
Towards Provably Secure Efficiently Searchable

Encryption

Saeed Sedghi

Composition of the Graduation Committee:

Prof. Dr. Ir. A.J. Mouthaan Universiteit Twente
Prof. Dr. W. Jonker Universiteit Twente
Prof. Dr. P.H. Hartel Universiteit Twente
Dr. S. Nikova Universiteit Twente and

Katholieke Universiteit Leuven
Dr. M. Abdalla Ecole Normale Superieure
Prof. Dr. D. Pavlović Royal Holloway, University of London and

Universiteit Twente
Prof. Dr. M. Petkovic Technische Universiteit Eindhoven
Prof. Dr. J.C. van de Pol Universiteit Twente
Dr. Ir. B. Schoenmakers Technische Universiteit Eindhoven

This research is supported by the SEDAN project,
funded by the Sentinels program of the Technology
Foundation STW, applied science division of NWO
and the technology programme of the Ministry of
Economic Affairs under project number EIT.7630.

CTIT Ph.D. Thesis Series No. 12-219
Centre for Telematics and Information Technology
P.O. Box 217, 7500 AE, Enschede, The Netherlands.

IPA: 2012-5
The work in this thesis has been carried out under the
auspices of the research school IPA
(Institute for Programming research and Algorithms).

ISBN: 978-90-365-3333-1
ISSN: 1381-3617 (CTIT Ph.D. thesis Series No. 12-219)
DOI: 10.3990/1.9789036533331
http://dx.doi.org/10.3990/1.9789036533331

Typeset with LATEX. Printed by IPSKAMP Print Service.

To my daughter, Elena

TOWARDS PROVABLY SECURE EFFICIENTLY
SEARCHABLE ENCRYPTION

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof. dr. H. Brinksma,

on account of the decision of the graduation committee,
to be publicly defended

on Friday, the 17th of February 2012 at 16.45 hrs

by

Saeed Sedghi

born on 2nd of September 1981,
in Mashhad, Iran

The dissertation is approved by:

Prof. Dr. W. Jonker (promotor)
Prof. Dr. P.H. Hartel (promotor)
Dr. S. Nikova (assistant-promotor)

iv

v

Abstract

Traditional encryption systems are designed in such a way that either the whole data
is decrypted, if the encryption and decryption keys match, or nothing is decrypted
otherwise. However, there are applications that require a more flexible encryption
system which supports decrypting data partially. Searchable encryption is a tech-
nique that provides functionalities to decrypt data partially by searching encrypted
data.

In searchable encryption, each message of data is associated with a set of key-
words. Searchable encryption transforms both, the message and the associated key-
words, to an encrypted form, in such a way that the encrypted keywords can be
queried later. This allows a client to retrieve or decrypt only the messages of the
data that contain a particular keyword without decrypting the data.

Searchable encryption can be based on either symmetric key or public key cryp-
tography. In the symmetric key setting, only the client who stores the data on the
server can search the encrypted data. This setting is appropriate for situations where
the client stores encrypted data on an honest but curious server, in such a way the
the encrypted data can be retrieved selectively. Using symmetric key searchable en-
cryption, the server learns as little information as possible after the storage and the
search. In public key searchable encryption, anyone can encrypt data using a public
key, while only the owner of the corresponding private key can query encrypted data.
Public key searchable encryption allows a client to delegate a decryption key to other
users, in such a way that the delegated decryption key can decrypt parts of data only.

The main aspects of searchable encryption are security and efficiency. The effi-
ciency of a scheme is evaluated by the complexity of the scheme. The security of a
scheme shows the ability of the scheme in hiding both, the message and the associa-
ted keywords, from adversaries. To define the security formally, security models are
proposed where each model defines certain computational resources and restrictions
for the adversary. Since security is never free, there is a trade off between efficiency
and security. Searchable encryption schemes that achieve security in a security mo-
del with a more powerful adversary have a higher complexity. The best trade off is
achieved when the scheme achieves certain level of security with the lowest possible
complexity.

The main contributions of this thesis are the efficient and provably secure sear-
chable encryption schemes which have a lower complexity compared to existing
schemes. Our focus in this thesis is the complexity of the search, which is the main

vi

functionality of searchable encryption. In this thesis we propose:

• A searchable encryption scheme in the symmetric key setting which is secure
in the symmetric key searchable encryption model. This security model is the
only security model proposed in the symmetric key setting. Our scheme, called
SES, has a lower complexity for the search compared to existing symmetric key
searchable encryption schemes.

• A public key searchable encryption scheme which is secure in the random oracle
model. A ransom oracle is a function that maps an input value to a true random
output value. In the random oracle model anyone including the adversary has
access to a random oracle. Our scheme, called SEPE, allows searching and
enforcing an access control policy, while revealing as little as possible about the
data and the policy. The SEPE scheme has a lower complexity to perform the
search and enforce an access control policy compared to existing schemes.

• A public key searchable encryption scheme which is secure in the selective
security model. The adversary in the selective security model must inform in
advance of the attack which keyword is intended to be attacked. Our scheme,
called SEPS, supports wildcards in the queried keyword. The SEPS scheme
is more efficient that existing schemes which allow searching keywords with
wildcards on encrypted data.

• A public key searchable encryption scheme which is fully secure. The full
security model is the strongest proposed security model. Our scheme, called
SEPF, has a lower search complexity compared to existing fully secure schemes.

vii

Acknowledgement

Writing the acknowledgement section is one of the most enjoyable parts of the thesis.
This section makes me remember all the great times, experiences, conversations and
activities that I had with my friends during the PhD education. It is always a pleasure
to thank all the friends who supported me to accomplish the thesis.

I am greatly indebted to my supervisors, Pieter, Willem, Svetla and Jeroen. Wi-
thout their help completing this thesis would not have been possible. Willem, who
was my first promoter, helped me on how to see and approach problems. While
Willem’s agenda was most of the times overbooked, he always found times to have a
weekly meeting, which shows his commitment to the project. Willem is also amazin-
gly fast in grasping the idea of the work from each presentation, which was followed
by his nice comments. While Pieter was my second promoter, he has done almost all
parts of the work to teach me how to do the research. Pieter is amazingly patient in
teaching students on how to perform independent research. I feel so lucky to be his
student. Svetla was my daily supervisor after the second year of my work. Svetla is
amazingly hard working. She did all the difficult parts of checking the details of my
work, my English writing and presentations. Jeroen was my daily supervisor in the
first year of my work. Jeroen is amazingly intelligent. Every meeting with him was
followed by plenty of ideas and a deeper understanding of the work.

I am grateful to Peter van Liesdonk, my friend and my colleague in TU/e, for
all his help. I learned many things about cryptography from Peter. He was always
enthusiastic to hear my ideas, which was followed by his useful comments. While
traveling from Enschede to Eindhoven is not usually convenient, having a meeting
with him always inspired me to have a trip to Eindhoven frequently.

I would like to thank Marlous, Nicole, Thelma and specially Nienke and Bertine,
who worked as the secretary of the group in different periods of time. Their help in
my financial, business and official work saved me plenty of time. I thank Ruth who
helped me improve my English writing.

I was lucky to share my office with Arjan, Ayse, Cristoph, Giorgi, Ileana, Luan,
Marcin, Mohsen, Stefan, and Trajce. I had lots of enjoyable times with them. I had
also great times with other members of the group, Andre, Begul, Damiano, Dina,
Dusko, Emmanuele, Frank, Michael, Richard, Qiang, Sandro, Wolter, and Zheng. I
would also like to thank Qiang for his supports and nice comments on my work. I
am thankful to the committee members of my defense for their comments to improve

viii

my thesis.
I had great times with all the Iranian friends we met here. We had so enjoyable

times together in such a way that we were feeling home always with them. I would
like to express my gratitude to my parents for all their support and encouragement.
I thank also my sisters, my brother and my family-in-law for their motivation and
continual interest in the progress of my studies.

Last and foremost, I owe special thank to my wife Sara. It is hard to express in
words my gratitude for All the enjoyable moments living with you.

ix

Contents

1 Introduction 3

1.1 Searchable Encryption . 4

1.2 Research question . 8

1.3 Overview of the thesis . 8

2 Formal Definitions 13

2.1 Introduction . 13

2.2 Symmetric Key Searchable Encryption 13
2.2.1 Security . 14

2.3 Public Key Searchable Encryption . 16
2.3.1 Security . 18

2.4 Primitives and Complexity Assumptions 21

3 Efficient Symmetric Key Searchable Encryption 25

3.1 Introduction . 25

3.2 Related Work . 26

3.3 Construction of SES . 27
3.3.1 The SES Scheme . 27
3.3.2 Construction of SES1 . 30
3.3.3 Proof of Security for SES1 . 31
3.3.4 Construction of SES2 . 36
3.3.5 Proof of Security for SES2 . 37

3.4 Efficiency Comparison . 41

3.5 Conclusion . 44

4 Multi-user Searchable Encryption with Policy Enforcement 47

4.1 Introduction . 47

4.2 Related work . 49

4.3 Blinded server . 50
4.3.1 Unblinded database and reference monitor 51
4.3.2 Blinded database and reference monitor 51

CONTENTS 1

4.4 SEPE: Blinding the Server . 53
4.4.1 Blinding the Database . 53
4.4.2 Database Blinding Example . 55
4.4.3 Blinding the Reference Monitor 56
4.4.4 Construction . 58
4.4.5 Role Blinding Example . 60
4.4.6 Extension . 61
4.4.7 Efficiency . 64

4.5 Discussion of Practical Issues . 66

4.6 Conclusion . 68

5 Searchable Encryption Supporting Wildcards 69

5.1 Introduction . 69

5.2 Related work . 70

5.3 The SEPS Scheme . 71

5.4 Construction . 71
5.4.1 Correctness . 75
5.4.2 Proof of Security . 76

5.5 Efficiency . 78

5.6 Conclusion . 79

6 Fully Secure Searchable Encryption 81

6.1 Introduction . 81

6.2 Related Work . 82

6.3 Challenges of Security Proof . 82

6.4 Dual System Encryption . 85

6.5 Intuition . 86

6.6 Construction . 88
6.6.1 Correctness . 91

6.7 Security Proof . 92
6.7.1 Semi-functional algorithms . 92
6.7.2 Intuition . 95
6.7.3 Sequence of games . 95

6.8 Efficiency . 105

6.9 Conclusion . 106

7 Conclusions 109

Author References 117

Other References 119

2 CONTENTS

3

Chapter 1

Introduction

In a traditional encryption system, data is encrypted using a predefined encryption
key, such that the data can be decrypted with the corresponding decryption key.
This property makes these systems coarse-grained, because either the whole data is
decrypted, if the encryption key and the decryption key match, or nothing is decryp-
ted otherwise. However, there are applications that require a fine-grained encryption
system which supports searching in encrypted data to decrypt or retrieve data se-
lectively. We consider two scenarios. The first is typical for the single user setting,
while the second is appropriate when more than one user is involved.

• Scenario 1 (single-user setting). Imagine that Alice wishes to store her
medical records digitally such that they are available to her at any time and
anywhere. Alice could store all the records in a local memory device and keep
the device always with her. However, the device can be damaged, lost or
stolen. Hence, it would be more convenient for Alice to store the medical
records on a personal health record (PHR) server, such that she can retrieve the
records any time and anywhere. To protect the confidentiality of the records,
which contain sensitive information, Alice encrypts them prior to storage on the
server. However, if Alice uses a traditional symmetric key encryption scheme,
retrieving parts of the records selectively would be a problem. To search the
records, Alice has to either send her decryption key to the server, such that
the server decrypts the records to find the desired parts, or she has to retrieve
all the records to find the desired parts manually. These solutions are neither
secure nor efficient. Alice can also append some metadata, in such a way that
she searches the metadata instead of the record directly. However, since the
metadata is dependant on the record, some information about the record is
revealed to the server.

• Scenario 2 (multi-user setting). Imagine that Bob wants his secretary,
Carol, to reply, on his behalf, to his e-mails only if they contain the keyword
“Job” in the subject line. If Bob’s e-mails are in plaintext, Carol can simply

4 Introduction

check the subject line of each e-mail and take action. However, Bob wishes to
use an encryption scheme to preserve the confidentiality of his e-mails. Bob
could use a traditional public key encryption scheme as follows. Either Bob
has to reveal his decryption key to Carol, or Bob has to decrypt his e-mails
by himself and send only the e-mails with subject “Job” to Carol. The first
solution compromises the confidentiality of all e-mails, and the second solution
is not efficient.

Scenarios such as those sketched above require an encryption technique that allows
searching in encrypted data while making a good compromise between security and
efficiency. Therefore, the problem is how can we search in encrypted data with the
best trade off between efficiency and security? The focus of this thesis is to provide
solutions to this problem using searchable encryption.

1.1 Searchable Encryption

Searchable encryption is a technique that provides functionalities to search encrypted
data without requiring the decryption key. Let the data be a set of messages. To
support data encryption, such that only particular messages can be decrypted later,
each message is associated with a set of keywords. Searchable encryption transforms
the message, and the keywords associated with the message to a searchable ciphertext
which can be queried using a trapdoor. A trapdoor is a decryption key which is also
associated with a set of keywords. The message can be decrypted if and only if the
keywords of the trapdoor match the keywords associated with the message.

In Scenario 1, Alice wants to store her medical records on a server in encrypted
form in such a way that she can retrieve them selectively. To each record, Alice asso-
ciates a set of keywords (e.g. the date and the type of the disease). Using searchable
encryption, Alice transforms the keywords, which are associated with the record, to
a searchable ciphertext. The record itself is encrypted using any standard encryp-
tion scheme. Alice then stores the encrypted record and the searchable ciphertext
on the server. Now, assume that Alice wants to retrieve only records that contain
the keyword “flu”. Alice computes a trapdoor using the keyword “flu” and sends
the trapdoor to the server. Given the trapdoor, the server checks for each searchable
ciphertext, whether it matches the trapdoor. If there is a match, the server sends the
encrypted record to Alice who decrypts the record using her secret key. In this case,
the server learns which encrypted records Alice requires, but learns nothing about
the contents of the records.

In Scenario 2, using searchable encryption, Bob computes a trapdoor which is
associated with the keyword “Job”, and gives it to Carol. This trapdoor enables
Carol to decrypt an e-mail only if its subject line contains the keyword “Job”. Now,
assume that Dave wants to send an e-mail to Bob. Dave transforms the e-mail and
the keywords of the subject line to a searchable ciphertext, and sends it to Bob.
Given the searchable ciphertext, Carol can decrypt the e-mail using the trapdoor,
but only if the e-mail contains the keyword “Job”. In this case, the e-mails that

1.1 Searchable Encryption 5

contain the keyword “Job” are revealed to Carol, as required, but she learns nothing
about the other e-mails.

Searchable encryption schemes can be based on either symmetric key or public key
cryptography. Table 1.1 summarizes the differences between public key and symme-
tric key searchable encryption from the perspective of the construction of a searchable
ciphertext, the type of application, the type of query, and the performance. In the
symmetric key setting, only the owner of the secret key can create the searchable
ciphertext. However, public key searchable encryption allows anybody to create the
searchable ciphertext using some public parameters. Since sharing a secret key in-
creases the risk of exposure, symmetric key searchable encryption schemes are most
suitable for single-user settings. Public key searchable encryption is appropriate for
multi-user settings, where any user can encrypt but only one user can search. In the
public key setting, the owner of a secret key can query the searchable ciphertext,
using a trapdoor, either to decrypt messages selectively, or to search whether a key-
word occurs. Whereas, in the symmetric setting, the owner of the secret key can only
query to search for a keyword. Symmetric key searchable encryption is, in general,
faster than public key searchable encryption.

Symmetric key Public key
searchable encryption searchable encryption

Construction of Created by Created by
searchable a secret key public parameters
ciphertext

Key Single-user settings Multi-user settings
Management

Searching for a keyword
Functionality Searching for a keyword and

Partially decrypting data
Performance More efficient Less efficient

Table 1.1: Comparison between public key and symmetric key searchable encryption

Security and efficiency are the main aspects of searchable encryption schemes. To
be precise about what we mean by security and efficiency, we discuss them in the
following sections.

Security
Informally, security in searchable encryption shows the ability of a scheme to hide a
message and its associated keywords from adversaries. For a scheme to be provably
secure, it must be formally shown that the message and the keywords are hidden
from probabilistic polynomial time (PPT) adversaries who have access to certain
computational resources. The computational resources, that the adversary has access
to, are defined in a security model. The security model, which also defines how the

6 Introduction

adversary interacts with users, shows how powerful the adversary is.
Various security models have been proposed. From a security point of view,

models with lower restrictions for the adversary are preferred because these are more
realistic. However, the increased security usually causes a loss of efficiency. In fact,
one needs to choose a security model based on the application and the cost that one
is prepared to pay. There is a variety of security models thus giving flexibility in
deciding about the trade-off between the efficiency cost and the level of security.

Here, we briefly explain the security models which we consider in this thesis. We
will give a formal definition of each model in Chapter 2.

Symmetric key setting: The most widely used model for searchable encryption
in the symmetric key setting is called the symmetric key searchable encryption mo-
del [38]. For a scheme to be secure in this model, it must be shown that the searchable
ciphertext and the trapdoor do not reveal any information to the adversary except
the access pattern. The access pattern is the outcome of a search result which shows
which searchable ciphertexts match a trapdoor.

Public key setting: Security models in the public key setting allow anyone in-
cluding the adversary to obtain a trapdoor for each keyword that is queried. In
public key settings, for a scheme to be provably secure, it must be shown that a sear-
chable ciphertext which does not match any trapdoor query, reveals nothing to the
adversary. The most used sub-models in the public key setting, which we consider in
this these, are as follows:

• The random oracle model, gives the adversary access to all the functions [6]
used in the scheme to construct the searchable ciphertext and the trapdoor.
These functions, which are called random oracles, are true random functions
that map an input value to a true random output value.

• The standard model, where the adversary does not have access to any random
oracle. The standard model is thus a stronger model than the random oracle
model. There are two prominent sub-models in the standard model:

– The selective security model, where the adversary has to publicly announce
which keyword is intended to be attacked [16].

– The full security model, where the adversary is free to attack any keyword.
This is a stronger model than the selectively secure model.

The first parameter to choose an appropriate security model for a searchable
encryption scheme is the setting in which the scheme is proposed. If the scheme is
proposed in the symmetric key setting, the symmetric key security model is used. If
the scheme is proposed in the public key setting, one of the sub models mentioned
above should be used. After designing a primary construction for the scheme, it must
be checked whether the scheme can be proven to be secure in the chosen model. If
the proof cannot be accomplished, the construction of the scheme should be adjusted,
in such a way that the construction is more randomized. Then, the security proof

1.1 Searchable Encryption 7

must be checked again with the new construction. This cycle must be continued
until a security proof is found. Therefore, the weaker the security model requires the
less randomization of the construction, which makes schemes in weaker models more
efficient.

Searchable encryption schemes in the random oracle model are more efficient than
in the standard model. However, random oracles do not exist in practice which makes
this model weaker than the standard model. The random oracle is usually deployed
in the schemes that make the first step towards addressing a problem (e.g. [11],
[25]). In such schemes, to avoid complications, the random oracle is used. In the
standard model, we distinguish between selective security and full security. Selective
security curb the adversary’s flexibility in attacking keywords. Full security has a
higher security, which can be used when the keywords are very sensitive. However,
a scheme which is secure in this model is more costly than secure schemes in other
models.

Efficiency
To evaluate the efficiency of a searchable encryption scheme we consider the following
complexity aspects:

• The complexity to create the searchable ciphertext, the trapdoor and to perform
the search (Computational complexity).

• The complexity to send the trapdoor and the searchable ciphertext from the
client to the server (Communication complexity).

• The complexity to store the public key, secret key, searchable ciphertext and
the trapdoor (Storage complexity).

The complexity to send encrypted messages, after performing the search, from the
server to the client is not considered as a complexity aspect of searchable encryption,
since the size of the results will only depend on the size of the encrypted messages
stored, which is independent of the searchable encryption.

In general we are interested in schemes with the lowest complexity possible. Ho-
wever, in practical situations, reducing all complexity aspects is not possible. Indeed,
we need to prioritize the complexity aspects with respect to the application. For ins-
tance, if searchable encryption is used for retrieving encrypted data from a server
that offers cheap storage, the storage complexity is not crucial. However, if the num-
ber of searchable ciphertexts stored on the server is large, searching the searchable
ciphertexts will be expensive. Therefore, the complexity of the search might be more
crucial than the complexity of the memory.

In Scenario 1, Alice is interested in carrying devices with limited memory to store
the master secret key. Hence, in case Alice uses a broadband network connection and
does not search the records frequently, the storage complexity and the computational
searchable ciphertext complexity are more important than the trapdoor complexity.
On the other hand, it is not only Alice who stores her records on the PHR server.

8 Introduction

Indeed, there are a large number of users who want to use the PHR system. In
this case, the server receives a large number of queries at any time, which makes
the complexity of the search crucial for the server. Therefore, in this scenario the
search complexity as well as the storage and searchable ciphertext complexity are
more important than the trapdoor complexity.

In Scenario 2, if a broad band internet connection, and devices with large storage
capacity are used, the communication complexity and the storage complexity are
therefore not critical. However, creating a searchable ciphertext should be efficient
as well as searching. If searching encrypted e-mails also takes a long time, Carol
might not be interested in using searchable encryption. Therefore, the computational
complexity is more important than the communication and the storage complexity.

1.2 Research question
Our goal in this thesis is to propose searchable encryption schemes, which are pro-
vably secure in the appropriate security model, and which have a lower complexity
than existing schemes. The research question that this thesis addresses is therefore:

Can we construct provably secure searchable encryption schemes with
a complexity as close as possible to plaintext search?

We explore answers to the research question in two settings:

1. The symmetric key setting, which is appropriate for single-user applications.
Symmetric key searchable encryption in general has lower complexity than pu-
blic key searchable encryption.

2. The public key setting, which is used for multi-user applications. Several users
may encrypt but only one party creates the trapdoor. In the public key setting
we consider searchable encryption in:

• The random oracle model which is not practical but has less complications
compared to the standard model. This model is usually used for the
schemes that make the first step to address a problem.

• The standard model, which offers higher security but at the cost of more
complexity.

1.3 Overview of the thesis
The main contributions of this thesis are the efficient and provably secure searchable
encryption schemes which are formally analyzed in the security models mentioned
earlier. The tree structure showing the contribution of the thesis in relation to pre-
vious prominent schemes is illustrated in Figure 1.1. The thesis is organized as
follows:

1.3 Overview of the thesis 9

scheme
DIP

scheme

[17]

SEPF

(Chapter 6)

BW
scheme

[12]

IP
scheme

[30]

SEPS
scheme

(Chapter 5)

�
�
�

@
@
@

A
A
A
A
A
A

�
�
�
�
�
�

Full
security
model

Selective
security
model

scheme
DGD

[20]

SEPE
scheme

(Chapter 4)

scheme
SSE

[19]

SI
scheme

[26]

SES
scheme

(Chapter 3)

�
�
�
�
�
��

A
A
A
A
A
AA

�
�
�

@
@
@

�
�
�
�
�
�

A
A
A
A
A
A

Standard
model

Random
oracle
model

Symmetric
key

model

�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
BB

Public
key

settings

Symmetric
key

settings

�
�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
C
CC

Efficient
and

provably
secure

searchable
encryption
schemes

Figure 1.1: The contributions of the thesis in relation to previous prominent schemes.

10 Introduction

• Chapter 2: In this chapter we present formal definitions for searchable encryp-
tion, the security models that we have informally introduced in this chapter.

Our solutions to the research question are described in chapters 3, 4, 5, and 6. In
each chapter, we propose an efficient searchable encryption scheme which is secure
in an appropriate model:

• Chapter 3: We first review the state of the art in symmetric key searchable
encryption schemes. Then, we propose a searchable encryption scheme, cal-
led SES, which is provably secure in the symmetric key model. In existing
schemes, the computational complexity of the search is linear in the total num-
ber of metadata items stored on the server. In the SES scheme, the computa-
tional complexity to search for a keyword is linear in the number of metadata
items that contain the query keyword. Two variants of SES are proposed that
differ in the computational complexity and the communication complexity of
the search. We show how the capability of the SES scheme can be extended
such that wildcards in the trapdoor are supported. We conclude the chapter
by comparing the complexity of SES with the most prominent symmetric key
searchable encryption schemes [19, 26]. We show that the SES scheme has a
lower computational complexity for the search than related work.

• Chapter 4: We give a comprehensive overview of the public key based tech-
niques that allow searching in encrypted data, and enforcing a role based access
control policy by a server. Since a role can leak some information about the
message, the role should be stored in a way that the server learns nothing
about. The policy should also be enforced in a way that no information about
the role is revealed to the server. We propose a unifying framework for sear-
ching and enforcing policy by an honest-but-curious server. We then propose
our scheme, called SEPE, which permits the server to search and enforce an
access control policy without learning much about the policy. We give a formal
definition about “learning much”. We conclude the chapter by comparing the
efficiency of the SEPE scheme with the DGD scheme [20] which is proposed
in the random oracle model. We show that the SEPE scheme has the lowest
computational complexity for the search and enforcing an access policy.

• Chapter 5: We study the problems with existing public key searchable encryp-
tion schemes that support wildcards in the trapdoor. We then propose a public
key searchable encryption scheme which is provably secure in the selective se-
curity model. Our scheme, called SEPS, supports wildcards in the trapdoor.
While in existing schemes the computational complexity of the search is linear
in the number of non-wildcard characters, the complexity of the SEPS scheme
is independent of the number of wildcards. Moreover, SEPS uses more efficient
primitives to perform the search, and creates a shorter trapdoor in comparison
with existing schemes. We conclude the chapter by comparing the efficiency
of SEPS with related work [12, 30]. We show that the SEPS scheme has the
lowest computational complexity for the search.

1.3 Overview of the thesis 11

• Chapter 6: We first analyze the challenges of achieving full security as well as
existing fully secure searchable encryption schemes. We then propose a public
key searchable encryption scheme, called SEPF, which is fully secure. The
SEPF scheme uses more efficient primitives to perform the search than existing
schemes. The SEPF scheme is proven secure using the dual system encryption
methodology [42]. We compare the complexity of the SEPF scheme with the
existing fully secure scheme in [17]. We show that the SEPF scheme has lower
search complexity.

• Chapter 7: In the last chapter we draw our conclusions. We analyze the
efficiency of the schemes, which we propose in chapters 3, 4, and 5, in the
context of their appropriate application.

In this thesis, to answer the research question we propose searchable encryption
schemes with lower complexity for the search compared to the existing schemes.
Our schemes, presented in chapters 3, 4, 5, and 6 are provably secure in a relevant
security model. In addition to the improved search complexity, each of the schemes
we propose has a low complexity in some other aspect. Thus, the answer to the
main research question is qualified “yes”, for certain complexity aspects only. In the
concluding chapter we discuss which are the appropriate applications of our schemes
with respect to the improved complexity aspects.

Acknowledgement
Chapters 3, 5 and 6 are joint work with Peter van Liesdonk. Both authors contributed
equally to each of the chapters.

12 Introduction

13

Chapter 2

Formal Definitions

In this chapter, we present formal definitions for searchable encryption and the secu-
rity models necessary to analyze searchable encryption schemes. We consider both
the symmetric key and public key settings. The security models specify the restric-
tions on the computational resources of the adversary. Since practical cryptographic
primitives are not unconditionally secure, searchable encryption schemes can be pro-
ven to be secure in an appropriate security model.

2.1 Introduction
Let D = (M1,M2, ...,Mn) be data consisting of n messages M1,M2, ...,Mn. Each
message Mi (i = 1, ..., n) is associated with a metadata item Wi = {Wi,1,Wi,2, ...}
which is actually a set of keywords chosen from a finite setW. Searchable encryption
stores the data D on a server such that:

1. A message Mi is retrieved from the server, only in case a particular keyword
occurs in its associated metadata Wi, while leaking as little information as
possible.

2. The confidentiality of the data is preserved as much as possible.

We now present formal definitions for searchable encryption and the security models,
in the symmetric key and public key settings.

2.2 Symmetric Key Searchable Encryption
The goal of the symmetric key searchable encryption is to retrieve encrypted messages
from a storage server, when the metadata associated with the message contains a
particular keyword. First each message Mi is encrypted, using a standard symmetric

14 Formal Definitions

key encryption scheme, and stored on the server. To store the metadata items on the
server, in a way that the metadata can be queried later, a symmetric key searchable
encryption scheme with the following randomized algorithms is invoked [26].

Keygens(σ): Given the security parameter σ, outputs a master secret key msk.

Encs(W,msk): Given the metadata W, and the master secret key msk, outputs a
searchable ciphertext SW.

Trapdoors(W,msk): Given the keyword W , and the master secret key msk, outputs
a trapdoor TW .

Search(TW , SW): Given the trapdoor TW , and the searchable ciphertext SW, outputs
1 if W ∈W.

The Keygens, Encs, and Trapdoors algorithms are invoked by the client, and the Search
algorithm is invoked by the server. If Search(TW , SW) = 1, the server sends back
the encrypted message whose associated metadata is W. The message flow of the
symmetric key searchable encryption is illustrated in Figure 2.1.

2.2.1 Security
Informally, a searchable encryption scheme in the symmetric key setting is secure
if the scheme leaks the access pattern only. The access pattern is the outcome
of the Search algorithm which shows whether a searchable ciphertexts matches a
trapdoor. Let LW = (W1, ...,Wm) be a list of m metadata items. Let LW =
(W1, ...,Wn) be a list of n keywords. The access pattern of LW and LW is the
matrix AccessPattern(LW, LW) whose i-th row and j-th column are [38]:

AccessPattern(LW, LW)i,j =

{
1 if Wj ∈Wi,
0 otherwise

where 1 ≤ i ≤ m, and ≤ j ≤ n.
The security of symmetric key searchable encryption schemes is defined as the fol-

lowing game between a challenger, who owns the master secret key, and an adversary
A [38].

• Setup: The challenger runs the Keygens(σ) algorithm to obtain the master
secret key msk. The challenger also picks a bit β ∈ {0, 1} randomly. The
adversary prepares six lists LS , LT , LW0 , LW1 , LW0 , LW1 which are initially
empty.

• Query: In this phase, the adversary adaptively makes two types of queries:

– Searchable ciphertext queries: The adversary sends two metadata items
(W0,W1) to the challenger who picks Wβ to compute the searchable ci-
phertext SWβ

= Encs(Wβ ,msk). The challenger then sends SWβ
to the

adversary. The adversary appends SWβ
to LS , W0 to LW0 and W1 to LW1 .

2.2 Symmetric Key Searchable Encryption 15

Server

� Search(TW , SW) = 1Enc(M)

-W

-msk Trapdoors -TW

-

-

Encs

Enc
-Enc(M)

-

M

W
SW

-
(Enc(M), SW)

-σ
Keygens -msk

Client

Dec(Enc(M))

-(M,W)

-msk

Figure 2.1: The message flow of the symmetric key searchable encryption for retrieving
encrypted messages selectively from a server. Here, Enc is a standard symmetric key en-
cryption scheme.

16 Formal Definitions

– Trapdoor queries: The adversary sends two keywords (W0,W1) to the chal-
lenger who picksWβ to compute the trapdoor TWβ

= Trapdoors(Wβ ,msk).
The challenger then sends TWβ

to the adversary. The adversary appends
TWβ

to LT , W0 to LW0 and W1 to LW1 .

The only condition for choosing the keywords and the metadata items during
the query phase is that

AccessPattern(LW0
, LW0

) = AccessPattern(LW1
, LW1

).

• Response: After A decides that the query phase is over, A, using the lists
LT , and LS outputs a guess β′ for β. The adversary A then sends β′ to the
challenger.

Intuitively, this game simulates a worst case scenario for the attack. The ad-
versary gathers the maximum possible searchable ciphertexts and trapdoors for the
attack. Here, if the adversary can guess the keyword of even one searchable ci-
phertext or one trapdoor correctly, the attack succeeds. This game also allows the
adversary to send his queries for the searchable ciphertexts and the trapdoors adap-
tively, in a way that each query can be chosen after receiving the response of the
previous query. If the scheme leaks even one bit of information from the searchable
ciphertext or the trapdoor, the adversary can choose the queries in a way that this
flaw is used for guessing β. Here, the metadata items of the searchable ciphertext
queries and the keywords of the trapdoor queries must be chosen in a way the ad-
versary cannot learn the bit β trivially. For example, assume that the adversary is
allowed to choose two metadata items (W0,W1) and two keywords (W0,W1) for the
query, such that W0,W1 ∈ W0 and W0,W1 * W1. In this case, given SWβ

, and
TWβ

, the adversary can simply run the Search algorithm to guess β correctly. If
Search(TWβ

, SWβ
) = 1, then β = 0, otherwise, β = 1. This is the reason why we

require that AccessPattern(LW0 , LW0) = AccessPattern(LW1 , LW1).

Let AdvA =
∣∣Pr[β = β′]− 1

2

∣∣ be the advantage of A in winning the game.

Definition 1 (Symmetric Key Security). A symmetric key searchable encryption
scheme is secure if for all probabilistic polynomial time (PPT) adversaries A, AdvA ≤
ε(σ), where ε is a negligible function of σ.

The message flow of the symmetric key security game is illustrated in Figure 2.2

2.3 Public Key Searchable Encryption
Public key searchable encryption schemes create the searchable ciphertext using some
public parameters. The goal of the public key searchable encryption is either to
decrypt data selectively, or to search for a keyword. A searchable encryption scheme
in the public key setting transforms both the message and the metadata associated
with the message to a searchable ciphertext. The message can be decrypted using a

2.3 Public Key Searchable Encryption 17

� β′

-(SWq,β
, TWq,β

)

-

�(Wq,0,Wq,1), (Wq,0Wq,1)

(SW1,β
, TW1,β

)

�(W1,0,W1,1), (W1,0W1,1)

Challenger Adversary

.

.

.

Pick β ∈ {0, 1}
msk = Keygens(σ) LW0 , LW1 , LW0 , LW1 , LS , LT

Prepare

SW1,β
= Encs(W1,β ,msk)

TW1,β
= Trapdoors(W1,β ,msk)

W1,0 −→ LW1
, W1,1 −→ LW1

W1,0 −→ LW0 ,W1,1 −→ LW1

SW1,β
−→ LS , TW1,β

−→ LT

Wq,0 −→ LW0 , Wq,1 −→ LW1

Wq,0 −→ LW0 ,Wq,1 −→ LW1

SWq,β
−→ LS , TWq,β

−→ LT

SWq,β
= Encs(Wq,β ,msk)

TWq,β
= Trapdoors(Wq,β ,msk)

Setup

Query

Response

Figure 2.2: The message flow of the symmetric key security game. Here, q is the number
of times that query is performed.

18 Formal Definitions

trapdoor if and only if the keyword of the trapdoor occurs in the metadata associated
with the message. Public key searchable encryption schemes consist of the following
randomized algorithms [12]:

KeygenP(σ): Given the security parameter σ, outputs a master secret key msk and
a set of public parameters param.

EncP(M,W, param): Given the message M , the metadata W, and the public para-
meters param, outputs a searchable ciphertext SM,W.

TrapdoorP(W,msk): Given the keyword W and the master secret key msk, outputs
a trapdoor TW .

Dec(TW , SM,W): Given the trapdoor TW , and the searchable ciphertext SM,W, out-
puts M if and only if W ∈W.

Figure 2.3 illustrates the message flow of the public key searchable encryption.
Alice generates the master secret key msk and the public parameters param. Alice
then constructs a trapdoor TW using the keyword W and delegates TW to Bob. As-
sume that Charlie wants to send a message M to Bob. Charlie associates a metadata
W to M and transforms both M and W to a searchable ciphertext SM,W using the
public parameters param. Charlie then sends SM,W to Bob. Given the searchable
ciphertext SM,W, Bob can decrypt M if W ∈W.

2.3.1 Security
The security of the public key searchable encryption is defined by a security game
between a challenger, who owns the master secret key, and an adversary who tries
to learn non-trivial information from the searchable ciphertext. In this game, the
adversary is allowed to receive the trapdoor of any keyword that he wants, except
for the challenge keyword. This game captures the property that the searchable
ciphertext leaks no information on both the message and the metadata. The game
proceeds as follows [12]:

• Setup. The challenger runs KeygenP(σ), which outputs the master secret key
msk and the public parameters param. The challenger then sends param to the
adversary A. The adversary prepares two lists LT and LW which are initially
empty.

• Query I. In this phase, A adaptively issues trapdoor queries. Given a keyword
W , the challenger runs TrapdoorP(W,msk) which outputs a trapdoor TW . The
challenger then sends TW to A. The adversary appends TW to the list LT , and
W to the list LW .

• Challenge. Once A decides that the query phase is over, A picks a pair of
messages (M0,M1) and metadata items (W0,W1) on which it wishes to be
challenged and sends them to the challenger. The only condition is that

AccessPattern(W0, LW) = AccessPattern(W1, LW)

2.3 Public Key Searchable Encryption 19

-

-

msk

W
- �

�

�

(M,W)

paramEncP
SM,WDec

?

If W ∈W

M

TrapdoorP
TW

- KeygenP
σ -���

@@R
param

?
msk

Alice Bob Charlie

Figure 2.3: The message flow of public key searchable encryption. Alice, who owns the
master secret key, creates a trapdoor and sends it to Bob. Charlie, who wants to send a
message to Bob, transforms the message to a searchable ciphertext using the public parame-
ters, and sends it to Bob. Bob decrypts the message if the keyword of the trapdoor and the
associated keywords with the message are the same.

20 Formal Definitions

(see Eq. 2.2.1). Given (M0,M1) and (W0,W1), the challenger flips a fair coin
β ∈ {0, 1}, and invokes the EncP(Mβ ,Wβ , param) algorithm which outputs
SMβ ,Wβ

. The challenger then sends SMβ ,Wβ
to A.

• Query II. This phase is identical to Query Phase I with the condition that

AccessPattern(W0, LW) = AccessPattern(W1, LW).

• Output. Finally, the adversary using LT outputs a bit β′ which represents its
guess for β.

Intuitively, this game simulates a worst case situation where the adversary is al-
lowed to gather the maximum possible trapdoors that do not decrypt the challenge.
The adversary then tries to learn the message and the associated metadata of the
searchable ciphertext, using the trapdoors that have been gathered during the query
phases. In contrast to the symmetric key setting, it is not possible to hide the key-
word of the trapdoor in the public key setting. Since the adversary has access to
the public parameters, given a trapdoor, he can create a searchable ciphertext for
any possible keyword to check whether the searchable ciphertext and the trapdoor
match. Since in practice the entropy of the keywords is limited, the adversary can
learn the keyword of the trapdoor after performing the brute force attack mentioned
above. This is the reason why the adversary is allowed to know the keyword of the
trapdoor in the query phases. Query phase I allows the adversary to choose the chal-
lenge messages based on the trapdoors which are already known. In the public key
setting, Query phase II allows the adversary to ask for more trapdoors based on the
challenge ciphertext. If the encryption scheme leaks even one bit of information, the
adversary can choose the message and the keyword in such a way that this weakness
is used for guessing β.

Let AdvA =
∣∣Pr[β = β′]− 1

2

∣∣ be the advantage of A in winning the game.

Definition 2 (Full Security). A searchable encryption scheme is fully secure if for all
probabilistic polynomial-time adversaries A in the full security game, AdvA ≤ ε(σ),
where ε(σ) is a negligible function of σ.

Selective security model. We define a weaker security notion called selective
security. The selective security game is the same as the fully secure game except that
instead of submitting two keywords (W0,W1) in the challenge phase, the adversary
commits to the keywords at the beginning of the game [16]. Although the selec-
tive security model is a weaker model than the full security model, it has appeared
in various constructions in the literature. While the full security model guarantees
protecting of all metadata items in the searchable ciphertext, selective security gua-
rantees protecting only one predefined metadata item. However, selective security
makes it easier to prove the security of a scheme, which implies less cost for the
scheme.

2.4 Primitives and Complexity Assumptions 21

Definition 3 (Selective Security). A searchable encryption scheme is selectively se-
cure if for all probabilistic polynomial-time adversaries (PPT) A in the selective
security game, AdvA ≤ ε(σ), where ε(σ) is a negligible function of σ.

The message flow of the full security and selective security games in the public
key setting is illustrated in Figure 2.4.

2.4 Primitives and Complexity Assumptions
In this section, the cryptographic primitives and the complexity assumptions that we
use in the schemes we propose in the next chapters, are formally defined.

Pseudorandom Function. A pseudorandom function f : X ×K −→ Y transforms each
element x ∈ X to an output y ∈ Y with a secret key kf ∈ K such that the output is
not predictable.

Definition 4 (Secure Pseudorandom Function). [26] A pseudorandom function f :
X × K −→ Y, is a (t, q, εf) secure pseudorandom function if for every algorithm A,
which makes at most q oracle queries with a running time of at most t, has advantage:∣∣∣Pr[Afkf

(.) = 1|kf ∈ K]− Pr[AR = 1|R ∈ {F : X → Y}]
∣∣∣< εf

where R is a true random function chosen uniformly from the set of all maps from
X to Y.

Intuitively, for any PPT algorithm A, the probability of guessing the output of a
pseudorandom function correctly, after sending any number of queries, is negligibly
larger than the probability of guessing the output of a true random function.

Pseudorandom Permutation Function. E : X ×K → X transforms each element x1 ∈ X
to an element x2 ∈ X using a secret key ke ∈ K in a way that the output is not
predictable.

Definition 5 (Secure Pseudorandom Permutation Function). [40] A pseudorandom
permutation function E : X ×K → X is a (t, q, εe) secure pseudorandom permutation
function if every algorithm A, which makes at most q queries with a running time of
at most t, has advantage:∣∣∣Pr[AEke (.) = 1|ke ∈ K]− Pr[Aπ = 1|π ∈ {F : X → X}]

∣∣∣< εe

where π is a true random permutation selected uniformly from the set of all bijections
on X .

Intuitively, for any PPT algorithm A, the probability of guessing the output of a
pseudorandom permutation function correctly, after sending any number of queries,
is negligibly larger than the probability of guessing the output of a true random
bijection function.

22 Formal Definitions

� β′

-TWq

-

� Wq

TWq
= Trapdoor(Wq,msk) Wq −→ LW

TWq −→ LT

TW1

� W1

TW1 = Trapdoor(W1,msk) W1 −→ LW

TW1 −→ LT

Challenger Adversary

.

.

.

-SMβ ,Wβ

� (M0,M1), (W0,W1)

SMβ ,Wβ
= Encp(Mβ ,Wβ , param)

-param

� (W0,W1)

Pick β ∈ {0, 1}

(msk, param) = Keygenp(σ)

Prepare

LW , LT

Setup

Query

Challenge

Response

Figure 2.4: The message flow of the public key security games. The dashed vector belongs
to the selective security game only.

2.4 Primitives and Complexity Assumptions 23

Definition 6 (Bilinear Groups.). [10] A cyclic group G of order p with generator g
is a bilinear group if there exists a group GT and a map e such that

• (GT , ·) is also a cyclic group, of prime order p,

• e : G × G → GT . In other words, for all u, v ∈ G and a, b ∈ Z∗
p, we have

e(ua, vb) = e(u, v)ab.

• e(g, g) is a generator of GT (non-degenerate).

Additionally, for efficiency reasons, we require that the group actions and the
bilinear map can be computed in polynomial time. A bilinear map that satisfies
these conditions is called admissible.

The order P of the bilinear groups can be either a prime number or a composite
of prime number. In general, bilinear groups of prime order are more efficient than
bilinear groups of composite order because prime order groups are shorter than com-
posite order groups.

Definition 7 (Decision Linear Assumption). [9] The Decision Linear (DLin) as-
sumption states that there exist bilinear groups G such that for all probabilistic polynomial-
time algorithms A,∣∣∣Pr

[
A(G, g, gz1 , gz2 , gz1z3 , gz4 , gz2(z3+z4)) = 1

]
−

Pr
[
A(G, g, gz1 , gz2 , gz1z3 , gz4 , gr) = 1

]∣∣∣ < ε(σ)

for some negligible function ε(σ), where the probabilities are taken over all possible
choices of z1, z2, z3, z4, r ∈ Z∗

p.

Informally, the DLin assumption states that given a bilinear group G and elements
gz1 , gz2 , gz1z3 , gz4 it is hard to distinguish gz2(z3+z4) from a random element in G.

Definition 8 (Decisional Bilinear Diffie-Hellman Assumption). [10] The Decisional
Bilinear Diffie-Hellman (DBDH) assumption states that there exist bilinear groups G
such that for all probabilistic polynomial-time algorithms A,∣∣∣Pr

[
A(G, g, gz1 , gz2 , gz3 , e(g, g)z1z2z3) = 1

]
−

Pr
[
A(G, g, gz1 , gz2 , gz3 , e(g, g)r) = 1

]∣∣∣ < ε(σ)

for some negligible function ε(σ), where the probabilities are taken over all possible
choices of z1, z2, z3, r ∈ Z∗

p.

Informally, the DBDH assumption states that given a bilinear group G and ele-
ments gz1 , gz2 , gz3 , it is hard to distinguish the value e(g, g)z1z2z3 from a random
element chosen from GT .

24 Formal Definitions

25

Chapter 3

Efficient Symmetric Key Searchable
Encryption

In existing symmetric key searchable encryption schemes the computational com-
plexity of the search is linear in the total number of the searchable ciphertexts stored
on the server. There are a few schemes that search with a lower complexity. However,
these schemes cannot update the database efficiently. In this chapter, we propose a
novel symmetric key searchable encryption scheme, called SES. The SES scheme has
a lower computational complexity for the search compared to the existing schemes
that allow efficient update of the database. Two variants of the SES scheme are
proposed, which differ in the computational complexity and in the communication
complexity of the search. We compare the complexity of the SES scheme with the
complexity of the SI [26] and SSE [19] schemes, which are two prominent existing
schemes in the symmetric key setting. The SES scheme is proven secure in the sym-
metric key security model. This chapter is a heavily revised version of the paper
published in the proceedings of the 7th Conference on Secure Data Management [3].

3.1 Introduction
Various symmetric key searchable encryption schemes have been proposed [40, 26,
18, 27]. Most of these schemes suffer from the problem that the search complexity is
linear in the total number of the searchable ciphertexts stored on the server. Only a
few schemes allow more efficient search [19]. However, in those schemes the update of
the database is performed inefficiently, in the sense that all the searchable ciphertexts
stored on the server should be replaced by new searchable ciphertexts. The problem
is thus that existing schemes perform either the search or the update inefficiently.
The goal of this chapter is to propose a searchable encryption scheme that allows
both, efficient search and update.

26 Efficient Symmetric Key Searchable Encryption

Contribution. In this chapter, we propose a novel symmetric key searchable encryp-
tion scheme called SES, which is provably secure in the symmetric key security model.
The SES scheme searches for a keyword with a lower computational complexity com-
pared to the existing schemes which allow updating the database efficiently. The
computational complexity of the search in our scheme is linear in the number of the
searchable ciphertexts that match the trapdoor. Since the number of the searchable
ciphertexts that match the trapdoor is lower than the total number of the searchable
ciphertexts, our scheme has a lower computational complexity for the search compa-
red to existing schemes. The SES scheme allows the client to update the database
efficiently and securely. We propose two variants of the SES scheme which differ in
the computational complexity and in the communication complexity of the search.
The first scheme called SES1, performs the search interactively with the client. The
second scheme, called SES2, performs the search non-interactively but at the cost of
higher complexity for the trapdoor.

3.2 Related Work

In this section, we first review existing symmetric key searchable encryption schemes.
Then, we discuss the efficiency problems in the search algorithm of existing schemes.
The problem of searching encrypted data was first studied by Song, Wagner, and
Perrig [40], who propose the first symmetric key searchable encryption scheme called
SWP. The major drawback of the SWP scheme is that the computational complexity
of the search is linear in the number of keywords of the metadata per searchable
ciphertext. The SI scheme proposed by Eu-Jin Goh [26] uses a Bloom filter to search
each searchable ciphertext for a keyword with constant computational complexity.
In both the SWP and SI schemes, the searchable ciphertext leaks information about
the number of the keywords of the metadata. Chang and Mitzenmacher have propo-
sed a symmetric key searchable encryption scheme whose searchable ciphertext hides
the number of the keywords of the metadata [18]. In this scheme, the computatio-
nal complexity to search a searchable ciphertext is constant but the computational
complexity of creating a searchable ciphertext is linear in the number of all pos-
sible keywords. Golle et al. have proposed a scheme which searches for conjunctive
keywords with constant complexity per searchable ciphertext [27].

The schemes mentioned above have a common drawback: the complexity of sear-
ching the database is linear in the number of searchable ciphertexts stored on the
server. To address this issue, Curtmola et al. [19] propose a scheme called SSE,
which has a constant computational complexity to perform the search. However,
SSE does not allow the database to be updated efficiently. This property makes the
scheme suitable for one-time storage only.

3.3 Construction of SES 27

3.3 Construction of SES
Let D = (M1, ...,Mn) be data consisting of n messages. Each message Mi, (i =
1, ..., n) is associated with metadata Wi = {Wi,1,Wi,2, ...} consisting of a set of
keywords. Each message Mi and metadata item Wi, are associated with a unique
identifier IDi.

High Level Intuition. In existing schemes, each metadata item W is trans-
formed to a searchable ciphertext SW. The searchable ciphertext SW matches the
trapdoor TW if W ∈ W. Therefore, to search for a keyword, the server has to
check for each searchable ciphertext, whether it matches the trapdoor. This pro-
perty makes the computational complexity of the search linear in the total number
of the searchable ciphertexts stored on the server.

In our scheme, we improve the efficiency of the search by building an index for
the keywords. The index maps each unique keyword onto a list of identifiers, which
show the desired metadata items. Since the index introduces a new indirection, there
will be costs associated with it. We will analyze the costs in section 3.4.

3.3.1 The SES Scheme
Notation We write x ←− X to represent an element x being sampled uniformly
from a set X. We denote string concatenation by ||.

Here, we first present the construction of the SES scheme and then we give the
intuition behind the construction. The SES scheme uses a counter t which is initially
1 and is incremented each time the database is updated. The SES scheme consists
of the following algorithms:

KeygenSES(σ): Given the security parameter σ, output a master secret key msk =
(kf , ke), where kf , ke ←− {0, 1}σ.

EncSES({(W1, ID1), ..., (Wn, IDn)},msk, t): Given the metadata items and their iden-
tifiers, {(W1, ID1), ..., (Wn, IDn)}, the master secret key msk, and the counter
t, for each unique keyword W ∈ {W1, ...,Wn}, output a searchable ciphertext
SW,t. After computing a searchable ciphertext for all the unique keywords that
occur in {W1, ...,Wn}, the algorithm increments the counter t = t+ 1.

TrapdoorSES(W,msk, t): Given the keyword W , the master secret key msk, and the
counter t, output a trapdoor TW,t.

SearchSES(TW,t, S): Let S be the set of all the searchable ciphertexts stored on the
server. Given the trapdoor TW,t and the searchable ciphertexts S, output the
identifiers showing in which metadata items the query keyword W occurs.

The KeygenSES, EncSES, and the TrapdoorSES algorithms are invoked by the client
and the SearchSES algorithm is invoked by the server.

The message exchange of the SES scheme is illustrated in Figure 3.1. Here,
we summarize the differences between this figure and Figure 2.1, which shows the
message exchange of symmetric key searchable encryption:

28 Efficient Symmetric Key Searchable Encryption

• The Keygens, Encs, Trapdoors, and Search algorithms in Figure 2.1 are replaced
by the KeygenSES EncSES, TrapdoorSES, and SearchSES algorithms in Figure
3.1.

• The EncSES algorithm takes the keyword W ∈ W and the metadata identifier
ID as input, while the input parameter for Encs is just the metadata item W.

• The Enc algorithm in Figure 2.1 only takes the message M as input, while the
the Enc algorithm in Figure 3.1 takes both, the message M and its identifier
ID, as input.

• The EncSES and TrapdoorSES algorithms take the number of updates t as input,
such that the searchable ciphertext SW,t and the trapdoor TW,t depends on t. In
Figure 2.1, the searchable ciphertext SW and the trapdoor TW are independent
of the number of updates.

• In SES, the identifier ID is stored with the searchable ciphertexts SW,t and the
encrypted message Enc(M) on the server. In existing schemes the identifier is
not needed.

• The SearchSES algorithm outputs the identifier ID of the metadata item that
contains the queried keyword W . In existing schemes, the Search algorithm
outputs either “0” or “1”.

Intuition for the Construction. To construct the searchable ciphertext, EncSES
first associates each unique keyword W ∈ {W1,,Wn} with a set of identifiers
IW,t = {IDi|W ∈ Wi} showing in which metadata items W occurs. The algorithm
then transforms both, the keyword W and the associated set of identifiers IW,t, to a
searchable ciphertext SW,t. To update the database in a secure way, the searchable
ciphertext SW,t of the current update t, must be indistinguishable from the sear-
chable ciphertexts SW,t−1 , ..., SW,1 of the previous updates. By indistinguishability
we mean that the server cannot learn that the searchable ciphertexts SW,t , ..., SW,1

of different updating time belong to the keyword. Otherwise, the server learns that
there is a common keyword between the currently stored metadata items and the
previously stored ones. This is the reason why the number of updates t is one of the
parameters of the searchable ciphertext.

Each searchable ciphertext SW,t stores the set of identifiers IW,t in an encrypted
form to hide it from the server. In SES, the trapdoor TW,t, which is computed
after t updates, allows the server to decrypt the set of identifiers IW,t,....,IW,1 which
occur in the searchable ciphertexts SW,t, ..., SW,1. Here, the trapdoor TW,t must not
reveal any information about the identifiers occurring in the searchable ciphertexts
of future updates SW,t+1, SW,t+2, Otherwise, the security of future updates
is compromised. This is the reason why the number of updates t is also one of
the parameters of the trapdoor. Finally, to search for a keyword W , the SearchSES
algorithm first searches the database for the searchable ciphertexts SW,t,....,SW,1 using
the trapdoor TW,t. Then, the algorithm decrypts the set of identifiers IW,t,...,IW,1,
which point out in which metadata items the queried keyword W occurs.

3.3 Construction of SES 29

Server

� SearchSES(TW,t, SW,t) =

ID

Enc(M)

-W

-msk, t TrapdoorSES -TW,t

-

-

EncSES

Enc
-(Enc(M), ID)

-

(M, ID)

(W ∈ W, ID)
SW,t

-
(Enc(M), SW,t, ID)

-σ
KeygenSES -msk

Client

Dec(Enc(M))

-(M,W, ID)

-msk, t

Figure 3.1: The message flow of the SES scheme. Here, Enc is a standard symmetric
key encryption scheme. In SES, the message M and its identifier ID are encrypted using a
symmetric key encryption scheme Enc. To compute the searchable ciphertexts, The EncSES
algorithm transforms every unique keyword of the metadata item W to a searchable ciphertext
SW,t using the master secret key msk, the associated identifer ID, and the number of the
updates t. The client then stores the triple (Enc(M), SW,t, ID) on the server. To query for
the keyword W , the client transforms the keyword W to a trapdoor TW,t using the master
secret key msk and the number of updates t. Given the trapdoor, the server invokes the
SearchSES algorithm which reveals the identifier ID of the metadata items that contain W .
The server then sends the encrypted message Enc(M) which is associated with the metadata
W to the client.

30 Efficient Symmetric Key Searchable Encryption

SES1 SES2

Revealing Directly using Indirectly using
identifiers master secret key master secret key
for search

Search Interactive Non-interactive

Complexity of trapdoor Lower Higher

Table 3.1: Comparison of the search functionality and complexity of SES1 and SES2.

We present two variants of the SES scheme called SES1 and SES2. The SES1
scheme performs the search interactively with the client. The SES2 searches non-
interactively but at a cost of a higher complexity for the trapdoor.

The constructions of SES1 and SES2 differ in the way the set of identifiers can
be decrypted for the search. In SES1, to decrypt the set of identifiers, the master
secret key should be used directly. Since revealing the master secret key to the server
compromises the security of the data, the client has to decrypt the set of identifiers
rather than the server. This makes the search interactive between the client and
the server. In SES2 the identifiers can be decrypted using a decryption key which is
derived from the master secret key, i.e. the identifiers are decrypted using the master
secret key indirectly. The decryption keys are computed in the trapdoor. This makes
the search non-interactive, because the server can decrypt the set of identifiers using
the trapdoor. However, computing the trapdoor has a higher complexity due to
computing the decryption keys. Table 3.1 illustrates the main differences between
SES1 and SES2. A more detailed comparison of SES1 and SES2 is given in Table
3.2 in Section.3.4

3.3.2 Construction of SES1

The SES1 scheme uses a pseudorandom function f : {0, 1}∗×{0, 1}σ −→ {0, 1}m, for
some m, and a pseudorandom permutation function E : {0, 1}σ ×{0, 1}σ −→ {0, 1}σ.
Here, σ is the security parameter. SES1 consists of the following algorithms:

KeygenSES(σ): Given the security parameter σ, output the master secret key msk =
(kf , ke), where kf , ke ←− {0, 1}σ.

EncSES1({(W1, ID1), ..., (Wn, IDn)},msk, t): Given the metadata items and their
identifiers, {(W1, ID1), ..., (Wn, IDn)}, the master secret key msk, and the
counter t, for each unique keyword W ∈ {W1, ...,Wn},

3.3 Construction of SES 31

1. compute the set IW,t = {IDi|W ∈ Wi} which shows in which metadata
items the keyword W occurs,

2. pick a random r ←− {0, 1}σ,
3. compute the searchable ciphertext:

SW,t = (fkf
(W ||t), Er(IW,t), Eke(r)).

After computing a searchable ciphertext for all the unique keywords that occur
in {W1, ...,Wn}, the algorithm increments the counter t = t+ 1.

The first component of SW,t makes a commitment to the keyword W while
keeping W hidden. The second component encrypts the set of identifiers IW,t

with the encryption key r, and the third component stores the encryption key r
in an encrypted form. Here, if IW,t * {0, 1}δ, the identifiers IW,t are broken into
several blocks of δ bits, such that each block is individually encrypted. In case
the last block has less than δ bits some zeros must be padded to the last block.
If the client can store each ((W, t), r) on his memory, the third component can
be removed from the searchable ciphertext.

TrapdoorSES1(W,msk, t): Given the keyword W , the master secret key msk, and
the counter t, compute the trapdoor

TW,t = (fkf
(W ||1), ..., fkf

(W ||t)).

Informally, the trapdoor contains queried keyword W at the update times
1, 2, ..., t in an encrypted form.

SearchSES1(TW,t, S): Given the trapdoor TW and the searchable ciphertexts S, for
i = 1, .., t, the algorithm searches the first component of searchable ciphertexts
for fkf

(W ||i) ∈ TW . If fkf
(W ||i) occurs,

1. The algorithm sends Eke(r) to the client.

2. Given Eke
(r), the client decrypts r using the decryption key ke and sends

r to the server.

3. Given r, the server decrypts IW,i using the decryption key r, and reads
the identifers that occur in IW,i.

3.3.3 Proof of Security for SES1
Informally, to prove that SES1 is secure in the symmetric key searchable encryption
security model, we must show that the searchable ciphertext and the trapdoor of
SES1 are indistinguishable from random. We use a sequence of games, where in each
game we show that certain components of the searchable ciphertext and the trapdoor
can be replaced by some random values in a way that the adversary cannot detect
this replacement. In the last game, we show that the adversary cannot distinguish

32 Efficient Symmetric Key Searchable Encryption

the searchable ciphertext and the trapdoor of SES1 from the searchable ciphertext
and the trapdoor whose components are fully replaced by some random values.

Let SW,t = (C1, C2, C3) and let TW,t = (T1, ..., Tt). Consider SESi schemes, i =
1, 2, 3 whose searchable ciphertext SiW,t and trapdoor Ti

W,t are:

SES1 : S1W,t = (R,C2, C3),T
1
W,t = (R1, ..., Rt)

SES2 : S2W,t = (R,C2, R
′),T2

W,t = (R1, ..., Rt)

SES3 : S3W,t = (R,R′′, R′),T3
W,t = (R1, ..., Rt)

where R, R′, R′′, and R1, ..., Rt are random values. Each SESi has a better security
than SESj if i > j, because more random elements are used to construct SESi. The
SES3 scheme is perfectly secure since all the elements of its searchable ciphertext
S3W,t and trapdoor T3

W,t are random. To prove that SES1 is secure in the symmetric
key model defined in 2.2.1, we must show that no PPT adversary can distinguish the
searchable ciphertext SW,t and trapdoor TW,t of SES1 from the purely random S3W,t

and T3
W,t respectively.

The strategy of the security proof is illustrated in Figure 3.2. To prove that no
PPT adversary can distinguish SW,t and TW,t from S3W,t and T3

W,t respectively, we
define a sequence of games. Let GameReal be the symmetric key security game of
the symmetric key security model (See Figure 2.2). Let Gamei be a symmetric key
security game which is the same as GameReal, except that the challenger responds
to each query with the searchable ciphertext and the trapdoor of the SESi scheme.
Since in Game3, the challenger responds to each query with S3W,t and T3

W,t which
are random values, the advantage of the adversary in winning the game is zero. If
the advantage of the adversary in distinguishing GameReal from Game3 is negligible,
the advantage of the adversary in distinguishing SW,t and TW,t from S3W,t and T3

W,t

respectively is negligible.
To prove that GameReal is indistinguishable from Game3, we first prove that

GameReal is indistinguishable from Game1, We then prove that Game1 is indistin-
guishable from Game2 and finally Game2 is indistinguishable from Game3. The
advantage of using such a sequence of games is that at each step we can prove the
indistinguishability only of certain components of the searchable and the trapdoor
from random. This makes the proof less complicated.

Lemma 1. GameReal is indistinguishable from Game1 in the symmetric key security
model assuming that f(.) is a (t, q, εf) secure pseudorandom function (see 2.4).

Proof: Assume that there exists an adversary A which distinguishes GameReal

from Game1 with the advantage ε. We show how to build an algorithm B which uses
A to distinguish the pseudorandom function from the true random function with an
advantage ε.

Assume the challenger picks a random γ ←− {0, 1} before the game starts. If
γ = 0, the challenger uses the pseudorandom function f : {0, 1}∗×{0, 1} −→ {0, 1}m
to construct the searchable ciphertext and the trapdoor for each query. Otherwise,

3.3 Construction of SES 33

Step 1 (Lemma 1): Prove GameReal ≡ Game1.
Proof shows that:
SW,t ≡ S1W,t,

TW,t ≡ T1
W,t.

Step 2 (Lemma 2): Prove Game1 ≡ Game2.
Proof shows that:
S1W,t ≡ S2W,t,

T1
W,t ≡ T2

W,t.

Step 3 (Lemma 3): Prove Game2 ≡ Game3.
Proof shows that:
S2W,t ≡ S3W,t,

T2
W,t ≡ T3

W,t.

Step 4 (Theorem 1): Prove SW,t ≡ random and TW,t ≡ random.

Figure 3.2: The strategy of the security proof for SES1.

the challenger picks some random values to respond the queries. Let Γ0 be the
pseudorandom function f(.) and Γ1 be a true random function. The algorithm B
interacts with the adversary A in the following game to guess the value γ based on
the advantage of A in breaking the scheme:

• Setup: The challenger runs the Keygens(σ) algorithm to obtain the master
secret keymsk = (kf , ke), where kf , ke ←− {0, 1}σ. The algorithm B picks a bit
β ←− {0, 1} randomly. The adversary A prepares six lists LW0 , LW1 , LW0 , LW1 ,
LS and LT which are initially empty. The algorithm B creates a list Lf which
is initially empty.

• Query I: In this phase, A adaptively makes two types of queries. Assume that
this is the j-th query.

– Searchable ciphertext query: A sends two metadata items with their iden-
tifiers:

(W0 = {W0,1, ...,W0,n}, ID0), (W1 = {W1,1, ...,W1,n}, ID1)

to the algorithm B. The algorithm B picks the tuple (Wβ , IDβ) and
sends the triple (Wβ , IDβ , j) to the challenger. Given the triple, for
each unique keyword Wβ,i ∈ Wβ , (i = 1, .., n) the challenger runs the
EncSES1(Wβ ,msk, j) algorithm which outputs (Γγ(Wβ,i||j), Er(IDβ), Eke(r)).
The challenger then sends (Γγ(Wβ,i||j), Er(IDβ), Eke(r)) as the response to
the query to the algorithmB. The algorithmB appends (Wβ,i||j,Γγ(Wβ,i||j))

34 Efficient Symmetric Key Searchable Encryption

to Lf and then sends (Γγ(Wβ,i||j), Er(IDβ), Eke(r)) to A. The adversary
A appends the received triple, the metadata W0, and W1 to the lists LS ,
LW0 and LW1 respectively. In case γ = 0, the function Γ0 represents
the pseudorandom function fkf

(.) and the response from the challenger is
the searchable ciphertext of SES1: SW,j = (fkf

(Wβ,i||j), Er(IDβ), Eke(r)).
Otherwise, the response is the searchable ciphertext of SES1: S1(W, j) =
(R, Er(IDβ), Eke(r)), where R is randomly picked from the set {0, 1}m.

– Trapdoor query: A sends two keywords (W0,W1) to the algorithm B
who picks Wβ and sends (Wβ , j) to the challenger. Given (Wβ , j), the
challenger runs the TrapdoorSES1(Wβ ,msk, j) algorithm which outputs

(Γγ(Wβ ||1), ...,Γγ(Wβ ||j))

. The challenger then sends

(Γγ(Wβ ||1), ...,Γγ(Wβ ||j))

to the algorithm B. The algorithm B appends

((Wβ ||1,Γγ(Wβ ||1)), ..., (Wβ ||j,Γγ(Wβ ||j)))

to the list Lf and sends the response to A. The adversary A then appends
the response and the keywords W0 and W1 to the lists LT , LW0 , and LW1

respectively. In case γ = 0, the response is the trapdoor of SES1:

TW,j = (fkf
(W ||1), ..., fkf

(W ||j))

. Otherwise the response is the trapdoor of SES1: T1
Wβ ,j

= (R1, ..., Rj),

where R1, ..., Rj are randomly picked from the set {0, 1}m.

Here the condition on the keywords of the Query phase is that

AccessPattern(LW0 , LW0) = AccessPattern(LW1 , LW1).

• Response: After A decides that the query phase is over, A outputs a guess β′

for the bit β and sends β′ to the algorithm B. The algorithm B then sends β′

to the challenger as its guess for γ.

In this game, the algorithm B can make a query (W ||j,Γγ(W ||j)) to the function
Γγ(.) for each unique keyword W that the adversary issues in j-th query. If the
adversary makes at most q

u queries with the average of u unique keywords in each
query, the algorithm B gathers at most q queries to the function Γγ . The queries
to the function Γγ are stored in the list Lf . Since the algorithm B uses A’s guess,
β′, to represent its guess for the bit γ, the advantage of B in distinguishing the
pseudorandom function from a true random function is equal to the advantage of A
in distinguishing GameReal from Game1. However, since f(.) is a (t, q, εf) secure
pseudorandom function (see 2.4), the probability of guessing γ correctly is at most
1
2 + εf . Therefore, the advantage ε of A in distinguishing the two games is ε = εf
which is negligible.

3.3 Construction of SES 35

Lemma 2. Game1 and Game2 are indistinguishable in the symmetric key security
model, assuming that E(.) is a (t, q, εe) secure pseudorandom permutation function.

Proof: Assume that there is an adversary A which distinguishes Game1 from
Game2 with advantage ε. We show how to build an algorithm B which uses A to
distinguish the pseudorandom permutation function from a true random bijection.

Assume that the challenger in advance of the game picks a random γ ←− {0, 1}.
Let Γ0 be the pseudorandom permutation function E : {0, 1}v × {0, 1}δ −→ {0, 1}v
and Γ1 be a true random bijection function. The algorithm B uses the adversary A
in the following game to guess the value γ:

• Setup: The challenger runs the Keygens(σ) algorithm to obtain the master se-
cret key msk = (kf , ke), where kf , ke ←− {0, 1}σ. The algorithm B picks a bit
β ←− {0, 1} randomly. The adversaryA prepares six lists LW0 , LW1 , LW0 , LW1 , LS , LT

which are initially empty. The algorithm B creates a list Le which is initially
empty.

• Query I: In this phase, A adaptively makes two types of queries. Assume that
this is the jth query.

– Searchable ciphertext queries: A sends two metadata items and their iden-
tifiers:

(W0 = {W0,1, ...,W0,n}, ID0), (W1 = {W1,1, ...,W1,n}, ID1)

to the algorithm B. The algorithm B sends the triple (Wβ , IDβ , j) to the
challenger. For each unique keyword Wβ,j ∈ Wβ , the challenger runs the
EncSES1(Wβ ,msk, j) algorithm which outputs (fkf

(W ||j), Er(IDβ),Γγ(r)).
The challenger then sends the triple (fkf

(W ||j), Er(IDβ),Γγ(r)) to the al-
gorithm B. The algorithm B appends each Γγ(r) to the list Le and picks a
random R ←− {0, 1}m. The algorithm B then sends (R, Er(IDβ),Γγ(r))
to A who appends (R, Er(IDβ),Γγ(r)) to the list LS , and appends the
metadata W0, and W1 to the lists LS , LW0 and LW1 respectively. In case
γ = 0, the function Γ0 is a pseudorandom permutation function Eke

(.) and
the response is S1W,j = (R, Er(IDβ), Eke(r)). Otherwise, the response is
S2W,j = (R, Er(IDβ), R

′), where R′ is a random bijection R′ ←− {0, 1}v.
– Trapdoor queries: A sends two keywords (W0,W1) to the algorithm B

who picks Wβ and sends (Wβ , j) to the challenger. The challenger runs
Trapdoor(Wβ ,msk, j), which outputs (fkf

(W ||1), ..., fkf
(W ||j)), and sends

(fkf
(W ||1), ..., fkf

(W ||j)) to the algorithm B. Given the response, B picks
random R1, ..., Rj ←− {0, 1}m and sends T1

Wβ ,t
= T2

Wβ ,t
= (R1, ..., Rj) to

A. The adversary A then appends (R1, ..., Rj) to the list LT , and appends
W0 and W1 to LW0 , and LW1 respectively.

Here the condition on the keywords of the Query phase is that

AccessPattern(LW0 , LW0) = AccessPattern(LW1 , LW1).

36 Efficient Symmetric Key Searchable Encryption

• Response: After A decides that the query phase is over, A outputs a guess β′

for β and sends β′ to the algorithm B. The algorithm B then sends β′ to the
challenger as his guess for γ.

In this game, the algorithm B can make a query (W ||j,Γγ(W ||j)) to the function
Γγ(.) for each unique keyword W of the j-th query. If the adversary makes at most
q
u queries with u distinct keywords in each query, the algorithm B gather at most
q queries to the function Γγ which are stored in the list Le. If A can distinguish
Game1 from Game2, the algorithm B can use this response to distinguish whether Γ
is a pseudorandom permutation function or a true bijection. However, since E(.) is a
(t, q, εe) secure pseudorandom permutation, the probability of guessing γ is at most
1
2 + εe. Therefore, the probability of distinguishing the two games is at most 1

2 + εe.

Lemma 3. Game2 and Game3 are indistinguishable.

Proof: In Game2 the challenger responds to each searchable ciphertext query
with S2W,t = (R,C2, R

′) and the trapdoor query with T2
W,t = (R1, ..., Rt). Since the

element C2 = Er(IW,t) is encrypted with a random value, and the element C3 is
replaced by a random value, C2 is a one time pad. Therefore, Game2 and Game3
are unconditionally indistinguishable.

Theorem 1. SES1 is (t, εf+εe,
q
u) secure in the symmetric key security model, where

u is the average number of unique keywords in each query, if f(.) is a (t, εf , q) se-
cure pseudorandom function and E(.) is a (t, εe, q) secure pseudorandom permutation
function.

By Lemmas 1, 2, and 3, the advantage of the adversary A, which is allowed to
make at most q

u queries with the average of u distinct keywords in each query, in
distinguishing GameReal from Game3 is εf + εe. Since the searchable ciphertext
and the trapdoor of Game3 are random values, the advantage of the adversary in
distinguishing the searchable ciphertext SW,t and the trapdoor TW,t from random is
εf + εe which is negligible. This proves Theorem 1.

3.3.4 Construction of SES2

We now present the SES2 scheme which allows searching non-interactively at the
cost of higher computational complexity for the trapdoor. In SES1, the key used to
encrypt the identifiers IW,t is a random value r, which is stored in the searchable
ciphertext in encrypted form, Eke(r). Therefore, in order for the client to search for
the keyword W , the client should retrieve the encrypted key, Eke(r), of each SW,t.
The client then decrypts the key r and sends r to the server which allows decrypting
the identifiers IW,t. In SES2 the key used to encrypt IW,t is computed using the
pseudorandom functionKW,t = fke(W ||t) which can be computed later for the search.
To search for the keyword W , the client computes the key KW,i = fke(W ||i) of each
IW,i, i = 1..., t and inserts the keys in the trapdoor TW,t. Given the trapdoor TW,t, the
server can decrypt the identifiers IW,1,...,IW,t using the trapdoor non-interactively.

3.3 Construction of SES 37

SES2 uses a pseudorandom function f :{0, 1}∗×{0, 1}δ −→ {0, 1}m for some value
m, and a pseudorandom permutation function E :{0, 1}v×{0, 1}m −→ {0, 1}v for some
v.

KeygenSES(σ): Given the security parameter σ, output the master secret key msk =
(kf , ke), where kf , ke ∈ {0, 1}σ.

EncSES2({(W1, ID1), ..., (Wn, IDn)},msk, t): Given the metadata items and their
identifiers, {(W1, ID1), ..., (Wn, IDn)}, the master secret key msk, and the
counter t, for each unique keyword W ∈ {W1, ...,Wn}:

1. compute the set IW,t = {IDj |W ∈Wj},
2. compute an encryption key KW,t = fke(W ||t),
3. compute the searchable ciphertext SW,t = (fkf

(W ||t), EKW,t(IW,t)).

After computing a searchable ciphertexts for all the unique keywords that occur
in the metadata items {W1, ...,Wn}, the algorithm sets t = t+ 1.

Intuitively, the first component of the ciphertext makes a commitment to the
keyword W , and the second component stores the identifiers IW,t in encryption
form.

TrapdoorSES2(W,msk, t): Given the keyword W and the master secret key msk,
output the trapdoor

TW,t = ((fkf
(W ||1), fke(W ||1)), ..., (fkf

(W ||t), fke(W ||t))).

SearchSES2(TW,t, S): Given the trapdoor TW and the searchable ciphertexts S, for
i = 1, ..., t search the first component of the searchable ciphertexts for fkf

(W ||i) ∈
TW . If fkf

(W ||i) occurs, decrypt IW,i using fke(W ||i) ∈ TW,i.

3.3.5 Proof of Security for SES2
The proof strategy is similar to the security proof strategy of SES1 (see Figure
3.2). Let SW,t = (C1, C2) be the searchable ciphertext of SES2. Let TW,t =
((T1, T

′
1), ..., (Tt, T

′
t)) be the trapdoor of SES2. Consider the following SESi, (i =

1, 2, 3) schemes whose searchable ciphertexts SiW,t and trapdoors Ti
W,t are:

SES1 : S1W,t = (R,C2),T
1
W,t = ((R1, T

′
1)..., (Rt, T

′
t))

SES2 : S2W,t = (R,C2),T
2
W,t = ((R1, R

′
1)..., (Rt, R

′
t))

SES3 : S3W,t = (R,R′),T3
W,t = ((R1, R

′
1)..., (Rt, R

′
t))

where R, R′, and R1, R
′
1, ..., Rt, R

′
t are random values. Assume that in the symmetric

key security game, the challenger responds to each query with the searchable cipher-
text and the trapdoor of the SES3 scheme. Since all the elements of the searchable

38 Efficient Symmetric Key Searchable Encryption

ciphertext and the trapdoor of SES3 are random, the advantage of the adversary
in winning the game is zero. Let GameReal be the symmetric key security game
defined in 2.2.1, where the response to each query is the searchable ciphertext and
the trapdoor of the SES2 scheme. Let Gamei be a security game the same as the
symmetric key security game, except that the challenger constructs the searchable
ciphertext and the trapdoor of the SESi scheme to respond the queries. We show that
these games are indistinguishable for the PPT adversary and therefore GameReal is
indistinguishable from Game3.

Lemma 4. GameReal is indistinguishable from Game1 in the symmetric key security
model assuming that the pseudorandom function f(.) is a (t, q, εf) secure pseudoran-
dom function.

Proof: Assume that there exists an adversary A which distinguishes GameReal

from Game1 with the advantage ε. We show how to build an algorithm B that uses
A to distinguish the pseudorandom function from random function.

Assume that the challenger picks a random γ ←− {0, 1} before the game starts. If
γ = 0, the challenger uses the pseudorandom function f(.) to compute the searchable
ciphertext and the trapdoor, otherwise, the challenger picks random values. Let Γ0 be
the pseudorandom function f(.) and Γ1 be the true random function. The algorithm
B uses A in the following game to guess the value γ:

• Setup: The challenger runs the Keygens(σ) algorithm to obtain the master
secret keymsk = (kf , ke), where kf , ke ←− {0, 1}σ. The algorithm B picks a bit
β ←− {0, 1} randomly. The adversary A prepares six lists LW0 , LW1 , LW0 , LW1 ,
LS and LT which are initially empty. The algorithm B creates a list Lf which
is initially empty.

• Query I: In this phase, A adaptively makes two types of queries. Assume that
this is the jth query.

– Searchable ciphertext queries: A sends two metadata items with their
identifiers:

(W0 = {W0,1, ...,W0,n}, ID0), (W1 = {W1,1, ...,W1,n}, ID1)

to B. The algorithm B picks (Wβ , IDβ) and sends (Wβ , IDβ , j) to the
challenger. For each unique keyword Wβ,i ∈Wβ , (i = 1, .., n) the challen-
ger runs the

EncSES2(Wβ , IDβ ,msk, j)

algorithm which outputs where KW,j = fke(W ||j). The challenger then
sends the response

(Γγ(Wβ,i||j), EKW,j
(IDβ))

to B. The algorithm B appends

(Wβ,i||j,Γγ(Wβ,i||j))

3.3 Construction of SES 39

to Lf and then sends

(Γγ(Wβ,i||j), EKW,j
(IDβ))

to A. In case γ = 0, the function Γ0 is a pseudorandom function fkf
(.)

and the response is the searchable ciphertext of SES2:

SW,j = (fkf
(Wβ,i||j), EKW,j (IDβ))

. Otherwise, the response is the searchable ciphertext of

SES1 : S1(W, j) = (R, EKW,j (IDβ))

, where R is a random value.

– Trapdoor queries: A sends two keywords (W0,W1) to B which picks Wβ

and sends (Wβ , j) to the challenger. The challenger then runs the

TrapdoorSES2(Wβ ,msk, j)

algorithm which outputs ((Γγ(Wβ ||1), fke(Wβ ||1)), ..., (Γγ(Wβ ||j), fke(Wβ ||j)))
as the response. The challenger then sends the response to B. The al-
gorithm B appends ((Wβ ||1,Γγ(Wβ ||1)), ..., (Wβ ||j,Γγ(Wβ ||j))) to the list
Lf and sends the response toA. In case γ = 0, the response is the trapdoor
of SES2:

((fkf
(Wβ ||1), fke(Wβ ||1)), ..., (fkf

(Wβ ||j), fke(Wβ ||j))),

otherwise it is the trapdoor of SES1.

Here the condition on the keywords of the Query phase is that

AccessPattern(LW0 , LW0) = AccessPattern(LW1 , LW1).

• Response: After A decides that the query phase is over, A outputs a guess β′

for β and sends β′ to the algorithm B. The algorithm B then sends β′ to the
challenger as its guess for γ.

In this game, the algorithm B can make a query (W ||j,Γγ(W ||j)) to the function
Γγ(.) for each unique keyword W that the adversary issues in j-th query. If the
adversary makes at most q

u queries with the average of u unique keywords in each
query, the algorithm B gathers at most q queries to the function Γγ . The queries
to the function Γγ are stored in the list Lf . Since the algorithm B uses A’s guess,
β′, to represent its guess for the bit γ, the advantage of B in distinguishing the
pseudorandom function from a true random function is equal to the advantage of A
in distinguishing GameReal from Game1. However, since f(.) is a (t, q, εf) secure
pseudorandom function (see 2.4), the probability of guessing γ correctly is at most
1
2 + εf . Therefore, the advantage ε of A in distinguishing the two games is ε = εf
which is negligible.

40 Efficient Symmetric Key Searchable Encryption

Lemma 5. Game1 and Game2 are indistinguishable in the symmetric key security
model assuming that E(.) is a (t, q, εe) secure pseudorandom permutation function.

Proof: Assume that there is an adversary A which distinguishes the two games
with the advantage ε. We show how to build an algorithmB that usesA to distinguish
the pseudorandom permutation function from true random bijection. Assume that
the challenger picks a random γ ←− {0, 1}. Let Γ0 be a pseudorandom permutation
function E(.) and Γ1 be a true random bijection function R′. The algorithm B uses
the adversary A in the following game to guess the value γ:

• Setup: The challenger runs the Keygens(σ) algorithm to obtain the master
secret keymsk = (kf , ke), where kf , ke ←− {0, 1}σ. The algorithm B picks a bit
β ←− {0, 1} randomly. The dversary A prepares six lists LW0 , LW1 , LW0 , LW1 ,
LS , and LT which are initially empty. The algorithm B creates a list Le which
is initially empty.

• Query I: In this phase, A adaptively makes two types of queries. Assume that
this is the jth query.

– Searchable ciphertext queries: A sends two metadata items and identifiers:

(W0 = {W0,1, ...,W0,n}, ID0), (W1 = {W1,1, ...,W1,n}, ID1)

to B. The algorithm B picks (Wβ , IDβ) and sends (Wβ , IDβ , j) to the
challenger. For each unique keyword Wβ,j ∈ {Wβ}, the challenger runs
the

EncSES2(Wβ,j , IDβ ,msk, j)

algorithm which outputs

(fkf
(W ||j), EKW,i(IDβ),

whereKW,i = fke(W ||j). The challenger then sends (fkf
(W ||j), EKW,i(IDβ)

to the algorithm B. The algorithm B picks a random R ∈ {0, 1}m and
sends (R, EKW,i(IDβ) to A. The response is the searchable ciphertext
S1W,j .

– Trapdoor queries: A sends two keywords (W0,W1) to the algorithm B
who picks Wβ and sends (Wβ , j) to the challenger. The challenger then
runs the TrapdoorSES2(Wβ ,msk, j) which outputs

((fkf
(W ||1),Γγ(W ||1), ..., (fkf

(W ||j),Γγ(W ||j))

, The challenger then sends the response to the algorithm B. Given the
response, B appends

((W ||1,Γγ(W ||1)), ..., (W ||1,Γγ(W ||1)))

to the list Le. The algorithm B then picks random R1, ..., Rj and sends

((R1,Γγ(W ||1)), ..., (Rj ,Γγ(W ||j))

3.4 Efficiency Comparison 41

to the adversary A. In case γ = 0, the response from the algorithm B is
the trapdoor of SES1, otherwise it is the trapdoor of SES2.

Here the condition on the keywords of the Query phase is that

AccessPattern(LW0 , LW0) = AccessPattern(LW1 , LW1).

• Response: After A decides that the query phase is over, A outputs a guess β′

for β and sends β′ to the algorithm B. The algorithm B then sends β′ to the
challenger as its guess for γ.

In this game, the algorithm B can make a query (W ||j,Γγ(W ||j)) to the function
Γγ(.) for each unique keyword W of the j-th query. If the adversary makes at most
q
u queries with u distinct keywords in each query, the algorithm B gather at most
q queries to the function Γγ which are stored in the list Le. If A can distinguish
Game1 from Game2, the algorithm B can use this response to distinguish whether Γ
is a pseudorandom permutation function or a true bijection. However, since E(.) is a
(t, q, εe) secure pseudorandom permutation, the probability of guessing γ is at most
1
2 + εe. Therefore, the probability of distinguishing the two games is at most 1

2 + εe.

Lemma 6. Game2 and Game3 are indistinguishable.

Proof: In Game2 the element C2 is a one time pad. Therefore Game2 and Game3
are unconditionally indistinguishable.

Theorem 2. SES2 is (t, εf + εe,
q
u) secure, where u is the average number of unique

keywords in each metadata query, if f(.) is a (t, εf , q) secure pseudorandom function,
and E(.) is a (t, εe, q) secure pseudorandom permutation.

By Lemmas 4,5, and 6, the advantage of the adversary A, which makes at most
q
u queries with the average of u distinct keywords in each query, in distinguishing
GameReal and Game3 is εf + εe. Therefore, the adversary can distinguish the sear-
chable ciphertext and the trapdoor of SES2 from random with the advantage εf + εe
which is negligible. This proves the theorem.

3.4 Efficiency Comparison
Table 3.2 compares the complexity of the variants SES1 and SES2 of the SES schemes
with the SI and SSE schemes which are the most prominent existing schemes. In this
table,

• n is the number of the metadata items stored on the server per update,

• u is the average number of unique keywords per update,

• d is the total number of the keywords per update (u ≤ d),

42 Efficient Symmetric Key Searchable Encryption

SES1 SES2 SI SSE

Searchable 2uα + 2uα+ 2dα 2utβ +
Computational ciphertext uβ + uβ utλ
Complexity uλ

Trapdoor tα 2tα α α

Search tuα tuα 2ntα 2α

Communication Searchable 3mu 2mu mdn 3mut
Complexity Ciphertxt

(bits)
Trapdoor mt 2mt m 2m

Search mtu 0 0 0

Storage master 2δ 2δ δ 3δ
Complexity secret key

(bits)
Searchable 3mutu 2mutu 2mdt 3mutu
Ciphertext

Table 3.2: Comparison of the complexity of our schemes with the SI and SSE schemes.

• m is the number of bits in the output of the pseudorandom function,

• σ is the security parameter.

• α is the computational complexity of the pseudorandom function f(.).

• β is the computational complexity of the pseudorandom permutation function
E(.).

• λ is the complexity of the random generation.

• t is the total number of times that the database has been updated,

• tu is the number of times that the database has been updated for each unique
keyword (tu ≤ t). For example assume that the tuples (M1,W1), (M2,W2), (M3,W3),
including the messagesM1,M2,M3 and the associated metadata itemsW1,W2,W3,
have been stored on the server. Assume that only W1 contains the keyword W .
Then t = 3 and tu = 1 for the keyword W .

The table shows that our schemes, SES1 and SES2, are computationally more
efficient than SI for the search. In our schemes, to search for a keyword, a number

3.4 Efficiency Comparison 43

of pseudo-random computations (α) is performed which is linear in the number of
updates of the keyword (tu). The number of pseudo-random computations that is
performed for the search in SI is linear in the total number of updates (t). Since
the number of updates for the keyword is always smaller than the total number of
updates (tu ≤ t), the search in our scheme is unconditionally more efficient than the
search in SI. The table also shows that while SSE is more efficient than SES1 and
SES2 for the search, updating the database in SSE has a higher complexity compared
to our schemes. In SSE, to store a new metadata item on the server, the client has
to retrieve the whole database to alter them. This makes the complexity of the
searchable ciphertext linear in t. The complexity of the searchable ciphertext in our
scheme is constant. Therefore, SES1 and SES2 can perform both, the search and the
update, efficiently, while existing schemes perform either, the search or the update,
efficiently. By efficiently we mean that the complexity of the search and the update
is not linear in the total number of updates, but it is either constant or linear in the
number of updates for the keyword.

The price that we pay for the efficient search and the update is a higher complexity
for the trapdoor. While the trapdoor in existing schemes has a constant complexity,
the trapdoor in SES1 and SES2 has a complexity linear in t. The table also shows
that SES1 has a lower trapdoor complexity compared to SES2. However, due to
the interactive search, SES1 has a communication complexity for the search which
is linear in the number of updates for the keyword. The search in other schemes is
performed non-interactively which has zero bits.

SES1 SES2 SI SSE

Searchable 4uα 3uα 2uα 3utα
Computational ciphertext
Complexity

Trapdoor tα 2tα α α

Search tuα tuα 2tα 2α

Communication Searchable 3mu 2mu mu 3mut
Complexity Ciphertext

(bits)
Trapdoor mt 2mt m 2m

Search mtu 0 0 0

Table 3.3: Comparison of the complexity of our schemes with the SI and SSE schemes
under optimal circumstances for SI.

44 Efficient Symmetric Key Searchable Encryption

In Table 3.3 we compare the computational complexity and the communication
complexity of SES with SI and SSE for the case when the client stores one metadata
item per update, i.e. n = 1 and u = d. This is the most efficient case for SI, because
we choose the least possible values for n and d, which are the parameters of the
complexity. We also assume that the pseudorandom, the pseudorandom permutation
and the random generation functions have the same complexity (α = β = γ). These
assumptions simplify the comparison of the schemes. In this table we ignore the
storage complexity since it is the same as the general case in Table 3.2. The table
shows that even in the best case for SI, the computational complexity of our schemes
is lower than SI since tu ≤ t. The lower the number of updates for the keyword, the
lower the search complexity. The computational complexity of the search in SES1
and SES2 is the same as SI only if the keyword occurs in each update, i.e. tu = t.
However, in this case, the computational complexity of the searchable ciphertext in
SI is lower compared to our schemes. The table also shows that the computational
complexity of the search in SES1 and SES2 is lower than SSE if the keyword occurs
in each metadata item once. The complexity of the searchable ciphertext in SSE is
higher than the complexity of our schemes if the database is updated more than once.

3.5 Conclusion

We propose a novel symmetric key searchable encryption scheme called SES. The
SES scheme has a lower computational complexity for the search compared to existing
schemes that allow efficient update. Table 3.4 compares the SES scheme with SSE and
other existing schemes from the point of view of the search computational complexity
and the efficiency of the update. While our scheme can perform both, the search and
the update of the database, efficiently, the trapdoor complexity grows linearly with
the number of updates of the database. Therefore, the SES scheme is appropriate for
the situations where the communication is cheap, the trapdoor is rarely constructed
for each client, but the search and the update of the database occurs frequently.
We now revisit the PHR scenario we explained in the Introduction Chapter. In this
scenario Alice wants to store her medical records on a PHR server in an encrypted
form such that the records can be retrieved selectively. In this case, it is a desire
for the server to perform the search with the lowest possible cost. On the other
hand, Alice is interested in using a scheme that allows updating the records at a low
cost. If Alice uses a broadband internet connection and the records are not updated
frequently, (e.g. records are updated once per month), the SES scheme is appropriate
for this scenario. In this case, since the records are not updated frequently, the
computational complexity of the trapdoor, which is linear in the number of updates,
increases slowly. The broadband connection also makes the communication cheap.
Therefore, using the SES scheme, the server can perform the search at a low cost,
Alice can update the records at a low cost and the cost of the query is reasonable.
We propose two variants of SES, SES1 and SES2, which differ in the complexity of
the search and the trapdoor. SES1 performs the search interactively. SES2 performs
the search non-interactively but at a cost of more complexity for the trapdoor. In

3.5 Conclusion 45

case the delay for the search is not critical, the SES1 scheme is more suitable than
SES2.

Existing schemes
except SSE SES SSE

Computational Linear in Linear in subset of
complexity of total number of searchable constant

Search is searchable ciphertexts ciphertexts
Update

of database Efficiently Efficiently Non-efficiently

Table 3.4: comparison of SES with existing schemes and SSE.

46 Efficient Symmetric Key Searchable Encryption

47

Chapter 4

Multi-user Searchable Encryption
with Policy Enforcement

A multi-user searchable encryption scheme allows users of a group to store data on
a server in an encrypted form in a way that the data can be retrieved selectively.
Existing multi-user searchable encryption schemes share the whole database among
the users. Therefore, if a user wants to restrict the access of other users to the stored
data, an access policy should be defined. Traditional access control systems rely on
an honest reference monitor to enforce the policy. However, if the data is sensitive,
the access control policy might also be sensitive and leaks some information on the
data to honest-but-curious reference monitor. In this chapter, we first present a high
level framework for searching the database and enforcing a role based access control
policy. Then, we propose the SEPE scheme which allows querying the encrypted
database and enforcing the policy for the messages that satisfy the query. The policy
enforcement is performed in such a way that the reference monitor learns as little
information as possible about the roles. This chapter is based on a paper published in
the proceedings of the 7th Information security Practice and Experience Conference
(ISPEC11) [1].

4.1 Introduction
Multi-user searchable encryption allows any user to store encrypted data on the
server, such that the data can be retrieved selectively. There are two types of multi-
user searchable encryption schemes: the first type allows any user to store data on
the server, but only one user can search the database. The second type allows all the

48 Multi-user Searchable Encryption with Policy Enforcement

users of a predefined group to store data in encrypted form and search the database.
This is the focus of this chapter.

There have been quite some efforts in proposing searchable encryption schemes
in the multi-user setting. Existing schemes are applicable when the whole database
is shared among the users. However, there are many applications where users define
an access policy on the messages of the data to restrict the access of other users to
the database. In this case the server should enforce the access control policy for any
message that satisfies the query.

The standard implementation of an access control system has a reference monitor
to enforce the policy. The reference monitor has to satisfy two strong assumptions.
Firstly, the reference monitor is assumed to be honest in the sense that it faithfully
enforces the policy. Secondly, the reference monitor is assumed not to be curious,
in the sense that it does not leak information on the policy. We believe that the
second requirement is unnecessarily strong. Normally, the reference monitor would
be considered as a part of the trusted computing base. Therefore, even if the reference
monitor learns some information about users, this should not be a concern. However,
in a distributed system, the reference monitor is not a simple component, so we should
be reluctant to trust it fully. This is merely an instance of the principle of the least
privilege, which applied here states that the reference monitor should do its job with
as little privileges as necessary. To achieve this, we propose a method to enforce the
access control policy based on a weaker assumption than normal with the honest-but-
curious reference monitor.

To illustrate the urgency of the problem, consider the following scenario. Imagine
that users (e.g. Alice) store their personal health records (PHR) on a PHR server.
The multi-user searchable encryption scheme allows users to store the records in
encrypted form, such that the encrypted records can be retrieved selectively using
a query. Now, assume that Alice is undergoing treatment for a mental problem,
and that she wants to store the medical records of her mental problem on the PHR
server, in a way that only a psychiatrist is permitted to access. Then, an access
control policy is required which restricts the access of users who do not have the role
psychiatrist. However, as the access control policy mentions the role psychiatrist, the
reference monitor of the PHR server learns that Alice might have a mental problem.
The problem is thus that the policy leaks to the curious PHR server that Alice may
have a mental problem. The goal of this chapter is to propose a solution to this
problem by blinding the policy and the user credentials from the honest-but-curious
server.

Contribution First we propose a unifying framework for searching and policy enfor-
cement by an honest-but-curious server. Then, we propose a provably secure scheme
called SEPE, for Searchable Encryption with Policy Enforcement. The SEPE scheme
permits the server to search on encrypted data and enforce a role based access control
policy without learning much about the data and the policy. We will make more pre-
cise later what “much” actually means. The SEPE scheme is provably secure in the
random oracle model. We describe practical issues for the security of cryptographi-

4.2 Related work 49

cally enforced access control policy schemes.

4.2 Related work
Our work is built on searchable encryption and cryptographically enforced access
control techniques including attribute based encryption, hidden credentials and pre-
dicate encryption techniques. We discuss the most important related work in each of
these fields.

Searchable encryption in the multi-user setting can be constructed from symmetric key
or public key searchable encryption schemes. Curtmola et al. show how to construct a
multi-user searchable encryption scheme from symmetric key searchable encryption.
In this case the master secret key must be shared among the whole users of the group
[19]. However, since sharing the master secret key increases the risk of disclosure,
such schemes are only suitable for small groups of users. Hence in general, multi-user
searchable encryption is constructed from public key searchable encryption schemes.
Dong et al. [21], Bao et al. [43], and Ho et al. [29] propose multi-user searchable
encryption schemes which allow every user of the group to store data and query
the database using a unique key. Although searchable encryption allows for secure
storage and retrieval of data, access control is not provided. For this other means are
necessary, in particular Attribute Based Encryption seems expedient.

Hidden Credentials (HC) and Attribute Based Encryption (ABE) techniques allow a party
to specify a policy upon encrypting a message, such that a requestor will be able to
decrypt the message if and only if his attributes satisfy the policy associated with the
message. HC schemes [23, 14, 34], which were proposed before ABE was introduced,
suffer from collusion attacks [7]. A scheme is secure against a collusion attack if it
does not allow multiple users who do not have the credential of a role to gain access to
the role by colluding. Sahai and Waters were the first to propose ABE [37], which in
turn is based on identity based encryption (IBE) [11]. Goyal et al. develop key policy
ABE (KP-ABE) [28], where the policy is associated with the decryption key and the
message is decrypted if the ciphertext contains sufficient attributes. Bethencourt et
al. propose ciphertext policy ABE(CP-ABE) [7] where instead of associating the
policy with the decryption key, the former is associated with the ciphertext and the
attributes of the user are associated with the decryption key.

Predicate encryption (PE) is a class of attribute based encryption techniques which
enforces the policy cryptographically. While in ABE the ciphertext must hide the
message only, in PE, the ciphertext must hide both, the message and the policy or
the attributes, from the adversary. Boneh and Waters propose the first construction
of PE [12]. Katz et al. propose the most expressive predicate encryption scheme [31],
called inner product encryption. Following the inner product encryption scheme,
some PE schemes with an improvement on the efficiency are proposed [30, 35, 39].

50 Multi-user Searchable Encryption with Policy Enforcement

Why do ABE and PE not solve the problem of enforcing policy by an honest but curious refe-
rence monitor? Since ABE schemes reveal the policy upon the storage, these schemes
cannot address this problem. We now consider PE, which enforces the policy without
revealing the policy. In PE, each user has a decryption key which is associated with a
set of roles. To store data on the server, each message of the data is encrypted using
its associated policy. The user then transforms the metadata item associated with
the message to a searchable ciphertext. The user stores the encrypted message and
the searchable ciphertext on the server. For a requestor to gain access a message,
first a trapdoor is computed and is sent to the server. Given the trapdoor, the server
searches for the desired encrypted messages to the requestor. The requestor then has
to check for each encrypted message, whether it is decryptable using his decryption
key. This approach has two drawbacks: firstly, it has extra communication and com-
putational complexity because the requestor retrieves encrypted messages that are
not decryptable. Secondly, the requestor learns that all the retrieved encrypted mes-
sages contain the queried keyword, even if some of them are not decryptable. This
shows that PE schemes impose complexity and a leakage on the messages. Therefore,
to enforce the policy efficiently and securely, the policy should be enforced by the
server. To enforce the policy by the server using PE, the decryption key of the user
should be revealed to the server which compromises the confidentiality of the mes-
sages. The purpose of this chapter to propose a scheme which supports enforcing the
policy by the server in a way that the policy does not reveal any information about
the roles to the server. To the best of our knowledge, there is no related work on the
problem of enforcing access control using an honest but curious reference monitor.

4.3 Blinded server

A blinded server is a server that provides services to the client without knowing
the content of the stored messages. A blinded server consists of a blinded database
and a blinded reference monitor. A blinded database supports storage and searching
of encrypted messages, and the blinded reference monitor enforces role based access
control policies. In this section, we provide a high level specification of such a blinded
server, which will be refined in subsequent sections. The high level specification of the
blinded server provides a framework in which all prominent related work on searching
in encrypted data can fit. The specification also shows that there is uncharted terrain
in which blinded policy enforcement would fit. We propose the first scheme on blinded
policy enforcement that fits into this uncharted terrain.

Consider a finite set of roles R, messages M, identifiers I, and keywords W. If
the server, which consists of a database and a reference monitor, is honest and not
curious, then no blinding is necessary. In the next subsection, we will show as a base
line how the database can be queried and how access control can be enforced without
blinding.

4.3 Blinded server 51

4.3.1 Unblinded database and reference monitor
The following set of functions determine the interface to an unblinded search and
access control scheme:

• The unblinded database consists of a bijection im and a function iw, and the
policy consists of a function ir:

– im : I →M is a bijection that looks up the message for a given identifier.

– iw : I → P(W) associates a (possibly empty) set of keywords, as a meta-
data item, to each identifier that can be used to query the database.

– ir : I → P(R) represents the unblinded access control policy. This function
associates each identifier with a (possibly empty) set of authorized roles.

• When a user in a particular role R ∈ R queries the unblinded database for a
certain keyword W ∈ W, the query function rw returns all relevant messages
to which the user has access as determined by the unblinded policy.

rw : (R×W)→ (I × P(M))
rw(R,W) = {(ID,M) | ID ∈ I ∧R ∈ ir(ID) ∧W ∈ iw(ID) ∧M = im(ID)}

The term R ∈ ir(ID) enforces the unblinded role base access control (RBAC)
policy.

4.3.2 Blinded database and reference monitor
To search a curious database we extend the query with the trapdoor. The literature
provides a wide selection of trapdoor constructions. In the same vein, to enforce
access control with a curious reference monitor, we use some extra data in the form
of a blinded credential, which can be used to check access rights of a blinded role.

Consider a finite set of secret keys K, public keys PK, trapdoors T , blinded
messages M, searchable ciphertexts S, blinded roles R, credentials C, and blinded
credentials C.

The following set of functions determines the interface for a blind query and access
control scheme:

• The user is assumed to be able to blind and unblind a message using a pair of
functions as follows, where the keys K are appropriately chosen and kept secret
by the user:

– km : (K ×M)→M
– km−1 : (K ×M)→M

• The user is assumed to be able to transform the metadata to a searchable
ciphertext and to generate a trapdoor that can be used to search for the keyword
using the functions kw and ws respectively:

52 Multi-user Searchable Encryption with Policy Enforcement

– kw : (K ×W)→ T
– ws : (PK × P(W))→ S

• The user is assumed to be able to blind a role and to generate a blinded cre-
dential that can be used to enforce the RBAC policy using a function:

– kr : (K ×R)→ (C ×R)

• The blinded database consists of a bijection im and a function iw, and the
blinded policy consists of a function ir as follows:

– im : I → M looks up the blinded message for a given message identifier.
It must not be possible for the message identifier to leak information on
the message.

– iw : I → S associates a (possibly empty) searchable ciphertext with each
message identifier.

– ir : I → P(R) represents the blinded access control policy. This function
associates each message identifier with a (possibly empty) set of blinded
roles.

• If a user in a particular role R ∈ R, and with a particular key K ∈ K queries
the blinded database for a certain keyword W ∈ W, the query function krw
returns all relevant messages to which the user has access as determined by the
blinded policy:

krw : (K ×R×W)→ P(I ×M)

krw(K,R,W) =

{(ID, km−1(K,M)) |

ID ∈ I ∧R ∈C ir(ID) ∧ TW ∈t iw(ID) ∧M = im(ID) }

where

(C,R) = kr(K,R)

TW = kw(K,W)

The two terms below the where clause calculate the blinded credential C for
the role and the trapdoor TW for the blinded keyword. The set membership
operations are adorned with a subscript indicating which credential/trapdoor
to use when comparing keywords or roles. The term in the box is calculated
by the server. The remaining calculations are performed by the user, hence the
server never sees unblinded roles, keywords or messages, nor any keys.

The set of functions im, iw, and ir will be used throughout the chapter to
represent the database and the policy.

4.4 SEPE: Blinding the Server 53

4.4 SEPE: Blinding the Server
In this section we present the SEPE scheme which blinds the server by blinding the
database and the reference monitor.

4.4.1 Blinding the Database
To blind the database a multi-user searchable encryption scheme is deployed which
is constructed from a public key searchable encryption scheme. In order to allow any
user of a group to encrypt a message in a way that any user can search the database
and decrypt the message without using the master secret key, a central authority
(CA) is required. The CA keeps the master secret key and distributes decryption
keys among the users, such that any user can encrypt and query the message using a
unique key while the message can be decrypted by other users. We discuss the trust
issues of the CA in section 4.4.4.

Let KeygenP, EncP, TrapdoorP, and Dec be the algorithms of a public key sear-
chable encryption scheme. Let U be the users of the group. A multi-user searchable
encryption scheme consists of the following algorithms.

• KeygenP(σ): given the security parameter σ, generate the master secret key
msk ∈ K, where K ∈ {0, 1}σ, and the public parameters param ∈ PK. This
algorithm is invoked by the CA.

• UserKeyGen(msk,U): given the master secret key and the user identity U ∈ U ,
output a unique private/public key pair (KU ,K

′
U) ∈ (K × K) for the user U .

This algorithm, which is invoked by the CA, sends user’s private key KU to the
user and stores user’s public key K ′

U on the server.

• Blinding a message M consists of the following sub-algorithms which are invo-
ked by the user, say U , who wants to store M on the server:

– MessageKeyGen(σ): given the security parameter σ output an encryption
key KM ∈ K.

– MessageBlinding(KM ,M): given the encryption key KM ∈ K and the
message M ∈M output a blinded message M ∈M.

– KeyBlinding(KM ,KU): given a key pair (KM ,KU) ∈ (K × K), transform
KM to a blinded form KM,U ∈ K using KU .

– EncP(W, param): given the public parameters param ∈ PK and the me-
tadata W ∈ P(W) output a searchable ciphertext SW ∈ S.

Assume that user U ′ wants to retrieve the encrypted messages that satisfy the
query:

• Query(KU ′ ,W): given the user private key KU ′ ∈ K and the keyword W ∈ W
output a query TW,U ′ ∈ T . This algorithm is invoked by the requestor.

54 Multi-user Searchable Encryption with Policy Enforcement

• QueryTrans(K ′
U ′ , TW,U ′): given the query TW,U ′ and requestor’s public key K ′

U ′

output a trapdoor TW ∈ T . This algorithm is invoked by the server.

• Dec(SW, TW): given the searchable ciphertext SW ∈ S and the trapdoor TW ∈
T output “1” if W ∈W. This algorithm is invoked by the server.

• Retrieval consists of two sub-algorithms:

– KeyTrans(KM,U ,K
′
U ,K

′
U ′): given a blinded key KM,U ∈ K, user U ’s key

K ′
U , which is stored on the server, and user U ′’s key K ′

U ′ ∈ K, where
U ′ ∈ U , transform KM,U to a blinded form KM,U ′ ∈ K. This algorithm is
invoked by the server.

– KeyUnblinding(KU ′ ,KM,U ′): given a key KU ′ ∈ K and the corresponding
blinded key KM,U ′ ∈ K recover the unblinded key KM ∈ K. This algo-
rithm is invoked by the user U ′ who wants to retrieve the message M .

– MessageUnblinding(KM ,M): given a blinded message M ∈ M and the
corresponding blinding key KM ∈ K output an unblinded message M ∈
M. This algorithm is invoked by the user U ′ who wants to retrieve the
message M .

Intuitively, in multi-user searchable encryption, each user has a unique private
key. The server also stores a unique public key associated with each user which
is generated by the CA. To store a message on the server, the user generates an
encryption key and blinds the message using the key. To allow other users to decrypt
the message, while the server cannot decrypt the message, the encryption key is
blinded using the user unique key. To allow searching the database, the user also
transforms the metadata item associated with the message to a searchable ciphertext,
using the public parameters of the CA. The user then stores the blinded message, the
blinded encryption key, the searchable ciphertext and the identifier of the message on
the server. If a requestor wants to retrieve the messages whose associated metadata
item contains a particular keyword, the user constructs a query and sends it to the
server. Given the query, the server first transforms the query to a trapdoor. Then
the server searches the searchable ciphertexts for the ones that match the trapdoor.
Having found the desired blinded messages, the server transforms the encryption key
of each message to a blinded form that can be unblinded by the requestor only. The
server performs the transformation by the requestor’s public key stored on the server.
The requestor then unblinds the encryption key and unblinds the message.

In this chapter, we do not propose any multi-user searchable encryption construc-
tion. However, several multi-user searchable encryption schemes have been proposed
[21, 43, 29] which can be used for the database blinding construction of SEPE. We
show how the scheme proposed by Dong et al. [21], which is provably secure in the
random oracle model, can be used as an instance of multi-user searchable encryption.
In this scheme, the KeygenP, EncP, and the Dec algorithms can be borrowed from any
public key searchable encryption scheme. The MessageKeyGen, MessageBlinding, and
MessageUnblinding algorithms can be any symmetric key encryption scheme which

4.4 SEPE: Blinding the Server 55

CA

-K′
A,K′

B

�
���

-
@
@@R

param

-KA

-

KB

Alice

6

(M,KM,A, SW, ID)

Bob

6

TW,B

?

(M,KM,B)

PHR Server

Database

K′
A,K′

B , (M,KM,A, SW, ID)

KM,A −→ KM,B

Reference Monitor

Figure 4.1: Message exchange of the multi-user searchable encryption

generates a key KM using MessageKeyGen to encrypt and decrypt the message M
using MessageBlinding and MessageUnblinding respectively. The UserKeyGen algo-
rithm divides the master secret key msk into two parts KU and K ′

U for each user U ,
such that KUK

′
U = msk. This is performed such that

QueryTrans(Query(W,KU),K
′
U) = TrapdoorP(W,msk).

The KeyBlinding and KeyTrans algorithms also work in the same way, such that
KeyBlinding(msk,KM) = KeyTrans(KeyBlinding(KU ,KM),K ′

U).

4.4.2 Database Blinding Example
Here we illustrate multi-user searchable encryption using the scenario from the in-
troduction. In this scenario the patient Alice gives the Psychiatrist Bob access to
her PHR. Figure 4.1 shows the message exchange of the blinded database using the
example.

In this system the CA first generates a master secret key and the public parame-
ters:

1. CA : (msk, param) = KeygenP(σ),
2. CA −→ *: param.

As soon as Alice and Bob subscribe to the PHR system, the CA generates a unique

56 Multi-user Searchable Encryption with Policy Enforcement

key pair for both, Alice and Bob. The CA sends the first element of the key pair to
Alice and Bob, and stores the second element of the key pair on the server:

3. CA: (KA,K
′
A) = UserKeyGen(msk,A);

(KB ,K
′
B) = UserKeyGen(msk,B),

4. CA −→ Alice : KA;
CA −→ Bob : KB ;
CA −→ PHR : (K ′

B , B), (K ′
A, A).

Assume that Alice wants to store the message M , which is associated with the me-
tadata W and the identifier ID, on the server. Alice performs the following steps:

5. Alice : KM = MessageKeyGen(σ);
M = MessageBlinding(M,KM);
KM,A = KeyBlinding(KM ,KA);
SW = EncP(W, param);

6. Alice −→ PHR : (M,KM,A, SW, ID).

Now, assume that Bob wants to retrieveM only if its associated metadataW contains
the keyword W . Then:

7. Bob: TW,B = Query(KB ,W),
8. Bob −→ PHR: TW,B ,
9. PHR : TW = QueryTrans(TW,B ,K

′
B);

Dec(SW, TW) = 1.

Since the keyword W occurs in the metadata W, the database can retrieve the mes-
sage as follows:

10. PHR: KM,B = KeyTrans(KM,A,K
′
A,K

′
B),

11. PHR −→ Bob: (KM,B ,M),
12. Bob: KM = KeyUnblinding(KB ,KM,B);

M = MessageUnblinding(KM ,M).

We now indicate the relation of the refinements explained above to the high
level functions explained in 4.3.2 to blind the server. The relation is illustrated
in Table. 4.1. The second column of the table shows the refinements for blinding
the database. The next column shows the refinements for blinding the reference
monitor which is presented in the following section. We describe the refinements of
the functions which blind the reference monitor in section 4.4.3.

4.4.3 Blinding the Reference Monitor
We now show how to blind the roles and the credentials, and how to perform access
decisions by using a blinded credential.

The refinement consists of introducing a master secret key and functions to ge-

4.4 SEPE: Blinding the Server 57

Refinement blinded Refinement blinded
database reference monitor

km UserKeyGen
MessageKeyGen —
MessageBlinding
KeyBlinding

km−1 UserKeyGen
KeyTrans —

KeyUnblinding
MessageUnblinding

ks KeygenP —
EncP

kw KeygenP —
Query

QueryTrans
kr KeygenP

MessageKeyGen
— UserKeyGenR

RoleBlinding
CredentialBlinding

krw — Dec
AccessDecision

Table 4.1: Relation between the high level functions and their refinements for blinding a
server

nerate a blinded credential for each user, to generate a secret key for each user, to
transform a role to a blinded form, and to make a decision about a request. However,
before we present the scheme we describe its security requirement.

Security Definition. Informally, for a role blinding scheme to be secure, the blind
role should not reveal any non-trivial information to the adversary about the role.
The adversary also should not be able to learn any non-trivial information about the
roles even after receiving blind credentials that cannot directly unblind the role.

The security of the blinding role scheme is defined as the following game between
a challenger, who has the master secret key, and the adversary A.

• Setup: The challenger sends the public parameters of the role blinding scheme
to A.

• Query I: In this phase A adaptively queries for the blinded credential of arbi-
trary roles. For any role R ∈ R that A queries the challenger creates a blinded
credential CR of the role R and sends CR to the adversary A.

58 Multi-user Searchable Encryption with Policy Enforcement

• Challenge: Once A decides that the query phase is over, A picks two challenge
roles (R0, R1) which have not been used in the query phase and send them to
the challenger. Given the challenge roles, the challenger flips a coin β ∈ {0, 1}
and transforms role Rβ to a blinded role Rβ . The challenger then sends Rβ to
A.

• Quer II: This phase is the same as Query I. The adversary is still not allowed
to query for the blind credentials of challenge roles (R0, R1).

• Output: Finally, the adversary A outputs its guess β′ for the bit β and sends
it to the challenger.

Intuitively, this game simulates an attack situation where the adversary can obtain
the blinded credential of any role except the challenge roles. If the adversary has the
blinded credential of the challenge roles, he can trivially win the game by checking
the access decision between the blinded credentials and the blind roles. If the blinded
credential reveals some information about the blinded role, the adversary can use this
information to guess the bit β correctly. The adversary in this security model can
be any user (including the reference monitor) who does not have the blind credential
of the challenge role. Since this game allows the adversary to collect the blinded
credential of any role (except for the challenge role), security in this model guarantees
resistance against collusion attacks. In the collusion attack, multiple users who do
not have a right blinded credential for accessing a message, try to gain access by a
collusion.

Let AdvA =
∣∣Pr[β = β′]− 1

2

∣∣ be the advantage of A in winning the game.

Definition 9 (Role Blinding Security). A role blinding scheme is secure if for all pro-
babilistic polynomial time (PPT) adversaries A, AdvA ≤ ε(σ), where ε is a negligible
function of σ.

4.4.4 Construction
Here, we explain the scheme under the assumption that different users in the same
role are indistinguishable. This assumption makes the scheme easier to understand,
but less realistic. Therefore, in Section 4.4.6 we present an extension of the scheme
which ensures that different users in the same role can be distinguished.

We assume that the CA in the system controls the roles and the assignment of
users to roles, in the sense that:

1. the CA decides which roles there are

2. the CA decides which user has which role

3. the CA is the only authorized entity to generate master keys, user secret keys
and blinded credentials.

For now we assume that at any time a user has only one role, and relies on the CA
to enable users to assume different roles (but see Section 4.4.6).

4.4 SEPE: Blinding the Server 59

The CA is assumed to be honest and not curious, which we believe is justified by
the following argument. After generating a blind credential and a user key for each
user, the CA can be kept off-line. Hence, although requiring a CA that is not curious
seems at odds with using a curious server, since the CA is kept off-line most of the
time, it would have no chance of benefitting from curiosity.

For the construction we make use of a bilinear map e : G × G −→ GT (see 2.4).
We also need a random oracle H : {0, 1}∗ → G which maps any arbitrary length
value to an element of the group G randomly. We assume that each user U has a
pseudonym usr which is uniquely generated for U by the CA. The pseudonym usr
does not reveal any information about U .

A blinded reference monitor consists of the following functions:

• KeygenP(σ): given the security parameter σ, generate the master secret key
msk ∈ K, whereK ∈ {0, 1}σ, and the public parameters param = (p,G,GT , e(., .),H(.)) ∈
PK. This algorithm is invoked by the CA.

• UserKeyGenR(msk,U): given the master secret key msk ∈ K and the identity
of a user U ∈ U with the pseudonym usr, first pick random aU ∈ Zp and then
compute bU = msk

aU
. The user private key is kU = gaU ∈ G. The CA then

sends gaU to the user and stores (bU , usr) on the server. This function is used
exclusively by the CA.

• CredentialBlinding(msk,R): given the master secret key msk, and a role R ∈
R output a blinded credential CR = H(R)msk ∈ C. This function is used
exclusively by the CA. Since the identity of the user represented by kU is not
used here, all users in the same role have the same blinded credential. In
Section 4.4.6 we show how users can be distinguished.

• RoleBlinding(kU , R): given the user private key kU = gaU , and a role R ∈ R,
generate a blinded role R which is executed by the user and the server as follows:

– User: computes e(gaU ,H(R)γ) and sends (gγ , e(g,H(R))aUγ , usr), to the
server, where γ ∈ Zp is a random value generated by the user.

– Server: Given (gγ , e(g,H(R))aUγ , usr), the server first searches the data-
base for (usr, bU). After the server finds the tuple (usr, bU), picks bU and
computes (e(g,H(R))aUγ)bU = e(g,H(R))γmsk. The server then stores
(R = (gγ , e(g,H(R))γmsk) in the database.

• AccessDecision(R,C): Let R = (x, y). Given a blinded credential C ∈ C, a
blinded role R ∈ R, and an identifier ID ∈ I, output True ∈ {0, 1} if e(C, x) =
y and ir(ID) = R, otherwise outputs False ∈ {0, 1}. This function is used by
the reference monitor.

Here, we have described the construction of our scheme for one role only. The scheme
can be extended to support any expressive policy by blinding each role and then
specifying the structure of the policy to the blind roles. However, in this case we
blind the roles only and not the structure of the policy.

60 Multi-user Searchable Encryption with Policy Enforcement

4.4.5 Role Blinding Example

In this section, we illustrate the role blinding construction of the SEPE scheme using
the scenario from the introduction. We have the following parties involved. A group
of users, including the patient Alice, who stores her medical records on a PHR server,
and the psychiatrist Bob. We assume that there is one CA serving the users. Assume
that Alice is assigned the role Rpnt ∈ R and that Bob is assigned role Rpsy ∈ R.
In this example, for simplicity we do not show the message exchanges related to the
blinding database construction explained in 4.3.2.

Let A −→ B : M denote the event that A sends a message M to B. A −→ ∗ : M
represents broadcasting a message.

The CA first performs step 1 of the database blinding example (see 4.4.2) to ge-
nerate the master secret key msk. As soon as Alice and Bob subscribe to the PHR
system, the CA first performs steps 2 and 3 of the database blinding example and
sends a unique key to Alice and Bob for blinding the database. The CA then sends
a blinded credential and a user key to Alice and Bob:

2. CA : CA = CredentialBlinding(msk,Rpnt) = H(Rpnt)
msk;

: kA = UserKeyGenR(msk,A) = (gaA , bA);
: CB = CredentialBlinding(msk,Rpsy) = H(Rpsy)

msk;
: kB = UserKeyGenR(msk,B) = (gaB , bB);

3. CA −→ Alice : (CA, kA);
CA −→ Server : (bA, A);
CA −→ Bob : (CB , kB);
CA −→ Server : (bB , B).

Assume that Alice wants to add a blinded message MA ∈ M with the identifier
ID ∈ I and the searchable ciphertext SW ∈ S to the database, such that only users
assigned with the role Rpsy ∈ R are allowed to access the message. To do so, Alice
first follows steps 4 and 5 of the blinded database example and stores the blinded
message, the blinded key, the searchable ciphertext and the identifer of the message
on the database. Alice then performs the following steps to blind the role Psychia-
trist:

6. Alice : (gγ , e(gaA ,H(Rpsy)
γ)) = RoleBlinding(kA, Rpsy),

where γ is a random value.
7. Alice −→ PHR : ((gγ , e(gaA ,H(Rpsy)

γ)), A).
8. PHR : R = (gγ , (e(gaA ,H(Rpsy)

γ))bA) = (gγ , e(g,H(Rpsy))
γmsk)

Now, assume that Bob wants to retrieve the messages whose associated metadata
item contain the keyword W . Bob first performs steps 6, 7, and 8 of the blinding
database example and sends the trapdoor to the server. Bob then sends his blinded
credential to the server:

9. Bob −→ PHR: CB

4.4 SEPE: Blinding the Server 61

CA

-(CA, kA)

-

(CB , kB)Alice

6

Rpsy

Bob

6

CB

?

MA

PHR Server

(A,CA,pnt), (B,CB,psy)

?

(A,CA,pnt)

(B,CB,psy)

B

CB,psy

Identity-role credential

storage

-

�

Database M,K,S, I

6
(CB , Rpsy)

?

True

Reference Monitor

Figure 4.2: Message exchange of the role blinding example

Assume that W ∈ W. Therefore, the search result shows that MA is the blinded
message that Bob is requesting. Now, the server has to enforce the policy to check
whether Bob is allowed to receive the blinded message. If the policy defines that a
psychiatrist can receive the message, the server sends Bob MA.

10. PHR −→ Bob: MA, if AccessDecision(CB , Rpsy) = True
The solid lines of Figure 4.2 illustrate the message flow of the example.

4.4.6 Extension
The construction presented in section 4.4.4 issues a blinded credential for each user
which is based on the role of the user. This construction imposes the following
limitations: i) to revoke a user from the group, the blinded credential of all users
with the same role of the revoked user should be changed, ii) the risk of disclosure
of blinded credentials is high because all users in the same role share the blinded
credential.

Here, we propose a simple extension of the construction which issues a unique
blinded, identity based credential for each user. In this extension the KeygenP,

62 Multi-user Searchable Encryption with Policy Enforcement

the UserKeyGenR and the RoleBlinding algorithms remain unaltered. However, the
CredentialBlinding and the AccessDecision algorithms are modified. The idea is to
divide the blinded user agnostic role credential by the factor bU representing the user
identity, and then during the access decision to multiply the user specific credential
by bU again. The refinements of the algorithms CredentialBlinding and AccessDesicion
are as follows:

• CredentialBlinding(msk,R,U) : Given the master secret key msk, a role R, and
the identity of the user U ∈ U with the pseudonym usr, the CA picks a random
tU ∈ Zp and computes a blind identity-role credential CU,R = (H(R)msk)tUbU .
The CA sends CU,R = (H(R)msk)tUbU to the user U and CU = (tUbU , usr) to
the server for storage.

• AccessDesicion(R,C): Given the tuple consisting of role-identity credential and
a user pseudonym ((H(R)msk)tUbU , usr), the server first searches the identity
credential CU for the tUbU associated with the name usr. Having found tUbU ,
the server then computes

((CU,R)
1

tU bU) = CR = H(R)msk

to obtain the blind role credential CR = H(R)msk. Let ir(ID) = R and let
R = (x, y). The reference monitor grants access to the requested message M
iff e(H(R)msk, x) = y, and im(ID) = M .

The dashed lines of Figure 4.2 shows the message exchange of the extended
construction.

Theorem 3. The blinded policy scheme is semantically secure in the random oracle
model assuming that decisional bilinear Diffie-Hellman (DBDH) is intractable.

Proof: Suppose there exists a PPT adversary A that can break the security of
the blinding policy scheme, i.e. A has a non-negligible advantage ε in breaking the
scheme. We show that we can build an algorithm B that uses A to solve the DBDH
problem in GT .

Assume that a challenger selects a bilinear group G of prime order p and chooses
a generator g ∈ G, the group GT and an efficient bilinear map e. Then the chal-
lenger picks four random values z1, z2, z3 ∈R Z∗

p, to computes Z0 = e(g, g)z1bz2z3 .
The challenger also picks random Z1 ∈R GT . After flipping a fair coin ω ∈R {0, 1},
the challenger hands the tuple (g, gz1 , gz2 , gz3 , Zω) to B. Algorithm B’s goal is to
guess the value ω correctly. In order to come up with a guess, B interacts with
adversary A in the following role blinding security game. In this game B provides
the adversary simulated public parameters and blind credentials, upon each request
from the adversary. We call these provided parameters “simulated” because B gene-
rates these parameters without having access to the master secret key. However, the
simulated public parameters and blind credentials have the same distribution with
the normal scheme. Then, algorithm B generates a blind role using the value Zω.
If the adversary can break the blind role, algorithm B decides that Zω is valid (i.e.,
Zω = e(g, g)z1z2z3) and ω = 0. Otherwise, Zω is random and ω = 1.

4.4 SEPE: Blinding the Server 63

• Setup: Algorithm B sends the adversary A the public parameters

param = (p,G, e(., .),H(.))

, where H(.) is a random oracle controlled by B, which outputs a response
randomly from G, and p is the order of the group G. For the algorithm B to
generate blind role using Zω, B assigns gz1 = gmsk. In this case, B does not
have access to msk directly.

• Query I: In this phase the adversary issues queries on blinded credentials. The
adversary sends a role R to the algorithm B. Here we explain a challenge to
simulate a blind credential for the role R. The blind credential for the role
R is is computed as follow: CR = H(R)msk. Assume that the random oracle
outputs the value H(R) = gb ∈ G upon the query for the role R. To simulate
H(R)msk, algorithm B should compute gbz1 , where z1 is the master secret key,
chosen in the setup phase. However, B does not have access to neither z1 nor
b which makes it impossible to compute gbz1 . Here, to address this problem
we use the same random oracle proposed in [11] for our proof. Instead of a
random oracle that outputs an element from G, we consider a random oracle
which is programmed as follows: before any response, the random oracle first
flips a coin c which outputs 1 with probability x. Then based on the value of x
the random oracle H(.) sends it output as follows:

– If c = 0, output a random b ∈ Zp.

– If c = 1, output gz2 .

Algorithm B runs the random oracle H(.) to simulate a blind credential. If
c = 1, algorithm B aborts because B cannot simulate a blind credential in this
case. Otherwise, B picks b and computes CR = (gz1)b ∈ G, and sends CR to A.
Since gz1 = gmsk, the blind credential CR = gz1b, is a correct blind credential
for the role R.

• Challenge: When adversary A decides that the query phase is over, A gene-
rates two roles R0, R1 ∈ R on which he wishes to be challenged on, and sends
the tuple to B. The only condition is that R0 and R1 are not queried on the
blinded credential query phase.

• Query II: This phase is identical to Query I. The adversary is not allowed to
query for the roles (R0, R1).

• Response: Upon receiving (R0, R1) the algorithm B invokes the random oracle
H to compute H(R0) and H(R1). The response occurs in one of the three folds
below:

1. There is no H(Rβ) = gz2 for β = 0, 1 then algorithm B reports failure and
the attack fails.

2. There is one H(Rβ) = gz2 for β = 0, 1, then algorithm B picks Rβ .

64 Multi-user Searchable Encryption with Policy Enforcement

3. For both R0 and R1, H(R0) = H(R1) = gz2 , then algorithm B picks a bit
β ∈ {0, 1} at random to choose Rβ .

Eventually, algorithm B picks gz3 and sends (gz3 , Zω) to the adversary A as
a response to the challenge. Consider that in the case where ω = 0, Z0 =
e(g, g)z1z2z3 , which is a right blind role, otherwise Z1 is picked randomly from
group GT .

• QueryII: Adversary A repeats the Query phase. The only condition is that
adversary A is not allowed to query for R0 or R1.

• Guess Given the tuple (gz3 , Zω), adversary A outputs her guess β′ for bit β and
submits β′ to B. Having received β′, algorithm B outputs his guess β′ for β. If
adversary A’s output is correct, then algorithm B outputs ω′ = 0. Otherwise B
outputs 1. We now compute the probability that A’s guess is correct (β = β′).
We first compute this probability with the condition that algorithm B does not
abort during the query phase.

Pr[β = β′] = Pr[β = β′|ω = 0]Pr[ω = 0] + Pr[β = β′|ω = 1]Pr[ω = 1]

According to our assumption the advantage ofA is 1
2+ε = Pr[β = β′|ω = 0]. In

the case where ω = 1, Z1 is a random value and A does not get any information
to guess β′. Hence, Pr[β = β′|ω = 1] = 1

2 . Therefore,

Pr[β = β′] =
1

2
(
1

2
+ ε+

1

2
) =

1

2
ε+

1

2

The probability that algorithm B does not abort during the query phases is
at least 1

e , where e is Euler’s number. The probability that algorithm B does
not abort during the challenge phase is at least 1

QT
, where QT is the maximum

number of queries that A issues. Hence, the probability that the random oracle
H(.) does not abort is at least 1

eQT
. Therefore A’s advantage in breaking the

scheme is ε
2eQT

which is required.

4.4.7 Efficiency
We discuss the complexity of the role blinding construction. Since there is no related
work that addresses enforcing blind roles, we compare the efficiency of our construc-
tion to the base line provided by the standard reference monitor. Table 4.2 shows a
break down of the complexity aspects into four categories. The first two categories
describe the complexity incurred by the CA per user per role. The standard reference
monitor only has to pick a credential per user per role, where the blinded reference
monitor performs a number of computations as indicated. The third category shows
that the user and the reference monitor have to perform a number of computations
per role, which do not have a counterpart for the standard reference monitor. Finally,
the fourth category shows that for each access, while the standard reference monitor

4.4 SEPE: Blinding the Server 65

Standard
Blind reference monitor reference

monitor
Complexity CA User Reference Reference

monitor monitor
Complexity of assign a role assign a
credential + role
per user 1 exp —– —– per role

per role
Complexity of 1 exp

user key + 0
per user 1 RO —– —–

per role
2 exp

Complexity of + 1 exp
role 1 RO per role

blinding + 0
—– 1 pairing

per role
Complexity of 1 pairing 1 comparison
enforcement —– —– per role per role
per access

Table 4.2: Comparison of the complexity of the blinded reference monitor with the standard
reference monitor. (“RO” - stands for random oracle computation and “exp” - stands for
exponentiation.

66 Multi-user Searchable Encryption with Policy Enforcement

Complexity
SEPE scheme Predicate Encryption

α messages from αu messages from
Communication the server to the user the server to the user
Complexity +

Blinded credential C
from the user to the server

Computational Decrypt α Decrypt αu

Complexity messages messages

Table 4.3: Comparison of the complexity of the role blinding construction with predicate
encryption constructions for enforcing the policy.

does one comparison only, the blinded reference monitor has to perform a pairing
computation.

We now compare the complexity of our scheme with existing schemes which en-
force the policy cryptographically. For existing multi-user searchable encryption
schemes (e.g. DGD [20]) the policy enforcement is performed using a predicate
encryption scheme (see 4.2). In Table 4.3 we compare the complexity of the role
blinding construction of SEPE with the complexity of predicate encryption schemes.
In this table, α denotes the number of blinded messages that satisfy the query, and
αu denotes the number of the blinded messages that satisfy the query and the user
is permitted to access (αu ≤ α). Let |X| denote the number of bits in X. Since
|αu| ≤ |α|, the computational complexity of our construction is lower compared to
predicate encryption schemes. In case |αu + C| < |α|, our construction has a lower
communication complexity compared to predicate encryption schemes. The table
also shows that our scheme has a lower computational complexity than predicate
encryption schemes.

4.5 Discussion of Practical Issues

The role blinding construction that we have presented in this chapter allows a da-
tabase server to enforce the policy in such a manner that the server does not learn
which user has which role. While this scheme offers better privacy than any other
RBAC scheme, this enhanced privacy comes at a cost: as soon as one user reveals
her private key to the server, the latter is able to discover all users who have the
same role as the user who leaked her key. In point to point encryption schemes, a
user revealing her private key leads to compromising the revealing user’s information
only. However, in our scheme, since the database is shared among all users, a user
revealing her key will compromise other user’s information also. Assume that a user
in role U reveals her private key to the server. Since the user can blind any role

4.5 Discussion of Practical Issues 67

using her private key, the server can now blind any role too. Hence, upon receiving a
blind credential, say CR, the server takes a role R from the universe of roles R and
transforms it to a blind form CR using the users private key. The server then checks
if AccessDecision(CR, R) = 1. If the server learns that CR is the blind credential of
role R, the server has discovered that R maps onto R, otherwise the server keeps
trying other roles until the above equation holds.

Therefore, if a user reveals her private key to the server, a blind role remains
secure only until the blind credential of the same role is queried. Revealing the
private key of a user to the server thus impacts the security of the other users in the
same role.

We now argue that the security drawback we described above is a common pro-
blem with all cryptographically enforced access control policy schemes (including
attribute based encryption). The only countermeasure against the problem explai-
ned above is to prevent an adversary, who is the server in our case, from blinding
roles. This can be achieved only if all users protect their private key, which in practice
is not achievable.

Having to trust all users is a severe practical limitation. However, we can mitigate
the risk of a user revealing her user private key in a number of ways:

False positive it would be possible to change the AccessDecision function, such that
it generates false positives: Let AccessDecision with a certain probability output
1 for blind roles that do not match with a blind credential. This causes messages
to be returned to the user that she will not be able to decrypt. Increasing the
false positive rate increases the uncertainty for the server of deciding the role of
each blind role. However, the performance of the system will decrease due to an
increase in communication overhead and an increase in the complexity on the
user side, where the false positives have to be discarded. Hence, introducing
false positives creates a security performance trade-off.

CA involvement for blinding The task of the CA in our scheme is to issue a
blind credential and a private key for each user when the user first enters the
system. However, the CA could also be involved in blinding roles, for example
by splitting the user private key in two parts. To blind a role, the user first
blinds the role using her part of the key. The CA then completes the blinding
using the other part the key. In this case both a user and the CA will have
to collude for the server to learn which role belongs to which user. Involving
the CA in every access control decision carries a heavy cost, which represents
a sever drawback of this mitigating approach.

Restriction on blinding roles In many practical scenarios, each user should be
able to blind only a subset of the available roles. If this is the case, a limited
number of roles is revealed to the server when a user reveals her private key
to the server. However, restricting the roles each user can blind requires an-*
access control policy by the CA. Therefore, we are actually bootstrapping the
access control policy of the server by the access control policy of the CA, which
is at least inelegant.

68 Multi-user Searchable Encryption with Policy Enforcement

Forward security To mitigate the effect of key leakage the scheme could be made
forward secure in the sense that given a blind credential only the blind roles
stored on the server beforehand can be enforced. More technically, each role is
blinded with a user key and the time when the blind role is constructed. The
user also re-blinds her blind credential, such that the AccessDecision function
outputs 1 if (i) the blind credential and the blind roles match and (ii) the time
of the storage is before the time of the query. However, this approach requires
that the user, who requests a message, constructs the forward secrecy part of
the blind credential with the right time.

The ideas presented above just mitigate the risk that a user reveals her private
key. However, we believe that reducing the risk to zero is impossible and this is an
inherent limitation of using purely cryptographic means to enhance the privacy of
access control [38]. As we mentioned earlier this limitation comes from the fact that
the security of cryptographic schemes relies on the ability of users to protect their
private keys. For applications where a private key is used for a shared database,
revealing a private key has a large impact on the security of the entire database.

4.6 Conclusion
We propose the SEPE scheme which allows a group of users to store data in encrypted
form, such that the data can be retrieved selectively. In this scheme, users can
define a role based access policy on their data, such that the server enforces the
policy with learning as little information as possible about the roles. The SEPE
scheme hides the roles by blinding the roles and the credentials of users. Our scheme
reduces the communication complexity and the computational complexity to enforce
the policy compared to PE techniques which allow enforcing policy cryptographically.
Our scheme also resists the attacks of colluding users. However, the role blinding
construction of SEPE remains secure as long as no user reveals her private key to
the server. After a user reveals her private key to the server, the latter will be able
to learn the blinded roles that match with a blind credential. We have discussed this
drawback and argued that this is an inherent limitation of cryptographic tools on
such privacy enhancing access policy schemes.

69

Chapter 5

Searchable Encryption Supporting
Wildcards

A hidden vector encryption scheme is a public key searchable encryption scheme
which supports wildcards in the trapdoor. These schemes are useful for a variety of
applications to perform range, subset and conjunctive search over encrypted data.
In this chapter we construct a hidden vector encryption scheme, called SEPS. Our
scheme, which is provably secure in the selective security model, is more efficient than
existing schemes for the search, and the trapdoor communication. We compare the
efficiency of our scheme with the BW and the IP schemes which are the two prominent
selectively secure HVE schemes. This chapter is based on the paper published in the
Proceedings of the Seventh international Conference on Security and Cryptography
for Networks, SCN 2010 [2].

5.1 Introduction
Most known public key searchable encryption schemes support searching for the
exact keyword only. However, in many applications it is convenient to have some
flexibility for the search by supporting wildcards in the query. Wildcards or “don’t
care entries” allow searching multiple keywords with one trapdoor. For instance, if
the scheme supports wildcards “⋆”, the trapdoor associated with the keyword “199⋆′′

can search the database for the keywords ranging from “1990” to “1999”. Subset and
range queries are possible by supporting wildcards in the query.

Existing schemes that address searching keywords with wildcards use a technique
called hidden vector encryption (HVE) [12]. In HVE, the keyword is considered as
a vector of symbols. The search algorithm of HVE outputs the correct message, if
all the non-wildcard symbols of both, the keyword associated with the searchable
ciphertext and the queried keyword, are the same.

70 Searchable Encryption Supporting Wildcards

There have been some proposals for HVE schemes, most notably [12, 30, 31,
35, 39]. These schemes have in general three drawbacks: Firstly, most of them use
bilinear groups of composite order which are (at least 50 times [22]) slower than
bilinear groups of prime order (see 2.4). The few schemes that use bilinear groups of
prime order, [30, 35] are only capable of working with binary alphabets. Secondly, in
all these schemes the complexity of the searchable ciphertext is linear in the number
of symbols of the keyword. Thirdly, the complexity of the trapdoor grows linearly in
the number of the non-wildcard symbols of the queried keyword. Therefore, these
schemes are not efficient to query for keywords that contain just a few wildcard
symbols. The goal of this chapter is to propose an HVE scheme which has a lower
complexity to perform the search.

Contribution In this chapter, we propose an HVE scheme, called SEPS, which allows
searching keywords with wildcards on encrypted data. SEPS, which is provably secure
in the selective security model, has the following advantages:

• SEPS uses bilinear groups of prime order. This makes the construction of SEPS
more efficient than existing schemes which use bilinear groups of composite
order. Our scheme can also take keywords over any alphabet, unlike [8, 30, 35]
that only take binary symbols.

• The complexity of the trapdoor in our scheme is independent of the number
of wildcards, while in earlier schemes the complexity of the trapdoor grows
linearly in the number of non-wildcard symbols of the keyword.

• The storage and the communication complexity of the searchable ciphertext in
our scheme is lower compared to existing schemes.

5.2 Related work
The first public key searchable encryption is due to Boneh et. al who propose a
scheme called public key encryption with keyword search (PEKS). In this scheme
everybody can construct the searchable ciphertext, but only the owner of the master
secret key can create a trapdoor, which searches for a keyword. In [4], it is shown that
PEKS has a close relation to anonymous identity-based encryption (AIBE), such that
any AIBE scheme can be directly used as a searchable encryption scheme. Identity
Based Encryption (IBE) is a public key encryption technique which allows for a party
to use recipient’s identity as a public key to encrypt a message. When an IBE scheme
is anonymous, the scheme can hide both, the message and the identity, embedded in
the ciphertext. Improved AIBE schemes have been proposed in [13, 24, 5, 15].

The schemes cited above are useful for the equality search only, i.e. a message
can be decrypted if the keywords associated with the searchable ciphertext and the
trapdoor are the same. Boneh and Waters propose the first construction of HVE [12],
which supports wildcards in the trapdoor. Following [12], some more constructions
for HVE are proposed with an enhancement either on security or efficiency [31, 39].

5.3 The SEPS Scheme 71

Finally, [30] provides a solution that is based purely on bilinear groups of prime order.
However, this scheme accepts binary symbols only.

5.3 The SEPS Scheme
In HVE, a common approach to transform a message and its associated keyword
to a searchable ciphertext is to blind the message using a random session key. The
session key can be recovered for the search based on all the symbols of the keyword,
while the trapdoor contains the information to cancel out the effect of the wildcard
symbols. The searchable ciphertext and the trapdoor together can thus recover the
session key.

In existing schemes, to construct the searchable ciphertext, every symbol of the
associated keyword with the message is transformed to a group element. To construct
the trapdoor also every non-wildcard symbol of the queried keyword is transformed to
a group element. This transformation is carried out in a way that pairing operations
between the corresponding elements of the trapdoor and the searchable ciphertext
recovers the session key. This way of construction makes the complexity of the sear-
chable ciphertext linear in the number of symbols of the keyword, and the complexity
of the trapdoor and the search linear in the number of the non-wildcard symbols of
the queried keyword.

In our scheme, we transform every symbol of both, the associated keyword with
the message and the queried keyword, to a polynomial. The value of the polynomial
at the wildcard symbols is zero, such that the session key can be recovered using the
values of the polynomial at the non-wildcard symbols. This polynomial reduces the
complexity of the search and the size of the trapdoor. However, a higher computa-
tional complexity for the searchable ciphertext and the trapdoor is imposed due to
computing the polynomial.

5.4 Construction
Recall that data D = (M1,,Mn) is a sequence of n messages where each message
Mi is associated with a keyword Wi. Every symbol of the keyword associated with
the message is chosen over a fixed alphabet Σ ⊂ Zp. Every symbol of the queried
keyword is chosen over the alphabet Σ⋆, where Σ⋆ = Σ ∪ {⋆}. The SEPS scheme
chooses an upper bound L on the maximum number of symbols in a keyword, and an
upper bound Λ on the maximum number of wildcards in a queried keyword. While
the upper bound Λ can be equal to L, which supports any number of wildcards, the
performance of the scheme increases if Λ≪ L.

Let G and GT be two multiplicative groups of prime order p. The SEPS scheme
uses a bilinear pairing of prime order group e : G × G −→ GT which maps two
elements from the group G to an element from the group GT . Our scheme consists
of the following algorithms:

• KeygenSEPS(σ): given the security parameter σ:

72 Searchable Encryption Supporting Wildcards

1. Pick L+ 1 random elements v0, u1, ..., uL ∈ Zp,

2. Pick random α, β1, β2, (x1, . . . , xΛ) ∈ Zp,

3. Let Ω1 = e(g, V0)
αβ1 and Ω2 = e(g, V0)

αβ2 ,

4. Let V0 = gv0 , and Vj = V
xj

0 for j = 1, . . . ,Λ,

5. Let Ui = gui for i = 1, . . . , L.

The public parameters are:

param =
((

V0, V1, . . . , VΛ

)
,
(
U1, . . . , UL

)
, gα,Ω1,Ω2, p,G,GT , e(·, ·)

)
The master secret key is:

msk =
(
p, g, α, β1, β2, v0, (x1, . . . , xΛ), (u1, . . . , uL)

)
.

• EncSEPS(param,W,M): Let M be a message associated with the keyword W ,
and let W = (w1, . . . , wl) ∈ Σl be a sequence of l symbols of w1, ..., wl. Given
the message M and the keywordW , the algorithm first picks two random values
r1, r2 ∈ Zp, and then computes the searchable ciphertext:

SW,M =

Ĉ = MΩr1
1 Ωr2

2 ,


C0 =

(
V0

∏l
i=1 U

wi
i

)r1+r2

C1 =
(
V1

∏l
i=1 U

i wi
i

)r1+r2

...

CΛ =
(
VΛ

∏l
i=1 U

iΛ wi
i

)r1+r2

 ,

(
gαr1

gr2

) .

• TrapdoorSEPS(msk,W ⋆): Let W ⋆ = (w⋆
1, . . . , w

⋆
l) ∈ Σl

⋆ be a keyword consis-
ting of l symbols of w⋆

1 , . . . , w
⋆
l . Assume that W ⋆ has λ ≤ Λ wildcards occurring

at the symbols positions J = {j1, . . . , jλ}. Given the keyword W ⋆, the algo-
rithm:

1. picks a random s ∈ Zp,

2. computes s1 = β1 + s, s2 = β2 + s,

3. using Viète’s formulas computes the coefficients {ak}, (k = 0, ..., λ) of a
polynomial of degree λ which is evaluated to zero at the wildcard positions
J ,

4. computes X =
∑λ

k=0 xkak, where x0 = 1

5. computes the trapdoor:

TW⋆ =


T0 = g

αs
X

T1 = V s1
0

∏l
i=1 U

s
X

∏λ
k=1(i−jk)w

⋆
i

i

T2 = V αs2
0

∏l
i=1 U

αs
X

∏λ
k=1(i−jk)w

⋆
i

i

{a0, a1, . . . , aλ}

 .

5.4 Construction 73

• DecSEPS(SW,M , TW⋆): given a searchable ciphertext SW,M and the trapdoor
TW⋆ , the algorithm decrypts the message M as follow:

M = Ĉ
e(T0,

∏λ
k=0 C

ak

k)

e(T1, gαr1)e(T2, gr2)

The message exchange of SEPS is illustrated in Figure 5.1. It has the following
differences with the message exchange of public key searchable encryption schemes
shown in Figure 2.3

• The algorithms KeygenP, EncP, TrapdoorP, and Dec are replaced by KeygenSEPS,
EncSEPS, TrapdoorSEPS, and DecSEPS.

• The metadata in Figure 5.1 is one keyword only while in Figure 2.3 the metadata
can take any number of keywords.

• The queried keyword W ⋆ in Figure 5.1 can take wildcard symbols which is not
supported in the queried keyword of Figure 2.3.

• The DecSEPS algorithm checks whether all the non-wildcard symbols of the
ciphertext and queried keywords are the same, while the Dec algorithm checks
whether W ∈W.

Intuition. In SEPS, the message M is blinded using the session key Ωr1
1 Ωr2

2 . To
decrypt the message M , the DecSEPS algorithm should recover the session key using
the searchable ciphertext and the trapdoor. To do so, the scheme transforms every
symbol of the keywords W and W ⋆ to a polynomial which cancels out the effect of
wildcard symbols. The polynomial can recover the session key if all the non-wildcard
symbols of keywords W and W ⋆ are the same. Here, first we explain how this
polynomial cancels out the effect of wildcards. Then, we explain how this polynomial
is computed in our construction.

Consider the polynomial
∏

j∈J(i−j), where i is the variable of the polynomial and
J is the position of wildcards (e.g. J = {4, 5} for ‘04/**/2010’). This polynomial is
equal to zero at the wildcard positions where i = j , j ∈ J . Therefore, the following
equation holds if all the non-wildcard symbols of both keywords W and W ⋆ are the
same:

l∑
i=1

wi

∏
j∈J

(i− j) =
l∑

i=1
i/∈J

w⋆
i

∏
j∈J

(i− j), (5.1)

In Eq. 5.1, every symbol wi and w⋆
i of the keywords W and W ⋆ respectively, is

multiplied with the polynomial
∏

j∈J(i − j). Since this polynomial is zero at the
wildcard symbols (i ∈ J), the equation holds if all the non-wildcard symbols are the
same: wi = w⋆

i for i * J . Therefore, this polynomial cancels out the effect of symbols
at the wildcard positions, such that the comparison can be performed between the
non-wildcard symbols only.

74 Searchable Encryption Supporting Wildcards

-

-

msk

W ⋆ - �
�

�

(M,W)

paramEncSEPS
SM,W

DecSEPS

?

If wi = w⋆
i

or w⋆
i = ⋆

for i = 1, ..., l

M

TrapdoorSEPS
TW⋆

- KeygenSEPS
σ -���

@@R
param

?
msk

Alice Bob Charlie

W ⋆ = (w⋆
1 ,, w

⋆
l) W = (w1, ..., wl)

Figure 5.1: The message exchange of SEPS. Alice first runs the KeygenSEPS algorithm
which computes the master secret key msk, and the public parameters param. Alice then
invokes the TrapdoorSEPS algorithm which computes the trapdoor TW⋆ using msk. The
trapdoor TW⋆ is associated with the keyword W ⋆, which contains some wildcard entries.
Alice then delegates TW⋆ to Bob. When Charlie wants to send a message M to Bob, Charlie
first associates M with a keyword W . Then Charlie invokes the EncSEPS algorithm which
transforms both, M and W , to a searchable ciphertext SM,W using param. Charlie sends
SM,W to Bob who invokes the DecSEPS algorithm to decrypt the message M . The message
M can be decrypted if all the non-wildcard symbols of the keywords W ⋆ and W are the same.

5.4 Construction 75

Given that we can expand
∏

j∈J(i−j) =
∑λ

k=0 aki
k, where the set {a0, a1, ..., aλ}

is appropriate coefficients dependent on the wildcard positions J , Eq. 5.1 is also
equivalent with

λ∑
k=0

ak

l∑
i=1

wii
k =

l∑
i=1
i/∈J

w⋆
i

∏
j∈J

(i− j). (5.2)

We use the same approach in the DecSEPS algorithm to cancel out the effect of
wildcards. In our scheme, the polynomial

∑l
i=1
i/∈J

w⋆
i

∏
j∈J(i− j) (on the right side of

Eq. 5.2) occurs in the exponent of the elements, T1 and T2, of the trapdoor TW⋆ . The
trapdoor TW⋆ also contains the coefficients {ak} of the polynomial. The searchable

ciphertext has the value
∑l

i=1 wii
k in the exponent of each group element Ui. For the

search, the DecSEPS algorithm first computes the polynomial
∑λ

k=0 ak
∑l

i=1 wii
k of

the left side of Eq. 5.2 using the coefficients {a0, a1, ..., aλ} and the value
∑l

i=1 wii
k

from the searchable ciphertext. The DecSEPS algorithm then checks whether this
polynomial is equal to the polynomial

∑l
i=1
i/∈J

w⋆
i

∏
j∈J(i− j) which is in the trapdoor.

If the equality holds the message can be decrypted.

For security reasons, we insert all these values and polynomials on the exponents
of some group elements U1, ..., UL. We also inject sufficient random values to the
ciphertext and the trapdoor such that the scheme can be provably secure.

5.4.1 Correctness

We now show that the DecSEPS algorithm returns the correct message when the
non-wildcard symbols of W and W ⋆ are the same. Let J = {j1, . . . , jn}. Then

e(T0,
λ∏

k=0

(Ck)
ak) = e

(
g

αs∑n
m=0 xmam ,

λ∏
k=0

V
ak(r1+r2)
k

)
e
(
g

αs∑λ
m=0 xmam , (5.3)

λ∏
k=0

l∏
i=1

U
ikakwi(r1+r2)
i

)
=

λ∏
k=0

(
e(g, V0)

αs(r1+r2)xkak∑λ
m=0 xmam

l∏
i=1

e(g, Ui)
αs(r1+r2)wii

kak∑λ
m=0 xmam

)
= e(g, V0)

αs(r1+r2)
∑λ

k=0 xkak∑λ
m=0 xmam

l∏
i=1

e(g, Ui)
αs(r1+r2)wi

∑λ
k=0 ikak∑λ

m=0 amxm

= e(g, V0)
αs(r1+r2)

l∏
i=1

e(g, Ui)
αs(r1+r2)wi

∏λ
k=1(i−jk)∑λ

m=0 amxm (5.4)

76 Searchable Encryption Supporting Wildcards

where for (5.4) we use that
∑λ

k=0 i
kak =

∏λ
k=1(i− jk).

e(T1, g
αr1) = e(V0, g)

αr1s1 e
(l∏
i=1

U

s
∏λ
k=1(i−jk)w⋆

i∑λ
m=0 amxm

i , gαr1
)

= Ωr1
1 e(g, V0)

αsr1

ℓ∏
i=1

e(g, Ui)
αsr1

∏λ
k=1(i−jk)W⋆

i∑λ
m=0 amxm (5.5)

e(T2, g
r2) = e(V0, g)

αr2s2 e
(l∏
i=1

U

αs
∏λ
k=1(i−jk)w⋆

i∑n
m=0 amxm

i , gr2
)

= Ωr2
2 e(g, V0)

αsr2

l∏
i=1

e(g, Ui)
αsr2

∏λ
k=1(i−jk)w⋆

i∑λ
m=0 amxm (5.6)

e(Tn+1, g
αr1)e(Tn+2, g

r2) = Ωr1
1 Ωr2

2 e(g, V0)
αs(r1+r2)

l∏
i=1

e(g, Ui)
αs(r1+r2)w⋆

i
∏λ
k=1(i−jk)∑λ

m=0 amxm

(5.7)

If wi = W ⋆
i when i /∈ {j1, . . . , jλ}. Thus

Ĉ
e(T0,

∏λ
k=0 C

ak

k)

e(T1, gαr1)e(T2, gr2)
=

MΩr1
1 Ωr2

2 e(T0,
∏λ

k=0 C
ak

k)

e(Tn+1, gαr1)e(Tn+2, gr2)
= M (5.8)

5.4.2 Proof of Security

Theorem 4. The SEPS scheme is secure in the selective security model (see 2.3.1)
assuming that the Decision Linear (DLin) assumption holds in group G.

Proof : Suppose there exists a PPT adversary A, which can break the selective
semantic security, i.e. A, has a non-negligible advantage ε. We build an algorithm B
that uses A to break the Decision Linear assumption in G.

Assume that there is a challenger who selects a bilinear group G of prime order p
and chooses a generator g ∈ G, the group GT and an efficient bilinear map e : G×
G→ GT . Then the challenger picks four random values z1, z2, z3, z4 ∈R Z∗

p, computes

Z0 = gz2(z3+z4) and chooses Z1 ∈R G. After flipping a fair coin ν ∈R {0, 1} the
challenger sends the tuple (g, gz1 , gz2 , gz1z3 , gz4 , Zν) to B. The algorithm B’s goal is
to guess ν correctly with a probability non-negligibly larger than 1

2 . In order to come
up with a guess, B interacts with the adversary A in a selective semantic security
game as follows:

Initialization The adversary A chooses an alphabet Σ ⊂ Zp, a length L and an-
nounces two keywords W ⋆

0 ∈ ΣL, W ⋆
1 ∈ ΣL, which will be used for the challenge

phase. The algorithm B flips a coin µ ∈ {0, 1}. Let W ⋆
µ =

(
w⋆

1 , . . . , w
⋆
Lµ

)
.

5.4 Construction 77

Setup The algorithm B chooses an upper bound Λ ≤ L to the number of wildcard
symbols. Then B picks random values v0, u1, . . . , uL, x1, . . . , xΛ ∈R Zp and sets

Vj = (gz2)xjv0g−
∑Lµ

i=1 ijui for j = 0, . . . ,Λ

Ui =

{
g

ui
W⋆

i for i = 1 . . . Lµ

gui for i = Lµ + 1, . . . , L

where x0 = 1. B picks σ1, σ2, σ3 ∈R Zp and computes Ω1 = e(gz1 , V0)
σ1−σ2 and

Ω2 = e
(
gσ3(gz1)−σ2 , V0

)
. The public parameters are:

param =
((

V0, V1, . . . , VΛ

)
,
(
U1, . . . , UL

)
, gz1 ,Ω1,Ω2, p,G,GT , e(·, ·)

)
The master secret key is implicitly given by

msk =
(
α = z1, t1 = σ1 − σ2, t2 =

σ3

z1
− σ2, (x1, . . . , xΛ)

)
.

Query I In this phase A adaptively issues key extraction queries. Each time A
queries for the decryption key of an attribute vector W ⋆ = (w⋆

1 , . . . , w
⋆
L) ∈ ΣL

⋆ ,
consisting of L symbols and λ ≤ Λ wildcards at positions J = {j1, . . . , jn},
algorithm B responds by computing

T0 = (gz1)
σ2∑λ

m=0 xmam ,

T1 = V σ1
0

L∏
i=1

U

σ2
∏λ
k=1(i−jk)W⋆

i∑λ
m=0 xmam

i ,

T2 = (gb)σ3v0g−σ3

∑Lµ
i=1 ui(gz1)

σ2
∑Lµ

i=1
ui
w⋆

i

∏λ
k=1(i−jk)W⋆

i∑λ
m=0 xmam

+
σ2

∑L
i=Lµ+1 ui

∏λ
k=1(i−jk)W⋆

i∑λ
m=0 xmam ,

which is basically a correct trapdoor for W ⋆ with s = σ2. B returns to A the
decryption key

TW⋆ =
(
T0, T1, T2, J

)
. (5.9)

Challenge Once A decides that the query phase is over, A picks a pair of messages
M0,M1 ∈ GT on which it wishes to be challenged. B computes SW∗

µ ,Mµ by first
computing

Ĉ = Mµ · e
(
gz1z3 , gz2

)σ1v0 · e
(
gz1z3 , g

)(σ1−σ2)
∑Lµ

i=0 ui ·

e
(
gz1 , gz4

)σ2

∑Lµ
i=0 ui · e

(
gz2 , gz4

)σ3v0 · e
(
gz4 , g)σ3

∑Lµ
i=0 ui · e

(
gz1 , Zν

)σ2v0
(5.10)

and then computing C0 = Zv0
ν and Ck = Zxkv0

ν for k = 1, . . . , N . B sends the
challenge ciphertext

SW⋆
µ ,Mµ =

(
Ĉ,

{
Ck

}Λ

k=0
,
(gz1z3

gz4
))

, (5.11)

78 Searchable Encryption Supporting Wildcards

to A. When ν = 0 this is actually a correct encryption of Mµ under W ⋆
µ with

r1 = z3 and r2 = z4.

Query II In Query Phase II B behaves exactly the same as in Query Phase I.

Output Eventually, A outputs a bit µ′.

Finally, B outputs 1 if µ′ = µ and 0 if µ′ ̸= µ.

We will now analyze the probability of success for algorithm B. First, note that
if ν = 0, then B will behave correctly as a challenger to A. Thus, A will have
probability of 1

2 + ϵ of guessing µ. Next note that if ν = 1, then Zν is random in G
and SW∗

µ ,Mµ is independent from µ, thus A will have a probability of 1
2 of guessing

µ.
To conclude the proof we have∣∣∣Pr[B(gz1 , gz2 , gz1z3 , gz4 , gz2(z3+z4)) = 1

]
− Pr

[
B(gz1 , gz2 , gz1z3 , gz4 , gr) = 1

]∣∣∣
≥
∣∣∣Pr[ν = 0 ∧ µ′ = µ

]
− Pr

[
ν = 1 ∧ µ′ = µ

]∣∣∣
=
∣∣∣1
2
Pr

[
µ′ = µ

∣∣ ν = 0
]
− 1

2
Pr

[
µ′ = µ

∣∣ ν = 1
]∣∣∣

=
1

2

∣∣∣Pr[ExpA(κ) = 1
]
− 1

2

∣∣∣
≥1

2
ϵ,

which is non-negligible, contradicting the Decision Linear Assumption.

5.5 Efficiency
In Table 5.1 we compare the efficiency of the SEPS scheme with the BW scheme
[12], which uses composite order pairing, and the IP scheme [30] which uses prime
order pairing. Since the IP scheme accepts binary alphabets only, each symbol of the
keyword should be represented as binary values. Here, we assume that each symbol
consists of 7 bits required to represent ACSII codes. In this table also

• L is the maximum number of symbols in the keyword,

• l is the number of symbols in the keyword (for the queried keyword and the
keyword associated with the message),

• λ is the number of wildcards in the keyword.

Since BW and IP do not restrict the number of wildcards in the queried keyword, we
perform the comparison with the assumption that Λ = L. In this case, the number of
wildcards can be up to the maximum number of symbols of the keyword, which is the
same as BW and IP. To make the comparison more convenient, the computational

5.6 Conclusion 79

complexity of each scheme is shown based on the number of exponentiation operations
only. Exponentiation has the highest complexity compared to other operations (e.g.
multiplication).

Table 5.1 shows that SEPS has a lower complexity for the search and the trapdoor
communication compared to BW and IP. The SEPS scheme has a lower complexity
compared to BW and IP schemes in the complexity aspects marked with the red color.
This table shows that the BW scheme, performs more than 3 composite order pairing
for the search. Since each composite order pairing is roughly 50 times slower than the
prime order pairing [22], the search in BW is prohibitively slow. Therefore, although
this scheme has a lower complexity for the searchable ciphertext and the trapdoor
compared to our scheme, BW is not practical particularly for the applications where
the number of wildcards is usually small. Comparing the IP scheme with SEPS also
shows that the search in SEPS is more efficient than the search in IP. However, the
computational complexity of the search ciphertext in IP is more efficient than SEPS if
L ≤ 14. Since keywords in practice can contain more than 14 symbols, the maximum
number of supported symbols L should be more than 14. This makes the IP scheme
more efficient than our scheme for the searchable ciphertext.

5.6 Conclusion
We present a hidden vector encryption scheme, called SEPS, which searches key-
words with wildcards on encrypted data. The SEPS scheme is provably secure in the
selective security model. Our scheme is more efficient than existing schemes for the
search because SEPS uses bilinear groups of prime order and accepts any alphabet.
In existing schemes, the search is performed either using bilinear pairing of compo-
site order, or bilinear pairing of prime order groups but with the binary alphabet
only. Our scheme also has a low communication complexity for the trapdoor and
a low storage complexity. However, the computational complexity of the searchable
ciphertext and the trapdoor can be higher than exiting schemes if the number of
wildcards in the queried keyword is large. Therefore, the SEPS scheme is suitable
for applications where the efficiency of the search is crucial and either the trapdoor
is rarely constructed, or the number of wildcards in the queried keyword is not large.
We now revisit Scenario 2 which was explained in the Introduction chapter. In this
scenario Bob delegates a trapdoor to Carol. The trapdoor allows Carol to decrypt
only Bob’s messages that contain the keyword associated with the trapdoor. In this
case, Carol should be able to decrypt Bob’s e-mails fast which highlights the efficiency
of the search. From the other hand, the computational efficiency of the trapdoor is
not crucial because the delegated trapdoors are constructed once. Therefore, the
SEPS scheme is suitable for this scenario.

80 Searchable Encryption Supporting Wildcards

SEPS IP BW

Searchable (l + 1)L+ 4 14l 3l + 2
ciphertext exp exp exp*

Computational
Complexity Trapdoor 2l + 3 14(l − λ) 3(l − λ) + 3

exp exp exp*

Search 3 14(l − λ) 2(l − λ) + 1
pairing pairing pairing*

Searchable L+ 4 14l 2l + 2
Ciphertext group group group

elements elements elements*

Communication 3 14(l − λ) 2(l − λ)
Complexity Trapdoor group group group

(bits) elements elements elements*
Master

secret key (2L+ 5)σ (28L+ 1)σ 3(L+ 1)σ
(bits)

Storage Public (2L+ 6) 28L+ 2 3L+ 1
Complexity parameters group group group

elements elements elements*

Searchable L+ 4 14l 2l + 2
Ciphertext group group group

elements elements elements*

Table 5.1: Comparison of the complexity of our schemes with the BW and IP schemes.
Here “exp” - stands for exponentiation. The sign “*” shows that the operation and the
group element belongs to a composite order group. The SEPS scheme has a lower complexity
compared to the other schemes in the aspects shown in the red color.

81

Chapter 6

Fully Secure Searchable Encryption

Most of existing searchable encryption schemes are proven to be secure in weaker
security models than the fully secure model. The few schemes which achieve full
security either are inefficient, because of using bilinear groups of composite order, or
provide security based on strong assumptions. In this chapter, we propose a novel
public key searchable encryption scheme, called SEPF, which is fully secure based
on the weak assumptions, DLin and DBDH. The SEPF scheme uses bilinear groups
of prime order to perform the search. We compare the complexity of SEPF with the
DIP [17] scheme, which is the only scheme that achieves full security based on weak
assumptions. We show that SEPF has a higher search efficiency compared to DIP.
This efficiency stems from the fact that DIP uses bilinear groups of composite order
for the search, which are considerably slower than groups of prime order.

6.1 Introduction
While many searchable encryption schemes have been proposed, there are a few
schemes which achieve full security. Most searchable encryption schemes are proposed
in the selective security or random oracle models. These models either restrict the
power of the adversary, or use theoretical primitives in the construction of schemes,
which cannot be implemented.

Existing schemes that are proven to be fully secure either use bilinear groups of
composite order [17] (composite of four primes in this case) or use strong assumptions
for the security proof [24]. Therefore, these schemes are either prohibitively slow or
achieve a lower security compared to schemes that use weak assumptions for the
security proof.

In this chapter we propose a fully secure searchable encryption scheme called
SEPF. Our scheme:

• is the first fully secure searchable encryption scheme which uses bilinear groups
of prime order.

82 Fully Secure Searchable Encryption

• achieves security based on the DLin and DBDH assumptions which are weak
and well established assumptions.

6.2 Related Work
One of the reasons why most of searchable encryption schemes do not achieve full
security is the problem with the used security proof methodology. The so called
partitioning based method cannot show whether the scheme is fully secure. We
explain the problem in more detail in 6.3. The first solution to address this problem
is proposed by Gentry [24]. While Gentry’s scheme achieves full security, this scheme
uses a strong assumption to achieve the security proof. However, it is always preferred
to complete the security proof using weak assumptions.

Recently, a new security methodology called dual system encryption (DSE) has
been proposed by Waters [42]. Using the DSE method, a fully secure proof can be
achieved using weak assumptions such as the DLin or DBDH assumptions. Waters
[42] also proposed the first fully secure identity based encryption scheme which uses
prime order groups. Following the publication of DSE, several fully secure attribute
based encryption and identity based encryption schemes have been proposed [33, 36,
32]. These schemes deploy composite order groups to achieve full security.

The only fully secure anonymous identity based encryption scheme, which can be
used as searchable encryption, is proposed in [17]. This scheme uses composite order
groups of four primes to achieve security. Using four primes for the security makes
the scheme prohibitively slow.

6.3 Challenges of Security Proof
The security of searchable encryption schemes rely on the underlying complexity
assumption used in the construction of the scheme. The complexity assumption
states that there exists a tuple such that no PPT algorithm can decide whether the
tuple is valid, (i.e. the elements of the tuple are related to each other) or whether
the tuple is random. Here, we call such a tuple a complexity tuple. To prove that a
scheme is secure, it must be shown that breaking the scheme is as hard as breaking
the deployed complexity assumption. This type of security proof is formally called a
reduction from breaking the complexity assumption to breaking the scheme. Since
the complexity assumption is known to be hard to break, we can then prove that
breaking the scheme is hard.

The traditional partitioning based method achieves the reduction as follows. It
is assumed that a party, called the simulator, wants to decide whether a complexity
tuple is valid or random. To make the decision, the simulator uses adversary’s power
in breaking the scheme by playing the role of the challenger of the security model.
The simulator, first provides the adversary simulated public parameters and responds
to each trapdoor query of the adversary by simulating and sending a trapdoor to the
adversary. Here, the distribution of the simulated public parameters and trapdoors

6.3 Challenges of Security Proof 83

must be the same as the distribution of the public parameters and trapdoor of the
scheme. Then, in the challenge phase, the simulator constructs a challenge searchable
ciphertext using the elements of the complexity tuple and sends it to the adversary.
Here, if the complexity tuple is random, the challenge searchable ciphertext is random
so that the adversary has no advantage to win the game. Therefore, if the adversary
wins the game, the simulator learns that the tuple is valid, otherwise the tuple is
random. In this case the probability of breaking the scheme is the same as the
probability of breaking the complexity assumption. In this way the security reduction
is achieved, as required. The message flow of the partitioning based methodology to
achieve the security reduction is illustrated in Figure 6.1.

One of the main challenges of completing the security proof using the partitioning
based method is that the simulator should be able to simulate the trapdoor of each
keyword except the trapdoor of the challenge keywords (TWβ

in Figure 6.1). Other-
wise, after constructing the challenge searchable ciphertext, the simulator can create
the trapdoor of the challenge keywords to check whether decryption is possible. If the
tuple is random, the challenge searchable ciphertext is random which is not decryp-
table. Therefore, if the correct message can be decrypted, the simulator learns that
the complexity tuple is valid. In this case the simulator can break the complexity
assumption without interacting with the adversary. It shows that the scheme must
be constructed in such a way that simulating the trapdoor of some keywords cannot
be performed.

To address the problem of simulating most but not all the trapdoor, the selective
security and random oracle models have been proposed. These models enable the
simulator to simulate most of the trapdoor but not all. The selective security model
allows the simulator to receive the challenge keywords in advance of the game. This
helps the simulator to embeds the challenge keywords into the public parameters in
such a way that simulating the trapdoor of the challenge keywords is impossible. In
the random oracle model it is also assumed that the random oracle outputs different
types of random values, such that one type is used for simulating the trapdoors
and the other type can be used to construct the challenge searchable ciphertext
only. While these models solve the problem of simulating the trapdoors, either the
adversary of these model is restricted or the scheme uses a random oracle which is
impractical.

The first attempt to achieve full security in the standard model is made by Waters
[41], where a fully secure identity based encryption scheme is proposed. In [41], the
simulator of the security proof would abort if it wants to simulate the trapdoor of
the challenge keywords. However, this scheme achieves a loose reduction. In a loose
reduction, in contrast to a tight reduction, it is shown that the probability of breaking
the scheme is not close to the probability of breaking the complexity assumption.
This scheme also is not anonymous and therefore cannot be used as a searchable
encryption scheme. Gentry [24] proposed the first fully secure anonymous identity
based encryption which achieves a tight reduction. This scheme is constructed in
such a way that the number of the trapdoors that can be simulated by the simulator
is limited to the number of trapdoor queries made by the attacker. Therefore, in
the challenge phase, the simulator cannot simulate the trapdoor of the challenge

84 Fully Secure Searchable Encryption

If β′ ̸= β, decide that the complexity tuple is random

If β′ = β, decide that the complexity tuple is valid

� β′

-TWq

-

� Wq

Simulate TWq
Wq −→ LW

TWq −→ LT

TW1

� W1

Simulate TW1 W1 −→ LW

TW1 −→ LT

Simulator Adversary

Receive a complexity tuple

.

.

.

-SMβ ,Wβ

� (M0,M1), (W0,W1)
Simulate SMβ ,Wβ

using

the complexity tuple

-param

� (W0,W1)

Pick β ∈ {0, 1}

Simulate Param

Prepare

LW , LT

Setup

Query

Challenge

Response

Figure 6.1: The message flow of the partitioning based methodology. The dashed vector is
required for the selective security model, but not the full security.

6.4 Dual System Encryption 85

keywords. The problem with the Gentry scheme is that a strong assumption, called
q-ABDHE, is used for the security proof. However, it is always preferred to complete
the proof using weak assumptions.

6.4 Dual System Encryption
Recently, a new security proof methodology has been proposed which is called dual
system encryption (DSE) [42]. The DSE method allows completing the security proof
without restricting the adversary or assuming theoretical primitives for the scheme.
The DSE method also achieves a tight reduction using weak assumptions such as
DLin and DBDH.

In dual system encryption (DSE), the searchable ciphertext and the trapdoor can
take two distributions: a normal distribution, which is used for the construction of
the scheme, and a semi-functional distribution, which is used for the security proof
only. The semi-functional searchable ciphertext and the trapdoor are created using
the master secret key. These distributions have extra random elements added to the
corresponding normal distribution, such that two properties are satisfied:

1. the semi-functional distribution must be indistinguishable from the correspon-
ding normal distribution,

2. the message can be decrypted correctly only if both, the searchable ciphertext
and the trapdoor, are not semi-functional.

DSE completes the security proof using the semi-functional distribution of the
searchable ciphertext and the trapdoor. Consider a security game which is the same
as the semantic security game defined in Section 2.4 except that i) the challenger
uses a semi-functional distribution for the trapdoors of the query phase and the
challenge searchable ciphertext and ii) the challenger transforms a random message
and a random keyword to the challenge searchable ciphertext. We call this game,
“game final” as shown in Figure 6.2. We argue that game final is perfectly secure
because neither the challenge searchable ciphertext, which embeds random values (
e.g. R1 and R2 in Figure 6.2) instead of the message and the keyword, nor the semi-
functional trapdoors of the query phase, which cannot be used for decryption, reveal
any information about the message and the keyword. The goal of DSE is to show
that the semantic security game is indistinguishable from game final. To achieve
this, DSE defines a sequence of intermediate games between the semantic security
game and game final in a such way that the adversary cannot detect the difference
between consecutive games. In the first intermediate game, the challenger uses a
semi-functional searchable ciphertext in the challenge phase instead of a normal one.
We show that the adversary cannot distinguish the semantic security game from
the first intermediate game. In each of the next intermediate games, the challenger
switches the distribution of one of the trapdoors in the query phase, from normal to
semi-functional. Therefore, in the last intermediate game, the searchable ciphertexts
and all the trapdoors take a semi-functional distribution. After showing that each

86 Fully Secure Searchable Encryption

game is indistinguishable from its next game, it results that the semantic security
game is indistinguishable from game final. This proves the security of the scheme.

Now, we explain an inherent problem in the proof of the indistinguishability of
the semi-functional and normal trapdoors. To show this indistinguishability, it must
be shown that the simulator constructs a trapdoor using a complexity tuple, such
that the trapdoor is normal only if the tuple is valid, otherwise the trapdoor is semi-
functional. The simulator then sends the trapdoor to the adversary who decides
whether the trapdoor is normal or semi-functional. In this case it is shown that the
probability that the adversary makes a right decision is the same as the probability
of deciding whether the tuple is valid, as required. However, the problem is that the
simulator can build a semi-functional searchable ciphertext with the same keyword of
the trapdoor keyword and check whether the semi-functional searchable ciphertext is
decryptable. If the correct message is decrypted, the simulator learns that trapdoor
is normal. Therefore, the simulator can break the complexity assumption without
interacting with the adversary.

To address this problem, the searchable ciphertext and the trapdoor of a fully
secure scheme are associated with a unique tag. The fully secure scheme must be
constructed in a way that i) decryption can be performed only if the tag of the
searchable ciphertext and the tag of the trapdoor are not the same, and ii) the
simulator can construct a semi-functional searchable ciphertext in the intermediate
games only if he uses the same tag as the tag used for the trapdoor. Therefore, the
simulator cannot check the whether the trapdoor can decrypt the semi-functional
searchable ciphertext.

6.5 Intuition
One of the main challenges in dual system encryption is to construct semi-functional
distributions for the searchable ciphertext and the trapdoor. Firstly, to create the
semi-functional distribution, some extra random elements are added to the normal
construction in such a way that adversaries cannot detect these extra randomness.
This implies that the normal distribution for both, the searchable ciphertext and
the trapdoor, must be highly randomized. Secondly, decryption should be possible
if both, the searchable ciphertext and the trapdoor, are not semi-functional. This
implies that the extra random elements of the semi-functional searchable ciphertext
should be orthogonal to the normal trapdoor. Analogously, the extra elements of
the semi-functional trapdoor should also be orthogonal to the normal searchable
ciphertext. Here, by orthogonality we mean that the extra random elements of the
semi-functional distribution fall out during the decryption.

In bilinear groups of composite order it is easier to find the semi-functional dis-
tributions. The reason is that each subgroup is orthogonal to the other subgroup in
a way that pairing operations between the elements picked from different subgroups
always outputs one. In fully secure schemes that use groups of composite order,
the normal trapdoor and searchable ciphertext are constructed from the subgroup.
The extra random elements that make the distributions semi-functional are picked

6.5 Intuition 87

� β′

-T ′
Wq

-

� Wq

Simulate T ′
Wq

Wq −→ LW

T ′
Wq
−→ LT

T ′
W1

� W1

Simulate T ′
W1

W1 −→ LW

T ′
W1
−→ LT

Challenger Adversary

.

.

.

-S′
R1,R2

� (M0,M1), (W0,W1)

Pick random R1, R2

Simulate S′
R1,R2

-param

Pick β ∈ {0, 1}

Simulate (msk, param)

Prepare

LW , LT

Setup

Query

Challenge

Response

Figure 6.2: The message flow of game final. Here, T ′
W1

and T ′
Wq

are semi-functional
trapdoors of W1 and Wq and S′

R1,R2
is the semi-functional searchable ciphertext of message

R1 and keyword R2.

88 Fully Secure Searchable Encryption

from other subgroup. This distribution cancels out the effect of the semi-functional
elements during decryption if either the searchable ciphertext or the trapdoor is nor-
mal. However, if both, the ciphertext and the trapdoor, are semi-functional, the
orthogonality among them does not hold.

In prime order pairings, however, achieving orthogonality is more difficult. In
the SEPF scheme we achieve orthogonality in the following way: we introduce two
system parameters x and y,which are embedded in the public parameters, a variable
in the ciphertext x and a variable in the trapdoor y. We then design the construction
in such a way that the search outputs

Me(g, g)(x−x)(y−y)ϕ,

where ϕ is a random value. In the normal searchable encryption, x = x, and in the
normal trapdoor y = y. However, the semi-functional algorithms will choose x or
y randomly. It is not hard to see that such a decryption results in M if either the
ciphertext or the trapdoor is semi-functional.

6.6 Construction

In this section we present the construction of the SEPF scheme. We explain the
intuition behind the scheme after presenting the semi-functional distributions. Our
scheme consists of the following algorithms:

• KeygenSEPF(σ): Given the security parameter σ, the algorithm:

1. Generates a bilinear group G of a large prime order p and choose a bilinear
map e : G×G −→ GT .

2. Picks random a, b, c, d, l, t, x, y, u, v, h, f, λ ∈ Zp,

3. Computes Ω = e(g, V)abcλ,

4. Let U = gu, V = gv,H = gh, F = gf ,

The public parameters are:

param =
(
gab, gabc, gay, gb, gbcx, gbd, gbyt, gy, gxy, U, V, V

1
l ,H, F,Ω

)
The master secret key is

msk =
(
a, b, c, d, l, t, x, y, u, v, h, f, λ

)
.

• TrapdoorSEPF(W,msk): Given the keyword W and the master secret key msk,
the algorithm first picks random s1, s2, s3, s4, τD ∈ Zp, and then computes the

6.6 Construction 89

trapdoor TW =


T1 = gay(s1+s2)g−ays4

T2 = g−abcs1gabcs4

T3 = g−abcls1

T4 = g−acs2

T5 = gds2

 ,


T6 = g−bc(xs1+ts2)gbcs3

T7 = gxy(s1+s2)g−ys3g−λ

T8 = g−abc(xs1+ts2)gabcs3

T9 = gaxy(s1+s2)g−ays3g−aλ

 ,


T10 = (UWV τDH)s1(FV τD)s4

T11 = (UWV τDH)cs1

T12 = g−abcs1

T13 = g−abcs4

T14 = gacs4

 , τD


.

• EncSEPF(W,M, param): Given the message M , the keyword W and the public
parameters param, the algorithm first picks random r1,r2 ,r3, r4, r5, τC ∈ Zp,
and then computes the searchable ciphertext SM,W =

MΩr1+r2 ,
C1 = (gbcx)r1+r2

C2 = (gxy)r1+r2(V)r3

C3 = (V
1
l)r4

C4 = (gbyt)r1+r2(gbd)r3

C5 = (gabc)r3

 ,


C6 = (gay)r1

C7 = (gabc)r1

C8 = (gy)r2

C9 = (gbc)r2

 ,


C10 = (gabc)r3

C11 = (gab)r4

C12 = (UWV τCH)r3+r4

C13 = gr5(FV τC)r3

C14 = (gb)r5

 , τC



.

• DecSEPF(SM,W , TW): Given the trapdoor TW and the ciphertext SM,W , de-
crypt the message M as follows: first compute

(MΩr3+r4)
9∏

i=1

e(T1, Ci)
(14∏
i=10

e(Ti, Ci)
) 1

τC−τD

The message exchange of the SEPF scheme is illustrated in Figure 6.3. The
message exchange of SEPF has the following differences with the message exchange
of public key searchable encryption shown in Figure 2.3:

• The algorithms KeygenP, EncP, TrapdoorP, and Dec are replaced by KeygenSEPS,
EncSEPF, TrapdoorSEPF, and DecSEPF.

• The metadata in Figure 6.3 is one keyword only while in Figure 2.3 the metadata
can take any number of keywords.

90 Fully Secure Searchable Encryption

-

-

msk

W
- �

�

�

(M,W)

paramEncSEPF
SM,WDecSEPF

?

If W = W

M

TrapdoorSEPF
TW

- KeygenSEPF
σ -���

@@R
param

?
msk

Alice Bob Charlie

Figure 6.3: The message flow of the SEPF scheme. Alice, who owns the master secret
key, creates a trapdoor and sends it to Bob. Charlie, who wants to send a message to Bob,
transforms the message to a searchable ciphertext using the public parameters, and sends it
to Bob. Bob decrypts the message if the keyword of the trapdoor and the associated keywords
with the message are the same.

6.6 Construction 91

6.6.1 Correctness
We show that the DecSEPF algorithm decrypts the message correctly when the que-
ried keyword W and W are the same.

e(T1, C1) =e(g, g)abcxy(r1+r2)(s1+s2)e(g, g)−abcxy(r1+r2)s4

e(T2, C2) =e(g, g)−abcxy(r1+r2)s1e(g, g)abcxy(r1+r2)s4e(g, V)−abcr3s1e(g, V)abcr3s4

e(T3, C3) =e(g, V)−abcr4s1

e(T4, C4) =e(g, g)−abcyt(r1+r2)s2e(g, g)−abcdr3s2

e(T5, C5) =e(g, g)abcdr3s2

Hence:

5∏
i=1

e(Ti, Ci) =

e(g, g)abcxy(r1+r2)s1e(g, g)−abcyt(r1+r2)s2e(g, V)−abc(r3+r4)s1e(g, V)abcr3s4

e(T6, C6) =e(g, g)−abcxyr1s1e(g, g)−abctyr1s2e(g, g)abcyr1s3

e(T7, C7) =e(g, g)abcxyr1(s1+s2)e(g, g)−abcyr1s3e(g, g)−abcλr1

e(T8, C8) =e(g, g)−abcxyr2s1e(g, g)−abctyr2s2e(g, g)abcyr2s3

e(T9, C9) =e(g, g)abcxyr2(s1+s2)e(g, g)−abcyr2s3e(g, g)−abcλr2

Hence:

9∏
i=6

e(Ti, Ci) = e(g, g)−abcxy(r1+r2)s2e(g, g)−abcty(r1+r2)s2e(g, g)−abcλ(r1+r2)

e(T10, C10) =

e(g, U)abcr3s1We(g, V)abcr3s1τDe(g,H)abcr3s1e(g, F)abcr3s4e(g, V)abcr3s4τD

e(T11, C11) = e(g, U)abcr4s1We(g, V)abcr4s1τDe(g,H)abcr4s1

e(T12, C12) = e(g, U)−abc(r3+r4)s1W e(g, V)−abc(r3+r4)s1τCe(g,H)−abc(r3+r4)s1

e(T13, C13) = e(g, g)−abcr5s4e(g, F)−abcr3s4e(g, V)−abcr3s4τC

e(T14, C14) = e(g, g)abcr5s4

Hence:

14∏
i=10

e(Ti, Ci) =

e(g, U)abc(r3+r4)s1(W−W)e(g, V)abc(r3+r4)s1(τD−τC)e(g, V)−abcr3s4(τD−τC)

92 Fully Secure Searchable Encryption

The decryption algorithm outputs:

(MΩr1+r2)

9∏
i=1

e(T1, Ci)
(14∏
i=10

e(Ti, Ci)
) 1

τC−τD = Me(g, U)abc(r3+r4)s1(W−W)

In case the keywords associated with the trapdoor and the searchable ciphertext are
the same, (W = W) the decryption algorithm outputs the correct message.

6.7 Security Proof

We prove the security of SEPF using the dual system encryption methodology. As
mentioned before, DSE uses a semi-functional distribution for the trapdoor and the
searchable ciphertext to accomplish the proof. Here, we present the semi-functional
distributions of the trapdoor and the searchable ciphertext which are only used for
the security proof.

6.7.1 Semi-functional algorithms

Semi-functional trapdoor: First run the EncSEPF algorithm. Then pick a random
y ∈ Zp. The semi-functional trapdoor is:




T ′
1 = T1g

a(y−y)(s1+s2)

T ′
2 = T2

T ′
3 = T3

T ′
4 = T4

T ′
5 = T5

 ,


T ′
6 = T6

T ′
7 = T7g

x(y−y)(s1+s2)

T ′
8 = T8

T ′
9 = T9g

ax(y−y)(s1+s2)

 ,


T ′
10 = T10

T ′
11 = T11

T ′
12 = T12

T ′
13 = T13

T ′
14 = T14

 , τD


.

Observe that the difference between the normal trapdoor and the semi-functional
trapdoor is that the value y in the elements T ′

2, T
′
7, and T ′

9 is replaced by the random
y.

Semi-functional searchable ciphertext: First run the EncSEPF algorithm. Then

6.7 Security Proof 93

pick a random x ∈ Zp. The semi-functional searchable ciphertext S′
M,W is:



MΩr1+r2 ,
C ′

1 = C1g
bc(x−x)(r1+r2)

C ′
2 = C2g

y(x−x)(r1+r2)

C ′
3 = C3

C ′
4 = C4g

by(x−x)(r1+r2)

C ′
5 = C5

 ,


C ′

6 = C6

C ′
7 = C7

C ′
8 = C8

C ′
9 = C9

 ,


C ′

10 = C10

C ′
11 = C11

C ′
12 = C12

C ′
13 = C13

C ′
14 = C14

 , τC



.

Observe that the difference between the normal and the semi-functional searchable
ciphertext is that the value x in C ′

1 and C ′
2 is replaced by the random x, and the

element gby(x−x)(r1+r2) is multiplied to C4.

Correctness We show that the DecSEPF algorithm decrypts the message M cor-
rectly only if at least one of the distributions of the searchable ciphertext and the
trapdoor is normal.

94 Fully Secure Searchable Encryption

e(T ′
1, C

′
1) =e(T1, C1)e(g

a(y−y)(s1+s2), C1)e(T1, g
bc(x−x)(r1+r2))

e(ga(y−y)(s1+s2), gbc(x−x)(r1+r2))

=e(ga(y−y)(s1+s2), gbcx(r1+r2))e(gay(s1+s2)g−ays4 , gbc(x−x)(r1+r2))

e(ga(y−y)(s1+s2), gb(x−x)(r1+r2))

=e(g, g)abcx(y−y)(r1+r2)(s1+s2)e(g, g)abcy(x−x)(r1+r2)(s1+s2)

e(g, g)−abc(x−x)y(r1+r2)s4e(g, g)abc(x−x)(y−y)(r1+r2)(s1+s2)

e(T ′
2, C

′
2) =e(T2, C2)e(T2, g

y(x−x)(r1+r2))

=e(T2, C2)e(g
−abcs1gabcs4 , gy(x−x)(r1+r2))

=e(T2, C2)e(g, g)
−abc(x−x)y(r1+r2)s1e(g, gabc(x−x)y(r1+r2)s4)

e(T ′
4, C

′
4) =e(T4, C4)e(T4, g

by(x−x)(r1+r2))

=e(T4, C4)e(g
−acs2 , gby(x−x)(r1+r2))

=e(T4, C4)e(g, g)
−abc(x−x)y(r1+r2)s2

e(T ′
7, C

′
7) =e(T7g

x(y−y)(s1+s2), C7)

=e(T7, C7)e(g
x(y−y)(s1+s2), (gabc)r1)

=e(T7, C7)e(g, g)
abcx(y−y)r1(s1+s2)

e(T ′
9, C

′
9) =e(T9g

ax(y−y)(s1+s2), C9)

=e(T9, C9)e(g
ax(y−y)(s1+s2), gbc)r2)

=e(T9, C9)e(g, g)
abcx(y−y)r2(s1+s2)

Hence,

DecSEPF(T ′
W, S′

W,M) =

(MΩr1+r2)
9∏

i=1

e(T ′
1, C

′
i)
(14∏
i=10

e(T ′
i , C

′
i)
) 1

τC−τD =

(MΩr1+r2)
9∏

i=1

e(T1, Ci)
(14∏
i=10

e(Ti, Ci)
) 1

τC−τD e(g, g)abc(x−x)(y−y)(r1+r2)(s1+s2) =

Me(g, U)abc(W−W)(r3+r4)s1e(g, g)abc(x−x)(y−y)(r1+r2)(s1+s2)

In case W = W , the DecSEPF algorithm outputs Me(g, g)abc(x−x)(y−y)(r1+r2)(s1+s2).
Therefore, the correct message is decrypted if at least either the searchable ciphertext
or the trapdoor is random, such that x = x or y = y. Here, abc(r1 + r2)(s1 + s2) is
actually the value ϕ introduced in section 6.5.

6.7 Security Proof 95

6.7.2 Intuition

The searchable ciphertext and the trapdoor should be constructed in such a way that
their corresponding semi-functional distribution can be proven to be indistinguishable
from the normal distribution. To achieve this indistinguishability for the searchable
ciphertext, we use the random values r1 and r2. These random values make it hard
to distinguish gx(r1+r2) from the random gx(r1+r2). In the searchable ciphertext,
the elements C1, C2, and C4 are used to make the semi-functional and the normal
searchable ciphertext indistinguishable. The element V r3 in C2 and the element C3

are used to cancel out the values remained during decryption. The elements (gbd)r3

and (gabc)r3 in C4 and C5 respectively are orthogonal to the trapdoor such that they
are used to achieve the security proof. The elements C6 and C7 make a commitment
to the random r1 and C8 and C9 make a commitment to the random r2. The element
C12 is used to make a commitment to the keyword W and the tag τC . To provide
keyword hiding, C12 is randomized using the random values r3 and r4. A commitment
to the random values r3 and r4 is provided by C10 and C11 respectively. The elements
C14 and C15 are extra random elements which are used for the security proof.

In the trapdoor, T1, T7 and T9 provide indistinguishability of the semi-functional
trapdoor using the random values s1 and s2. The commitments to s1 and s2 are
performed by T3 and T4. The elements T10 and T11 provide commitments to the
queried keyword W and the tag τD. The elements T6, T8, T12, T13, and T14 are used
to cancel out the extra elements upon the decryption.

6.7.3 Sequence of games

We use a sequence of games – according to the DSE method – for the security proof.
The first game is the semantic security game, and the last game is a perfectly secure
game. We show that each game is indistinguishable from the next game such that
we can prove that the first game is indistinguishable from the perfectly secure game.
The sequence of game are described below:

GameReal: This is the actual semantic security game for searchable encryption
schemes show in 2.4.

Game0: This game is the same as GameReal except that in the challenge phase,
the challenger sends a semi-functional searchable ciphertext to the adversary.

Gamek: In Gamek, where k ∈ {1, 2, ...q} and q is the total number of queries made
by the adversary, the first k trapdoor queries are responded by semi-functional trap-
doors and the rest queries are responded by normal trapdoors. Therefore, Gamek
is the same as Gamek−1 except that the response of the k-th query in Gamek is a
semi-functional trapdoor while in Gamek−1 the response is a normal trapdoor. In
Gameq, all the trapdoor queries and the challenge searchable ciphertext have a semi-
functional form.

96 Fully Secure Searchable Encryption

GameKeyword−Hiding: This game is identical to Gameq except that the challen-
ger creates the challenge searchable ciphertext using the message and but a random
keyword instead of the challenge keyword.

GameFinal: This game is the same as GameKeyword−Hiding except that in the
challenge phase, the challenger creates a semi-functional searchable ciphertext with
a random keyword and a random message.

We now prove that each game is indistinguishable from the next game from the
point of view of a PPT adversary.

Lemma 7. GameReal is indistinguishable from Game0 assuming that DLin is in-
tractable in group G.

Proof:
Suppose that there exists an adversary A which has a non-negligible advantage ε0 to
distinguishing the two games. Then we show that we can build an algorithm B that
breaks the DLin assumption with advantage ε0. Assume that algorithm B receives
a tuple (gz1 , gz2 , gz1z3 , gz4 , Zγ) from a challenger. Here, γ ∈ {0, 1} is a fair coin, such
that Z0 = gz2(z3+z4) and Z1 is picked randomly from G. The goal of algorithm B is
to break the DLin assumption by guessing the value γ correctly. To achieve a correct
guess, algorithm B interacts with A in the following game:

Setup In this phase B must provide public parameters for A. The algorithm B:

1. picks random b, c, d, t′, l, u, v, h, f, λ ∈ Zp,

2. defines gz1 = ga, gz2 = gx, gz2gt
′
= gt, U = guz1 , V = gvz1 ,H = ghz1 ,

F = gfz1 ,

3. computes Ω = e(gz1 , g)bcλ

Algorithm B then publishes the public parameters param as follow: (gz1)b, (gz1)bc, (gz1)y, gb, (gz2)bc, gbd, (gz2)bygbyt
′
, gy, (gz2)y,

U, V, V
1
l ,H, F,Ω


From the adversary’s point of view all the elements of param are chosen ran-
domly from the group G and GT . Therefore, param has the same distribution
as the public parameters of SEPF. The adversary also prepares two lists LT

and LW which are initially empty.

Query I In this phase A adaptively makes trapdoor queries. Suppose that A queries
the trapdoor of the keyword W . In this game, each trapdoor query must be
responded with a normal trapdoor. To respond the query, the algorithm B first
picks random s1, s2, s

′
3, s4, τD ∈ Zp and then simulates a normal trapdoor TW

in the following way:

6.7 Security Proof 97




T1 = (gz1)y(s1+s2)(gz1)−ys4

T2 = (gz1)−bcs1(gz1)bcs4

T3 = (gz1)−bcls1

T4 = (gz1)−cs2

T5 = gds2

 ,


T6 = g−bct′s2gbcs

′
3

T7 = g−ys′3g−λ

T8 = (gz1)−bct′s2(gz1)bcs
′
3

T9 = (gz1)−ys′3(gz1)−λ

 ,


T10 = (gz1)(uW+vτD+h)s1(gz1)(f+vτD)s4

T11 = (gz1)(uW+vτD+h)cs1

T12 = (gz1)−bcs1

T13 = (gz1)−bcs4

T14 = (gz1)cs4

 , τD


Let s3 = z2(s1+s2)+s′3. Then TW is a correct trapdoor, because TW is created
using a master secret key that has the same distribution with the master secret
key of the normal scheme. Also from the adversary’s point of view all the
values s1, s2, s3, and s4 are picked randomly, and the trapdoor has the same
distribution with the distribution of the normal trapdoor. Algorithm B then
sends TW to A. The adversary appends TW to the list LT , and W to the list
LW .

Challenge Once A decides that the query phase is over, she sends two challenge messages
(M0,M1) and two challenge keywords (W0,W1) to the algorithm B. Here, the
condition is that the challenge keywords must not been issued in Query Phase I.
Given the challenge messages and keywords, algorithm B first picks a message
Mβ and a keyword Wβ randomly, where β ∈ {0, 1}. Algorithm B then picks
random r′3, r4, r5, τC ∈ Zp and simulates the following searchable ciphertext
SMβ ,Wβ

:

Mβe(g
z1z3 , g)bcλe(gz1 , gz4)bcλ,

C1 = (Zγ)
bc

C2 = (Zγ)
y(gz1z3)

−t′yv
d (gz1)vr

′
3

C3 = ((gz1)
v
l)r4

C4 = (Zγ)
by(gz4)byt

′
gbdr

′
3

C5 = (gz1z3)−
bct′y

d (gz1)bcr
′
3

 ,


C6 = (gz1z3)y

C7 = (gz1z3)bc

C8 = (gz4)y

C9 = (gz4)bc

 ,


C10 = (gz1z3)g−

bct′y
d (gz1)bcr

′
3

C11 = (gz1)br4

C12 = (gz1z3)−(uWβ+vτC+h)(yt′
d)(gz1)(uWβ+vτC+h)(r′3+r4)

C13 = gr5(gz1z3)−(f+vτC)(yt′
d)(gz1)(f+vτC)r′3

C14 = (gb)r5

 , τC



.

Let r1 = z3, r2 = z4, r3 = −yt′

d z3 + r′3. Here, SMβ ,Wβ
is a normal searchable

98 Fully Secure Searchable Encryption

ciphertext if γ = 0 (i.e. Zγ = gz2(z3+z4)), because SMβ ,Wβ
is created using

correct public parameters and the values r1, r2 , r3, r4, and r5 are picked
randomly from the adversary’s point of view. Otherwise, Zγ is random and
SMβ ,Wβ

will have a semi-functional distribution. The algorithm B then sends
SMβ ,Wβ

to A.

Query II This is the same as Query Phase I except that the adversary cannot query for
the challenge keywords.

Output Finally, the adversary using LT outputs a bit β′ which represents its guess for β.
The adversary then sends the guess β′ to B, which uses this value to represent
its guess γ′ for the bit γ.

In case ε0, which is the advantage of A in distinguishing Game0 and GameReal, is
non-negligible, the advantage of B in guessing γ will be non-negligible, as required.

Lemma 8. Gamek−1 is indistinguishable from Gamek, for k = 1, ..., q, where q is
the maximum number of the trapdoor queries by the attacker, assuming that DLin is
intractable in group G.

Proof:
Similarly to the proof of Lemma 7, suppose that there exists an adversaryA which has
a non-negligible advantage εk to distinguishing the two games. Then we show that we
can build an algorithm B that breaks the DLin assumption with the non-negligible
advantage εk. Assume that the algorithm B receives a tuple (gz1 , gz2 , gz1z3 , gz4 , Zγ)
from a challenger. Here, γ is a fair coin such that Z0 = gz2(z3+z4) and Z1 is picked
randomly from G. The goal of algorithm B is to break the DLin assumption by
guessing the value γ correctly. To achieve a correct guess, the algorithm B interacts
with A in the following game to use the power of A for breaking DLin

Setup Algorithm B provides public parameters for A using the following steps:

1. picks random a, c, d, l, t̃, x, u, v, h, f, A,B, λ ∈ Zp,

2. defines gz1 = gb, gz2 = gy, U = (gz1)u(gz2)−A, V = (gz1)v(gz2), H =
(gz1)h(gz2)−B , F = (gz1)f .

3. computes Ω = e(gz1 , gz1)acvλe(gz1 , gz2)acλ.

The simulated public parameters param are: (gz1)a, (gz1)ac, (gz2)a, gz1 , (gz1)cx, (gz1)d, (gz2)t̃, gz2 , (gz2)x,

U, V, V
1
l ,H, F,Ω


Let t = t̃

z1
. Since from the point of view of A, all the elements of param are

picked randomly from the groups G and GT , param has a correct distribution.
The adversary A also prepares two lists LT and LW which are initially empty.

6.7 Security Proof 99

Query I, II Here, for more simplicity we explain Query I and II together. In these
phases, A adaptively makes q trapdoor queries. Suppose that A queries the
trapdoor of the keywordW . Here, based on the number of query, i, the response
of B to the query is one of the cases below:

• In case i ≤ k− 1, algorithm B picks y, s1, s2, s3, s4, τD ∈ Zp randomly and
generates a semi-functional trapdoor T ′

W using the master secret key and
public parameters.

• In case i = k, algorithm B picks random s3, s4 ∈ Zp and generates the
following trapdoor:




T1 = (Zγ)

a(gz2)−as4

T2 = (gz1z3)−ac(gz1)acs4

T3 = (gz1z3)−acl

T4 = (gz4)−ac

T5 = (gz4)d

 ,


T6 = (gz1z3)−cx(gz4)ct̃(gz1)cs3

T7 = (Zγ)
x(gz2)−s3g−λ

T8 = (gz1z3)−acx(gz4)act̃(gz1)acs3

T9 = (Zγ)
ax(gz2)−as3g−aλ

 ,


T10 = (gz1z3)(uW+vτD+h)(gz1)fs4((gz1)vgz2)τDs4

T11 = (gz1z3)(uW+vτD+h)c

T12 = (gz1z3)−ac

T13 = (gz1)−acs4

T14 = gacs4

 , τD


Let s1 = z3, s2 = z4,τD = AW + B. If γ = 0, then B has simulated a
normal trapdoor, otherwise B has simulated a semi-functional trapdoor.
Here, simulating a correct trapdoor is possible only if we choose τD =
AW +B. If any other value is chosen for τD, algorithm B must compute
gz1z2 in T10 and T11, which is not possible.

• In case i > k, given the keywordW , algorithmB picks random s1, s2, s3, s4, τD ∈
Zp randomly and generates a normal trapdoor TW .

Algorithm B then sends the simulated trapdoor toA. The adversaryA appends
the simulated trapdoor to the list LT , and W to the list LW .

Challenge In this phase A sends two challenge messages (M0,M1) and two chal-
lenge keywords (W0,W1) to B. Given the challenge messages and keywords, B
first flips a fair coin β ∈ {0, 1} and picks (Mβ ,Wβ). The algorithm B then picks
random r1, r2, r

′
3, r4, r

′
5, x̃ ∈ Zp and simulates the following semi-functional sear-

100 Fully Secure Searchable Encryption

chable ciphertext S′
Mβ ,Wβ

:

Mβe(g
z1 , g)acλ(r1+r2),

C1 = (gz1)cx(r1+r2)gcx̃(r1+r2)

C2 = (gz2)x(r1+r2)g−vx̃(r1+r2)(gz2(gz1)v)r
′
3

C3 = (gz2)
r4
l (gz1)

vr4
l

C4 = (gz2)(t̃+x̃)(r1+r2)g−dx̃(r1+r2)(gz1)dr
′
3

C5 = g−acx̃(r1+r2)(gz1)acr
′
3

 ,


C6 = (gz2)ar1

C7 = (gz1)acr1

C8 = (gz2)r2

C9 = (gz1)cr2

 ,


C10 = g−acx̃(r1+r2)(gz1)acr

′
3

C11 = (gz1)ar4

C12 = g−(uWβ+vτC+h)x̃(r1+r2)(gz1)(uWβ+vτC+h)(r′3+r4)

C13 = gr
′
5(g−fx̃(r1+r2))(gz1)fr

′
3(gz2)τCr′3g−vx̃(r1+r2)τC (gz1)vτCr′3

C14 = (gz1)r
′
5gx̃(r1+r2)τC

 , τC



.

Let x = x + x̃
z1
, τC = AWβ + B, r3 = − (r1+r2)x̃

z1
+ r′3, r5 = z2(r1+r2)τC x̃

z1
+ r′5.

Then all the elements of S′
Mβ ,Wβ

are picked randomly from groups G and GT .

Therefore, S′
Mβ ,Wβ

is a correct semi-functional searchable ciphertext. Observe

that simulating S′
Mβ ,Wβ

is possible only if we choose τC = AWβ+B. Otherwise,

to simulate the element C12, the algorithm B must compute g
z2
z1 which is not

possible.

Output Finally, the adversary using LT outputs a bit β′ which represents its guess
for β. The adversary then sends the guess β′ to B, which uses this value to
represent its guess γ′ for the bit γ.

In case εk, which is the advantage of A in distinguishing Gamek−1 and Gamek, is
non-negligible, the advantage of B in guessing γ will be non-negligible, as required.

Lemma 9. Gameq is indistinguishable from GameKeyword−Hiding assuming that
DLin is intractable in group G.

Proof:
Suppose that there exists an adversary A which has a non-negligible advantage εq+1

in distinguishing the two games. We show how we can build an algorithm B that
has a non-negligible advantage εq+1 in breaking the DLin problem. Assume that
algorithm B receives a tuple (gz1 , gz2 , gz1z3 , gz4 , Zγ) from a challenger, where γ is a
fair coin such that Z0 = gz2(z3+z4) and Z1 is picked randomly from G. Algorithm B
then performs the following game with the adversary A.

6.7 Security Proof 101

Setup Algorithm B provides the public parameters using the following steps:

1. pick random a, b, d̃, l̃, t, x, u, v, h, f̃ , f ′, λ ∈ Zp,

2. define gz1 = gc, (gz1)d̃(gz2)v = gd, gz2 = gy, U = (gz2)u, V = (gz2)v,H =

(gz2)h, F = (gz2)f̃ (gz1)f
′
.

3. compute Ω = e(gz2 , gz1)abvλ

The algorithm B then publishes the public parameters param as follow: gab, (gz1)ab, (gz2)a, gb, (gz1)bx, (gz1)bd̃(gz2)bv, (gz2)bt, gz2 , (gz2)x,

U, V, g
v
l̃ ,H, F,Ω


Let l = l̃z2. Then param has a correct distribution because from the adversary’s
point of view all the elements of param are picked randomly from G. The
adversary also prepares two lists LT and LW which are initially empty.

Query I In this game, each query must be responded with a semi-functional trap-
door. Suppose that A queries for the trapdoor of the keywordW . GivenW , the
algorithm B picks random s̃1, s2, s

′
3, s

′
4, ỹ, τD ∈ Zp and simulates the following

semi-functional trapdoor T ′
W :




T ′
1 = gaỹs̃1(gz2)

a
(uW+vτD+h)s2

f̃+vτD (gz1)aỹs2(gz2)−as′4

T ′
2 = g−abs̃1g

−ab(uW̄+vτD+h)s̃1
(f̃+vτD) (gz1)abs

′
4

T ′
3 = (gz2)−abl̃s̃1

T ′
4 = (gz1)−as2

T ′
5 = (g(z1)d̃(gz2)vs2

 ,


T ′
6 = g−bxs̃1(gz1)−bxts2g

b(
x(uW̄+vτD+h)s̃1

(f̃+vτD)
)
(gz1)bs

′
3

T ′
7 = g−xỹs̃1(gz1)−xỹs2(gz2)s

′
3(gz2)

− (uW+vτD+h)xs2
f̃+vτD

T ′
8 = g−abxs̃1(gz1)−abxts2g

ab(
x(uW̄+vτD+h)s̃1

(f̃+vτD)
)
(gz1)abs

′
3

T ′
9 = g−axỹs̃1(gz1)−axỹs2(gz2)as

′
3(gz2)

− (uW+vτD+h)axs2
f̃+vτD

 ,


T ′
10 = (gz2)(f̃+vτD)s′4g

−f ′s̃1(
uW+vτD+h

f̃+vτD
)
(gz1)f

′s′4

T ′
11 = (gz2)(uW+vτD+h)s̃1

T ′
12 = g−abs̃1

T ′
13 = g

−ab(
uW+vτD+h

f̃+vτD
)s̃1

(gz1)−abs′4

T ′
14 = g

a(
uW+vτD+h

f̃+vτD
)s̃1

(gz1)as
′
4

 , τD


Let s1 = s̃1

z1
, s3 = x(uW+vτD+h)s̃1

(f̃+vτD)z1
+ s′3, s4 = − (uW+vτD+h)s̃1

(f̃+vτD)z1
+ s′4, y =

(uW+vτD+h)z2
f̃+vτD

+ ỹ
z1
. Then the simulated T ′

W has a correct distribution be-

cause from the adversary’s point of view s1, s2, s3, s4, y are picked randomly

102 Fully Secure Searchable Encryption

and T ′
W uses a correct master secret key. The algorithm B sends T ′

W to A, who
appends T ′

W to LT , and W to LW .

Challenge Once A decides that the trapdoor query phase is over, she picks two
challenge messages (M0,M1) and two challenge keywords (W0,W1), and sends
them to B. Here, the condition is that the challenge keywords must not be used
in Query Phase I. Given the challenge messages and keywords B first flips a
fair coin γ ∈ {0, 1} and picks Mβ and Wβ . The algorithm B then picks random
x̃, r1, r2, r5, τC ∈ Zp, and simulates the following semi-functional searchable
ciphertext S′

Mβ ,Wβ
: A.

Mβe(g
z1 , g)acλ(r1+r2),

C ′
1 = (gz1)bx̃(r1+r2)(gz1z3)−bv

C ′
2 = (gz2)x̃(r1+r2)

C ′
3 = (gz4)

v
l̃

C ′
4 = (gz2)bt(r1+r2)(gz2)b(x̃−x)(r1+r2)(gbz2x̃(r1+r2))(gz1z3)bd̃

C ′
5 = (gz1z3)ab

 ,


C ′

6 = (gz2)ar1

C ′
7 = (gz1)abr1

C ′
8 = (gz2)r2

C ′
9 = (gz1)br2

 ,


C ′

10 = (gz1z3)ab

C ′
11 = (gz4)ab

C ′
12 = (Zγ)

uWβ+f̃+h

C ′
13 = gr5(gz1z3)f

′

C ′
14 = gbr5

 , τC



.

Let, r3 = z3, r4 = z4, τC = − f̃
v , x = x̃ − vz3

r1+r2
. If γ = 0, then S′

Mβ ,Wβ
is

the semi-functional searchable ciphertext of the message Mβ and the keyword
Wβ . Otherwise, the value Zγ is random and S′

Mβ ,Wβ
is the semi-functional

searchable ciphertext of a random message and a random keyword.

Query II This phase is identical to Query Phase I except that the adversary is not
allowed to query for the challenge keywords.

Output Finally, the adversary using LT outputs a bit β′ which represents its guess
for β. The adversary then sends the guess β′ to B, which uses this value to
represent its guess γ′ for the bit γ.

In case εq+1, which is the advantage ofA in distinguishingGameq andGameKeyword−Hiding,
is non-negligible, the advantage of B in guessing γ will be non-negligible, as required.

Lemma 10. GameKeyword−Hiding is indistinguishable from GameFinal assuming
that DBDH is intractable in group GT

6.7 Security Proof 103

Proof:
Suppose that there exists an adversary A which has a non-negligible advantage εq+2

in distinguishing the two games. We show how we can build an algorithm B that has
a non-negligible advantage εq+2 in breaking the DBDH assumption. Assume that
algorithm B receives a tuple (gz1 , gz2 , gz3 , Zγ) from a challenger, where γ is a fair
coin such that Z0 = e(g, g)z1z2z3 and Z1 is picked randomly from GT . Algorithm B
then performs the following game with the adversary A.

Setup The algorithm B provides the public parameters as follows:

1. pick random a, b, c, d̃, l, t, y, u, v, h, f ∈ Zp,

2. define gz1 = gx, gg = (gz3)d̃,Ω = e(gz1 , gz2)abc.

The algorithm B then publishes the public parameters param as follow: The
public parameters are:(

gab, gabc, gay, gb, (gz1)bc, (gz3)bd̃, gbyt, gy, (gz1)y, U, V, V
1
l ,H, F,Ω

)
Let λ = z1z2. Then param has a correct distribution because from the adver-
sary’s point of view all the elements of param are picked randomly from G.
The adversary also prepares two lists LT and LW which are initially empty.

Query I In this game, each query must be responded with a semi functional trap-
door. Suppose that A queries for the trapdoor of the keywordW . GivenW , the
algorithm B picks random s̃1, s2, s3, s4, y, τD ∈ Zp and simulates the following
semi-functional trapdoor T ′

W :




T ′
1 = (gz2)−ag−ays4

T ′
2 = g−abcs1gabcs4

T ′
3 = g−abcls1

T ′
4 = g−acs2

T ′
5 = (gz3)d̃s2

 ,


T ′
6 = (gz1)−bcs1g−bcts2gbcs3

T ′
7 = g−ys3

T ′
8 = (gz1)−abcs1g−abcts2gabcs3

T ′
9 = g−ays3

 ,


T ′
10 = (UWV τDH)s1(FV τD)s4

T ′
11 = (UWV τDH)cs1

T ′
12 = g−abcs1

T ′
13 = g−abcs4

T ′
14 = gacs4

 , τD


.

Let y = z2
s1+s2

. Then the simulated T ′
W has a correct distribution because it is

created using the correct master secret key, and from adversary’s point of view
all the values s1, s2, s3, s4, y are picked randomly. The algorithm B sends T ′

W

to A, who appends T ′
W to LT , and W to LW .

104 Fully Secure Searchable Encryption

Challenge Once A decides that the trapdoor query phase is over, she picks two
challenge messages (M0,M1) and two challenge keywords (W0,W1), and sends
them to B. Here, the condition is that the challenge keywords must not be used
in Query Phase I. Given the challenge messages and keywords B first flips a
fair coin γ ∈ {0, 1} and picks Mβ and Wβ . The algorithm B then picks random
x̄, r1, r2, r5, τC ∈ Zp, and simulates the following semi-functional searchable
ciphertext S′

Mβ ,Wβ
: A.

Me(Zγ)
abc,

C ′
1 = (gz3)bcx̃)

C ′
2 = (gz3)x̃y(gz1)

vy

d̃

C ′
3 = (V

1
l)r4

C ′
4 = (gz3)byt(gz3)bx̃y

C ′
5 = (gz1)

abcy

d̃

 ,


C ′

6 = gayr1

C ′
7 = gabcr1

C ′
8 = (gz3)yg−r1y

C ′
9 = (gz3)bcg−bcr1

 ,


C ′

10 = (gz1)
abc
d̃

C ′
11 = gabr4

C ′
12 = (gz1)(uR1+vτD+h) y

d̃ g(uR1+vτC+h)r4

C ′
13 = gr5(gz1)

fy+yvτC
d̃ (FV τC)r3

C ′
14 = (gb)r5

 , τC



.

Let, r2 = z3 − r1, r3 = y

d̃
z1. If γ = 0, then S′

Mβ ,R1
is the semi-functional

searchable ciphertext of the message Mβ and the random R1. Otherwise, the
value Zγ is random and S′

Mβ ,R1
is the semi-functional searchable ciphertext of

a random message and the random keyword R1.

Query II This phase is identical to Query Phase I except that the adversary is not
allowed to query for the challenge keywords.

Output Finally, the adversary using LT outputs a bit β′ which represents its guess
for β. The adversary then sends the guess β′ to B, which uses this value to
represent its guess γ′ for the bit γ.

In case εq+2, which is the advantage of A in distinguishing GameKeyword−Hiding and
GameFinal, is non-negligible, the advantage of B in guessing γ will be non-negligible,
as required.

Theorem 5. The SEPF scheme is fully secure assuming that DLin and DBDH
assumption are interactable.

By Lemmas 7, 8, 9, and 10 the advantage of any PPT adversary to distinguish
the semantic security game from GameFinal is ε0 + ε1 + ... + εq+1 + εq+2, which is
negligible. This completes the security proof.

6.8 Efficiency 105

6.8 Efficiency

In Table 6.1 we compare the efficiency of the SEPF scheme with the DIP scheme.
In this table we show the computations and elements of composite order group by
the sign “*”. Before we analyze the table we explain more details about the order of
the groups in our scheme and DIP. For a scheme that uses composite order groups
to be secure, the order of the group must be large enough, such that factoring the
primes of the order be infeasible. If the order of the group, say N , is made up of two
primes, say p1, p2 (i.e. N = p1p2), N must be consists of at least 1024 bits such that
factoring p1 and p2 is infeasible. In the DIP scheme, where the order of the group is
made up of four primes, the order of the group must be at least 2048 bits. However,
schemes that use prime order groups can achieve an equivalent level of security by
using a smaller order, which is typically 160 bits. This requirement on the size of
the groups makes the pairing and other group operations in composite order groups
considerably slower than in prime order groups. For example pairing operations in
composite order groups are at least 50 times slower than the pairing operations in
prime order groups [22].

Table 6.1 shows that the SEPF scheme searches more efficiently than the DIP
scheme. As mentioned, the complexity of two pairing operations in DIP, which use
composite order groups, is equivalent to the complexity of at least 100 pairing ope-
rations in prime order groups. This complexity is higher than the search complexity
of SEPF which is 14 prime order pairings.

The communication complexity of our scheme is higher than the communication
complexity of DIP. The DIP scheme uses a lower number of groups elements for the
searchable ciphertext and the trapdoor compared to SEPF. However, each group
element in DIP is larger than each group element in SEPF. We note that each group
element in DIP belongs to one of the subgroups of the composite order group. Here,
to achieve a more concrete comparison, we use some typical numerical values for the
group orders, which is 160 bits for our scheme and 2048 bits for DIP. We assume
that each prime of the group order in DIP has 512 bits. In this case, the size of each
group element in DIP is 3.2 times more than the size of each group element in SEPF.
Therefore, in this example, the size of the searchable ciphertext and the trapdoor in
DIP are 1536 and 1024 bits respectively which is lower than SEPF. In SEPF the size
of the searchable ciphertext and the trapdoor is 2240 bits. However, the size of the
public parameters in SEPF, which is 2400 bits, is lower than the size of the public
parameters in DIP, which is 3072 bits.

Table 6.1 shows that the DIP scheme performs fewer group multiplication and
exponentiations compared to SEPF. However, group operations in DIP are slower
than group operations in SEPF because the size of the elements in DIP is larger than
the size of the elements in SEPF. In general, the complexity of the group computation
is O(n), where n is the number of bits of the group elements. Therefore, a concrete
comparison in this respect can be done if the efficiency of the device performing the
computation is known.

106 Fully Secure Searchable Encryption

SEPF DIP10

Searchable
ciphertext 18 exp 4 exp*

Computational
Complexity Trapdoor 16 exp 7 exp*

14 2
prime composite

Search order order
pairing pairing

Searchable 14 3
Ciphertext group group

elements elements*
Communication 14 2
Complexity group group

Trapdoor elements elements*

Master
secret key 9σ σ
(bits)

Storage Public 15 6
Complexity parameters group group

elements elements*
Searchable 14 3
Ciphertext group group

elements elements*

Table 6.1: Comparison of the complexity of our scheme with the DIP scheme. The sign
“*” shows that the operation and the group element belongs to a composite order group.

6.9 Conclusion

We present the SEPF scheme which is fully secure in the public key setting. The
SEPF scheme is the first fully secure scheme which has the following features: i) SEPF
uses bilinear groups of prime orders, and ii) SEPF provides security based on a weak
assumption, which is the DLin assumption. We complete the security proof using
the dual system encryption methodology and the DLin assumption. Using bilinear
groups of prime order makes the search in SEPF more efficient than the search in
DIP, which uses composite order groups to achieve full security. The SEPF scheme
also has a lower storage complexity for the public parameters compared to DIP.
However, DIP has a lower communication complexity compared to SEPF. Therefore,

6.9 Conclusion 107

SEPF is suitable for encrypting highly sensitive documents, when the communication
complexity is not crucial.

108 Fully Secure Searchable Encryption

109

Chapter 7

Conclusions

In this section we summarize the contributions of this thesis, in relation to the Re-
search Question described in Chapter 1. We also highlight future research directions
in the area of searchable encryption.

In the introductory chapter we formulate the following research question:
Can we construct provably secure searchable encryption schemes with a
complexity as close as possible to plaintext search?

Our research question focuses on two aspects of searchable encryption: security and
efficiency. The security is evaluated based on the security model of the scheme and
the efficiency is evaluated based on the complexity of the construction. Since secu-
rity is never free, there is a trade off between these aspects. The best trade off is
achieved when the scheme achieves certain level of security with the lowest possible
complexity.

Before we show how we answer the research question, we explain the difficulties
of designing efficiently searchable encryption schemes. Provably secure schemes are
designed in a standard pattern; first choose a security model and then create a
construction for the scheme and then check whether the construction can be proven
to be secure in the chosen security model. In case the security proof cannot be
achieved, adjust the construction (by adding more random elements in appropriate
positions) and check the security proof again. This cycle is continued until a security
proof is found. In case the security cannot be proven in the chosen model, a new
security model should be chosen and the construction should be adjusted for the new
model. Once the security proof has been completed, the complexity of the scheme
is analyzed. The scheme is efficient if the construction has a lower complexity than
existing schemes in the same model. Hence, the main challenge is how to adjust the
construction in such a way that the security can be proven and in the same time to
keep the complexity as low as possible?

Complexity aspects of searchable encryption are not independent – reducing the
complexity of one aspect results in increasing the complexity of other complexity
aspects. For example, reducing the complexity of the search usually increases the

110 Conclusions

complexity of the searchable ciphertext or the trapdoor. Therefore, to keep the
complexity low during the design process, we need to focus on specific complexity
aspects.

In this thesis, we answer the research question by focusing on the complexity of
the search, which is the main functionality of searchable encryption. We propose
searchable encryption schemes which have a lower search complexity compared to
that of existing schemes. Each of our schemes achieves certain level of security. In
Chapter 3 we propose the SES scheme, which searches for a single keyword with
low complexity. The SES scheme is secure in the symmetric key security model. In
Chapter 4 we propose the SEPE scheme, which has a low search complexity and
enforces the access policy in the public key setting. The SEPE scheme is secure in
the random oracle model. The SEPS scheme, which is proposed in Chapter 5, has
a low complexity to search keywords with wildcards in the public key setting. The
SEPS scheme is secure in the selective security model. In Chapter 6, we propose
the SEPF scheme, which has a low search complexity in the public key setting. The
SEPF scheme is proven to be fully secure.

In Figures 7.1 and 7.2 we position our schemes in relation to existing schemes
with respect to the following aspects: the search efficiency, which is the main focus
of this thesis, the security, and the expressiveness of the query. In Figure 7.1 we
compare the symmetric key searchable encryption schemes, and in Figure 7.2 we
compare the public key searchable encryption schemes. These figures have the same
axes. On the security axis, well-known security models are positioned: the random
oracle model, the selective security and full security models. For the query functio-
nality we use the single keyword search and the full SQL query as the simplest and
the most expressive query respectively. Between these extreme points we catego-
rize the query functionality based on the level of expressiveness that existing schemes
achieve: the keyword with wildcard search, supporting the access policy enforcement,
the conjunctive keyword search and the conjunctive-disjunctive query. Supporting
wildcards in the query allows searching for several keywords with don’t care symbols.
Search with access policy enforcement allows searching only in authorized searchable
ciphertexts. Conjunctive keyword search supports “AND” among the keywords and
the conjunctive-disjunctive query supports both, “AND” and “OR”, among the key-
words. Unlike the query functionality, the search efficiency does not have any absolute
maximum and minimum values. We categorize the search efficiency of the schemes
based on the efficiency of the underlying primitives used for the search. These pri-
mitives, in increasing order of efficiency, are as follows: pairing in composite order
groups, pairing in prime order groups, cryptographic group operations, and search
without any group operation, which in the schemes discussed here is most efficient.

Figure 7.1 visualizes the position of the SES scheme in the world of symmetric
key searchable encryption. We focus again on the efficiency: for each type of query
functionality we show the scheme with the most efficient search. The figure shows
that SES has the lowest search complexity in the symmetric key setting. SES also
achieves the same level of security as most of the existing schemes (except [38]), which
are proposed in the random oracle model. However, the SES scheme can support only
the single keyword search. Schemes supporting more complex functionalities, have a

111

higher complexity. The schemes in [38] and in [27], which are more expressive than
our scheme, use less efficient primitives to perform the search compared to SES. While
there are some schemes that perform pre-processing for the searchable ciphertexts to
enable a wildcard search, there is currently no scheme that supports wildcards in the
trapdoor. Since the access policy enforcement is not relevant in the symmetric key
setting, there is no scheme which supports such functionalities.

Figure 7.2 visualizes the position of the SEPE, SEPS, and SEPF schemes in the
public key searchable encryption world. The SEPF scheme resides on the top of
the security axis. The SEPE and SEPS schemes are positioned in the middle of the
functionality and security axes. However, these schemes use primitives which are
as efficient as the primitives used in the schemes with the low security and simple
functionality. The SEPF, SEPS, and SEPS schemes are also more search efficient
than the existing schemes which are secure in the same model and support the same
functionalities. Therefore, our schemes achieve the best trade off between security and
efficiency. Each scheme achieves security, in a certain functionality, with the lowest
complexity. The figure shows that the scheme in [31] supports a more expressive
functionality compared to our schemes. However, this scheme has a higher search
complexity than our schemes due to the use of composite order pairings. Figure 7.2
also shows that there is no public key searchable encryption scheme which uses more
efficient primitives than the prime order pairing.

The comparison of Figures 7.1 and 7.2 shows that more effort has been devoted
to public key searchable encryption than symmetric key searchable encryption. To
explain the reason, we need to look at the applications in these settings. The main
application of symmetric key searchable encryption is to retrieve encrypted data
selectively from an honest but curious server. In such applications, the efficiency of
the search is crucial because the size of the data stored on the server is typically huge.
Otherwise, the user can retrieve and search the data by himself. To keep the search
complexity low, symmetric key searchable encryption schemes achieve a low security
level and support a low functionality. However, public key searchable encryption has
a larger variety of applications. In each application, the importance of the security
and the efficiency is different. For example, consider Scenario 2 explained in the
Introduction chapter, where Bob delegates a trapdoor to Carol in order to decrypt
his e-mails selectively. Typically e-mails are not large. Therefore, if Bob’s e-mails
are sensitive, a searchable encryption scheme in the standard model such as SEPF,
which has a higher security, can be used. However, in case Bob’s e-mails are not
sensitive, Bob would use a scheme in the random oracle model such as [10], which is
more efficient but has a weaker security.

In Figure 7.3 we compare the efficiency of our schemes with existing schemes that
are secure in the same model and support the same functionalities for the query. The
purpose of this figure is to show the impact of the efficient search on other complexity
aspects. This figure shows that the SES scheme is more efficient than the SI and SSE
schemes to search and update the database simultaneously. The cost of this efficiency
is a higher complexity for the trapdoor of SES. With respect to the other complexity
aspects, SES stands in the middle. The SEPE scheme is more efficient than the DGD
scheme to perform the search and the policy enforcement simultaneously. We assume

112 Conclusions

that the DGD scheme uses a predicate encryption scheme to enforce the policy. The
price that we pay for this efficiency is a higher communication complexity of the
trapdoor. The SEPS scheme, is more efficient than the IP and BW schemes for
the following aspects: the search computational complexity, the master secret key
storage and the trapdoor communication. However, SEPS has a higher computational
complexity of the searchable ciphertext. The SEPF scheme is more efficient than
the DIP scheme to search and store the public parameters. However, SEPF has a
higher communication complexity compared to DIP. That is why these schemes are
recommended to be used in applications where the efficiency for the search is crucial
and there are enough resources for the other complexity aspects.

Future Work the direction of future work is to improve the functionality, the secu-
rity and the efficiency of searchable encryption towards supporting full SQL queries,
achieving full security, and deploying more efficient primitives than pairings. In this
thesis we improved the efficiency of searchable encryption. While many researchers
have devoted a significant effort, there are still a large number of open problems.
Here, we highlight some of the open problems for future work:

• In the symmetric key setting:

– How to construct a symmetric key searchable encryption scheme which
supports wildcards in the trapdoor? Existing schemes that support wild-
cards, either are not provably secure or not efficient. These schemes trans-
form every possible keyword to a searchable ciphertext, such that the sear-
chable ciphertexts match a trapdoor with wildcards.

– How to construct an expressive symmetric key searchable encryption scheme
which does not use group operations? Existing schemes use group mul-
tiplications and exponentiation for the search which makes the scheme
costly.

• In the public key setting:

– How to construct a fully secure searchable encryption scheme which uses
prime order pairings? While there are a few schemes which achieve full
security, these schemes use composite order pairings. Since composite
order pairings are prohibitively slow, existing fully secure schemes are not
practical.

– How to construct a scheme which performs fuzzy search? The fuzzy search
allows searching for keywords that are the same as the queried keyword
except for a few letters. This type of the search functionality is suitable
for applications where typos occur frequently.

– How to construct a searchable encryption scheme which searches for a part
of keywords, (e.g. the prefix keyword search, the suffix keyword search,
etc)? A trivial solution is to use a scheme which searches keywords with
wildcards. In this case, several trapdoors should be sent to the server,

113

where each trapdoor contains the queried part of the keyword and wild-
cards. The queried part of the keyword resides in different positions in each
trapdoor, such that the rest of the trapdoor contains wildcards. Hence,
the refined problem is how to search for a part of keywords using one
trapdoor only?

Figure 7.1: Security and query functionality of our scheme in the symmetric key setting.

114 Conclusions

Figure 7.2: Security and query functionality of our schemes in the public key setting.

115

Figure 7.3: Comparing the efficiency of our schemes with existing schemes.

116 Conclusions

117

Author References

[1] S. Sedghi, H. Hartel, W. Jonker, and S. Nikova. Privacy enhanced access control
by means of policy blinding. In 7th Information security Practice and Experience
Conference (ISPEC 2011). Springer, 2011.

[2] S. Sedghi, P. van Liesdonk, S. Nikova, P. Hartel, and W. Jonker. Searching
keywords with wildcards on encrypted data. In 7th Conference on Security and
Cryptography for Networks (SCN), pages 138–153. Springer, 2010.

[3] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and W. Jonker. Computa-
tionally efficient searchable symmetric encryption. In 7th VLDB Workshop on
Secure Data Management (SDM), pages 87–100. Springer, 2010.

118 AUTHOR REFERENCES

119

Other References

[4] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-
Lee, G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consis-
tency properties, relation to anonymous ibe, and extensions. Journal of Cryp-
tology, 21(3):350–391, 2008.

[5] M. Abdalla, E. Kiltz, and G. Neven. Generalized key delegation for hierarchi-
cal identity-based encryption. In 12th European Symposium On Research In
Computer Security (ESORICS), pages 139–154. Springer, 2007.

[6] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for desi-
gning efficient protocols. In 1st Conference on Computer and Communications
Security (CCS), pages 62–73. ACM, 1993.

[7] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based
encryption. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[8] C. Blundo, V. Iovino, and G. Persiano. Private-key hidden vector encryption
with key confidentiality. In 8th Conference on Cryptology and Network Security
(CANS), pages 259–277. Springer, 2009.

[9] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In 24th Crypto-
logy Coneference (CRYPTO), pages 41–55. Springer, 2004.

[10] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryp-
tion with keyword search. In 23nd Conference on Theory and Applications of
Cryptographic Techniques (EUROCRYPT), pages 506–522. Springer, 2004.

[11] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing.
SIAM Journal of Computing, 32:586–615, March 2003.

[12] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In 4th Theory of Cryptography Conference (TCC), pages 535–554, 2007.

[13] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption
(without random oracles). In 26th Cryptology Conference (CRYPTO), pages
290–307. Springer, 2006.

120 OTHER REFERENCES

[14] R. W. Bradshaw, J. E. Holt, and K. E. Seamons. Concealing complex policies
with hidden credentials. In 12th Conference on Computer and Communications
Security (CCS), pages 146–157. ACM, 2004.

[15] J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy. Blind and anonymous
identity-based encryption and authorised private searches on public key encryp-
ted data. In 12th Conference on Practice and Theory in Public-Key Cryptography
(PKC), pages 196–214, 2009.

[16] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption
scheme. In 22nd Conference on Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT), pages 255–271. Springer, 2003.

[17] A. De Caro, V. Iovino, and G. Persiano. Fully secure anonymous hibe and secret-
key anonymous ibe with short ciphertexts. In 4th Conference on Pairing-Based
Cryptography (Pairing), pages 347–366. Springer, 2010.

[18] Y. C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on
remote encrypted data. In 3rd Conference on Applied Cryptography and Network
Security (ACNS), pages 442–455, 2005.

[19] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric
encryption: Improved definitions and efficient constructions. In 14th Conference
on Computer and Communications Security (CCS), pages 79–88. ACM, 2006.

[20] C. Dong, G. Russello, and N. Dulay. Shared and searchable encrypted data
for untrusted servers. In 22nd Cnference on Data and Applications Security
(DBSec), pages 127–143. Springer, 2008.

[21] C. Dong, G. Russello, and N. Dulay. Shared and searchable encrypted data for
untrusted servers. In 22nd Workshop on Data and Application Security (DBSec),
pages 127–143. Springer, 2008.

[22] D. M. Freeman. Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In 29th Conference on Theory and Applications
of Cryptographic Techniques (EUROCRYPT), volume 6110, page 45, 2010.

[23] K. Frikken, M. Atallah, and J. Li. Attribute-based access control with hidden
policies and hidden credentials. IEEE Transaction on Computer, 55:1259–1270,
2006.

[24] C. Gentry. Practical identity-based encryption without random oracles. In 25th
Conference on Theory and Applications of Cryptographic Techniques (EURO-
CRYPT), pages 445–464. Springer, 2006.

[25] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In 8th Confe-
rence on the Theory and Application of Cryptology and Information Security:
Advances in Cryptology (ASIACRYPT), pages 548–566. Springer, 2002.

OTHER REFERENCES 121

[26] E. J. Goh. Secure indexes. In Cryptology ePrint Archive, Report 2003/216, 2004.

[27] P. Golle, Staddon J, and B. R. Waters. Secure conjunctive keyword search
over encrypted data. In 2nd Conference on Applied Cryptography and Network
Security (ACNS), pages 31–45, 2004.

[28] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In 14th Conference on Computer
and Communications Security (CCS), pages 89–98. ACM, 2006.

[29] Y. Hwang and P. Lee. Public key encryption with conjunctive keyword search
and its extension to a multi-user system. In 1st Conference on Pairing-Based
Cryptography (Pairing), pages 2–22. Springer, 2007.

[30] V. Iovino and G. Persiano. Hidden-vector encryption with groups of prime
order. In 2nd Conference on Pairing-Based Cryptography (Pairing), pages 75–
88. Springer, 2008.

[31] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In 28th Conference on Theory
and Applications of Cryptographic Techniques (EUROCRYPT), pages 146–162.
Springer, 2008.

[32] B. Waters L. Allison. New techniques for dual system encryption and fully secure
hibe with short ciphertexts. In 7th Theory of Cryptography Conference (TCC),
pages 445 – 479. Springer, 2010.

[33] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully se-
cure functional encryption: Attribute-based encryption and (hierarchical) inner
product encryption. In 29th Conference on Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT), pages 62–91, 2010.

[34] J. Li and N. Li. Oacerts: Oblivious attribute certificates. In 3rd Conference on
Applied Cryptography and Network Security (ACNS), pages 301–317. Springer,
2005.

[35] T. Nishide, K. Yoneyama, and K. Ohta. Attribute-based encryption with par-
tially hidden encryptor-specified access structures. In 6th Conference on Applied
Cryptography and Network Security (ACNS), pages 111–129. Springer, 2008.

[36] T. Okamoto and K. Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In 30th Cryptology Conference
(CRYPTO), pages 191–208, Berlin, Heidelberg, 2010. Springer-Verlag.

[37] A. Sahai and B. Waters. Fuzzy identity-based encryption. In 25th Conference
on Theory and Applications of Cryptographic Techniques (EUROCRYPT), pages
457–473. Springer, 2005.

122 OTHER REFERENCES

[38] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In 6th
Conference on Theory of Cryptography (TCC), pages 457–473. Springer, 2009.

[39] E. Shi and B. Waters. Delegating capabilities in predicate encryption systems.
In 35th Conference on Automata, Languages and Programming (ICALP), pages
560–578. Springer, 2008.

[40] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on
encrypted data. In 21st IEEE Symposium on Security and Privacy, page 44.
IEEE Computer Society, 2000.

[41] B. Waters. Efficient identity-based encryption without random oracles. In 24th
Conference on Theory and Applications of Cryptographic Techniques (EURO-
CRYPT), pages 114–127. Springer, 2005.

[42] B. Waters. Dual system encryption: Realizing fully secure ibe and hibe under
simple assumptions. In 29th Cryptology Conference (CRYPTO), pages 619–636.
Springer, 2009.

[43] Y. Yang, F. Bao, X. Ding, and R. Deng. Multiuser private queries over encrypted
databases. International Journal of Applied Cryptology, 1(4):309–319, 2009.

Titles in the IPA Dissertation Series since 2005

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty of
Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fa-
culty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffe-
lers. Formal Specification and Ana-
lysis of Hybrid Systems. Faculty of
Mathematics and Computer Science
and Faculty of Mechanical Engineering,
TU/e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics
and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Ti-
med Automata - Techniques and Appli-
cations. Faculty of Science, Mathema-
tics and Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences,
VUA. 2006-07

C.-B. Breunesse. On JML: topics
in tool-assisted verification of JML pro-
grams. Faculty of Science, Mathematics
and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Mole-
cular Simulations. Faculty of Biomedi-
cal Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and Na-
tural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data

Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermi-
nistic and Probabilistic Choices. Faculty
of Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal me-
thods and protocol standardization. Fa-
culty of Mathematics and Computer
Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising
Interface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Imple-
mentation and Composition. Faculty
of Mathematics and Natural Sciences,
UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Abnor-
malities in Locally Autonomous Distri-
buted Systems. Faculty of Mathematics
and Computing Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications
of Process and Program Algebra. Fa-
culty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and Co-
verage. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encryp-
ted data. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Infor-
mation in Software Development Pro-
cesses. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Enginee-
ring, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analy-
sing and Optimising System Behaviour
in Time. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing and Impro-
ving the Quality of Modeling: A Series
of Empirical Studies about the UML.
Faculty of Mathematics and Computer
Science, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration
and Delivery. Faculty of Natural
Sciences, Mathematics, and Computer
Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty

of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fa-
culty of Mathematics and Computer
Science, TU/e. 2007-19

W. Pieters. La Volonté Machi-
nale: Understanding the Electronic Vo-
ting Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Idio-
matic Crosscutting Concerns in Embed-
ded Systems. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of High-
tech Multi-disciplinary Systems. Fa-
culty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Parsing, and
Assimilation of Language Conglome-
rates. Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Verifi-
cation of Optimistic Fair Exchange Pro-
tocols. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Ma-
thematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Algo-
rithms: Two Taxonomies and a Toolkit.
Faculty of Mathematics and Computer
Science, TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Expe-
rimental Study of Geometric Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Speci-
fications Using Context-Sensitive Wild-
cards. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-14

P. E. A. Dürr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2008-15

E.M. Bortnik. Formal Methods in
Support of SMC Design. Faculty of Me-
chanical Engineering, TU/e. 2008-16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent

Stream Processing Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applications.
Faculty of Mathematics and Computer
Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Methods
and Constraint Solving. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Ex-
perimental Aspects of Pattern Evalua-
tion. Faculty of Mathematics and Na-
tural Sciences, UL. 2008-22

R. Brijder. Models of Natural Compu-
tation: Gene Assembly and Membrane
Systems. Faculty of Mathematics and
Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Re-
writing and Its Certification. Faculty
of Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Deve-
lopment. Faculty of Mathematics and
Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochas-
tic Time in Process Algebras for Per-
formance Evaluation. Faculty of

Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2008-28

R.S. Marin-Perianu. Wireless Sen-
sor Networks in Motion: Clustering Al-
gorithms for Service Discovery and Pro-
visioning. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Functio-
nal Programs: Sparkle, a proof assistant
for Clean. Faculty of Science, Mathema-
tics and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Effi-
cient Rewriting Techniques. Faculty

of Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for
Context Sensitive Program Transforma-
tion. Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reaso-
ning about Java programs in PVS using
JML. Faculty of Science, Mathematics
and Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Sto-
rage Devices. Integration in Energy-
Constrained Mobile Systems. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical
Engineering, Mathematics, and Compu-
ter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection Sys-
tems. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digital

Exchange. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness and Avai-
lability: Building Computer Algebra on
top of Proof Assistants and making
Proof Assistants available over the Web.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of
Science, Mathematics and Computer
Science, RU. 2009-19

B. Ploeger. Improved Verification Me-
thods for Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Ana-
lysis of Probabilistic Models. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Stra-
tegies for Parameter Optimization and
Their Applications to Medical Image
Analysis. Faculty of Mathematics and
Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computa-
tional Complexity of Probabilistic Net-
works. Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement. Fa-
culty of Mathematics and Natural
Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers. Fa-
culty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access
Control for Dynamic Collaborative En-
vironments. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-26

J.F.J. Laros. Metrics and Visuali-
sation for Crime Analysis and Geno-
mics. Faculty of Mathematics and Na-
tural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Electrical
Engineering, Mathematics, and Compu-
ter Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking
Nondeterministic and Randomly Timed
Systems. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented
Languages. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking Ti-
med Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Software.
Faculty of Mathematics and Natural
Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Disco-
very of Knowledge - Foundations, Imple-
mentations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Com-
ponent Connectors. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Faculty
of Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: For-
mal Analysis of Epidemic Protocols. Fa-
culty of Sciences, Department of Com-
puter Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty
of Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2011-03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement.
Faculty of Mathematics and Natural
Sciences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Faculty
of Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based
Confidentiality Risk Assessment in Net-
works of Organizations. Faculty of

Electrical Engineering, Mathematics &
Computer Science, UT. 2011-06

M. van der Bijl. On changing mo-
dels in Model-Based Testing. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis
of Information Leakage in Probabilistic
and Nondeterministic Systems. Faculty
of Science, Mathematics and Computer
Science, RU. 2011-09

M. Atif. Formal Modeling and Verifi-
cation of Distributed Failure Detectors.
Faculty of Mathematics and Computer
Science, TU/e. 2011-10

P.J.A. van Tilburg. From Compu-
tability to Executability – A process-
theoretic view on automata theory. Fa-
culty of Mathematics and Computer
Science, TU/e. 2011-11

Z. Protic. Configuration management
for models: Generic methods for mo-
del comparison and model co-evolution.
Faculty of Mathematics and Computer
Science, TU/e. 2011-12

S. Georgievska. Probability and Hi-
ding in Concurrent Processes. Faculty
of Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition Mo-
del: Achieving Naturalness in Runtime
Enforcement. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2011-14

M. Raffelsieper. Cell Libraries and
Verification. Faculty of Mathematics
and Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow
and Visibility on Triangulated Terrains.
Faculty of Mathematics and Computer
Science, TU/e. 2011-16

Y.-J. Moon. Stochastic Models
for Quality of Service of Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-17

R. Middelkoop. Capturing and Ex-
ploiting Abstract Views of States in OO
Verification. Faculty of Mathematics
and Computer Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Im-
proving the Quality of Model Transfor-
mations. Faculty of Mathematics and
Computer Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Science,
Mathematics and Computer Science,
RU. 2011-20

H.J.S. Basten. Ambiguity Detection
for Programming Language Grammars.
Faculty of Science, UvA. 2011-21

M. Izadi. Model Checking of
Component Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-22

L.C.L. Kats. Building Blocks for Lan-
guage Workbenches. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2011-23

S. Kemper. Modelling and Analy-
sis of Real-Time Coordination Patterns.
Faculty of Mathematics and Natural
Sciences, UL. 2011-24

J. Wang. Spiking Neural P Systems.
Faculty of Mathematics and Natural
Sciences, UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and
Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Pro-
gram Properties with Attribute Gram-
mars, Revisited. Faculty of Science,
UU. 2012-02

Z. Hemel. Methods and Techniques
for the Design and Implementation of
Domain-Specific Languages. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2012-03

T. Dimkov. Alignment of Organi-
zational Security Policies: Theory and
Practice. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2012-04

S. Sedghi. Towards Provably Se-
cure Efficiently Searchable Encryp-
tion. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2012-05

