [11, 51]. For each of these preselected address
pairs, the most frequently used PPF value is taken as the baseline for determining
brute-force behavior. This baseline is then used for comparing consecutive flow
records with identical PPF values to. If at least Nb consecutive flows feature the
baseline number of PPF, a brute-force attack is recognized. We set the thresh-
old Nb to five8, and the result of the detection algorithm is a list of attacks. In

8Note that five consecutive flow records with the same number of PPF would represent
15 failed login attempts in a benign situation, which we consider highly unlikely.
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the remainder of this work, we define an attack as a set of one or more targets
featuring brute-force behavior for a given attacker, i.e., where every target in the
set has reached N . A tuple is defined as a pair of attacker and target, such that
every attack consists of one or more tuples.

If more than Nb flow records feature the same number of PPF, a brute-force
attack is detected. On the one hand, false negatives, i.e., undetected attacks,
can occur in this context when brute-force attack flows end up with diverse PPF
values, causing the threshold Nb to not be reached, even though the application-
layer activity remains similar. On the other hand, false positives, i.e., false alarms,
can occur when non-attack flows end up with equal PPF values, enough to reach
the threshold N .

For increased confidence, we may combine the detection results of the scan
phase with results of the brute-force phase; It is more likely that a detection in
the brute-force phase is indeed an attack if it was preceded by a network scan,
than if it was not preceded by a scan.

Compromise phase

Attacks can only progress to the compromise phase after passing through the
brute-force phase. The compromise phase can again be identified using the PPF
metric, which should change significantly on transition from the brute-force phase.
It should be noted that the change can either be positive, i.e., resulting in a higher
number of packets, in case the compromised target is being actively misused,
or negative, i.e., resulting in a lower number of packets, in case the target is
(temporarily) left aside. The threshold for classifying a measured number of PPF
as a compromise depends on the baseline used for the detection of the brute-force
phase. In general, we can consider any deviating number of PPF a compromise,
although one may use a safety margin to reduce the number of false positives.

4.3.2 Prototype

The work in [68] aimed at defining a theoretical model of a brute-force attack
behavior, including the scan, brute-force and compromise phase. To illustrate
that flow-based compromise detection is actually feasible, we developed an open-
source IDS named SSHCure.9 SSHCure has a strong focus on detecting the
three attack phases of SSH brute-force attacks and was the first (flow-based)
IDS that could report on compromises. Since our goal was to reach a wide
audience, we developed SSHCure as part of the popular flow collection software
NfSen10 and managed to attract quite some attention to the development by
visiting conferences, performing demos for companies, etc. Although we cannot
name individual users of SSHCure for the sake of privacy, we are aware of a wide

9To be pronounced as she-cure. The latest version is available at https://github.com/

sshcure/sshcure
10http://nfsen.sourceforge.net

https://github.com/sshcure/sshcure
https://github.com/sshcure/sshcure
http://nfsen.sourceforge.net
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Figure 4.4: Brute-force attack behavior.

user base, ranging from small Web-hosting companies to backbone networks and
governmental CSIRTs.

4.3.3 Lessons Learned

Since SSHCure relies on flow data exported using NetFlow or IPFIX, it was be-
lieved to work on flow data from any source, like any other flow data analysis
software. However, as soon as SSHCure was released to the public and we re-
quested feedback from its users, we received mixed results. For some, SSHCure
worked just great and provided them with a powerful tool for detecting compro-
mises. Others, however, were reporting on false positive and negative detections,
i.e., real attacks that stayed under the radar, and reported incidents that were
actually no attacks, respectively.

Analysis of the reported issues revealed that a large number of problems
was caused by a broken assumption; Although flat traffic was thought to be
significative of traffic in the brute-force phase [79], [83], we discovered this to often
not be the case. So instead of the theoretical attack behavior that is depicted in
Figure 4.4a, we discovered that many attacks feature deviations in the number of
PPF, as shown in Figure 4.4b for network and measurement artifacts. Once false
detections are present in the brute-force phase, they propagate to the compromise
phase as well, as a direct consequence of our three-phase attack model. We
are also aware of attack obfuscation techniques that aim at generating network-
level behavior similar to what is shown in Figure 4.4b. However, we consider
attack obfuscation techniques to be out of the scope of this thesis, since (a)
these techniques have been discussed in other works already, (b) these techniques
will always be a ‘cat-and-mouse game’ between attackers and defenders, and (c)
measurements have shown that the vast majority of attacks do not use obfuscation
techniques [12].

Another class of issues that we found to cause false positive and negatives in
our detection of the compromise phase were specific characteristics of the SSH
protocol and related tools. For example, attack mitigation tools that scan log
files and block hosts after more than a selected number of failed authentication
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Figure 4.5: Directions of research presented in remainder of this chapter.

attempts, cause traffic in the brute-force phase to all of a sudden feature a sig-
nificantly different behavior, making our compromise detection approach believe
to be dealing with a compromise. Also, we found that popular SSH daemons
are shipped with rate-limiting features, for example, that also affect the flatness
of the traffic in the brute-force phase, resulting in false positive detections of
compromises.

In the remainder of this chapter, we present two directions of research for
improving our elementary detection approach presented in this section, as shown
in Figure 4.5. First, we investigate in Section 4.4 how network artifacts affect the
flatness of attack traffic and therefore eventually impair our detection of compro-
mises. The main problem is that we cannot discriminate TCP phenomena like
retransmissions and control information in flow data. We therefore aim at enhanc-
ing our flow measurements such that network artifacts like TCP retransmissions
and control information can be identified. Second, we enhance our detection al-
gorithm in Section 4.5, by including SSH-specific knowledge to be more resilient
against network artifacts and specifics of popular related tools, such as attack
mitigation systems. Although the resulting detection algorithm is not generic
anymore to a whole class of protocols that requires successful authentication to
advance in the protocol’s state machine, it allows us to identify SSH protocol
behavior that would otherwise be incorrectly classified as a compromise.

4.4 Analysis of Network Traffic Flatness

Many types of brute-force attacks are known to exhibit a characteristic flat be-
havior at the network-level, meaning that connections belonging to an attack
feature a similar number of packets and bytes, and duration. Flat traffic usually
results from repeating similar application-layer actions, such as login attempts in
a brute-force attack. For typical attacks, hundreds of attempts span over mul-
tiple connections, with each connection containing the same, small number of
attempts. The characteristic flat behavior is used by many IDSs, both for iden-
tifying the presence of attacks and – once detected – for observing deviations,
pointing out potential compromises, for example. However, flatness of network
traffic may become indistinct when TCP retransmissions and control information
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come into play. These TCP phenomena affect not only intrusion detection, but
also other forms of network traffic analysis.

In this chapter, we analyze the impact of retransmissions and control infor-
mation on network traffic based on traffic measurements. To do so, we have
developed a flow exporter extension that was deployed in both a campus and a
backbone network. Also, we show that intrusion detection results (based on the
algorithm presented in Section 4.3) improve dramatically by up to 16 percent-
age points once IDSs are able to ‘flatten’ network traffic again, which we have
validated by means of analyzing log files of almost 60 hosts over a period of one
month.

4.4.1 Background

To facilitate reliable data delivery between endpoints, TCP uses a cumulative
acknowledgement scheme in which sequence and acknowledgement numbers are
used to signal the reception of data. In the absence of any feedback from the data
receiver, a Retransmission TimeOut (RTO) is used to ensure delivery, which is
based on the estimated Smoothed Round-Trip Time (SRTT). Due to unexpected
delays or reordering of packets in the network, retransmissions can occur spuri-
ously. For example, when a packet or its acknowledgement is delayed unexpect-
edly rather than lost, the RTO timer expires and the packet is retransmitted.
Also, a fast retransmission may be sent when a certain number of consecutive
duplicate acknowledgements is received, signalling the potential loss of packets
to the sender. Due to reordering of packets, duplicate acknowledgements may be
sent even though no packet has gotten lost. These duplicate acknowledgements
can trigger a spurious fast retransmission. In both examples, spurious retransmis-
sions and their duplicate acknowledgements cause additional packets and bytes
in network traffic and hence affect the potential flatness of a connection.

To optimize network throughput while avoiding congestion or overloading an
endpoint, TCP uses several techniques, such as flow control, based on a sliding
window, and the delayed ACK mechanism. To realize flow control, the receive
window needs to be signalled from receiver to sender, and under the delayed
ACK mechanism, data acknowledgements are held back for a brief delay to save
overhead. If data or additional control information becomes available during the
delay, the held back acknowledgement can be combined with this information.
For some forms of control information, such as data acknowledgements and receive
window changes, the delayed ACK mechanism and circumstances dictate whether
a dedicated packet is sent to carry the control information to the endpoint. For
example, if during a delayed ACK data is pushed down from the application-
layer, the held back acknowledgement can be piggybacked with a data packet.
This prevents sending a dedicated acknowledgement with no payload. Also, the
delayed ACK mechanism allows for the cumulative acknowledgement of two data
packets received in rapid success. This too saves sending a dedicated packet. If
the receive window changes at the receiver, this information can be combined
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Figure 4.6: INVEA-TECH FlowMon platform architecture, as of FlowMon
Probe 6.x.

with a held back acknowledgement, again saving a dedicated packet. Sometimes,
however, the receive window expands when there is no data to acknowledge, in
which case a dedicated window update needs to be sent. Whether or not such
dedicated packets are sent affect the flatness of network traffic.

There are also types of control information that are always sent in separate
packets: Zero Window probes and responses, KeepAlive Probes and responses,
and RST packets. Also, depending on the TCP implementation, a three-way
FIN close sequence may not be supported, thereby potentially introducing an
additional packet during the connection termination. Any of these additional
packets obviously affect the flatness of network traffic as well.

It is important to note that the presence of the aforementioned situations
mostly depends on network conditions, resource availability and scheduling on
endpoints, whether or not there is data to send or acknowledge, and timing.

4.4.2 Implementation

To export information that allows for the discrimination of TCP retransmissions
and control information in flow data, several IPFIX IEs were defined and imple-
mented as part of a flow Metering Process. This section describes these IEs and
the accompanying implementation.

We have defined IPFIX IEs for each of the TCP protocol phenomena discussed
(in italics) in Section 4.4.1. To facilitate the export of these IEs, we have devel-
oped an extension to INVEA-TECH’s FlowMon flow exporter. This platform
was chosen because of its highly customizable plugin architecture, and because
we have full control over it in our networks. The complete architecture is shown
in Figure 4.6. It is based on plugins for data input, flow record processing &
filtering, and export. Input plugins process data from a given source, such as one
or more line cards, and are responsible for creating flow cache entries, one entry
per active flow. Process plugins allow for the manipulation of these cache entries
once these entries have been created. The process plugin type is best suited for
program logic that does not necessarily require a packet’s payload anymore. The
export plugin is responsible for exporting cache entries by sending flow records to
a collector using NetFlow or IPFIX. From within these plugin types, actions can
be hooked to events such as flow entries being added to, updated in or expired
from the flow cache. Among these actions is the filtering of flow cache entries to
prevent them from being exported.
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Dataset Packets Bytes Flows
Retransmissions Ctrl. information

Packets Bytes Packets Bytes

UT 370.73 G 291.64 TiB 7.35 G
5.30 G 2.83 TiB 100.50 G 4.30 TiB

(1.43%) (0.97%) (27.11%) (1.47%)

CESNET 257.38 G 227.67 TiB 3.57 G
8.29 G 2.78 TiB 83.61 G 3.48 TiB

(3.22%) (1.22%) (32.48%) (1.53%)

Table 4.1: Datasets and their characteristics.

Our extension comes in the form of an input plugin, because it evaluates
the payload of packets. The plugin measures TCP retransmissions and control
information packets, and stores and maintains related counters in the flow cache.
To recognize these particular packets, TCP conversations are analyzed in real-
time by evaluating sequence and acknowledgement numbers, timestamps, flags,
receive window sizes, and payload sizes. This implementation is heavily based on
the TCP packet dissector used by Wireshark.11

For the TCP analysis to be accurate, it is crucial that packets in both direc-
tions of a TCP conversation pass through the observation point. Otherwise, the
housekeeping of sequence and acknowledgement numbers may be affected, which
obviously impairs the analysis. The same is true when packets are lost down-
stream of the observation point. We are also aware of the fact that the TCP
packet dissector used by Wireshark cannot but misclassify packets in its on-the-
fly analysis in some cases, especially when packets are reordered. To optimize
our plugins to work on high-speed links, e.g., of 10 Gbps and higher, we accept
these exceptional cases for the sake of performance.

4.4.3 Measuring TCP Retransmissions & Control Informa-
tion

Our first step towards understanding the impact of TCP retransmissions and
control information is to measure it in two networks that are different in na-
ture. Two datasets were collected, as shown in Table 4.1, consisting of only TCP
flow data. Dataset UT was collected on the campus network of the UT in the
course of July/August 2014 (31 days). This network features a publicly routable
/16 network address block with connections to faculty buildings, student and
staff residences, etc. Due to the residential aspect of the campus network it also
routes private c.q. non-academic Internet traffic. Furthermore, the campus net-
work houses mirror servers for popular open-source software, such as Ubuntu.
Dataset CESNET was collected on a backbone link of the Czech NREN, specifi-
cally the link between CESNET and the ‘commercial Internet’. The dataset was
collected in the course of August/September 2014 (31 days).Due to the academic

11http://www.wireshark.org/
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Dataset
Retransmissions Fast Retransmissions

Packets Bytes Packets Bytes

UT 95.50% 89.54% 4.50% 10.46%

CESNET 97.87% 91.27% 2.13% 8.73%

Table 4.2: Distribution of retransmitted packets and bytes.

nature of these networks, the relative amount of traffic during summer holidays
is considerably lower than during working days.

The remainder of this section is organized in two parts. We start by analyzing
retransmissions and control information in detail based on our measurements.
After that, we perform a similar analysis only for SSH traffic, given that the
validation of this work will be performed in the context of SSH intrusion detection.

4.4.3.1 Overall Traffic

Details on the number of retransmitted packets and bytes, and the amount of
control information in terms of packets and bytes are shown in Table 4.1. Several
observations can be made. On the one hand, TCP control information is mostly
visible in terms of packets. On the other hand, retransmissions contribute more
towards the percentage of bytes. Another observation is that there are many more
packets with control information than there are retransmitted packets. This is
mainly because many control information packet types, such as those that result
from the delayed ACK mechanism, are sent under all network conditions, while
retransmissions appear more frequently during network congestion, for example.

The distribution of retransmission types in terms of packets and bytes is shown
in Table 4.2. As can be observed, most retransmissions are regular retransmis-
sions. Also, for each dataset, the fraction of the total number of bytes for the
fast retransmission type is higher than the packet fraction. We believe this is be-
cause regular retransmissions can also contain no payload, e.g., retransmissions
of empty TCP SYN and FIN segments bring down the average number of bytes
per retransmitted packet. Considering the UT dataset, it shows that while 4.50%
of retransmitted packets are of the fast type, these do account for 10.46% of the
number of retransmitted bytes. For the CESNET dataset, these numbers are
2.13% and 8.73%, respectively.

The number of retransmitted packets and fast retransmitted packets within
every five-minute interval in the 31 days of the UT dataset is shown in Figure 4.7.
A diurnal pattern can be clearly identified, which follows the working hours at
faculty buildings, and the presence of on-campus residents. While Table 4.1
provides absolute numbers, and as such is not specific about the points in time
at which events occur, Figure 4.7 shows that retransmissions occur at any time
of the day. The two outlying groups of retransmitted packets around 5 Aug
18:00 and 10 Aug 18:00 coincide with severe SSH dictionary attacks from China
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Type
Dataset

UT CESNET

Duplicate ACK 5.24% 1.77%

Non-piggybacked ACK 7.61% 11.71%

Consecutive empty ACK 83.13% 80.60%

Window Update 2.02% 1.88%

Zero Window Probe (ZWP) < 0.01% 0.01%

ZWP response < 0.01% < 0.01%

RST 0.87% 2.59%

Four-way close packet 0.10% 0.21%

KeepAlive Probe 0.54% 0.74%

KeepAlive Response 0.48% 0.48%

Table 4.3: Distribution of control information packets.

Dataset
Retransmissions Control Information

Packets Bytes Packets Bytes

UT
1488.18 M 167.36 GiB 3269.24 M 145.19 GiB

(9.53%) (1.45%) (20.93%) (1.26%)

CESNET
153.54 M 25.44 GiB 1767.31 M 76.78 GiB

(2.10%) (1.54%) (24.15%) (4.64%)

Table 4.4: TCP Retransmissions & Control Information for SSH data subset.

that involve many retransmissions, which makes these anomalies visible in our
measurements. These attacks will be discussed later as part of our validation in
Section 4.4.5.

The distribution of the various types of control information packets is shown
in Table 4.3. As can be seen, packets related to the delayed ACK mechanism,
i.e., non-piggybacked ACKs and consecutive empty ACKs, account for large per-
centages of the total number of control information packets in each dataset. For
example, non-piggybacked ACKs take up 7.61% and 11.71% in UT and CESNET,
respectively. Another example is the consecutive empty ACK, with 83.13% in UT
and 80.60% in CESNET.

Given the significant presence of TCP retransmissions and control information
in our measurements in two networks that are different in nature, we conclude
that these packets are omnipresent on the Internet. Also, we believe to have
demonstrated that the flatness of originally flat network traffic on the Internet is
likely affected by this omnipresence, as theorized in Section 4.4.1.
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Figure 4.7: Retransmissions over time.

Dataset
Retransmissions Fast Retransmissions

Packets Bytes Packets Bytes

UT 99.71% 96.47% 0.29% 3.53%

CESNET 99.87% 99.07% 0.13% 0.93%

Table 4.5: Distribution of retransmitted packets and bytes for SSH data subset.

4.4.4 SSH Traffic

The SSH traffic considered in this work was obtained by filtering the datasets
presented in Table 4.1 for traffic on port 22, yielding 11.29 TiB of traffic for UT
and 1.62 TiB for CESNET. Details on the number of retransmissions and control
information packets and bytes are shown in Table 4.4. Several observations can be
made when comparing the SSH traffic to the overall traffic. First, for CESNET,
the relative percentage of retransmissions is lower in the SSH-only traffic than in
the overall traffic, at 2.10% versus 3.22%. For UT, however, it is much higher,
namely 9.53% versus 1.43%. This is because the UT dataset contains several
large-scale SSH attacks, as discussed previously alongside Figure 4.7. Second,
control information in the SSH datasets is more dominant than retransmissions
in terms of packets and bytes, which is similar in the overall traffic. Third,
considering that the overall traffic in UT is only 50% larger than in CESNET in
terms of bytes (from Table 4.1), the relative amount of SSH traffic in UT is much
larger than in CESNET.

As for retransmissions in SSH traffic, the distribution of these in terms of
packets and bytes is shown in Table 4.5. Compared to the distribution of re-
transmissions in the overall traffic, it can be observed that a higher percentage
in the SSH traffic is of the regular retransmission type. In the UT dataset, only
0.29% of retransmissions are classified as fast retransmissions, in contrast to a
figure of 4.50% in the respective overall traffic. For CESNET, these numbers are
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Type
Dataset

UT CESNET

Duplicate ACK 1.87% 2.70%

Non-piggybacked ACK 7.76% 63.63%

Consecutive empty ACK 89.58% 25.73%

Window Update 0.37% 0.35%

Zero Window probe 0.00% < 0.01%

ZWP response 0.00% < 0.01%

RST 0.31% 5.43%

Four-way close packet 0.09% 1.52%

KeepAlive probe 0.00% 0.35%

KeepAlive response 0.00% 0.31%

Table 4.6: Distribution of control information packets for SSH data subset.

0.13% and 2.13%. Relative differences between the overall traffic and the respec-
tive SSH-only traffic thus follow the same trend. We believe that this is the case
because it is less common for SSH connections to have four or more consecutive
packets with payload sent by one endpoint within a short period. In other words,
there are not enough consecutive data packets to trigger a fast retransmission.

The distribution of control information in SSH traffic is shown in Table 4.6.
This distribution features several key differences compared to the full datasets
(see Table 4.3). A prime example is the significantly lower number of packets
related to KeepAlive, especially for UT where there are none at all. A possible
explanation for this is that the majority of SSH connections is short-lived, or oth-
erwise active enough to not trigger the TCP KeepAlive timer, which is typically
in the order of hours [87]. Another observation is that while the distribution of
control information types is very similar within the full datasets collected on dif-
ferent networks, this is not the case anymore for the SSH datasets. For example,
in the UT dataset, 0.30% of all SSH packets are RSTs, while RSTs account for
5.43% in CESNET. We believe that this is due to increased scanning activity.
Also, for CESNET, non-piggybacked ACKs are at a staggering 63.63%, whereas
in UT they account for only 7.76%. We believe these differences stem from the
fact that a lot more data is sent within SSH connections on the UT network.
Furthermore, for the UT and CESNET datasets it can be seen that four-way
close features only very small percentages of control information packets, namely
0.09% and 1.52%, respectively. This leads us to believe that SSH network traffic
is typically not affected much by this type of control information.
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4.4.5 Validation

In this section, we quantify and study the effects of TCP retransmissions and
control information on flow analysis applications, in the context of flow-based SSH
intrusion detection. The validation methodology is discussed in Section 4.4.5.1.
Finally, in Section 4.4.5.2, we present the validation results.

4.4.5.1 Methodology

We perform the validation of this work by executing the (state-of-the-art) de-
tection algorithm presented in Section 4.3 on the datasets listed in Section 4.1.
Instead of only considering the regular number of PPF in the detection algo-
rithm, as would be the case in a regular flow monitoring setup, we also consider
a compensated number of PPF. The compensated number of PPF consists of the
number of the total number of packets metered for each flow minus the number
of packets of all retransmissions and TCP control information fields. Ultimately,
this should result in flat traffic when it comes to attacks.

By comparing the detection results when using non-compensated and com-
pensated data, we can quantitatively evaluate the gain of ‘flattening’ traffic in
the context of SSH intrusion detection. We perform the comparison in two di-
mensions – attacks and tuples – as this allows us to discover potential differences
in the impact of compensation. Although comparing the number of detections in
terms of attacks and tuples before and after compensation provides an indication
of the detection improvements, it does not reveal anything about to accuracy
of these detection outcomes. To assess these accuracies, we have performed a
large-scale validation by collecting authentication logs of 58 hosts on the campus
network of the UT – 56 servers and 2 honeypots – to serve as the ground-truth for
validation. These authentication logs are the only means of validating whether a
host has really been under attack. Since we only have the logs for UT hosts, we
only consider the UT dataset in this part of the validation.

In the authentication logs, a minimum number of failed attempts must be
encountered for the behavior to be considered a dictionary attack. Since the
detection algorithm considers at least N consecutive flow records, only N or
more connections to the SSH server that contain at least one failed attempt
are considered. This comes down to at least five sessions with one or more
authentication failures each. By evaluating log entries featuring this property,
we created a list of attacks to serve as ground-truth for validation. This ground-
truth can then be used for expressing the accuracy of the algorithm, both in
terms of attacks and tuples, by comparing detection results to the ground-truth
based on the following metrics:

• True Positives (TP) – Attacks/tuples correctly classified to feature a brute-
force phase, for which 5 or more sessions with authentication failures are
reported in the ground-truth.
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Figure 4.8: Compensated number of PPF in brute-force flow records.

• False Positive (FP) – Attacks/tuples incorrectly classified to feature a brute-
force phase, for which less than 5 sessions with authentication failures are
reported in the ground-truth.

• True Negatives (TN) – Attacks/tuples correctly classified to not feature a
brute-force phase, for which less than 5 sessions with authentication failures
are reported in the ground-truth.

• False Negatives (FN) – Attacks/tuples incorrectly classified to not feature a
brute-force phase, for which 5 or more sessions with authentication failures
are reported in the ground-truth.

Using these metrics, we can evaluate the differences in the detection algorithm
for the non-compensated and compensated cases in terms of accuracy (Acc),
which is defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(4.1)

In addition, to understand the relation between TCP control information and
retransmissions, and geographical locations, we determine the physical origin of
attacks and tuples based on a snapshot of the MaxMind GeoIP12 database at the
time of the measurements. The physical location can reveal why certain attacks
or the majority of tuples are more likely to be detected only after compensation,
as we hypothesize that retransmissions are strongly bound to the geographical
distance between attackers and targets.

4.4.5.2 Results

The best way to visualize the achievements of this work is by means of a plot, as
shown in Figure 4.8. This figure shows the traffic in terms of the number of PPF

12We have used MaxMind’s GeoLite City database, which can be retrieved from
http://dev.maxmind.com/geoip/legacy/geolite/.

http://dev.maxmind.com/geoip/legacy/geolite/
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Dataset Country Non-compensated Compensated

UT

China 1817 2347 (+29%)

Netherlands 317 694 (+119%)

Venezuela 195 233 (+19%)

Russian Federation 165 189 (+15%)

Chile 154 164 (+6%)

Other 851 1080 (+27%)

Total 3499 4707 (+35%)

CESNET

China 15239 19683 (+29%)

United States 316 (+14%)

Brazil 239 257 (+8%)

Korea 146 170 (+17%)

Turkey 124 139 (+12%)

Other 1075 1420 (+32%)

Total 17139 21985 (+28%)

Table 4.7: Top five attack origins in terms of attacks.

over time between a single tuple of attacker and target. Clearly, the original
network traffic (i.e., the sum of the three series in the figure) is not flat, but
after compensating for control information packets and retransmissions, traffic
that is almost flat remains. Occasional variations in the remaining number of
PPF after compensation are the result of the performance trade-off discussed in
Section 4.4.2. We accept these variations, considering that most attacks feature
a large enough number of flows to reach the threshold N .

The results of operating the detection algorithm on the considered datasets,
both with and without PPF compensation, are shown in Table 4.7 for attacks and
Table 4.8 for tuples. The number of detected attacks and tuples is considerably
higher after compensation for both datasets. In CESNET, the total number of
detected attacks is about a fourth times higher after compensation, i.e., from 9475
to 11849, while the improvement in terms of tuples is at 40%. For the UT dataset,
a gain of 35% in terms of attacks can be observed – from 3499 to 4707 – and
a gain of 45% in terms of tuples. The reason for the improvement in terms of
attacks is that without compensation, the effects of retransmissions and control
information hinder the detection for all tuples of an attack and, as such, the
corresponding attack itself is also not detected.

Since we assume that retransmissions depend in part on the geographical
location of and route between attacker and target, we show for each dataset
the five countries from which most attacks originate, both in terms of attacks
(Table 4.7) and tuples (Table 4.8). The total number of countries involved in
attacks is 60 for the UT dataset, and 71 for CESNET. Furthermore, we show
the number of attacks and tuples reported only after compensation for those
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Dataset Country Non-compensated Compensated

UT

China 31887 55218 (+73%)

Netherlands 11048 11646 (+5%)

United States 3573 4203 (+18%)

Vietnam 2358 2396 (+2%)

Germany 1592 1642 (+3%)

Other 10197 12939 (+27%)

Total 60655 88044 (+45%)

CESNET

China 799840 1109458 (+39%)

United States 37161 41230 (+11%)

France 16096 22818 (+42%)

Korea 10051 10890 (+8%)

Malaysia 5579 5811 (+4%)

Other 36994 48521 (+31%)

Total 905721 1234659 (+36%)

Table 4.8: Top five attack origins in terms of tuples.

countries. Several observations can be made from the results. First, regarding
the UT dataset, many attacks that are detected only after compensation have the
attacking host located in China, with a figure of 530 attacks and 23331 tuples.
While China easily outperforms the other countries in terms of attacks and tuples
in UT, the relative increase of the number of attacks and tuples not reported
until after compensation from China is also relatively high. More specifically, the
increase in the number of attacks from China is 29%, and for tuples the increase
is a staggering 73%. China also dominates in the CESNET dataset, where 4444
attacks from China are detected only after compensation, and 309618 tuples.
The respective gains are 29% and 39%. Second, for the UT dataset, we implicitly
know the geographical location of the targets of attacks. Moreover, we know
that traffic between hosts located in China and the UT campus network is often
susceptible to packet loss. The same can be said for the United States, for which
an 18% gain in terms of tuples can be observed. All these observations make us
conclude that TCP control information and retransmissions are indeed strongly
bound to the distance in geographical location between attacker and target, and
that the effects on detection can be observed quantitatively.

Out of the top five attack origins in UT, the gain in the number of detected
attacks from The Netherlands after compensation is at 119%. This gain is higher
than the 29% for China, for example, while attackers in The Netherlands are
located closer (from a geographical point-of-view) to UT’s campus network. In-
vestigation of the measurement data has shown that for attacks where the route
between attacker and target is not impaired by apparent packet loss or high(er)
latencies, the non-flatness of network traffic is caused mostly by packets that
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Dataset Logged attacks TPR FPR TNR FNR Acc

UT
812

0.644 0.087 0.913 0.356 0.788

UT, compensated 0.784 0.096 0.904 0.216 0.849

Table 4.9: Detection performance in terms of attacks.

Dataset Logged tuples TPR FPR TNR FNR Acc

UT
4562

0.430 0.081 0.919 0.570 0.689

UT, compensated 0.585 0.090 0.910 0.415 0.758

Table 4.10: Detection performance in terms of tuples.

relate to TCP’s delayed ACK mechanism and not by retransmissions, which is
more likely for far-away countries.

Thus far we have shown the different detection results when using compen-
sated and non-compensated data. However, we have yet to compare these detec-
tion results to our ground-truth, consisting of authentication logs from 58 hosts
on the campus network of the UT. Since the ground-truth covers only a subset
of the hosts considered before, the number of attacks and tuples reported in the
remainder of this section is lower than reported in Table 4.7 and Table 4.8.

The detection performance of the detection algorithm in terms of attacks is
shown in Table 4.9, where we again divide the results in both compensated and
non-compensated. Analogously, the detection performance in terms of tuples in
shown in Table 4.10. In both tables, we use the percentages of the previously
introduced evaluation metrics. For example, the True Positive Rate (TPR) is the
percentage of correctly identified attacks/tuples for which 5 or more sessions with
authentication failures are reported in the ground-truth. The overall conclusion
of the results is that compensation of the number of PPF yields a significantly
improved TPR for both attacks and tuples. The TPR for attacks has improved
from 64% to 78% for the UT dataset. For tuples, the figures are from 43% to
59%. These major improvements come at a minor cost in terms of false detections
of roughly 1%. Also the accuracies for both attacks and tuples have improved
significantly, from 79% to 85%, and 69% to 76%, respectively. We believe that the
slight increase in the number of false detections is the case because of misclassified
packets (e.g., unrecognized retransmissions), which in some cases cause benign
network traffic to mimic dictionary attacks by becoming flat. These false positives
are thus coupled to the performance trade-offs made in the plugin, as explained
in Section 4.4.2.
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4.5 Including SSH-specific Knowledge

In the previous sections, we have presented our approach for detecting the three
phases of SSH brute-force attacks, and investigated under which circumstances
this algorithm works on the Internet. To overcome the identified problems with-
out changing our detection algorithm, we proposed a functional extension to flow
export devices that exports information for compensating traffic that features
network artifacts. Besides what has been presented before, we have learned from
production deployments of our open-source IDS SSHCure that our detection ap-
proach has various shortcomings that ultimately cause compromises to remain
undetected or false alarms to be raised. First, we have discovered characteristic
features of the OpenSSH daemon that significantly impact the traffic between
SSH clients and daemons. Second, attack mitigation systems on various network
layers often yield traffic patterns that are similar to the definition of compromise
traffic in the original algorithm.

In this section, we take a different approach to compromise detection, to
address both identified shortcomings, among others. Instead of relying on the
assumption that brute-force attack traffic is flat, we adapt our detection algo-
rithm to the most-used SSH daemon: OpenSSH. By analyzing attack traffic that
exhibits characteristics that are specific to OpenSSH, combined with an exten-
sive analysis of attack tool behavior upon compromise, our detection algorithm
is more resilient against unexpected deviations in network traffic.

4.5.1 Traffic Analysis

Our experience in analyzing SSH traffic has shown that network traffic between
attacker and target can be affected at multiple stages: SSH daemon settings,
attack tools and attack mitigation mechanisms. In the analysis presented in this
section, we consider OpenSSH as the daemon running on attack targets, as it
often comes preinstalled on Linux, BSD and Mac OS X operating systems. To
verify whether it is the most used SSH daemon, we have performed a scan on the
UT network, which has approximately 25k active hosts. Out of those, more than
700 hosts are running an publicly accessible daemon with a valid identification
string, of which 97% identified itself as being OpenSSH.13 Similar numbers on
the OpenSSH market share are reported by other sources, such as 97% in [85]
and 88% in [135].

4.5.1.1 OpenSSH daemon

The OpenSSH daemon features several configuration options that should be taken
into account for the detection of SSH compromises:

13Other discovered SSH daemons were SunSSH, Dropbear, Cisco SSH, Gene6, DesktopAu-
thority, SCS and WeOnlyDo.
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• LoginGraceTime defines the time after which the SSH daemon disconnects
in case the client does not perform any more authentication attempts. This
is done by sending a TCP FIN packet to the client. The default value is 2
minutes.

• MaxAuthTries defines the maximum number of authentication attempts per
connection. The default value is 6. Note that many client tools, such as the
OpenSSH client, close the connection already after 3 failed authentication
attempts. The allowed number of authentications can be changed by the
client as long as the value does not exceed MaxAuthTries.

• MaxStartups defines the maximum number of concurrent, unauthenticated
connections. It is defined as the three-tuple start:rate:full, with default
value 10:30:60. Rate-limiting in the form of dropping connections is then
applied with a probability of rate/100 when more than start connections
are unauthenticated. This probability increases linearly up to the moment
in which full connections are unauthenticated.

Next to these settings, there are TCP settings that affect the network traffic
between client and daemon. First, the value of the TCP FIN-timeout determines
the maximum amount of time a TCP connection remains in the FIN-WAIT-2 state.
In this state, the daemon has initiated a connection termination and received
a subsequent TCP ACK from the client. As soon as the client also closes the
connection by sending a TCP FIN packet, the time between this packet and the
previous TCP ACK packet determines the response of the server; If the TCP FIN

packet is received before the TCP FIN-timeout has taken place, the server replies
with a FIN+ACK packet, while a TCP RST packet is sent otherwise. This is shown
in Figure 4.9. Second, the TCP keep-alive interval determines the maximum idle
time of a TCP connection. In case of an idle connection, a TCP ACK packet is sent
without payload. The OpenSSH daemon also has its own keep-alive mechanism,
but since the TCP keep-alive mechanism is enabled by default, it is typically
disabled.

Existence of users on the target system (i.e., the system where the OpenSSH
daemon is running) does not affect the network traffic. From the attacker (client)
side, no difference can be observed between an attempt using a valid username
and an invalid password, and an attempt with an invalid username. Naturally,
this is favorable in terms of security, as an attacker cannot determine whether a
guessed username exists on the target host and thereby increase the probability
of a successful authentication.

4.5.1.2 Attack Tools

We have analyzed ten uniquely identifiable tools for performing brute-force at-
tacks, ranging from expect14 scripts, to sophisticated applications that try to be

14http://linuxcommand.org/man_pages/expect1.html

http://linuxcommand.org/man_pages/expect1.html
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Figure 4.9: SSH client behavior after LoginGraceTime.

invisible for detection algorithms. These tools have been downloaded to our hon-
eypots over several years, complemented by tools that we have found by searching
the Web systematically; Five tools can be retrieved from their own Web page or
Google Code, and four tools can be found on forums and other online communi-
ties.

Several observations have been made regarding the analyzed tools. First,
the number of authentication attempts per connection varies between 1 and
MaxAuthTries. Tools that perform a single attempt per connection are typi-
cally faster; Establishing one connection per attempt avoids waiting for the SSH
daemon to report the authentication failure and the client to show a new prompt.
Second, the number of PPF per login attempt very much depends on the con-
figuration of the daemon, rather than the attack tool. Third, the attack tools’
action upon compromise, i.e., the behavior of the attack tool with respect to the
connection on which a successful authentication has taken place, was found to
be the clearest indicator of a compromise, and is therefore key to our detection
algorithm. This finding is crucial, as it makes the detection of compromises in-
dependent of the absolute number of PPF, which varies per attack tool and SSH
daemon. We have identified four actions upon compromise:

• Maintain connection, continue dictionary – The connection with successful
authentication is maintained, until the end of the attack. The attacker
continues with the attack, also towards the compromised host.

• Maintain connection, abort dictionary – The connection with successful
authentication is maintained, until the end of the attack. Other attack
traffic towards the compromised host is stopped.

• Instant logout, continue dictionary – The connection with successful au-
thentication is closed right after the compromise, while the attacker con-
tinues to attack both the compromised host and others.
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Figure 4.10: Attacker behavior after mitigation.

• Instant logout, abort dictionary – The connection with successful authen-
tication is closed right after the compromise. Other attack traffic towards
the compromised host is stopped.

These actions form an integral part of the detection algorithm presented in
Section 4.5.2. Actions featuring an instant logout are most prevalent in the
considered tools.

4.5.1.3 Attack Mitigation Algorithms

Several SSH attack mitigation mechanisms have been developed over the years,
to reduce the risk of compromises during a brute-force attack. These mecha-
nisms exist for both the host-level and the network-level. Host-level mechanisms,
usually software-based, scan authentication log files and as soon as the number
of failed authentication attempts exceeds a threshold, traffic from the attacker
is blocked. Blocking can be performed on several layers. First, on L5, tools
like denyhosts still allow TCP connections to be established to the target device,
while setting up SSH connections from the attacking host is prohibited. Since no
packets are dropped at the connection-level, no retransmissions or failing connec-
tion establishments can be observed. Second, tools like fail2ban, sshdfilter and
SSHblock operate on L4 by instructing a local firewall to block traffic from the
attacker to the target. If mitigation takes place while a TCP connection is active,
retransmissions will occur. Also new TCP connections to the target cannot be
established anymore, resulting in SYN-only flows. Both situations are shown in
Figure 4.10, where the number of PPF of Flow n deviates from typical brute-
force flows, due to the additional packets involved in the retransmission(s). After
Flow n, there will be at least one SYN-only flow (Flow n + 1). Third and last,
tools like SSHGuard drop any traffic from the attacker’s IP address using a local
firewall, i.e., at L3. From a network traffic perspective, the behavior is identical
to a L4-block.
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Figure 4.11: Various types of compromise flows in a chunk of flow data.

Besides host-level mitigation mechanisms, also network-level mechanisms can
be in place. These mechanisms are usually operated by packet forwarding devices,
performing some sort of traffic blocking, e.g., by means of Access Control Lists
(ACLs) or null-routing. Blocking rules can be composed based on blacklists or
detections on honeypots, for example. The network traffic after mitigation is
similar to host-level mitigation on L3 or L4.

4.5.2 Algorithm

Key to our compromise detection are the four actions that can be observed after
a compromise. We have transformed these actions into six scenarios, as shown in
Figure 4.11. The two additional scenarios have been defined to accommodate for
the fact that many analysis applications receive and process flow data in fixed-size
time bins, as a consequence of which our algorithm has to take into account that
attack data may be spread over multiple data chunks. Each of the subfigures
shows a flow data chunk, with flows (long dashes) towards targets running an
SSH daemon. Short-dashed lines mark a flow with a compromise.

In Figure 4.11a, we show that the compromise flow is maintained until the
end of the attack, and that other login attempts are observed in parallel towards
the same target. A similar scenario is shown in Figure 4.11b, but since the end
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of the attack does not lie within the current data chunk, the compromise flow is
characterized by an unterminated TCP connection (i.e., without a TCP FIN or
RST flag set). Similarly to these two scenarios, we show in Figure 4.11c and 4.11d
how the compromise flows should be identified in case the attacker aborts its
dictionary towards the compromised target: traffic from the same attacker to-
wards other targets reveals the end of the attack. Figure 4.11e and 4.11f show
situations where the attack tool performs an instant logout upon compromise.
Observe that the compromise in Figure 4.11f may also be very close to the end
of the data chunk, which is why compromises classified according to this scenario
are checked in the next data chunk again, to verify whether there is no traffic
from the attacker towards the compromised target.

The compromise detection can be summarized in two steps:

• Step 1 – Matching traffic against scenarios. As soon as a brute-force
phase has been detected between attacker and target, this phase aims at
detecting one of the scenarios shown in Figure 4.11. In case of a match, a
compromise is detected. Special care must be taken with unterminated con-
nections, as shown in Figure 4.11b and 4.11d, as they may be the result of
an attacker stopping its attack without properly closing all connections, in-
stead of a compromise. If this is the case, the SSH daemon will timeout and
close the connection after LoginGraceTime, as discussed in Section 4.5.1.1.
At the flow-level, this can be verified by checking the duration of the return
flow, i.e., the flow from target to attacker. In case its duration matches the
configured LoginGraceTime, the attack was stopped without a compromise.
Otherwise, we consider the target host to be compromised.

• Step 2 – Identification of mitigation mechanisms. After identifi-
cation of a matching scenario, the traffic is checked for signs of activated
mitigation mechanisms. As soon as these mechanisms are activated, at least
one of the following situations may apply: 1) Mid-connection mitigation can
result in a number of PPF that is higher than the identified baseline, due
to retransmissions between attacker and target, or 2) new connections have
merely a TCP SYN flag set and typically consist of three packets, which
is a frequently used retry count for establishing TCP connections. Iden-
tification of mitigation mechanisms is crucial, as they would trigger false
positive compromise detections (i.e., those that feature an instant logout)
otherwise.

4.5.3 Validation

In this section, we present the validation of our detection algorithm. We start
by describing our two datasets in Section 4.5.4. To be able to evaluate the
algorithm, we have implemented it as part of SSHCure v2.4. The validation
results are discussed in Section 4.5.5. After that, we evaluate the performance of
SSHCure as a system in Section 4.5.6.
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4.5.4 Datasets

We collected two datasets on the campus network of the UT. The network features
a publicly routable Class B IPv4 address block, of which typically 25k addresses
are actively being used. Both datasets comprise a period of one month, collected
in November and December 2013, and January and February 2014, respectively,
consisting of the following data:

• Honeypot log files – These have been collected from various low-, medium-
and high-interaction honeypots.

• Workstation & server log files – These have been collected from worksta-
tions and servers, which all have a publicly accessible SSH daemon.

• Flow data – Flow data with a sampling rate of 1:1 has been collected at
edge routers and, as such, contains all SSH traffic entering and leaving our
campus network.

The exact composition of the datasets is shown in Table 4.11, which shows
the number of honeypots, servers and workstations of which the log files comprise
the dataset, and the number of attacks identified.

The datasets have been chosen carefully to reflect two completely different
types of systems. On the one hand, dataset D1 solely consists of data from hon-
eypots, i.e., systems set up for being compromised (easily). On the other hand,
dataset D2 is made up of data from mostly servers, which are likely configured
with very strong passwords and attack mitigation mechanisms. In addition, we
deliberately selected workstations, servers and honeypots that are operated by
different persons, to ensure that our results are not biased by similar configura-
tions.

Since the collected log files are the one and only proof of whether login at-
tempts have succeeded or not, we consider this data the ground-truth for the
validation of this work. More precisely, we consider all successful authentications
after more than six login attempts and have no idle period of more than one hour
to be compromises, and exclude all logins from hosts in the IP address range of
the UT. Note that in a benign situation, six attempts will typically be carried by
two flows (due to NumberOfPasswordPrompts being set to 3 in the configuration
of the OpenSSH SSH client), while up to six flows may be observed during an

Dataset Honeypots Servers Workstations Attacks

D1 13 0 0 632

D2 0 76 4 10,716

Table 4.11: Dataset composition in terms of device types and attacks.
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attack, in case an attacker performs only one authentication attempt per connec-
tion. Since our goal is to validate the detection of compromises, we consider only
those attacks that show brute-force phase behavior.

4.5.5 Detection Accuracy

We have compared the log files to SSHCure’s detection results based on the
following metrics:

• True Positives (TPs), False Positives (FPs): Attacks correctly and incor-
rectly identified to feature a compromise, respectively.

• True Negatives (TNs), False Negatives (FNs): Attacks correctly and incor-
rectly identified to not feature a compromise, respectively.

• Accuracy (Acc): This metric has already been defined in (4.1).

The results of our evaluation are shown in Table 4.12, where we list the
values for all evaluation metrics, as well as their respective rates/percentages.
For example, the True Positive Rate (TPR) is the percentage of attacks correctly
identified to feature a compromise.

Although the number of correctly classified attacks in D1 is very high, yield-
ing an accuracy of 84%, we have to face incorrect classifications as well. On
the one hand, FPs are mainly a result of the sensitivity of the instant logout,
continue attack scenario (Figure 4.11e). In this scenario, we observe deviations
in the number of PPF from the identified baseline. We have found to need a
slightly higher sensitivity to obtain the results in Table 4.12, than for servers, for
example. The sensitivity may be reduced for honeypots, which will reduce the
FPs, while the number of FNs increases. On the other hand, the FNs are caused
by the result of the nature of honeypots, and show how the characteristics of the
dataset limit our approach; The easy-to-guess credentials of honeypots can result
in compromises from the first authentication attempt or even compromises after
every attempt. As such, the baseline for identifying deviations in the number of
PPF, i.e., compromises, cannot be established reliably.

The explanation for incorrectly classified attacks in D1 is confirmed by the
evaluation results of D2, where no compromises are captured. We assume that
this is due to the low number of workstations compared to servers considered,
as server administrators typically have more system administration skills than

Dataset TP TN FP FN Acc

D1 157 (0.692) 374 (0.921) 32 (0.079) 70 (0.308) 0.839

D2 0 (–) 10327 (0.997) 26 (0.003) 0 (–) 0.997

Table 4.12: Validation results per dataset.
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the average workstation user, typically resulting in stronger login credentials.
However, a much higher accuracy (close to 100%) is achieved for D2, due to the
fact that only 0.3% of the attacks is incorrectly classified.

4.5.6 SSHCure Performance

We are aware of many successful deployments of SSHCure, in networks at different
scales: campus networks, hosting companies, Internet Service Providers (ISPs),
and CSIRTs up to government-level. We also closely collaborate with CESNET,
which uses SSHCure on a central flow collector where flow data from all peering
links is collected. Given that we aim at deploying SSHCure in high-speed net-
works, we have evaluated whether SSHCure is able to analyze CESNET’s SSH
traffic in real-time, i.e., every data chunk should be processed before the next
data chunk arrives. In January 2014, where up to 29.9 GB of SSH traffic per
five minute data chunk has been transferred, SSHCure was able to do so for the
vast majority of data chunks. Only in situations with many large and concurrent
attacks, SSHCure was not able to finish in time on our measurement system,
after which it automatically skipped the next data chunk to not overload the
collection system.

In addition to evaluating SSHCure’s processing performance, we have com-
pared its detection results to the OpenBL SSH blacklist. Since comparing IDS
detection results to a public blacklist may be misleading [159], these numbers are
however merely indicative. OpenBL deploys more than 40 sensors that report
which host has performed brute-force login attempts on port 22. With only a
single instance of SSHCure deployed at the UT, we already achieve a coverage
of OpenBL of up to 3% per day over January 2014, defined as the share of IP
addresses blacklisted by OpenBL that was also reported by SSHCure. By deploy-
ing SSHCure in the CESNET network, we even achieve a coverage of up to 7%
per day with a single sensor. In addition, depending on the selected day of the
month, 14-37% of the attacker IP addresses reported by SSHCure at UT was not
(yet) blacklisted by OpenBL, while in the CESNET network, this percentage was
47-95%. We therefore envision SSHCure to be used as a complementary sensor
for SSH blacklisting.

4.6 Conclusions

In this chapter we have shown that compromise detection for SSH is viable for
deployment on the Internet. To prove this, we started in Section 4.3 with an
elementary approach that relies on the observation that brute-force attacks typ-
ically feature up to three phases. This approach is based on preliminary work
and similar to brute-force attack detection approaches proposed by others. Its
novelty lies in the detection of the compromise phase, which was not touched by
other works in the extent in which it is covered in this thesis. Our elementary
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approach is based on theoretical assumptions of brute-force attacks and it has
been tuned based on measurements in lab environments. However, we found that
improvements are necessary for it to be usable in practice, i.e., on the Internet.

As a follow-up of our elementary approach, we added two crucial and new
components. First, in Section 4.4, we investigated how network artifacts impair
the detection of the brute-force phase. These network artifacts, caused by TCP
retransmissions and control information, were found to be the source of these
problems. To overcome the impairments of the reported TCP phenomena, we
have extended the set of fields exported in flow data, such that the phenomena can
be discriminated. Without any change to the algorithm used for our elementary
approach, our detection accuracies increase from 79% to 85%, and 69% to 76%.
This leads us to conclude that many of the possible flow monitoring applications
mentioned in [98] can benefit from this work. From talks with a vendor of flow
export devices we have even learned that adding a selection of the statistics used
in this work to flow data is of interest to many customers, and that efforts are
being undertaken to do so in their products. Second, in Section 4.5, we included
domain-specific knowledge on SSH to make our detection algorithms capable of
recognizing SSH protocol and tool behavior that would otherwise be classified
erroneously as a compromise.

To validate whether our compromise detection approach for SSH also works
in practice, we developed the presented algorithms as part of our open-source
IDS SSHCure. Based on large-scale validations on the campus network of the
UT using SSHCure, we conclude that detection accuracies close to 100% can be
achieved, once we make our compromise detection specific to the SSH protocol.
Additionally, we distributed SSHCure to a large number of companies, institutes
and ISPs, such that they could share their operational experience with our com-
promise detection algorithms with us. Both our own experience and experiences
of others make us conclude that flow-based compromise detection for SSH is vi-
able and works well in practice and production. This is underlined by the fact
that SSHCure is used in a considerable number of production deployments all
over the world.

We are aware of more stealthy attacks that feature a very low intensity that
might stay under the radar of IDSs, such as those algorithms presented in this
thesis. Work on detecting such attacks has been done before, e.g., in [18], [51],
but these works are typically not flow-based. We therefore consider the detection
of low-intensity attacks as an important direction for future work.
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CHAPTER 5

Compromise Detection for Web Applications

In the previous chapter, we have shown that flow-based compromise detection
can successfully be applied for SSH. We therefore investigate in this chapter
whether flow-based compromise detection can be performed for other proto-
cols as well. Given that Web applications in general and CMSs in particular
are popular targets of brute-force attacks, we target these in this chapter.
Similar to what we presented in Chapter 4, we started with an elementary
approach that aims at identifying attack phases based on attack signatures.
The main lesson learned of the work describing this approach ([71]) was that
signatures of attacks against Web applications may be used for detection, but
more research is needed to reduce the number of false detections as a con-
sequence of traffic that consists of many small connections, such as traffic
generated by Web crawlers, calendar fetchers, and photo galleries. In this
chapter, we use an approach based on per-connection histograms that provide
information on packet payload sizes in flow data, on which we use clustering
methods for grouping similar connections. We intuitively believe that this al-
lows us to differentiate between traffic classes, so between attack traffic and
benign traffic. Additionally, the use of histograms should provide a means
to recognize the network artifacts investigated in Section 4.4 and overcome
any consequent deficiencies. The main contribution of this chapter are Web
application compromise detection algorithms, which we validated using pro-
totype implementations that we deployed in the production network of a large
Dutch Web hosting company.

The papers related to this chapter are [50], [71]. Since [71] is an early pio-
neering work on the subject presented in this chapter and provides only ele-
mentary results, we present mainly the work in [50] and reference [71] only
where applicable.

The organization of this chapter is as follows:

• Section 5.1 presents the background on the work presented in this chap-
ter, as well as this chapter’s contributions.

• Section 5.2 introduces the concept of using histograms for intrusion de-
tection. These histograms provide more details about individual packets
in flows and help us to overcome several deficiencies of regular flow
data, such as not being able to discriminate retransmissions.
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• Section 5.3 describes how we use histograms and clustering techniques
for our brute-force and compromise phase detection algorithms.

• Section 5.4 describes our validation approach and datasets, and dis-
cusses our validation results.

• Section 5.5 concludes this chapter.
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5.1 Background

Web applications have become one of the most popular targets of brute-force
attacks in recent years. A prime example of a class of Web applications that
gained lots of attention by both users and attackers are CMSs, such as Wordpress,
Joomla, and Drupal. They provide a means to build Web sites to anyone, even
people with little technical knowledge. The popularity of CMSs, and these in
particular, is also underlined by numbers: In 2015, almost 30% of all Web sites
on the Internet are built using these CMSs.1 The widespread use of these CMSs
also comes with a risk: The fact that anybody can use them, even people with
limited technical skills that are unaware of security threats and measures, leads to
outdated and vulnerable CMSs, and the use of weak administrator passwords [34].
As such, CMSs end up being a prime attack target and the number of attacks is
increasing every day, as shown and explained in Chapter 1.

Detecting attacks against Web applications can be done in several ways. From
talks with several Dutch Top-10 Web hosting companies we have learned that the
detection of attacks in a host-based fashion is by far the most popular approach.
This can be done, for example, using authentication monitors that analyze log
files on Web servers on-the-fly and block attackers by IP address after a certain
number of failed authentication attempts. These monitors come with so-called
Web panels – administration interfaces for Web hosting products. The fact that
all three major Web panels, namely cPanel, Plesk and DirectAdmin [112], provide
this functionality, indicates that this specific form of attack detection is used by
many Web hosting companies. Another example of a host-based approach is the
protection of attacks on the level of Web applications, such as CAPTCHA and
IP-based authentication blockers, typically to be installed and configured by the
Web application user instead of the Web hosting company. These host-based
approaches, where monitoring is run on the same infrastructure as the monitored
services, are however vulnerable to attacks, as attacks may lead to a significant
increase in load on the infrastructure.

1http://w3techs.com/technologies/overview/content_management/all
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Figure 5.1: Flow monitoring for Web servers using IPFIX.

http://w3techs.com/technologies/overview/content_management/all


110 COMPROMISE DETECTION FOR WEB APPLICATIONS

Web server

vhost
example1.com

vhost
example2.com

Web server IP address ?

(a) Scan using Web server IP address

Web server

vhost
example1.com

vhost
example2.com

Web server IP address
& domain name

(b) Scan using Web server IP address and domain name

Figure 5.2: Multiple vhosts on a Web server.

To overcome the problems of host-based detection, we take a network-based
approach for which only a single sensor needs to be deployed at a strategic ob-
servation point. A network-based approach can be implemented in two ways;
We either take a specific intrusion detection system, such as Snort or Bro, or we
take a more generic approach that is based on established monitoring technolo-
gies/protocols, such as IPFIX, for which the collected data can also be used for
other applications than intrusion detection. We take the more generic approach
based on flow data, where individual packets are aggregated into flows by a flow
exporter/probe, and sent to a flow collector for storage and analysis, as shown in
Figure 5.1 and explained in Chapter 2.

In this chapter, we use our three-phase attack model again, describing the
scan, brute-force and compromise phases of a brute-force attack. The scan phase
in the context of attacks against Web applications is different in nature from
attacks against other applications. This is because Web applications can typically
not be scanned using target IP addresses only, as domain names are required to
reach Web applications. This is illustrated in Figure 5.2. Web applications are
served by vhosts, which can be considered as virtual containers on a Web server,
one per domain, such that one Web server can serve multiple domains. Mapping
IP addresses to vhosts is non-trivial and not directly related to the attack itself,
which is why we ignore the scan phase in the remainder of this work.
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5.1.1 Related Work

In the previous chapter, we have shown how to detect SSH compromises using
flow data. In contrast to SSH, the Hypertext Transfer Protocol (HTTP) protocol
provides many more combinations of actions to be performed by an attacker.
This can best be explained by an example. The SSH protocol requires successful
authentication to be able to perform any further action, i.e., to advance in the
protocol’s state machine. On the contrary, the HTTP protocol does not have
any such mechanism and (form-based) authentication is handled as any other
payload to the protocol. The consequence is that flat traffic does not need to be
present in large badges anymore, as attackers may perform other actions, such
as triggering a page load or redirect, to evade detection.

Several works, such as [80], have targeted the anomaly-based detection of
attacks over HTTP(S), but always rely on individual packets for doing so. The
only flow-based attempt in this direction is described in [71], where the authors
extract attack signatures from tools that can be used for performing brute-force
attacks against Web applications. The major disadvantage of this signature-
based approach is that it has shown to catch legitimate traffic as well, mostly
caused by calendar fetchers and Web crawlers. This is because the approach is
based on the assumption that brute-force attacks consist of many flows that are
rather small in terms of packets and bytes, which is however also true for the
aforementioned type of Web applications. Although our approach also assumes
attack traffic in the brute-force phase to be flat, we design our detection approach
such that attack traffic can be discriminated from benign traffic that is alike in
terms of packets, bytes and durations, by means of using histograms for intrusion
detection.

5.1.2 Challenges & Contributions

Existing works have shown that promising detection results can be achieved by
analyzing flow data for brute-force attacks [37], [74], [75], [79], [83]. However, as
shown in Section 4.4, fluctuations in network traffic, such as TCP retransmissions
and control information, may result in both false positives and false negatives. To
overcome these problems, the novelty presented in this chapter is to analyze flow
data that is enhanced with histograms that describe packet payload distributions.
These histograms show not only the total size of a specific flow, as is the case for
regular flow data, but the entire payload size distribution. For this purpose, we
use a flow exporter, or flow probe, which we have equipped with an extension for
exporting histograms for every observed flow, to aid in our detection of attacks
against Web applications.

The contributions of this chapter can be summarized as follows:

1. We present a network-based approach for detecting brute-force attacks and
compromises against Web applications, based on IPFIX, that is resilient
against attacks on the core hosting infrastructure. (Section 5.3)
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2. The use of histograms for detection makes our approach resilient against
real-world artifacts introduced by TCP, such as retransmissions and control
information, even if the network traffic is encrypted. (Section 5.2)

3. This work has been validated using a month-long dataset of a Dutch Top-10
Web hosting company. The dataset consists of flow data and Web server
log files for approximately 2500 Web hosting accounts. (Section 5.4)

5.2 Histograms for Intrusion Detection

In this section we demonstrate how histograms can be used for intrusion detec-
tion. We start by covering background information on histograms and motivating
their use in Section 5.2.1. Then, in Section 5.2.2, we explain how to compare his-
tograms and form clusters, while in Section 5.2.3, we provide several concrete
examples and measurement-based insights into how indicative attack traffic is
when represented using histograms.

5.2.1 Traffic Characteristics

Key to identifying brute-force attacks in flow data is to aggregate similar records
into clusters. Ultimately, records describing the same attack, which are assumed
to be rather similar in terms of the number of packets and bytes, and duration,
should be part of the same cluster. Several works have however shown that relying
on packet and byte counters in flow data should be done with care, especially when
it comes to identifying flat traffic for network security analysis. For example, it
has been shown that TCP retransmissions and control information, which affect
the packet and byte counters due to timing parameters, cannot be discriminated
in flow data [52]. This causes attacks from countries that are far-away from the
observation point – above all in terms of geographical distance – to stay under
the radar of IDSs. But even if flat traffic is identified properly, its “detection
for HTTP(S) was found to be ineffective, because valid AJAX updates common
on Web 2.0 tend to produce flat traffic pattern” [37]. This is also confirmed
by [71], where it is shown impossible to differentiate traffic of Web crawlers and
calendar fetchers from dictionary attack traffic based on packet and byte counters
alone. We therefore reiterate the call in [52] that flow data must be enhanced by
additional fields to become a reliable source of information for intrusion detection.

To overcome the described problems with counters in flow data, we need more
granular information on individual packets in a flow. Several metrics could be
used for this purpose. For example, we have experimented with exporting packet
inter-arrival times in histograms, as it was shown that timing information can
be used for identifying applications in flow data [25]; Similar application-layer
actions, such as login attempts, would feature similar timing characteristics, al-
lowing for the aggregation of attack flows into the same cluster. We have however
found two problems with this approach. First, inter-arrival times do not allow
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Figure 5.3: Payload size histograms in typical HTTP brute-force attack traffic.

TCP control information packets to be discriminated from other packets, yielding
this approach rather susceptible again to the problems described in [52]. Second,
reliable measurements can only be done using special clocks for accurate hardware
timestamping, which are neither available in our measurement infrastructure, nor
in many others. We have therefore found this approach to be too sensitive to
measurement errors, impairing subsequent clustering procedures.

Along with the other previously explained problems, the problems of inter-
arrival times can be overcome by using per-flow information on individual packet
payload sizes. This even allows us to discriminate TCP control information in
flow data, as it is often carried in zero-payload packets. Also, we know that
Web crawlers, calendar fetchers and dictionary attacks, for example, use differ-
ent distributions of packets within flows, which allows us to discriminate these
applications using the more granular data. Furthermore, since encrypted channel
handshakes result in a constant pattern in every connection, the use of histograms
allows for clustering similar encrypted channels. For these reasons, we export
– per flow – a histogram with packet payload sizes, such that each sample in the
histogram represents the payload size of one packet in that flow. To do so, we
defined an enterprise-specific IE for IPFIX and instrumented our measurement
infrastructure with it. Based on the datasets described in Section 5.4.2, we can
conclude that our payload histograms extend the size of a flow record (on the
wire) by at most 37 bytes in 99% of all flow records.

The use of histograms for intrusion detection in general is not new. An ex-
tensive overview is given in [14], where it is explained how to map network traffic
features to histograms, cluster these histograms, and classify anomalous traffic
patterns based on the created clusters. While the authors provide examples of
various common network traffic anomalies, such as port scans, they demonstrate
the generic viability of their histogram-based approach, but do not focus on a
specific application or extension as we do in this chapter for flow-based brute-
force attack and compromise detection. Also, we use a pivotal distance metric
for clustering that is not covered in [14], for reasons to be discussed in the next
subsection.
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Figure 5.4: Payload size histograms in benign HTTP flows.

5.2.2 Clustering Histograms

Clustering aims at grouping objects with similar characteristics into sets, such
that the sets feature a low inter-set similarity (i.e., large distance between objects
in different sets) and a high intra-set similarity (i.e., small distance between ob-
jects in the same set). When histograms are used for intrusion detection, it is key
to cluster histograms that are ‘similar’ with respect to their bins. Alternative to
maximizing the similarity of histograms within a cluster is to minimize the dis-
tance between histograms. Well-known and frequently-used distance metrics are
the Manhattan (L1-norm), Euclidean (L2-norm) and Mahalanobis distances [14],
[62]. The main problem with these distance metrics in the context of our work
is that they fulfill the shuffling invariance property, meaning that the distance
between any two histograms does not change when bin values are interchanged.
This problem can be observed in Figure 5.3, which shows three payload size his-
tograms in a typical HTTP brute-force attack. Intuitively, we would assume the
distance between Histograms A and B to be smaller than the distance between
Histograms A and C, given that the difference between 255 and 259 is much
smaller than the difference between 255 and 459. This is however not the case for
distance metrics that satisfy the shuffling invariance property, as is demonstrated
for the Euclidean distance:

D(x, y) =

√√√√ n∑
i=1

|xi − yi|2 (5.1)

Using (5.1), we can calculate the distances between histograms in Figure 5.3:

D(A,B) =

√
|7− 7|2 + |2− 1|2 + |0− 1|2 (5.2)

D(A,B) = D(A,C) =
√

2 (5.3)

Note that both distances are equal, even though the histograms differ sig-
nificantly, especially when they are visualized to scale. Once we translate this
result to network traffic, the unsuitability of the (Euclidean) distance metric be-
comes clear immediately; The difference between Histogram A and B can easily
be caused by variability in the TCP header or differences in username and pass-
word lengths, for example, while Histogram C shows significantly different traffic.



5.2. HISTOGRAMS FOR INTRUSION DETECTION 115

1,000

1,100

1,200 HTTP HTTPS

0 10 20 30 40 50 60
400

500

600

Password length (characters)

F
lo

w
si

ze
(B

y
te

s)

Figure 5.5: Impact of password length on total flow size.

A solution to this ‘problem’ is provided in [5], where the Minimum Difference of
Pair Assignments (MDPA) distance metric is defined. In a nutshell, MDPA aims
at finding the minimum difference of pair assignments between two sets, where
sets are histogram bins in our context:

D(x, y) = min
x,y

(

n−1∑
i,j=0

d(xi, yj)) (5.4)

Here, d(xi, yj) is defined as the arithmetic difference between bin i in his-
togram X and bin j in histogram Y . Hence, the more similar any two histograms
are, the smaller the value D. For the histograms in Figure 5.3, the following dis-
tances can be obtained: D(A,B) = 4 and D(A,C) = 204, as demonstrated in
Appendix A. From these results it becomes clear what the added value of the
MDPA distance metric is, compared to commonly-used metrics like Euclidean.
The MDPA distance metric does not satisfy the shuffling invariance property,
but, besides, is similar in nature to the commonly used distance metrics. We
therefore rely on this metric in the remainder of this work, unless indicated dif-
ferently. For a detailed MDPA example, we refer the reader to Appendix A.

5.2.3 Measurements

Based on the concept of using histograms for intrusion detection and calculating
inter-distances for clustering similar histograms, we provide in this section several
measurement-based insights into how this works in practice.

In Figure 5.4, we visualize the payload size histograms of three consecutive
flows in a benign client-server interaction with a Web shop. What catches at-
tention are the zero-value bins, which appear to be relatively large in some his-
tograms, such as for Histogram F. Packets accounted in the zero-value bin feature
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Figure 5.6: Payload size histogram of a typical TLS flow.

no payload, meaning that they are likely made up of TCP acknowledgements, win-
dow updates and other control information. What all histograms in Figure 5.3
and 5.4 have in common are the seemingly minor deviations in the number of
bytes. To investigate whether – and if so, until which extent – the password length
of authentication attempts affects the size of a flow, we have measured various
password lengths and resulting flow sizes in a lab setup. We have done this by
generating – per selected password length – 100 random passwords that were fed
into the Patator2 brute-force attack tool, and captured the resulting traffic. The
results, which are shown in Figure 5.5 together with their respective standard
deviations, indicate that every password character accounts for one byte in the
total flow size. Deviations in flow sizes are found to be mainly the result of TCP
sometimes dividing the returned Web page over two segments instead of one,
resulting in additional acknowledgements. Given that most popular passwords,
which are naturally also commonly found in dictionaries, typically feature no
more than ten characters [110], we conclude that the impact of password lengths
on the total flow size is limited.

Another reason for histograms to appear significantly different is when they
represent packet payloads in Hypertext Transfer Protocol Secure (HTTPS) con-
nections, as opposed to histograms for regular HTTP connections. To investigate
how different the resulting histograms are, we have also measured attacks over
HTTPS in a lab setup. As shown in Figure 5.6, HTTPS connections are bin-wise
fundamentally different from their non-encrypted counterparts when compared
to the histograms in Figure 5.3 and 5.4: Both the total number of bins and the
total flow size are larger, while the number of zero-payload packets is basically
the same. The differences can be accounted to the establishment of the encrypted
channel, which requires cipher selection, key exchange, etc. However, when con-
sidering histograms of benign client-server interactions and brute-force attacks
in HTTPS, a characteristic difference in distances similar to that in the case of
HTTP traffic can be observed.

The most important take-away from the measurements and histograms pre-
sented in this section is that histograms for benign connections are quite different
from histograms in typical brute-force attacks, such as those visualized in Fig-
ure 5.3. We will use this observation in our detection approach, which we explain

2Patator v0.7, which can be retrieved from https://github.com/lanjelot/patator

https://github.com/lanjelot/patator
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in the next section, to discriminate brute-force phase traffic from other traffic and
identify any subsequent compromises.

5.3 Detection Approach

Our detection approach is based on data exported by a flow exporter using IPFIX,
and consists of two phases: Preselection and Detection. The Detection phase in
itself is made up of several steps, as is depicted in Figure 5.7. Both phases, and
the respective steps they comprise, are explained in the remainder of this section.

As with most flow-based analysis applications, the various analysis steps oper-
ate on flow data chunks. Data chunks consist of flow data that has been received
in fixed-length time intervals, typically in the order of several minutes. The use
of data chunks allows for near-real-time processing of network traffic on the one
hand, and demarcates the dataset used per iteration on the other.

5.3.1 Preselection

The Preselection phase serves to make a rough data selection based on a number
of criteria, such that the amount of data to be processed in further steps is
reduced. Since this has advantages solely in terms of performance, this is an
optional step. If used, Preselection returns a list of IPv4 and IPv6 address tuples
of possible attackers and targets. More formally, we define a tuple as a pair of
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source and destination IP addresses, source port number and vhost.3 To qualify
for preselection, an attacker must have generated at least N flows towards a
target. Note that we refer several times to this number in the remainder of this
chapter and that the used value for N is explained in Section 5.4.

Since Preselection targets data filtering and not detection, exceeding the
threshold for tuple qualification is often easy, even for benign applications, such
as Web crawlers and calendar fetchers. It is then up to the Detection phase to
classify these cases as benign. Nevertheless, our measurements have shown that
Preselection can improve the detection process’ overall performance by more than
a factor 7 in terms of processing time on our validation datasets. This is because
the clustering procedure, covered in Section 5.3.3, is by far our most computa-
tionally expensive component, so its use should be limited as much as possible
by confining the input dataset.

5.3.2 Data Retrieval

This step retrieves the flow data used within the Detection phase. In case a
Preselection was done before, only data that belongs to the preselected tuples
within the current data chunk is retrieved, and a full data chunk otherwise. After
retrieval, flow data that cannot be part of an attack by definition is filtered out.
For example, flow records from attacker to target typically feature at least four
packets, because every valid HTTP request consists of the following packets at
least:

• TCP SYN – First packet of three-way handshake.

• TCP ACK – Third packet of three-way handshake.

• HTTP GET/POST – Actual HTTP request.

• TCP FIN/RST – Connection teardown.

Note that network flows are typically unidirectional in nature, so these packets
represent merely the traffic from attacker to target. Since we can only identify
TCP flags in flow data and not whether a flow actually features an HTTP request,
we use the TCP PSH flag. This flag signals an application-layer data exchange, so
we consider a new connection to a common Web server port (80, 443) to feature
an HTTP request. We filter out every flow that does not feature at least TCP
SYN, ACK, PSH and FIN/RST flags. The retrieved data is presented to the next
step, clustering, per tuple.

3Many IPFIX flow exporters extract vhosts, often referred to as HTTP hostname, from
HTTP headers. This information is no prerequisite for our detection approach and therefore
only used within the Preselection phase.
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5.3.3 Clustering

Histograms of attack traffic are very much alike when attacks reside in the brute-
force phase, since repeated application-layer behavior results in flat traffic, as
shown in Section 5.2. As a consequence, this will cause brute-force traffic to be
clustered. For the compromise phase, however, we analyze precisely the traffic
that falls outside the cluster featuring brute-force phase histograms. We avoid
any clustering impairment caused by TCP protocol variability (e.g., control in-
formation segments), as described in [52], by removing the zero-value bins from
histograms; Potential traffic variability is typically caught in zero-value bins as
related segments do not feature any payload.

In this work, we use Hierarchical Cluster Analysis (HCA), which aims at
building clusters based on inter-cluster distances in a hierarchical fashion [84].
HCA uses either one of the following strategies: divisive (also commonly re-
ferred to as top-down), or agglomerative (bottom-up). We take the agglomerative
approach, because it is faster than divisive clustering for larger datasets if the
entire hierarchy needs to be built. Since histograms describing compromises are
assumed to be outliers compared to histograms describing brute-force traffic, we
would need to ‘divide’ all the way down to individual histograms to find potential
‘compromise outliers’ in case of divisive clustering.

The advantage of using HCA is that, unlike other clustering approaches such
as k -means, HCA does not require the number of clusters to be set in advance.
Instead, HCA can stop the clustering process (referred to as stop linking clusters
in HCA jargon) as soon as certain criteria are no longer satisfied. An exam-
ple criterion is that the distance between the selected pair of observations for
cluster linkage is above a given threshold. Linking clusters is done based on a
linkage method and a distance metric. The linkage method determines which
two histograms from two potentially to be linked clusters to apply the distance
metric to (i.e., which histograms to use for inter-cluster distance calculation), as
each of the two clusters potentially contains multiple histograms. In this work,
we rely on single-linkage as the linkage method, and on MDPA as the distance
metric, as discussed in Section 5.2. Single-linkage selects the two least dissimilar
histograms in two clusters to determine the inter-cluster distance. The choice for
single-linkage, as opposed to complete-linkage (which considers the two most dis-
similar histograms), was made empirically based on clustering results for datasets
that were confirmed to feature Web attacks.

To find the optimum number of clusters, we express the validity of clustering
results in terms of an ‘internal index’ after every HCA step. This index indicates
how well observations, i.e., histograms, lie within their cluster, and how well
clusters are distanced. As opposed to an external index, an internal index does
not require external information (e.g., ground truth) for validation, which is
desirable in our case because we need to account for diverse datasets. As shown
in [17], a cluster can be graphically represented by its so-called Silhouette, which
is composed of the Silhouette coefficients of each observation in that cluster.
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Silhouette coefficients are mathematically defined as follows:

s(x) =
b(x)− a(x)

max(a(x), b(x))
(5.5)

In our context, a(x) represents the average dissimilarity of histogram X to
all other objects within the same cluster, while b(x) is the inter-distance of his-
togram X to its neighboring cluster (i.e., the second-best cluster choice for his-
togram X). Silhouette coefficients are particularly interesting for our approach,
since they can be calculated based only on pair-wise distances between obser-
vations in the dataset, for which we can use the MDPA metric. The average
of all Silhouette coefficients lends itself well as an internal index, and as such
can be used to validate clustering results and determine the optimum number of
clusters [17]. To this end we have also studied alternative internal indices, such
as the one used in Calinski & Harabasz (CH) [4], which is based on a ‘sum-of-
squares’. Unlike the average Silhouette coefficient, the CH index is based on the
distance of the cluster centroids to the general mean of the data [14]. Since the
MDPA metric does not allow for the mean between more than two histograms to
be determined, neither cluster centroids, nor the general mean can be calculated.
This yields not only the CH approach infeasible in combination with MDPA, but
any other method that relies on ‘sums-of-squares’.

5.3.4 Brute-force Phase Detection

Detection of the brute-force phase is always done using the largest cluster of
a tuple, since we assume that attack traffic is dominant enough to comprise a
(large) cluster by itself. In cases of non-attack traffic, the largest cluster may
however contain histograms that are not very similar, meaning that distances
between histograms are rather large. To filter out such candidates, we calculate
the average intra-cluster distance for the largest cluster. In case it exceeds a
predefined threshold θ,4 we ignore the tuple in the remainder of the detection
procedure.

Several CMSs, such as recent versions of Joomla and Drupal, have built-in
mechanisms to mitigate simple brute-force attacks against their backends, mostly
by requiring a token, served by the CMS as part of a session cookie or a form
nonce, to be included in authentication requests. Depending on the attacked
CMS, the token(s) required for authentication may have to be retrieved only once
per attack (Joomla) or once per authentication request (Drupal). The thought
behind this is that not-so-clever brute-force tools start their attacks without
retrieving the authentication pages first, causing the attacks to never yield any
useful result. However, our analysis of modern attack tools has revealed that they

4We use θ = 3, meaning that a cluster’s histograms must be roughly identical, i.e., three
bytes deviation on average. This value was empirically established based on the analysis of real
attacks.
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are perfectly able to circumvent this type of protection nowadays, which will be
reflected in the overall cluster structure. Therefore, besides analyzing merely the
largest cluster, we analyze the relation between the two largest clusters and verify
whether they have the following characteristics:

• Clusters must feature a typical relation in terms of size, such as 1 : 1, 1 : 2
or 1 : 3.

• The average distance between histograms in both clusters, γ, must be at
least 75. This value has been established empirically based on our datasets
and our analysis has shown that many CMSs will trigger such behavior with
a distance of only around 200. This distance can be explained by the com-
pletely different nature of requests for token retrieval and authentication
attempts. Also, this minimum is used to avoid considering two clusters that
have somewhat similar histograms which should not have been separated
into these two clusters to begin with.

Given the alternating nature of token retrieval (typically done using HTTP
GET requests) and authentication attempts (using HTTP POST), we refer to
this behavior as GET/POST-alternation or GET/GET/POST-sequence.

Finally, once the largest cluster is found to feature a brute-force phase, we
perform a sanity check to rule out false positives: in case the set of clusters
features many small clusters, i.e., clusters with only one or two histograms, we
‘overrule’ the detection of the brute-force phase. Many small clusters indicate that
the network traffic was highly variable in terms of payload, therefore contradicting
our definition of typical attack behavior.

5.3.5 Compromise Phase Detection

Authentication attempts that ultimately result in a compromise are no different
from connections resulting in failed authentication attempts, as the request sent
to the Web server is basically identical (except for the credentials themselves).
We therefore analyze return traffic, i.e., traffic from target to attacker, to identify
potential compromises. Our analysis of attacks has shown that these return
connections are different in size upon successful authentication. The difference in
size can be explained by the (new) page, e.g., CMS backend panel, that is served
to the attacker, which is different from the login forms used in the brute-force
phase.

Since compromises can only be present after login attempts, an attack must
reside in the brute-force phase before the compromise phase detection is activated.
To detect compromises, we retrieve flow data from target to attacker and clus-
ter the payload histograms in exactly the same way as for the brute-force phase
detection. Since traffic from target to attacker consists of many authentication
errors in a typical brute-force attack, we assume that traffic to be rather alike in
terms of its payload distribution. If there exists only one cluster with a single
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Figure 5.8: Histograms for flows in various phases of an attack against a vanilla
Drupal instance.

histogram (referred to as the single-histogram cluster in the remainder of this sec-
tion), we continue the detection. Otherwise, many small clusters point to traffic
that is scattered in terms of payload, while clusters with more histograms are
unlikely to feature a compromise, because the compromise should be considered
an ‘exceptional’ case within the attack.

Based on measurements in a lab environment, where we have recorded the
network traffic between the attack tool Patator and the three CMSs considered
in this work, we have identified various characteristics of a compromise. As such,
if a histogram in the single-histogram cluster matches the following two criteria,
we consider it a compromise:

• The histogram ‘size’, i.e., each bin multiplied by its value, is larger than
the average size of all other clusters.

• The histogram’s bins must differ from bins in all other clusters, since we
assume that the flow for the compromise carries significantly different traf-
fic, such as a CMS backend management page. The only exceptions are the
zero-value bins, which are ignored from our detection, as explained in Sec-
tion 5.3.3, and the bins that represent the Maximum Segment Size (MSS),
as they are also likely present in both brute-force phase and compromise
phase histograms.

These characteristics are visualized in Figure 5.8, where we show both a brute-
force phase histogram and a compromise phase histogram based on our measure-
ments. It is clear that the overall size of the compromise phase histogram is larger
than the size of the brute-force phase histogram and that the histogram’s bins
are different. It should be noted that the brute-force phase obviously consists of
a whole bunch of histograms like the one shown in Figure 5.8a, rather than only
one.

5.4 Validation

In the context of our validation, we define an attack as a sequence of at least
N flows towards a CMS backend. Due to the fact that connections that are
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part of an attack feature at least one authentication attempt, N consecutive
flows feature at least N authentication attempts. By measuring the number
of consecutive connections towards the same CMS backend Uniform Resource
Locator (URL), we have found that N = 20 covers roughly the upper 10% of
attack sizes measured in our validation datasets. This value, on the one hand,
causes benign failed login attempts to be filtered out implicitly, and, on the other
hand, reduces the load on our prototype due to very small attacks and noise.

The remainder of this section is structured as follows. In Section 5.4.1, we
introduce the two prototypes that are developed for demonstrating the contri-
butions of this work. Then, in Section 5.4.2, we explain the datasets that have
been collected and analyzed for validation. This is followed by an introduction
of our validation approach and the applied metrics in Section 5.4.3 and 5.4.4,
respectively, followed by a discussion of the validation results in Section 5.4.5.

5.4.1 Prototypes

For the sake of validating our detection approach, we have implemented two pro-
totypes. First, we have modified the IPFIX Metering and Exporting processes
of our flow exporter, such that it is able to export payload size histograms for
every observed/metered flow using IPFIX. INVEA-TECH’s FlowMon platform
was chosen for this purpose, as it has been designed with extensibility in mind.
Nevertheless, our extension can easily be ported to other flow exporters, such as
nProbe5 and YAF6. Second, we have implemented an intrusion detection proto-
type that performs the preselection and detection as described in Section 5.4.3,
which is available on GitHub.7

5.4.2 Datasets

The datasets used for validation of this work have been collected in the network
of Hosting 2GO, a Dutch Top-10 Web-hosting provider, for a period of a month in
July/August 2015. The systems under observation host approximately 2500 Web
hosting accounts, worth a total of 2603 vhosts. In total, the datasets consist of
traffic records worth 414 GB, generated by more than 237k hosts. More specifi-
cally, we use two types of datasets, summarized in Table 5.1, both from the same
observation point, but collected on different systems:

• Log files – These Web server access log files serve as ground-truth for our
validation and are the only means of verifying whether an attacker has
compromised a system.

• Flow data – This data has been exported using IPFIX with 1 : 1 sampling
applied on the exporting device, and consists of the typical set of fields seen

5http://www.ntop.org/products/netflow/nprobe/
6https://tools.netsa.cert.org/yaf/
7https://github.com/ut-dacs/https-ids

http://www.ntop.org/products/netflow/nprobe/
https://tools.netsa.cert.org/yaf/
https://github.com/ut-dacs/https-ids
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Dataset Size on disk Size (entries)

Access logs 2.8 GB 12.2 M

Flow data 16.8 GB 42.1 M

Table 5.1: Characteristics of validation datasets.

in many NetFlow v9 implementations. Among those fields are IP addresses
and port numbers, L3 protocol number, IP Type of Service (ToS) byte and
SNMP input interface ID. Additionally, we augment the exported data with
HTTP information, namely hostname and URL, and payload metadata,
as discussed in Section 5.2. The functionality for parsing hostnames in
HTTP and HTTPS traffic, and URLs in HTTP traffic is available on every
modern FlowMon device. The code for exporting payload size histograms
is our own. Our flow data serves as input for the prototype described in
Section 5.4.1.

To protect the privacy of individuals of whom we have captured network
traffic and log files, we have anonymized all fields that can potentially lead to
personal identification. First and foremost, we have anonymized all IP addresses
in both the flow data and log files in a prefix-preserving manner using the de
facto standard in this area: Crypto-PAn. Prefix-preserving in this context means
that if two IP addresses share a k-bit prefix in the non-anonymized dataset,
their anonymized counterparts will do so as well. Also, Crypto-PAn is consistent
across traces, such that we can correlate IP addresses in both datasets, even after
anonymization. Second, we have hashed all HTTP hostnames (i.e., vhosts), such
that the original hostname cannot be retrieved anymore, while hostnames can
still be uniquely identified in both datasets.

5.4.3 Approach

Out of the three brute-force attack phases discussed in Chapter 4, only the scan
phase has not been touched in this work, due to its irrelevance in the context of at-
tacks against Web applications. We therefore validate our detection performance
only with respect to the brute-force and compromise phases. Additionally, to un-
derline the improvements of our approach compared to our elementary approach,
i.e., the state-of-the-art in the area of flow-based brute-force attack detection for
Web applications, we also compare our results to results obtained based on the
approach described in [71].

Before we can compare detection results to our ground-truth, we have to
post-process the datasets to obtain the same unit of comparison, as shown in
Figure 5.9. For this purpose, we define an interaction as a set of consecutive
sessions/connections towards a CMS backend within a certain time period. To
obtain interactions from Web server log files, we developed an Apache access
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Figure 5.9: Dataset post-processing for validation.

log parser8 that aggregates log records into interactions based on a number of
heuristics. In the case of flow data, which naturally consists of session/connection
entries, the only post-processing needed is the aggregation of sessions between
a tuple with less than 5 minutes of idle time between sessions. This idle time
was chosen as a tradeoff between the typical, very short-lived HTTP(S) sessions
between server and client on the one hand, and a buffer for coping with time
offsets between datasets on the other. After post-processing, our ground-truth
consists of 854,945 interactions.

As for identifying brute-force attacks and compromises from log files, we take
the following approaches. For the brute-force phase, we determine the number of
consecutive HTTP POST requests towards CMS backend login pages, listed in
Appendix B. If this number exceeds N , we classify the interaction as malicious.
For the compromise phase, the general approach is to label an interaction as to
feature a compromise as soon as an attacker is not interacting with the login
form anymore, which however strongly varies per CMSs. Wordpress is the most
simple case, since it uses different URLs for login page and backend. Joomla’s
backend page after login is greater in size than the login page itself, so one or
few larger responses by the Web server signal a login. In the case of Drupal, a
successful login is indicated by a different HTTP status code, which performs a
redirection and thus carries less HTTP payload. An overview of these behaviors
for the various CMSs is provided in Appendix B.

5.4.4 Metrics

IDS performance metrics are typically expressed in terms of positive and negative
detections being either true or false. We therefore define metrics for the brute-
force phase as follows:

8https://github.com/ut-dacs/usenix_sec16

https://github.com/ut-dacs/usenix_sec16
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• TPB: Interaction labeled as malicious that is reported by our prototype.

• FPB: Interaction labeled as benign that is reported by our prototype.

• TNB: Interaction labeled as benign that is not reported by our prototype.

• FNB: Interaction labeled as malicious that is not reported by our prototype.

These metrics can also be expressed as percentages. For example, the TPR
is defined in the context of this work as the percentage of interactions correctly
labeled as malicious and reported by our prototype:

TPR =
TP

TP + FN
(5.6)

To avoid any bias of brute-force phase detection results on detection results
for the compromise phase, we only consider those attacks that were successfully
found to feature a brute-force phase. This is a logical consequence of the fact
that the compromise phase can only be reached after the brute-force phase, as
described in Chapter 4. From the ground truth, we conclude a compromise upon
change of a URL between a tuple from a backend authentication URL to another
URL on the same vhost, after more than N authentication attempts. As for
our prototype, we measure its performance in terms of the following evaluation
metrics for the compromise phase:

• TPC: TPB correctly identified to feature a compromise.

• FPC: TPB incorrectly identified to feature a compromise.

• TNC: TPB correctly identified to not feature a compromise.

• FNC: TPB incorrectly identified to not feature a compromise.

Additionally, we use the aforementioned evaluation metrics to calculate the
accuracy (Acc) of our prototype, as previously defined in 4.1.

We have found some (positive and negative) detection results for the brute-
force phase that could not be matched with our ground-truth, mostly because
of timing deviations between our datasets. To make sure that these detections
are not accounted wrongly in any of our evaluation metrics, we have listed them
separately as unclassified.

5.4.5 Results

Our validation results are shown in Table 5.2, which lists the values for all evalu-
ation metrics, as well as their respective rates/percentages. The most important
take-away is that our approach (new) significantly outperforms our elementary
approach (old), in all respects. Besides detecting a significantly larger number of
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Phase Type TP FP TN FN Acc Unclassified

Brute-force

New

469
(0.597)

519
(0.000)

1,748,486
(1.000)

317
(0.403)

1.000 21,336

Compromise
1

(1.000)
14

(0.030)
454

(0.970)
0

(0.000)
0.970 0

Brute-force
Old

237
(0.303)

5,058
(0.003)

1,743,904
(0.997)

545
(0.697)

0.997 21,382

Compromise – – – – – –

Table 5.2: Validation results.

TPB (469 vs. 237), the number of false detections has been reduced to almost
10% of existing works. Also, our approach has shown to be able to detect the
one compromise in the dataset. It should be noted that we validated our work in
a conservative case, because our validation network has a firewall in place that
blocks remote hosts when generating too many connections. Consequently, large
attacks have never reached the Web servers and are therefore not recorded in our
datasets, while they would likely be detected by our prototype.

With respect to false detections, we made several observations. First, almost
all FPs are somehow related to photo galleries. Photos in a gallery are often sim-
ilar in size, because they have been shot by the same camera and post-processed
in the same way. They may even have been compressed such that they end up
having the same size. Thumbnails are even worse (for our approach); Once an
album is opened, thumbnails of the album’s contents are fetched by the client,
resulting in tons of semi-identical connections, due to the fact that the thumb-
nails have exactly the same dimensions and are typically identical in size. Second,
FNs have two major causes: either they are caused by low-intensity attacks that
do not generate more than N connections/requests per five minute data chunk,
or the distance between histograms in the largest cluster slightly exceeds our
threshold θ.

5.5 Conclusions

In this chapter, we have shown how to perform compromise detection for Web
applications using flow data, in a way that is decoupled from the hosting infras-
tructure and works in encrypted environments. Our detection approach based
on the use of histograms together with clustering methods allows us to overcome
the problems with TCP phenomena like retransmissions and control information,
and false positives as a consequence of benign applications generating many sim-
ilar connections, such as Web crawlers (Section 5.2). In addition, it allows us
to discriminate between attack traffic and non-attack traffic makes our approach
applicable to almost any Web application (Section 5.3).
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For validating our detection algorithm, we have selected an observation point
that hosts many Web applications in a realistic environment: a Dutch Top-10
Web hosting provider. Our monthlong validation, described in Section 5.4, with
a prototype implementation of our detection algorithm has shown to be able to
detect the one compromise in the dataset. In addition, it has proven that our
approach outperforms our elementary approach (described in [71]) in all respects.
For example, the number of true positives is doubled while the number of false
detections has been reduced to almost 10% of the original value. Given that
promising results have been achieved based on real deployments in a large Web
hosting environment and the fact that our prototype may be used by Web hosting
providers as part of a two-step blocking process, we conclude that flow-based
compromise detection for Web applications is not only viable, but may even see
production deployment in the near future.

Based on the differences in the detection results between compromise detec-
tion for SSH, described in Chapter 4, and compromise detection for Web appli-
cations, we conclude that it is less difficult to perform compromise detection for
applications and protocols that have an authentication restriction than for appli-
cations and protocols that have not. SSH is a typical protocol that features such
a restriction, since successful authentication is required to perform any action on
the remote machine. Web applications however do not feature this restriction,
as attackers may perform any other action between authentication attempts. As
a result, attacks against protocols like SSH provide a more significative behavior
than attacks against Web applications.
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Resilient Detection





CHAPTER 6

Resilient Detection

The foregoing chapters have discussed how to perform compromise detection
for SSH (Chapter 4) and Web applications (Chapter 5) using flow data. By
their design, flow caches in export devices are accounting every individual con-
nection, which makes flow monitoring systems however susceptible to traffic
mixes that consist of many small connections. Examples of such mixes are
large network scans (e.g., as part of brute-force attacks) and flooding attacks.
Consequently, they may be used to effectively blind flow monitoring systems,
since flow caches are overfull with attack flow records.

Although flooding attacks are not the main target of this thesis, we take
them as an extreme case to demonstrate that flow monitoring systems are
susceptible to overload by many small connections in the network. We start
by investigating which components of flow monitoring systems are susceptible
to flooding attacks, as well as (1) how we can detect them and (2) eventually
detect overload of the system as a whole. We do this by measuring attacks
in a network where many large ones are observed per day: the Czech NREN
CESNET. After understanding the important characteristics of flooding at-
tacks, we develop and validate a lightweight detection module that provides a
means to filter attack traffic in such a way that the resilience of the monitor-
ing system is retained. Key is the move of the detection module from the flow
collector – where it would normally reside – towards the data source: the flow
exporter. The contribution of this chapter are algorithms and prototypes for
detecting flooding attacks by both dedicated and embedded flow export devices.

The papers related to this chapter are [48], [69].

The organization of this chapter is as follows:

• Section 6.1 provides background information on this chapter and states
its contribution.

• Section 6.2 describes flow-level characteristics of flooding attacks.

• Section 6.3 elaborates on existing flow attack detection algorithms.

• Section 6.4 explains the validation setup and results.

• Section 6.5 elaborates on the feasibility of the work presented in this
chapter in terms of deployability on various high-end packet forwarding
platforms.

• Section 6.6 concludes this chapter.
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6.1 Background & Contribution

One of the main tasks of flow exporters is to aggregate individual packets into
flows, such that network traffic can be exported in a more scalable fashion com-
pared to regular packet capture. The achieved scalability gain comes from the
fact that flows, which are meant to resemble connections, consist of multiple
packets and only one or few flow records are exported per flow. As such, only a
minor fraction of the original traffic volume – in the order of 1/2000, as shown in
Chapter 2 – is actually being exported. However, as soon as flows consist of only
few packets or even only one, the scalability gain vanishes completely. Moreover,
depending on the nature of the traffic, flow monitoring may even result in traffic
amplification once the exported traffic becomes larger in terms of packets and
bytes than the original traffic.

Also another disadvantage of the use of flow monitoring can be identified,
besides the problem of decreased resiliency. Compared to regular packet capture,
flow-based analysis applications and appliances, such as IDSs, are subject to
delays during flow metering, export and collection [47], due to the design of
NetFlow and IPFIX. These delays are in particular a consequence of timeouts
for expiring flow records as part of the flow metering process (Chapter 2, and
processing times of flow collectors. Considering the default idle timeouts applied
by vendors and the processing times of popular flow collectors, this usually results
in IDS detection delays in the order of minutes.

In situations where the monitoring infrastructure is under attack, it is impor-
tant to detect and mitigate as early as possible to limit the potential damage,
such as device overload and link capacity exhaustion. Our intuition tells us that
moving parts of the detection process closer to the data source may reduce detec-
tion times drastically. Given that a timely detection allows for timely mitigation,
we propose a functional extension for flow exporters that integrates intrusion
detection into the flow metering process. We do this in the context of DDoS
(flooding) attacks, given that it is widely known that flow monitoring systems
are susceptible to this type of attack. Our approach avoids the delays incurred
in typical flow monitoring systems and has the following advantages:

1. Mitigation of DDoS flooding attacks by filtering malicious flow data before
it reaches and potentially overloads a flow collector (as illustrated by (1) in
Figure 6.1). We know from our operational experience that DDoS attacks
often cause flow data loss due to collector overload [64]. Moreover, Euro-
pean backbone operators have also confirmed this problem in discussions
we had with them.

2. Mitigation of DDoS flooding attacks by blocking malicious traffic before it
reaches the Local Area Network (LAN) (as illustrated by (2) in Figure 6.1).

Typical values for the idle timeout applied for expiring flow records range from
15 seconds (default value applied in Cisco IOS [155]) to 60 seconds (default value
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Figure 6.1: Typical flow monitoring system deployment.

applied in Juniper Junos [131]). In addition, flow collectors often work based
on time slots, which causes flow data to become available to analysis application
only after the next time slot has started. For example, the popular flow collector
NfSen uses time slots of 5 minutes, resulting in an average delay of 150 seconds
(2.5 minutes). The average delay between the moment in which a packet is
metered and the time at which flow data is made available to analysis applications,
is therefore at least 165 seconds, considering an idle timeout of 15 seconds. In
this chapter, we analyze whether our approach can reduce the delay up to 10%
of this value, such that negative effects of flooding attacks on the monitoring
infrastructure can be mitigated as early as possible. Besides this requirement,
we target an intrusion detection module that is lightweight, having a minimal
performance footprint of 10% in terms of CPU usage and memory consumption
on a flow exporter. This is important since exporter operation is considered
time-critical. Last, the accuracy of our intrusion detection module should be
high enough, to ascertain a low number of false positives/negatives.

6.2 DDoS Attack Metrics

Flooding attacks are a type of (D)DoS attack that aim at exhausting targets’ re-
sources by overloading them with large amounts of traffic or (incomplete) connec-
tion attempts. As every connection attempt uses a different source port number
and is therefore a flow on its own, large numbers of flow records are exported to
flow collectors, effectively canceling out the data aggregation advantage provided
by flow export technologies. In case a target replies to a connection attempt,
two flow records are exported per attempt. The same characteristics may apply
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Figure 6.2: Flow-based DDoS attack metrics.

to (large) network scans. Flow collectors need to process all resulting records,
consisting of only a few packets and bytes, which may be more than they can
handle.

In this section, we analyze which flow-level traffic metrics are suitable for
lightweight detection of attacks on a flow exporter. In [64], four traffic metrics
were identified that change significantly during a (D)DoS flooding attack: flow
cache entry creations per second, average flow duration, average number of bytes
per flow, and average number of PPF. All but the average flow duration can
be monitored on a flow exporter by using only counters, without the need to
access and process each individual flow record after expiration. This makes these
metrics particularly interesting for this work, in which we aim at designing a
lightweight intrusion detection module for detecting large flooding attacks.

Time-series of the three considered metrics are shown in Figure 6.2. The sub-
figures show data from one of the backbone links of the Czech national research
and education network CESNET in November 2012. The number of flow cache
entry creations per second is shown in Figure 6.2a. The diurnal pattern is clearly
identifiable and several peaks can be observed. Given the flow-level characteris-
tics of flooding attacks, we assume the peaks labeled with a number to indicate
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Figure 6.3: Detection workflow.

the presence of such attacks. We have validated this assumption by manually
verifying the presence of scanning and flooding attacks in the flow data.

The number of Bytes per Flow (BPF) and PPF are shown in Figure 6.2b and
Figure 6.2c, respectively. Although the attacks identified in Figure 6.2a can be
observed as negative peaks here as well, the figures also show many other peaks,
which make these metrics noisy. What can be confirmed from these figures,
however, is that the attacks identified in Figure 6.2a consist of many small flows
with few and small packets.

Out of the three presented metrics in Figure 6.2, the number of flow cache
entry creations (Figure 6.2a) appears to be the most suitable metric for our
purposes for the following reasons. First, it shows the least amount of noise,
peaks are clearly identifiable, and the identified peaks have been confirmed to be
attacks, as substantiated by the other metrics. Second, this metric is the best
to fulfill the requirement of being lightweight, as only a single counter is needed
that has to be reset after every measurement interval.

Although we have shown only day-long time-series in Figure 6.2, we have
verified that our conclusions are valid for the whole dataset. We will therefore use
the number of flow cache entry creations for our traffic measurements, as shown
in Figure 6.3. These measurements are performed in a continuous fashion and
used as input for a detection algorithm, which on its turn classifies a measurement
(sample) as benign or malicious. Two detection algorithms are discussed in the
next section.

6.3 Detection Algorithms

In this chapter we consider an anomaly-based intrusion detection approach. One
method for performing anomaly detection based on the analysis of time-series is
forecasting, which uses previous measurements for forecasting the next value. If
the measured value does not lie within a certain range of the forecasted value, a
measurement sample is considered malicious and an anomaly has been detected.
We consider the following two algorithms:
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Algorithm 1: Exponentially Weighted Moving Average (EWMA) for mean
calculation, extended by thresholds and a CUmulative SUM (CUSUM) [19].
We consider this our basic algorithm.

Algorithm 2: Algorithm 1, extended by seasonality modeling.

Although the second algorithm may intuitively be considered more accurate,
it is likely to have a larger performance footprint in terms of memory consumption
and processing complexity than the first algorithm, since more data needs to be
stored and processed. Whether the larger performance footprint justifies the use
of Algorithm 2 in terms of accuracy, will be investigated later in this chapter.

Both algorithms rely on EWMA for calculating the mean over past values,
which we use for forecasting the next value. Previous works have shown that
EWMA can be used for anomaly detection (e.g., [19], [23]). It is defined as
follows:

x̄t = α · xt + (1− α) · x̄t−1 (6.1)

x̂t+1 = x̄t , (6.2)

where xt is the measured value, x̄t is the weighted mean over current and past
values at time t, x̂t+1 the value forecasted for time t + 1, and α ∈ (0, 1) a
parameter which determines the rate in which previous values are discarded.
When the value of xt becomes known, both the forecasting error et and an upper
threshold Tupper,t can be calculated:

et = xt − x̂t (6.3)

Tupper,t = x̂t +max(cthreshold · σe,t,Mmin) , (6.4)

where cthreshold is a constant and σe,t the standard deviation of previous fore-
casting errors. Mmin is a margin that is added to the measurement x̂t to avoid
instability in case cthreshold · σe,t is small. This solution prevents small peaks
during quiet periods to be considered anomalous. Note that we do only con-
sider an upper threshold and no lower threshold, since flooding attacks result,
by definition, in a greater input value in terms of flow record creations than the
forecasted value (as discussed in Section 6.2).

Reporting an anomaly every time the upper threshold has been exceeded may
result in a large number of false positives. To overcome this problem, we use a
CUSUM, which is widely used in anomaly detection algorithms [19], [58], [76].
The differences between the measurement and the upper threshold are summed
(St), and an anomaly is detected when the sum exceeds threshold Tcusum,t:

St = max(St−1 + (xt − Tupper,t), 0) (6.5)

Tcusum,t = ccusum · σe,t , (6.6)
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where ccusum is a constant. A measurement is flagged anomalous every time
Tcusum,t has been exceeded. To improve the precision of anomaly end time de-
tection, we use an upper bound on St to let St decrease faster after xt has
decreased.

The presented algorithm relies only on the forecasted value and the measured
value. Due to the daily periodicity of network traffic and the quick rises and falls
of network utilization during mornings and evenings, respectively, the detection
algorithm may benefit from a longer history. Our second considered detection
algorithm uses the Holt-Winters Additive forecasting method for modeling sea-
sonal components [31]: By adding a linear and a seasonal component to a base
signal, the next value is forecasted. As a consequence of the daily periodicity of
network traffic, we use day-long seasons. Since we do not identify a significant
linear trend in network traffic at this timescale, we disregard the linear compo-
nent. The weighted mean of the base component is calculated based on previous
measurements on the same day, while the mean of the seasonal component is
calculated over values at the same time in previous days. We define these two
components as follows:

bt = α · (xt − st−m) + (1− α) · bt−1 (6.7)

st = γ · (xt − bt) + (1− γ) · st−m (6.8)

x̂t+1 = bt + st , (6.9)

where bt and st are the base and seasonal components of the forecasted value
x̂t+1, respectively, m is the season length (i.e., number of measurement intervals
per day, since network traffic shows daily periodicity), and γ ∈ (0, 1) a parameter
which determines the rate in which previous values are discarded. The previous
values in this case are not from the previous measurement interval, but from the
same interval in the previous season (i.e., day). The initial base value is set to
the average of all measurement values in the first season. Therefore, a training
period of one season is needed.

The use of day-long seasons and small measurement intervals results in a
large number of measurement values per season. To support our requirement
of being lightweight, we only store seasonal values every hour and interpolate
between those. This also reduces measurement noise, which would otherwise
imprint in the seasonal values. Besides that, precautions need to be taken to
not let measurements during anomalies influence the forecasts, which can be
accomplished by not updating st, bt and et during an anomaly. This is because
we aim at forecasting non-anomalous network behavior. Another improvement
made to the algorithm is to separate algorithm states for weekdays and weekends,
since the traffic behavior usually varies significantly between these types of days.
As such, forecasting of weekend days is done based on the traffic behavior of the
previous weekend, instead of working days. Analogously for weekdays.

It has been shown in [19] that an interval between 5 and 20 seconds yields
best results for detecting flooding attacks using the CUSUM method. Our mea-
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surements have shown that an interval of 5 seconds indeed results in the most
accurate detection results, but an extensive comparison of various interval lengths
is out of the scope of this chapter.

6.4 Validation

This section describes the setup used for validating our work, as well as the vali-
dation results. We start by discussing the developed prototype in Section 6.4.1,
after which we provide details on the two datasets used for validating our require-
ments in Section 6.4.2. Then, in Section 6.4.2.1, we perform the actual validation
based on the requirements identified in Section 6.1.

6.4.1 Prototype

Our prototype implements both the traffic measurements based on the metric
chosen in Section 6.2 (i.e., the number of flow cache entry creations) and the
detection algorithms presented in Section 6.3. It is developed as a plugin for
INVEA-TECH’s FlowMon platform, which we selected both because we have full
control over it in our networks, and because of its highly customizable architecture
based on plugins for data input, flow record processing, filtering, and export.
The prototype is designed as a hybrid processing and filtering plugin. Default
input and export plugins from INVEA-TECH are used for packet capturing and
NetFlow and IPFIX data export. Information gathered by the prototype, such
as detected anomalies, is sent to a console. The complete architecture is depicted
in Figure 6.4.

The intrusion detection module is implemented as a processing plugin. After
every measurement interval, the algorithm is run and the measurement sample
is classified as benign or malicious. The result is then passed on to a filter
plugin, which is used for attack mitigation. When measurement samples are
classified as benign, the corresponding flow records are passed on to the export
plugin. Otherwise, the filter plugin identifies attackers as soon as an attack
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Dataset 1 Dataset 2

Duration 14 days 10 days

Period August/September 2012 October/November 2012

Flows 10.0 G (717.0 M per day) 6.7 G (668.9 M per day)

Packets 257.1 G (18.4 G per day) 186.7 G (18.7 G per day)

Bytes 134.5 T (9.6 T per day) 128.5 T (12.8 T per day)

Anomalies 131 11

Anomaly duration

Minimum: 5s Minimum: 5s

Average: 5m, 55s Average: 15m, 55s

Maximum: 2h, 41m, 50s Maximum: 2h, 48m, 55s

Table 6.1: Dataset compositions.

has been detected. Attackers are identified by counting the number of exported
flow records per source IP address. When more than F flow records per second
with less than 3 packets and identical source IP address have been exported,
the address is added to a blacklist. Measurements have shown that F = 200
is high enough to ascertain that a blacklisted host was flooding a network or
host, and that benign hosts should never become blacklisted. In the case of
attacks with spoofed IP addresses, one could also consider blacklisting destination
addresses. We have measured the effects of this approach as well, but source
address blacklisting has yielded slightly better results.

After identification of the attackers, the filter plugin performs two actions,
which correspond to the contributions identified in Section 6.1:

1. Firewall rules are composed and sent to a firewall to block the attackers’
traffic. This corresponds to (1) in Figure 6.1.

2. Flow records with the attackers’ IP addresses are filtered to reduce the
stream of flow records sent to the collector. This corresponds to (2) in
Figure 6.1.

When an anomaly has ended, the composed rule is removed from the firewall,
counting of exported flow records is stopped, and all counters are reset. The
filtering of flow records is stopped after Tidle seconds, where Tidle is the idle
timeout of the flow exporter, to make sure that flow records in the exporter’s
flow cache that still belong to the attack are filtered.

6.4.2 Dataset

The dataset used for validating the detection algorithms has been captured on a
backbone link of the CESNET network in August/September 2012. This link has
a wire-speed of 10 Gbps with an average throughput of 3 Gbps during working
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Figure 6.5: Receiver Operating Characteristics (ROC) of Algorithm 1.
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Figure 6.6: ROC of Algorithm 2.

hours. The dataset comprises 14 days of measurements, composed of the number
of flow cache entry creations, packets and bytes per measurement interval (details
are listed in Table 6.1, Dataset 1). To establish a ground truth for validation, we
have manually identified anomalies that show a high intensity in the number of
flow records. Samples belonging to an anomalous interval are labeled malicious.
Other samples are labeled benign.

6.4.2.1 Results

In this section we validate whether our approach meets the requirements identified
in Section 6.1. We start by validating the accuracy in Section 6.4.2.2, mainly
because of the fact that an intrusion detection module with a poor accuracy
would be useless in any setup. After choosing the algorithm that performs best
in terms of accuracy, we validate the response time and performance footprint of
this algorithm in Section 6.4.2.3 and Section 6.4.2.4, respectively.

6.4.2.2 Accuracy

The accuracy of both detection algorithms is visualized in Figure 6.5 and 6.6.
The ROC curves show the impact of the constant cthreshold on the Detection Rate
(DR) and the False Positive Rate (FPR). The DR is a measure for the number
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of attacks that have been detected correctly and is defined as follows [21]:

DR =
#{detected attacks}

#{attacks}
(6.10)

The total number of attacks is determined by considering consecutive malicious
samples to belong to the same attack. An anomaly is considered detected if
approximately 50% of the samples is flagged malicious. The FPR is the ratio
between the number of samples incorrectly flagged malicious and the number of
samples labeled benign. In contrast to the more common practice of plotting the
TPR (ratio between the number of samples correctly flagged malicious and the
number of samples labeled malicious) versus the FPR, we plot the DR versus
the FPR. This is because we do not require our algorithm to flag all samples of
an anomaly, as long as the ones with a high intensity are catched. Each curve
in the plots shows the accuracy for a different combination of span and ccusum.
Span represents the length in seconds of the history considered by the detection
algorithm. As the algorithm is only aware of the number of measurement intervals
and not of durations, we convert this time window to measurement intervals
by dividing it by the length of a measurement interval. As such, it is used
for calculating α (α = 2

N+1 , where N is the number of intervals [23]) and for
determining the number of values considered in calculating the standard deviation
of forecasting errors σe,t. Besides span and ccusum, all other parameters have been
fixed: Mmin = 7000 (Algorithm 1 and 2), γ = 0.4 (Algorithm 2).

Several observations can be made regarding the performance of Algorithm 1
in Figure 6.5. First, it is clear that the difference in ccusum has little impact on
the DR and FPR. Each pair of curves with the same span shows very similar
growth. Second, increasing the span has little impact on the DR as well, but
it increases the FPR significantly. This is because the forecast adapts slower to
network traffic changes, such as diurnal patterns, and small deviations in the
measurements are (incorrectly) flagged as malicious. Third, increasing cthreshold
affects the DR negatively: The highest DRs in the figure are achieved when the
lowest cthreshold is used. This is because the resulting higher upper threshold
Tupper,t will cause certain anomalies to stay below the threshold, resulting in a
higher number of FNs. In the case of Figure 6.5, cthreshold ∈ {1.5, 2, 3, 5}. In our
experiments, a span of 900 seconds and a cthreshold of 3 yield the most optimal
combination of a high DR (92%), while maintaining a low FPR (6%). In a typical
deployment scenario as shown in Figure 6.1, however, this FPR is unacceptable
as benign hosts may be blocked erroneously by our approach.

The ROC curve for various combinations of parameter values for Algorithm 2
is shown in Figure 6.6. Similar parameter values as for Algorithm 1 yield sim-
ilar DRs, while the FPR is significantly lower, namely between 0% and 0.01%.
Higher values of cthreshold yield lower DRs, for the same reason as described for
Algorithm 1. Again, cthreshold ∈ {1.5, 2, 3, 5}. When a span > 3600 seconds is
used, the FPR increases slightly for small values of cthreshold, although still being
very small (0.1%).
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Figure 6.7: Response times of Algorithm 2.

In general, we conclude that Algorithm 2 is more suitable as a detection
algorithm in our situation than Algorithm 1, since the FPRs are much lower
while similar (high) DRs are maintained. We therefore conclude that the higher
accuracy of this algorithm should excuse the additional performance footprint on
the flow exporter. In the remainder of this section, we will therefore only consider
Algorithm 2.

6.4.2.3 Response Time

The main objective of this chapter is to perform flow-based intrusion detection
in near real-time. An important metric in the validation is therefore the response
time. We define the response time as the time between the moment in which
the algorithm detects an anomaly and the beginning of the anomaly. A scatter
plot showing response times for various attack intensities is shown in Figure 6.7a,
where we define the relative attack intensity as the fraction between the forecast-
ing error (see (6.3)) and the forecasted number of flow records:

et
x̂t+1

(6.11)

The response time is always a multiple of 5 seconds, as this is the length of our
measurement intervals. A response time of 5 seconds means that an anomaly has
been detected within the same sample as the anomaly has started. As shown in
the figure, most anomalies with a relative intensity larger than 0.3 are detected
within 10 seconds. Outliers are the result of attacks that do not reach their
full intensity right from the start. Anomalies with a relative intensity < 0.3
are mostly detected within 40 seconds. However, these anomalies are not the
main target of our work as their potential damage to networks and hosts will
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Figure 6.8: Prototype mitigation results.

be limited. Another view on the response times of the algorithm is shown in
Figure 6.7b, where the CDF is plotted for each potential response time. It can
be observed that 68% of all anomalies is detected within 5 seconds and 90% of
the anomalies within 15 seconds. Note that these response times are even lower
than typical idle timeouts of flow exporters, as explained in Section 6.1.

An example of the prototype in operation is shown in Figure 6.8. The fig-
ure shows the number of flow record creations, as measured by the processing
plugin per measurement interval of 5 seconds, and the number of flow records
dropped by the filter plugin per measurement interval, over a period of 36 hours.
This measurement period is a subset of Dataset 2 (see Table 6.1). Several large
anomalies can be identified, labeled as (1)-(6). The anomalies (1), (5) and (6) are
clearly smaller than the others and are dropped largely or completely by the filter
plugin. However, the main focus of our work is on very large anomalies, such
as the anomalies marked as (2), (3) and (4). Anomaly (2) consists of 755k flow
records per 5 seconds, while roughly 40k flow records have been forecasted. Out
of these 755k flow records, our prototype is able to mitigate 715k. Anomaly (3)
and (4) are both part of one longer anomaly, which is dropped partly throughout
the duration of the attack. Anomaly (3) is mitigated completely, as the number
of passed flow records roughly equals the forecasted number of flow records for
measurement intervals during the attack (23k). Anomaly (4) is mitigated par-
tially, where about 50% of the total number of flow records is dropped. When
anomalies have not been dropped completely, one or more attackers generated
less flows than the threshold of F = 200 per second. We do not consider this
problematic since the number of passed flow records (40k per measurement in-
terval) is in principle not causing collector overload, as this number equals the
number of benign flow records at midday. Anomalies outside the visualized part
of Dataset 2 (i.e., anomalies that are not shown in Figure 6.8) have been detected
and mitigated similarly to the presented anomalies.
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6.4.2.4 Performance Footprint

The last identified requirement for our intrusion detection module is that it is
lightweight, as the operation of an exporter is considered time-critical. To verify
whether our prototype fulfills this requirement, we have run the exporter process
on our flow exporter both with and without our prototype. On average, the
exporter process consumes less than 5% more CPU time when the processing
and filter plugins are loaded. The memory footprint of the plugins depends on
the size of an attack, as the number of flow records per IP address are counted
under such circumstances. Our measurements have shown that the plugins never
consume more than 20 MB of memory when the network is under attack.

6.5 Feasibility

So far we have used INVEA-TECH’s FlowMon platform for validating all iden-
tified requirements for our intrusion detection module. This dedicated flow ex-
port platform has been chosen both because we have full control over it in our
networks and because of its highly customizable architecture. An alternative ap-
proach would have been to use a high-end forwarding device with flow export
capabilities.

Several platforms could have been chosen for implementing this, as long as
they support some form of scripting for implementing the algorithm and retriev-
ing statistics from the flow cache of the exporter. One option is Cisco’s IOS,
which supports scripting based on the Tool Command Language (TCL) as of
version 12.3(2)T and 12.2(25)S. This provides administrators both a means to
automate CLI command sequences and perform processing on information gath-
ered from CLI commands and SNMP Management Information Bases (MIBs).
Another option is Juniper’s Junos, which is a specific command shell on top of a
BSD-based kernel. It provides a full UNIX-level shell to administrators. Normal
UNIX commands can therefore be used, which makes it straightforward to run
customizations on a high-end device.

To measure whether our approach could work on any of these platforms,
we have implemented it as an extension to one of the most widely deployed
packet forwarding devices, the Cisco Catalyst 6500 [123]. In the remainder of
this section, we elaborate on the various modifications to the detection algorithm
that are necessary to implement the algorithm on Cisco’s IOS.

6.5.1 Monitoring Information Available in IOS

Our detection algorithm is heavily based on a single metric, namely the number
of flow cache entry creations per time interval. This metric is easily accessible
on INVEA-TECH’s FlowMon platform, since that platform has been designed
with extendibility in mind. However, the amount of information available in IOS
strongly depends on the path the packet or flow has taken within the router or
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Figure 6.9: Flow cache entry creations in Cisco IOS over time.

switch. More precisely, packets are switched either in hardware or in software,
although most packets are hardware-switched. On the campus network of the UT,
for example, 99.6% of the traffic is hardware-switched, as explained in Section 3.4.
Situations that trigger a packet to be switched in software are fragmented packets,
packets destined to the forwarding device itself, and packets that require Address
Resolution Protocol (ARP) resolution [118], for example. For flows processed in
hardware, information on the number of flow cache entry creations is not directly
available. To approximate this metric, we use the following information available
from the flow metering and exporting process:

• Number of flow cache entries (Fc).

• Number of exported software-switched flow records (Fe).

• Number of flow learn failures (Ff ). This metric is expressed in terms of
packets, rather than flows.

The number of flow cache entry creations since the last measurement can be
approximated using the following definition:

F = ∆Fc + ∆Fe +
∆Ff

cf
(6.12)

When flow cache entries are exported, Fc will decrease which will cause the
approximation to be less accurate if the measurement intervals are too long. For
example, in Figure 6.9, if the measurement were to cover two intervals, from
t = 2 to t = 4, ∆Fc will not consider the peak at t = 3. By polling Fc more
frequently, we can observe the changes more accurately, such that we observe
the positive ∆Fc at t = 3 and the negative ∆Fc at t = 4, which is caused by
exports. Then, if ∆Fc is negative, we use an estimation of previous ∆Fc values
instead. When the flow cache is nearing its capacity limit, the exporter issues an
emergency expiration, as explained in Section 2.4.3. In Figure 6.9 this is depicted
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in the shaded area. As Fc reaches Cm, the flow cache capacity, most flow cache
entries are expired. If a measurement is made between t = 6 and t = 7, the
algorithm may detect this as an attack for one measurement interval, due to the
vast increase in the numer of cache entries compared to t = 6. To counteract this,
the implementation waits for the next measurement if it suspects an attack, to
validate whether it is an actual attack. This does however increase the detection
delay.

Since the number of entries in the flow cache (Fc) only regards hardware-
switched flows, we also add the number of exported software-switched flows (Fe),
which can be obtained directly from IOS. Finally, adding Ff allows for regarding
flows that should have been created but were not, which is especially the case
during high-intensity DDoS attacks, for example. To compensate for the fact
that Ff is expressed in packets while the other metrics are expressed in flows, we
divide Ff by the average number of PPF, represented by cf in Equation 6.12.

6.5.2 Implementation

The Embedded Event Manager (EEM) – part of Cisco IOS that handles real-time
network event detection – allows for the definition of policies, which can be used
to execute an applet or script when events are triggered. For example, emails can
be sent to network administrators when round-trip times reach a certain limit, or
when network route changes occur. Another event type is based on time. This
event can, among others, be scheduled at fixed time intervals. In this work, we
use two time-based policies, implemented as TCL scripts:1

• Measurement policy – Determines the first component for our approxi-
mation of the flow-based metric: the number of flow cache entries (Fc), as
described in Section 6.5.1.

• Detection policy – Retrieves the remaining components: the number of
exported software flows (Fe) and the number of flow learn failures (Ff ).
Also, it implements the actual DDoS attack detection algorithm.

To obtain all three components, which are all made available using the SNMP
protocol, we use a feature of the EEM environment that provides access to local
SNMP MIB objects. The reason for splitting the measurement policy from the
detection policy is that we require a higher resolution for the former to detect
changes more accurately, as described in Section 6.5.1.

Policy invocations are memoryless, and since we want to share data – both
between policy runs and between policies – a method for sharing data needs to
be implemented. Due to the fact that the filesystem is flash-based, we generally
want to avoid excessive write actions that will shorten the memory’s lifespan. The

1The open-source TCL scripts can be retrieved from https://github.com/ut-dacs/

ios-ddos-detect/

https://github.com/ut-dacs/ios-ddos-detect/
https://github.com/ut-dacs/ios-ddos-detect/
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EEM environment therefore offers a Context library for this purpose; It allows
for saving TCL variables to memory instead of writing them to disk. Besides
for keeping track of our data between policy runs, we also use this feature to
exchange information between the two policies, as the result of the measurement
policy is needed by the detection policy.

The two policies discussed before are executed by the EEM at their respective
intervals, which have been selected based on the runtime of the respective policies.
When the switch is however under heavy load, its higher CPU utilization will
cause the policies to take longer to execute. To avoid the policies from skipping
an execution when the runtime of the policy exceeds the length of the interval,
the prototype uses a feature from the EEM that can set a maximum policy
runtime. If this runtime is exceeded, the policy terminates forcibly and data
is lost. In the case of the detection policy, the algorithm has to start again
from the learning phase as all state data is lost. If the measurement policy
terminates prematurely, the measured number of created flow cache entries will
be lower, as it missed a measurement, which will slightly impact the accuracy of
the algorithm. To prevent the detection policy from being killed, a margin has
been added to the interval which allows it to run longer if necessary, but never
longer than the interval at which it is executed. The average runtime of the
detection policy is 2-3 seconds under normal conditions, and has shown to reach
7-8 seconds under stress. Therefore, the final interval chosen for the detection
policy is 10 seconds. For the measurement policy, measurements have shown that
2 seconds provides an optimal balance between detailed measurements and loss
of data due to termination.

6.5.3 Validation

In this section, we validate the prototype implementation for the Cisco Cata-
lyst 6500 in terms of the same requirements as for the original implementation
for INVEA-TECH’s FlowMon platform: (1) it should be lightweight in terms of
CPU and memory utilization, (2) the accuracy should be high enough to ascer-
tain a low number of false positives/negatives, and (3) the detection delay should
be reduced to roughly 10% of conventional intrusion detection approaches. How-
ever, since the the Cisco Catalyst 6500 is a high-speed packet forwarding device
that has not been designed for performing intrusion detection tasks, special care
must be taken to not overload the device and possibly interrupt forwarding activi-
ties. We therefore relax the real-time requirement to detection within 30 seconds,
while the CPU and memory utilization must be 10% or lower. Since we have not
changed the working of the detection algorithm itself and its accuracy is invariant
to the underlying implementation platform, we discuss the accuracy requirement
only briefly.
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Figure 6.10: Load of the Cisco Catalyst 6500 over time.

6.5.3.1 Setup & Deployment

The prototype described in Section 6.5.2 has been developed for a Cisco Cata-
lyst 6500 with Supervisor Engine 720, running IOS 15.1(2)SY1. We have used
this in combination with the WS-X6708-10G-3C line card for 10 Gbps Ethernet
connectivity. The traffic used for validation is mirrored from the uplink of the
UT campus network to the Dutch National Research and Education Network
SURFnet and consists of both educational traffic, i.e., traffic generated by fac-
ulties and students, and traffic of campus residences. The link has a wire-speed
of 10 Gbps with an average throughput of 1.8 Gbps during working hours. Fur-
thermore, flow data is exported to a flow collector, such that attacks detected by
the prototype can be validated manually.

The network traffic used in the original validation differs from the network
traffic used here, both from its nature (backbone traffic vs. campus traffic) and
volume. It is therefore clear that we have to adjust the parameters of the de-
tection algorithm to achieve similar accuracies. As such, we have selected the
optimal parameter values2 for our observation point. For the parameter cf , used
for approximating the number of flow cache entry creations, as described in Sec-
tion 6.5.1, we have measured cf = 59.8133 PPF on average in our setup.

6.5.3.2 Results

The most important requirement to be validated in this work is that the imple-
mentation must be lightweight, such that the implementation does not interfere
with the primary activities of the packet forwarding device, namely routing and
switching. We measure the resource consumption both in terms of CPU and
memory utilization. In Figure 6.10, the CPU load of the device is shown to-
gether with the memory utilization, averaged over 150 seconds. Using SNMP,

2The parameters used in this work are: cthreshold = 4.0, Mmin = 7000, ccusum = 6.0,
α = 2

N+1
, where N = 540, and γ = 0.4.
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the load of the CPU is measured for three components, namely the routing CPU,
which handles L3 traffic, and two switching CPUs, which process traffic at L2.
Once a routing or switching decision has been made by the CPU, hardware han-
dles subsequent packets if possible. Furthermore, the routing CPU also handles
the network management (including the EEM), as most of this is done on L3.
Consequently, our EEM policies also run on the routing CPU, and as such any
load caused by our policies should account to the load of the routing CPU.

In Figure 6.10, the policies are active during the entire measurement period,
even in the period from August 24 18:00 to August 25 16:00 where the switch
received no data. Because the CPU utilization of most individual processes is
reported as 0-1% and only peaks are reported as more than 1%, we only consider
the overal CPU usage. Consequently, the overhead of managing and executing
only the policies cannot be observed. This overhead is caused by processes such
as the Chunk Manager, which handles memory allocation, EEM Server, which
manages all EEM policies and applets, and SNMP ENGINE, which handles all
SNMP requests. Because the overhead of operating our policies is caused by
multiple processes, which also run when our implemented policies are disabled, we
have measured the difference in CPU and memory utilization between operation
with and without our policies. To measure this, the switch has been rebooted
to clear all memory and CPU utilization. During the measurements, we have
observed a load on the routing CPU of 4%, combined with a memory utilization
of 31.3%. After enabling our policies we have observed an increase of 20% in
CPU utilization, and an increase of 0.2% in memory utilization. This accounts
for the average constant load added by our implementation.

During the period in which our detection algorithm was deployed, one attack
passed our validation network on August 25. The attack lasted around 20 min-
utes and consisted of Domain Name System (DNS) reflection traffic and TCP
traffic. During this attack, we only observe a minor increase of the load of the
switching CPU, caused by the increased number of packets to be switched, and
no increase in load for the routing CPU. As such, we conclude that the CPU load
caused by our implementation during attacks does not peak and instead only
consists of the constant load. The peaks in the load of the routing CPU, visible
in Figure 6.10, are likely the effect of other routing or management processes on
the Catalyst 6500, as such processes are handled by the routing CPU. In terms
of memory utilization, we clearly observe a stable pattern in Figure 6.10. We do
not observe any increase in memory utilization during the attacks, which makes
us to conclude that the memory utilization does not create significant peaks.

Considering the above measurements, we conclude that the memory utiliza-
tion does satisfy the requirement of using 10% of memory or less. However, the
20% CPU load caused by our implementation does not satisfy the requirement
of 10% CPU utilization or less. Since the Catalyst 6500 is a packet forwarding
device and not meant to perform network attack detection, such other activities
should not interfere with its main purpose of operation. As a load of 20% is prob-
able to cause interference with the routing and switching tasks, we conclude that
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Figure 6.11: Flow cache entry creations per second (averaged per 5 minutes), as
processed by the detection algorithm over time.

our implementation does not satisfy the requirement to be lightweight. The dif-
ference between the measured constant load and the lack of peaks in Figure 6.10
can be explained by the fact that the amount of traffic does not change the num-
ber of computations performed by the policies, as only the calculated values are
different. Furthermore, the short and frequent execution of the policies will be
averaged out to a constant added CPU load. Especially the short intervals in
which the measurement policy is executed (i.e., 2 seconds), increases the load.
However, increasing this interval would decrease the measurement resolution, as
described in Section 6.5.1.

The second requirement is the detection delay. Our implementation uses an
interval of 10 seconds between invocations of the algorithm, instead of the 5 sec-
onds used in the original implementation, due to the runtime of the algorithm,
as described in Section 6.5.2. This results in detection delays of multiples of
10 seconds, with a minimum of 10 seconds. The attack visible in Figure 6.11 was
detected within the third interval, resulting in a detection delay of 30 seconds.

The final requirement considered in this work is the accuracy of the DDoS
attack detection. In Figure 6.11, the number of flow cache entry creations per
measurement interval is shown, averaged over 5 minute intervals. Weekends are
shaded in light-gray. Diurnal patterns are clearly distinguishable and due to the
nature of the traffic, we can also observe the difference between weekdays and
weekends. The anomalous period around August 25 is caused by a lack of data as
the switch did not receive any traffic during this period. The attack on August
25 is clearly distinguishable in Figure 6.11. It resulted in around 200% more
flow records than predicted by the algorithm, and lasted for roughly 20 minutes.
Multiple detection marks are shown, as the attack spanned multiple 5 minute
intervals.
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6.6 Conclusions

In this chapter, we have presented an extension for NetFlow and IPFIX flow
exporters that detects and mitigates malicious network traffic in a near real-time
fashion. Our results show that we can detect and mitigate flooding attacks within
seconds, effectively preventing malicious traffic to cause flow collector overload.
Additionally, we can instruct other security systems, such as firewalls, to block
malicious traffic, and filter flow data of malicious traffic to prevent flow collector
overload. Deployment of a prototype in the CESNET backbone network has
proved both the applicability and successful operation of our approach.

Validation of our work has shown that response times as short as 5 seconds
can be achieved, which easily fulfills our design target of reducing detection delays
to at least 10%. This is the smallest possible value for our prototype, as it is
based on measurement intervals of 5 seconds. On the one hand, related work has
shown that smaller measurement intervals result in measurements with too much
noise, reducing the accuracy of anomaly detection algorithms. On the other hand,
larger measurement intervals result in higher detection delays and again reduced
accuracy. Another requirement for our intrusion detection module has been a
limited performance footprint, which has been targeted to be no more than 10%.
Our prototype has shown never to consume more than 5% additional CPU time
and that the additional memory usage is negligible. Finally, our prototype has a
high detection rate, while maintaining a very low number of false positives. This
shows that our approach is accurate.

Besides validating the prototype implementation only on a dedicated flow
export platform, we have investigated whether high-end packet forwarding devices
can be used for detecting, and ultimately mitigating, (DDoS) attacks in real-
time. And yes, it is possible to detect DDoS attacks, which has been proven by
the deployment of our prototype on a Cisco Catalyst 6500 series switch. Our
results show that detection of flooding attacks is possible within tens of seconds,
making real-time detection on a widely available switching platform possible.
However, our prototype has also shown to cause a CPU load of 20%, which may
cause interference with the routing and switching processes. According to various
network operators we have stayed in touch with during this work, if the capacity
of the packet forwarding device is available, it should be possible to run our DDoS
attack detection in production environments. While it is possible to deploy our
implementation with only 20-30% CPU capacity available, for example, it would
require to be run with a lower priority, to not interfere with the routing and
switching processes. As this may cause instability to our prototype, it is advised
to have at least 40% CPU capacity available.

As a final note, we like to mention that the work presented in this chapter
received quite some attention by industry, because of the fact that it solved an
important problem for their customers: overload of the flow monitoring infras-
tructure due to large DDoS attacks. Even though this work has not made it into
a product yet – likely because of the fact that exporter modifications are much
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more difficult to maintain than regular flow analysis software – we have received
word that the attention for our work is growing again; Recent high-intensity
DDoS attacks are so short (seconds to minutes) that regular flow-based detection
does not allow for timely detection and mitigation.



CHAPTER 7

Conclusions

In this thesis, we have proposed, investigated and made a case for a new paradigm
in network security monitoring, which we refer to as compromise detection. Com-
promise detection targets those incidents that actually require attention by secu-
rity experts and avoids important incidents to stay under the radar of security
teams due to the burden of reports that is generated every day. We therefore ad-
vocate that security analysts should focus more on compromise detection besides
regular attack detection; Not just shots are important, but scored goals are.

Our approach for performing the research presented in this thesis is based
on the use of flow monitoring technologies, meaning that we use network traffic
aggregates instead of individual packets as input for our detection algorithms.
This provides many advantages. First in terms of scalability, since it neither has
stringent requirements on hardware for analyzing individual packets, nor does it
require the installation of (software) agents on end systems to be able to perform
detection. Second in terms of deployability, due to the fact that technologies like
NetFlow and IPFIX are widely implemented on packet forwarding devices and
dedicated probes, resulting in a monitoring and detection approach that allows
for wide deployment.

7.1 Research Questions

In Chapter 1, we identified three research questions to guide the research pre-
sented in this work. In this section, we summarize the answers to these questions.

RQ1 – Can flow monitoring technology be used for compromise detection?

Over the years of working on the material presented in this thesis, we have
learned that flow export is a process that is far from trivial and that, in contrast
to what is often believed and advertized, flow export is anything but plug-and-
play technology that works the same on every device. Instead, we have seen
that artifacts in flow data, as well as flow export devices that do not adhere
to configuration and specification, are unfortunately the rule rather than the
exception (Chapter 3). Many users of flow data, such as researchers, are however
not aware of this, resulting in analyses and conclusions based on data that may
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be full of artifacts. Given these observations, we have evaluated whether flow
data can be used for compromise detection. Our evaluation encompasses both a
theoretical analysis and practical evaluation, and has resulted, among others, in
a comprehensive tutorial on flow monitoring to assist researchers and operators
of flow monitoring devices to perform sound measurements (Chapter 2).

For flow data to be suitable for use in compromise detection, it should ul-
timately reflect the original network traffic precisely. Based on the research
presented in Chapter 2, we conclude that the following requirements must be
satisfied:

• The configuration of the flow export device should enable the precise ex-
port of network flows. As such, packet sampling should be avoided, as it
results in data loss by definition and causes our compromise detection to
not be aware of the complete flows (Section 2.3). Also the configuration
of expiration timers is crucial, since they determine when flows are consid-
ered to have terminated. Suboptimal configuration may cause flows to be
merged into the same flow record, or flows to be split over multiple records
(Section 2.4). In the case of TCP flows, as is the case of SSH and Web
application compromise detection, TCP flags must be exported as well.

• When networks and devices are under attack, the resulting flow data may be
an amplification of the original network packets, due to the accounting over-
head imposed by the flow metering process (Section 2.6). Any overloaded
component in a flow monitoring setup causes data to be lost, resulting in an
unfaithful representation of the original network traffic. Measures should
therefore be taken to improve the resilience of the monitoring system, which
we discuss extensively in Chapter 6.

Our analysis in Chapter 3 has made clear that verification of the exported
data is of key importance for any flow data analysis. It was shown that flow data
exported by widely-spread devices from renown vendors is full of artifacts and
that many devices do not adhere to configurations and specifications. This leads
to interpretation errors and suboptimal functioning of detection algorithms, ulti-
mately resulting in false positive and negative detections. Our general observation
is that data from dedicated flow export devices (probes) is superior in quality to
data from flow exporters that are embedded in packet forwarding devices, and
that the data generally provides a precise representation of the original network
traffic. We therefore conclude that the use of flow data from dedicated export-
ing devices is safe for use in compromise detection. Flow data from embedded
devices might as well be used for compromise detection, but we have found such
data to feature many artifacts, such as missing TCP flags in data from one of
the most widely-deployed Cisco devices. If there is no choice for the type of flow
export device and only flow data from embedded exporters is available, extensive
verification (Section 3.3 and 3.4) is a necessity before the data may be used for
compromise detection.
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RQ2 – How viable is compromise detection for application on the Inter-

net?

Once flow monitoring setups provide a means for performing sound measure-
ments, we can use the exported flow data for the core contribution of this thesis:
compromise detection. We target two application areas for flow-based compro-
mise detection, namely SSH and Web applications. Our evaluations have revealed
that only a minority of brute-force attacks against these targets is actually suc-
cessful, i.e., resulting in a compromise. We therefore aim at providing security
teams a means of identifying these compromises, such that they can focus on
what is really important: quarantining compromised devices.

In Chapter 4 and 5 we have demonstrated that flow-based compromise detec-
tion is a viable detection paradigm for SSH and Web applications, respectively.
For both application areas, we developed compromise detection algorithms and
prototypes, and validated our work using large datasets that were collected in
various networks connected to the Internet. The various validations presented
throughout this thesis have shown that very high accuracies can be achieved,
depending on the nature of the monitored network. This shows that our flow-
based compromise detection approach is ready for production usage. Next to
our own validation, we developed an open-source IDS, SSHCure, which was orig-
inally meant as a demonstrator for our compromise detection algorithms. Soon
after releasing the first version, we have seen a major uptake of SSHCure by
the community, resulting in large amounts of feedback on detection results. We
are aware of many operational deployments of SSHCure in networks ranging
from small Web hosting companies to large backbone operators and nation-wide
CSIRTs. In addition, we have received several awards for the work on SSHCure,
such as a Best Paper Award and a Communication Software Award.

Although outside the scope of this thesis, the viability of our compromise
detection paradigm depends – besides technical correctness – on uptake and eco-
nomic impact. Our intuitions and validations have shown that we can achieve
a drastic reduction of attack and incident reports when security teams have to
deal with compromises instead of attacks; In many situations and networks, this
can result in reductions of up to 1/1000 of the total number of incident reports,
as shown in Section 5.4.5 for Web applications. This reduction allows security
teams to focus what is really important, i.e., compromised devices, and avoids
critical incidents to stay under the radar in the mass of daily incidents.

The proper operation of flow monitoring systems and verification of the com-
plete setup are essential for any flow data analysis, so it is for the viability of
flow-based compromise detection. Moreover, due to our advanced flow data anal-
ysis used for compromise detection, the bar for flow data quality is raised even
more. Some examples:

• Some of our algorithms rely on TCP flags for recognizing connection states
and trigger certain analyses. However, given that many (older, hardware-
based) flow exporters do not export flags for TCP connections, as shown in
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Chapter 3, certain analysis can never be triggered, resulting in decreased
detection performance.

• In Section 4.4, where we discuss network traffic flatness, we have shown
that detection results of existing algorithms may increase significantly if the
exported flow data is enhanced with fields that allow for the identification
of network artifacts. Several prime examples were shown of attacks that
stayed completely under the radar due to flow data deficiencies.

Our general perspective on flow data quality and tuning detection algorithms
is that improving input data quality and enhancing its granularity results in
a higher gain in overall detection performance than fine-tuning detection algo-
rithms.

RQ3 – Which components of flow monitoring systems are susceptible to

flooding attacks, how can these attacks efficiently be detected and how can

the resilience of flow monitoring systems be improved?

In Chapter 1 and 2 we have shown that flow monitoring systems consist of
various components, namely a flow exporter, flow collector and analysis applica-
tion, as shown in Figure 7.1. Flow exporters use packet capturing technology that
may have to be performed up to line-rates. We therefore consider them real-time
devices. When under attack, flow exporter caches are filled up with attack traffic,
i.e., many very small and typically short flows, effectively ‘pushing out’ flow cache
entries for benign traffic. In those situations, modern flow exporters use special
emergency expiration techniques in such situations to free up cache space quicker
than usual by exporting cache entries prematurely. Whether full caches result in
data loss very much depends on the type of flow exporter; Flow exporters with
hardware caches have a hard limit on the amount of available cache space, while
exporters with software caches are usually more flexible with cache management,
e.g., by simply allocating more memory to the cache, if available.

Once flow exporters experience increased load under attack and start to gen-
erate more flow records, more flow export protocol messages are to be sent to

Flow exporter Flow collector Analysis application

Flow export protocol
(e.g., NetFlow, IPFIX)

Our detection
approach

Existing detection
approaches

Figure 7.1: Components in a typical flow monitoring setup.
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flow collectors. Special care should be taken to dimension the network between
exporter and collector properly, to avoid any data loss due to dropped messages.

We initially believed that flow exporters would be most susceptible to flooding
attacks, due to their real-time nature and the fact that they have to capture every
individual packet for flow metering. However, contrary to that, we found that
flow collectors are the most susceptible component in typical flow monitoring
systems. While flow exporters are often certified to handle traffic at line-rates
and come with special techniques for load management, flow collectors typically
have no such countermeasures and have to do what they always do: store flow
data to disk. Our interactions with vendors and operators of flow collectors have
confirmed our conclusion that flow collectors are most susceptible to flooding
attacks, due to the fact that they perform storage on platforms that are designed
with storage capacity in mind, rather than storage performance. This may result
in data loss as soon as flow collectors receive more data (over the network from
flow exporters) than they can write to disk.

A straightforward approach to improve the resilience of flow monitoring sys-
tems is to increase the computational performance of the system as a whole.
Given that flow collectors are generally the main bottleneck in the setup, we could
use faster network interfaces between the flow exporter and collector, equip the
flow collector with a faster I/O subsystem and provide the analysis application
with more CPU time. We however take a different approach: In Chapter 6 we
designed a lightweight anomaly detection module for flow exporters. By mod-
elling flow cache behavior over time, we can recognize flooding attacks by im-
minent increases in flow cache utilization, resulting in response times of several
seconds instead of minutes. We have found that dedicated flow export devices
have enough spare resources for running such lightweight modules and can po-
tentially drop attack traffic at the earliest possible occasion. Dropping attack
traffic already within the flow exporter avoids overload of the network between
exporter and collector, as well as congestion or data loss at flow collectors.

7.2 Discussion

Interestingly enough, industry is taking up similar ideas behind the compromise
detection paradigm, albeit under a different name: egress detection. Egress detec-
tion targets suspicious (egress) connections towards remote Command & Control
(C&C) servers, for example. Although seemingly similar to the compromise de-
tection paradigm proposed in this thesis, the moment of detection between the
two paradigms is different: While egress detection detects malicious network
traffic patterns only when a compromised device is actively being misused, so
after a compromise, our compromise detection paradigm aims at detecting a
compromise at the moment of the compromise. This difference is crucial, as our
paradigm detects compromised devices even without malware initiating (egress)
network connections. Given that C&C infrastructure was found to be operated
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over long periods over time [63], the moment between compromise and misuse
may be long. This is an important advantage over egress detection, since compro-
mise detection allows for quarantining compromised devices before other hosts in
the same network are attacked or infected, which may not result in traffic that
passes by the central observation point, for example.

The work on compromise detection presented in Chapter 4 and 5 were al-
ways meant to function as ‘stand-alone’ detection instances. This provided us
the major advantage of being able to implement our algorithms as part of our
IDS SSHCure, for example, and distribute to and share experiences with the
public. We have however also collaborated on a more advanced, multi-layered
IDS architecture that allows for chaining multiple IDSs, such that the advantages
of individual IDSs could be exploited while minimizing any disadvantages. For
example, a typical architecture could consist of our lightweight IDS presented
in Chapter 6 as a high-speed pre-filter, which redirects any suspicious traffic to
heavier-weight IDSs. In a joint work, we have proposed such an architecture,
which dramatically reduces operational costs (since less expensive hardware is
needed) and avoids legal barriers with respect to traffic analysis [42]. Many ex-
tensions are possible in the presented directions, such as the integration of our
compromise detection algorithms in such a multi-layered architecture and the
decision engine with respect to traffic forwarding that is required to make it
work.

This thesis provides a solid foundation for plenty of directions for future work,
of which we set out those in the remainder of this section that may have the largest
impact.

Advanced applications based on flow data
Many flow-based analysis applications and appliances have been developed over
the years, typically targeting rather simple applications like traffic profiling,
blacklist matching, and network visualization. Although some work in the area of
flow-based security monitoring exists, more advanced analysis applications, with
similar requirements on flow data quality as the work in this thesis, can hardly
be found. For example, our flow-based IDS SSHCure is one of the very few
flow-based security applications, let alone open-source security applications. The
reason for this may be found in the (quality of) available flow data, which may be
exported suboptimally (Chapter 2), likely features flow data artifacts (Chapter 3),
or does not allow the identification of network artifacts like TCP retransmission
and control information (Chapter 4 and 5), which cannot be discriminated in flow
data by default. We have shown in this thesis how flow measurements have to be
performed, how the granularity of flow data may be improved, and how artifacts
can be discovered and often overcome. Our lessons learned can be applied to
any flow data analysis and may open doors for further research, which was not
possible before.
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On-probe detection modules
We have shown in Chapter 6 how to deploy software, such as lightweight detection
modules, on flow exporters, in an attempt to bring analysis closer to the data
source. Our evaluations have made clear that this on-probe approach may have a
large impact on detection delays that are present in any flow monitoring systems,
which may be reduced from minutes to just a few seconds. The potential of
our approach is even recognized by industry, because it provides a means for
monitoring and detecting specific threats that was not possible before, such as
very short yet high-intensity DDoS attacks. We believe that on-probe detection
modules have a huge potential, as it combines the advantages of flow monitoring
in terms of scalability, while overcoming any disadvantages in terms of delays.

Combining host-based and network-based detection
In Chapter 1, we made clear that network-based compromise detection provides
several advantages over host-based compromise detection, namely global network
visibility versus visibility of a single host, and major improvements in terms of
scalability. Nevertheless, due to the fact that host-based approaches usually
have access to individual packets and log files, the accuracy of these approaches
is somewhat higher than of their network-based counterparts. Provided that
we have shown using open-source software that our network-based compromise
detection is ready for production deployment, we argue that future work may
investigate how the advantages of both host-based and network-based approaches
may be combined, for example in a multi-layered fashion, similar to what we have
proposed in [42].
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APPENDIX: A

Minimum Difference of Pair Assignment
(MDPA)

MDPA is a distance metric for calculating how similar two histograms are. Its
most distinguishing feature is that it does not satisfy the shuffling invariance
metric, meaning that shuffling any bin values in a histogram does affect histogram
inter-distance, as explained by means of an example in Section 5.2. In short,
MDPA aims at finding the minimum difference of pair assignments between two
sets, histograms in our context. As such, one has to find the best combination
of one-to-one assignments such that the sum of all differences is as small as
possible [5].

A.1 Calculation

The formal definition of the inter-distance of two histograms using the MDPA
metric has been defined in (5.4). How the actual calculation works can best be
explained based on Figure A.1, where Histogram A, B and C are taken from
Figure 5.3. Distances between any two histograms are the sums of differences
between pairs of samples. For example, the difference between Histogram A
and B is 4. The minimum distance of pairs between Histogram A and C is 204.
To illustrate the effect of MDPA not satisfying the shuffling invariance, we have
shuffled the samples in Histogram C in Figure A.1 such that the samples are not
in ascending order of their values anymore. Given that all distance permutations
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Figure A.1: MDPA calculation. Visualization based on [5].
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are compared in (5.4), the overall distance between any two histograms is not
affected by the order of the samples.

A.2 Normalization

Since the number of samples in a histogram is not necessarily the same between
any two histograms, one can apply normalization of the histograms by multiplying
all elements by a common multiple N of both histograms. One common multiple
is the product of the number of samples in two histograms x and y, i.e., nx ∗ ny.
The normalized distance between two histograms is then defined as follows [5]:

DN (x, y) =
D(xN , yN )

N
(A.1)

Although normalization is only necessary in case of inequality of the number
of samples in any set of histograms, we use the normalized distance in all our
calculations for the following reasons:

• It is very unlikely that histograms within a cluster are identical in terms of
the number of featured samples.

• Comparing histogram distances between different clusters can only be done
if the distances are normalized.
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CMS Backend URLs

The three CMSs considered for the validation of the work on Web applications
presented in Chapter 5 all feature their own methods for redirecting users from a
login page to their administration backend upon successful login. Table B.1 sum-
marizes the backend login URLs, as well as CMS behaviors upon both successful
and failed logins. In addition to what is listed in Table B.1, we also consider
Wordpress’ XML Remote Procedure Call (RPC) interface (/xmlrpc.php), which
also requires authentication for several RPCs and has seen numerous attacks in
recent times [139], [149].

CMS Backend login URL
Successful login

behavior
Failed login

behavior

Wordpress
v3.8.2

/wp-login.php

HTTP 302 status code,
redirecting to
/wp-admin/

HTTP 200 status
code, serving login

form again

Joomla
v3.3.6

/administrator/index.php,

task=user.login

HTTP 303 status code,
redirecting to backend
administration page

with increased response
size

HTTP 303 status
code, redirecting

to login form

Drupal
v7.26

/?q=user,

/?q=user/login,

/user/login,

q=node&destination=node

HTTP 302 status code,
redirecting to backend
administration page

with increased response
size

HTTP 200 status
code, serving login

form again

Table B.1: CMS backend login URLs and behaviors
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[74] M. Vizváry and J. Vykopal, “Flow-based detection of RDP brute-force
attacks”, in Proceedings of 7th International Conference on Security and
Protection of Information, SPI’13, 2013, pp. 131–137.

[75] J. Vykopal, T. Plesnik, and P. Minarik, “Network-Based Dictionary At-
tack Detection”, in Proceedings of the 2009 International Conference on
Future Networks, 2009, pp. 23–27.

[76] H. Wang, D. Zhang, and K. Shin, “Detecting SYN flooding attacks”, in
Proceedings of IEEE INFOCOM 2002, vol. 3, 2002, pp. 1530–1539.



172 BIBLIOGRAPHY (REFEREED)

[77] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Mad-
hyastha, “FlowSense: Monitoring Network Utilization with Zero Measure-
ment Cost”, in Proceedings of the 14th International Conference on Pas-
sive and Active Measurement, PAM’13, ser. Lecture Notes in Computer
Science, vol. 7799, 2013, pp. 31–41.

[78] J. Zhang and A. Moore, “Traffic trace artifacts due to monitoring via port
mirroring”, in Proceedings of the 15th IEEE/IFIP Workshop on End-to-
End Monitoring Techniques and Services, E2EMON’07, 2007, pp. 1–8.
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