

Event Composition Model:
Achieving Naturalness in Runtime Enforcement

Somayeh Malakuti Khah Olun Abadi

Ph.D. dissertation committee:
Chairman and secretary :
Prof. Dr. Ir. A.J. Mouthaan, University of Twente, The Netherlands

Promoter :
Prof. Dr. Ir. Mehmet Akşit, University of Twente, The Netherlands

Assistant promoter :
Dr. Christoph Bockisch, University of Twente, The Netherlands

Members:
Prof. Dr. Jaco van de Pol, University of Twente, The Netherlands
Prof. Dr. Jozef Hooman, Radboud University, The Netherlands
Prof. Dr. Wouter Joosen, Katholieke Universiteit Leuven, Belgium
Dr. Grigore Rosu, University of Illinois at Urbana-Champaign, The United States
Dr. Oleg Sokolsky, University of Pennsylvania, The United States
Dr. Ir. J. Broenink, University of Twente, The Netherlands

CTIT Ph.D. thesis series no. 11-205. Center for Telematics and Information Tech-
nology (CTIT), P.O. Box 217 - 7500 AE Enschede, The Netherlands.

This work has been partially carried out as part of the TRADER project under
the responsibility of the Embedded Systems Institute. This project is partially
supported by the Dutch Government under the Bsik program. The work in this
thesis has been carried out under the auspices of the research school IPA (Institute
for Programming research and Algorithmics).

ISBN 978-90-365-3246-4
ISSN 1381-3617 (CTIT Ph.D. thesis series no. 11-205)
DOI: 10.3990/1.9789036532464
IPA Dissertation Series 2011-14

Cover design by Ram Kottumakulal and Javad Malakuti
Printed by PrintPartners Ipskamp, Enschede, The Netherlands
Copyright c⃝ 2011, Somayeh Malakuti Khah Olun Abadi, Enschede, The Nether-
lands. All rights reserved.

Event Composition Model:
Achieving Naturalness in Runtime Enforcement

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
Prof. Dr. H. Brinksma,

on account of the decision of the graduation committee,
to be publicly defended

on Thursday the 15th of September 2011 at 12.45

by

Somayeh Malakuti Khah Olun Abadi

born on the 23rd of September 1980
in Tehran, Iran

This dissertation is approved by

Prof. Dr. Ir. Mehmet Akşit (promoter)
Dr. Christoph Bockisch (assistant promoter)

To my parents
Hassan and Nazanin

Acknowledgements

Life is a composition of events, a composition that is guided by our dreams. No
matter how big and unreachable our dreams seem to be, the events of our life are
composed in such a way that they come true, with the help of several people. Study-
ing till Ph.D. level was an old dream of mine. During this journey I encountered
several people who played a significant role to convert my dream to reality. I would
like to thank all these people at this very important stage of my life.

In the first place, I must thank Prof. Mehmet Aksit who converted my dream to
reality by offering me a Ph.D. position and by accompanying me in every step of
this long journey. Our frequent meetings in which Mehmet was constantly inspiring
me and was sharing his knowledge with me, our long paper-writing meetings which
we used to have our dinner at McDonald’s and until 2 or 3 o’clock in the morning
Mehmet was patiently teaching me that there is a huge difference between writing
poems and technical papers, our midnight meetings about the core concepts of the
thesis, our long thesis-writing nights when we were correcting the thesis in Starbucks,
our conference trips where we were writing papers in taxi, airport and airplane, the
opportunities that Mehmet created for me to meet excellent researchers all around
the world, our frequent discussions about Rumi and his poems, all and all fill my
eyes with the tears of gratitude. I am also very thankful to the family of Mehmet
for all the attention that they gave me during last four years.

In the first year of my Ph.D., I had the chance to work with Dr. Bedir Tekinerdogan
as my daily supervisor. I appreciate his contribution to my research, and I wish him
the best of success in his life in Turkey. In the end of my second year, Dr. Christoph
Bockisch joined the group and kindly offered his help to us. His concrete view on
the subjects played an important role in achieving and publishing concrete results.
I am also very thankful to him for this effort.

ix

I learned about runtime enforcement and its application in TRADER during the
time I was closely working with Prof. Jozef Hooman. I thank Prof. Hooman for his
effort in my research, and for being a member of my committee. I would also like to
thank the other members of the TRADER project, in particular David Watts and
Roland Mathijssen for their valuable feedbacks in our project meetings.

I would also like to thank the other members of my committee: Prof. Wouter Joosen,
Prof. Jaco van de Pol, Dr. Jan Broenink, Dr. Oleg Sokolsky and Dr. Grigore Rosu.
It is an honor for me that you dedicated your time to read my thesis, and to travel
long distances to participate in my defense. Your feedbacks improved the quality of
my thesis.

I am very thankful to the members of the TRESE group, whose loving, caring and
cheerful attitude eased my job to get adapted to the new country and the new
culture. In particular, I would like to thank Hasan (Super Hasan) and Ismenia for
helping me through the formal procedures, and in finding my way in the Netherlands.
I am very thankful to Eduardo for helping me in the final arrangements for the thesis.
I thank Lodewijk and his Compose* team, whose work inspired me a lot. I am very
grateful to our secretaries during last four years, Ellen, Joke, Hilda, Nathalie and
Jeanette for their valuable administrative support. I appreciate all the love and
attention that Jeanette gave me during tough times.

I am very grateful to Prof. Shmuel Katz for the inspiring topics that he brought
up during our meetings. During his short visit from TRESE, we published two
papers in highly prestigious conferences, which were also inspiring for the concepts
of this thesis. I would also like to thank Dr. Oleg Sokolsky and Dr. Klaus Havelund
for giving me the opportunity to attend Dagstuhl seminar on Runtime Verification,
Diagnosis, Planning and Control for Autonomous Systems. It was an inspiring
event and motivated me to continue my research in the field of runtime verification.
Shortly before finishing the thesis, I had a chance to attend the AOM-ReMoDD
workshop in Barbados. The productive discussions in the workshop inspired me for
the presentation of this thesis. I thank Dr. Jorg kienzle, Prof. Robert France, Dr.
Ana Moreira, and the other participants of the workshop for this matter.

When moving to another country, we must put all of our beloved ones behind, with
a great hope that we may meet other caring, loving and reliable people. I consider
myself very lucky that I could meet such people during my stay in the Netherlands.
Along this line, I would like to send my very special thanks to Nima, my first Iranian
friend in the Netherlands, and his girlfriend Katja for their constant unconditional
support and attention during last four years. I am convinced that it would be much
more difficult to settle my life in the Netherlands without their help.

I am very thankful to Ram and Saba for being true friends in tough times, when I
needed the pain to be lifted from my heart by people who could truly feel the pain
in their heart. I wish I could find a way to express my gratitude to you both for
receiving me in your house, in the last week of the thesis-writing period when the
stress had blocked my progress. I also thank Ram for giving his artistic touch to
the cover of my thesis.

The friendship with Amirmehdi, Matin, Faiza, Faizan, little Farzan, Esly, Hadi,
Narges, Andre, Robin, and many others created a lot of unforgettable moments for
me. I hope our friendship lasts, regardless of our geographical location.

Although I had to leave my lovely friends and move to the Netherlands, they taught
me that a true friendship is never influenced by geographical distances. My dear
Fereshteh, when I met you for the first time, I never imagined that you will be THE
friend who would accompany me along this way. Thanks a lot for always being there
for me, listening to me, holding my hand, laughing with me, crying with me, and
for all the love and attention that you gave me during our 16 years of friendship.
Your personality truly justifies the meaning of your name, i.e. an angel.

I never consider it a coincident that in the beginning of my career as a software
engineer I had Mr. Yusef Mehrdad as my technical manager. Dear Yusef, there
are many many things that I must thank you for. I thank you for watching every
single step of mine to make sure that I am in the right path; for teaching me that to
discover more, our heart must accompany our brain, for believing in me more than
I did; for pushing me toward my dreams; and for all the good time that you, your
lovely wife Roya, and your family Mohammad and Raana make me when I visit
Iran.

Dear Narges, you taught me that if friends want to support each other, nothing,
even the long distance between Australia and the Netherlands, can prevent them. I
think if something happened to me in the Netherlands, you would be the first one
to discover it, even before my friends in the Netherlands. Thanks a lot for all the
love and attention that you gave me during last four years.

There are many other friends whose presence always encourages me to travel to
Iran. I specifically thank my dear friend Ali Abdolrahmani who has always been
a great source of inspiration for me. I am also very thankful to Nasrin, Reza,
Azadeh, Hamed, and my cousin Zahra for all their remote support. I send very
special thanks to Roxana, whose magical words easily took me out of dark and
tough times. Although we met for a short time, I have learnt a lot from her and I
still feel the influence of her words in my life. I also would like to thank Dr. Saeed
Jalili, the supervisor of my Master assignment, for approving my thesis to be in

the field of aspect-orientation, and for all the support that he provided during my
assignment.

I am grateful to my brothers Nasser, Yasser, Javad and to my sister-in-law Fatemeh,
for taking good care of our parents and for making very good time for me when I
visit Iran. After being away from you, I realize your significant role in my life. In
particular, I thank Nasser for perfectly playing the role of a big brother, who always
assures me that I should not be worried about our family because he has everything
under control. Fatemeh, thanks a lot for becoming the sister that I did not have. I
know how hard it can be to keep a balance between emotion and logic in a family
whose majority of members are males. I wish I was there to give you a hand.

Yasser, our short age difference makes us emotionally very close to each other. Thank
you for all the love and attention that you always give me, for constantly boosting
my self-confidence, and for openly listening to my feelings and guiding me during
hard times.

Javad thank you for making me feel as a big sister, for all the motivations that you
give me, for all the jokes that you make to cheer me up, and for giving your artistic
touch to the cover of my thesis. I appreciate your effort to occupy my place in mom’s
heart, which does not seem to be as easy as occupying my room in the house.

I dedicate a very special thank to my parents, for always believing in me and doing
whatever they could to make this happen. I deeply thank them for being a motiva-
tion for my progress, rather than a barrier; for constantly reminding me that ”easy
days will come soon if I am patient enough”; for always assuring me that everything
is all right with them, although I knew they were going through all those tough
times without me being there for them. This thesis was a team work, you were the
most significant members of the team, and you always will be.

Somayeh Malakuti
September 2011

Abstract

Runtime enforcement techniques are introduced in the literature to cope with the
failures that occur while software is being executed in its target environment. These
techniques may also offer diagnosis and recovery actions to respectively identify the
causes of the failures and to heal them.

Since the development of runtime enforcement techniques can be complex, error-
prone and costly, runtime enforcement frameworks are proposed to ease the devel-
opment process. To this aim, these frameworks support various languages to specify
the desired properties of software, to express the necessary diagnosis rules for de-
tecting the causes of failures, and to define the recovery strategies. Based on the
specifications, runtime enforcement frameworks generate code and integrate it with
the software to be verified and/or healed. The code is usually generated in the same
language that is used to implement the software, or in an intermediate language
that abstracts the software.

Unfortunately, the specification languages employ the elements of the programming
languages of the generated code, and therefore, they fall short in representing the
runtime enforcement concepts naturally. By the term concept we mean a fundamen-
tal abstraction or definition that exists in most runtime enforcement techniques. As
a result, implementation of runtime enforcement concepts may suffer from scattering
and tangling. This reduces the modularity and compose-ability of the specifications
of runtime enforcement concepts. Moreover, adoption of the elements of the under-
lying languages in specifications causes the specifications to become too specific to
the employed programming languages and platforms. This reduces the reusability
and comprehensibility of the specifications, and increases their complexity.

To facilitate a natural representation of runtime enforcement concepts, this thesis in-
troduces a computation model termed as Event Composition Model, which respects
the characteristic features of the runtime enforcement concepts. This computation

xiii

model offers a set of novel linguistic abstractions, called events, event modules,
reactors, reactor chains, event composition language and event constraint
language. Events represent changes in the states of interest. Event modules are
means to group events, have input-output interfaces, and implementations. Reac-
tors are the implementations of event modules. Reactor chains are groups of related
reactors that process events in a sequence. The event composition language facili-
tates selecting the events of interest; and the event constraint language facilitates
defining constraints among reactors or event modules.

An important issue is how to implement Event Composition Model effectively, by
using current programming languages. For this purpose, the thesis evaluates the rel-
evant programming languages with respect to their support for implementing Event
Composition Model. The evaluation reveals that none of the existing languages can
implement the model such that the desired quality attributes, such as modularity,
abstractness and compose-ability are accomplished. Nevertheless, aspect-oriented
languages offer promising features for this matter.

The thesis introduces the EventReactor language, as the successor of the Compose*
aspect-oriented language, that implements Event Composition Model. The language
is open-ended for new sorts of events and reactor types. This helps to represent new
sorts of concepts. It makes use of the Prolog language as its event composition
language. Reactors and reactor chains are parameterizable, and are defined sepa-
rately from event modules. This increases the reusability of event modules and their
implementations.

The systems of today are more and more implemented using multiple languages and
this trend seems to continue also in the near future. The current runtime enforce-
ment frameworks, unfortunately, fall short in supporting software implemented in
different programming languages. In Event Composition Model, the event composi-
tion language facilitates selecting events from systems implemented in various lan-
guages. In the EventReactor language, the specifications are defined independently
from any programming language, and the compiler of EventReactor facilitates gen-
erating code for Java, C and .Net languages. As a result, the specifications can be
reused for software developed in different languages.

It is now more and more usual that applications are designed to run on distributed
system architectures. Unfortunately, most runtime enforcement frameworks cannot
be utilized for distributed systems. There are a few runtime enforcement frameworks
that can work with distributed architectures. These systems, however, adopt speci-
fications that contain information about the underlying process structure. This in-
creases the complexity and reduces the reusability of the specifications if the process
structure of software changes. The EventReactor language addresses this problem
with the support of distribution transparency.

There are two basic ways in utilizing the EventReactor language: a) as an underlying
language for the specification languages of runtime enforcement frameworks; b) as
an implementation language of runtime enforcement techniques.

This thesis explains Event Composition Model, its implementation the EventReac-
tor language, and the compiler of this language with the use of illustrative examples.
The thesis makes use of an example runtime enforcement technique called Recover-
able Process to evaluate the suitability of the EventReactor language in representing
the concepts of interest naturally.

Contents

1 Introduction 1

1.1 Motivations . 2

1.2 Contributions . 4

1.2.1 Identification of Problems in Implementing Runtime Enforce-
ment Techniques . 4

1.2.2 Enhancing Naturalness of Runtime Enforcement
Concepts . 5

1.2.3 The EventReactor Language: an Implementation of Event
Composition Model . 6

1.2.4 Supporting Multiple-Language Software 7

1.2.5 Supporting Multiple-Process Software 8

1.3 Thesis Overview . 8

2 Requirements for Runtime Enforcement Frameworks 11

2.1 A Canonical Model for Runtime Enforcement Frameworks 13

2.1.1 The Specification Layer . 13

2.1.2 The Implementation Layer . 15

2.2 Problem Statement . 16

xvii

2.3 Requirements for Runtime Enforcement
Frameworks . 19

2.4 An Overview of Runtime Enforcement
Frameworks . 20

2.4.1 Dedicated Runtime Enforcement Frameworks 20

2.4.2 Languages Supporting Embedded Contracts 26

2.5 Summary . 29

3 Enhancing Naturalness of Runtime Enforcement Concepts 31

3.1 Towards Natural Representation of Runtime Enforcement Concepts . 31

3.2 Event Composition Model . 33

3.2.1 The Abstractions in Event Composition Model 33

3.2.2 The Meta-Model of Event Composition Model 35

3.3 Motivations for Adopting Event Composition Model 39

3.4 Implementing Event Composition Model in Object-Oriented Languages 40

3.5 Implementing Event Composition Model in Aspect-Oriented Languages 42

3.5.1 AspectJ . 43

3.5.2 AspectJ Extensions . 44

3.5.3 Compose* . 45

3.5.4 AWED . 46

3.5.5 AspectWerkz and EOS . 47

3.6 Implementing Event Composition Model in Languages Supporting
Implicit Invocation Mechanisms . 48

3.6.1 C# . 48

3.6.2 EventJava . 49

3.6.3 EScala . 49

3.6.4 Ptolemy . 50

3.7 Summary of the Evaluation . 51

3.8 Conclusion . 52

4 EventReactor: an Implementation of Event Composition Model 55

4.1 The EventReactor Language . 56

4.1.1 Specification of Events . 56

4.1.2 Specification of Event Modules 58

4.1.3 Specification of Reactor Chains 60

4.1.4 Specification of Reactor Types 61

4.2 The Compiler of the EventReactor Language 62

4.2.1 Input and Output of the Compiler 64

4.2.2 Event Catalogue . 64

4.2.3 Event Module Catalogue . 65

4.2.4 Analysis and Checking . 66

4.2.5 Code Generation . 67

4.3 An Illustrative Example: File Access Control 67

4.4 Evaluation of the EventReactor Language 71

4.5 Similarities and Differences with Compose* 73

4.6 Future Work . 74

4.7 Conclusion . 76

5 Design of the Runtime Environment of EventReactor 77

5.1 Requirements for the Implementation of the Runtime Environment . 77

5.2 Data Structures . 80

5.2.1 Representing Events at Runtime 80

5.2.2 Representing Event Modules and Publishers at Runtime . . . 81

5.3 Runtime Behavior . 84

5.4 Illustration of Runtime Behavior . 91

5.5 Runtime Behavior of Reactor Types 101

5.6 Conclusion . 104

6 Multiplicity of Processes and Implementation Languages 105

6.1 Problem Statement . 106

6.2 Supporting Multiple-Process Java Software in EventReactor 110

6.3 Supporting Distribution-Sensitive Specifications in EventReactor . . . 122

6.4 Conclusion and Future Work . 124

7 A Case Study for the Evaluation of the EventReactor Language 127

7.1 An Illustrative Runtime Enforcement
Technique . 128

7.2 Implementing Recoverable Process in
Imperative Languages . 131

7.3 Implementing Recoverable Process in
Existing Runtime Enforcement Frameworks 132

7.4 Implementing Recoverable Process in Aspect-Oriented Languages . . 138

7.5 Implementing Recoverable Process in
EventReactor . 145

7.6 Conclusion . 158

8 Conclusion and Future Work 159

8.1 Problem . 159

8.2 Solution . 160

8.3 Evaluation of the EventReactor Language 163

8.4 Implementation Challenges . 165

8.5 Future Work . 166

Bibliography 169

Samenvatting 177

List of Figures

2.1 The specification layer of the canonical model 14

2.2 The implementation layer of the canonical model 16

3.1 A meta-model for Event Composition Model 37

4.1 An overall view of the EventReactor compiler 63

5.1 The sequence of actions to detect and publish an event 85

5.2 The sequence of actions to identify event modules 87

5.3 The sequence of events to store a document 91

5.4 The runtime view of the document-editing software 96

6.1 An example causally-dependent sequence of events 107

6.2 An overall view of the EventReactor compiler with the support for
distribution-transparent specifications 112

6.3 A runtime view for the distributed document-editing software 118

6.4 The runtime overhead for filling event module tables 120

6.5 The runtime overhead for processing events 121

7.1 The concepts of the Recoverable Process technique 129

7.2 An abstract block diagram of the media player software 131

xxiii

List of Tables

3.1 Four possible instantiation strategies for event modules 39

3.2 Implementing Event Composition Model in the existing programming
languages . 53

5.1 The structure of the table user request.document eventmodule 95

xxv

Listings

4.1 Prolog facts to represent predefined events 57
4.2 The structure of event packages . 59
4.3 The structure of reactor chains . 61
4.4 The structure of behavioral specifications of reactor types 61
4.5 An example implementation of a reactor type 62
4.6 A specification of event module for the usage protocol of a file 68
4.7 A specification of the reactor chain for the usage protocol of a file . . 69
4.8 A specification of event module for the recovery actions 70
4.9 A specification of reactor chain for the recovery actions 71
5.1 A specification of event module for the document-editing software . . 93
5.2 A specification of reactor chain for storing a document 93
5.3 A specification of event module for the recovery actions 94
5.4 A specification of reactor chain for the recovery actions 94
6.1 Spanning the causal thread of execution to server-side 115
6.2 Spanning the causal thread of execution from client-side 115
6.3 A distribution-sensitive specification of event modules 123
7.1 A specification for the global recovery in JavaMOP 134
7.2 A specification for the local recovery of UserInterface in JavaMOP . . 136
7.3 A specification for the global and local recoveries 137
7.4 A specification of timing property for the global recovery of processes 138
7.5 An aspect representing the concept AppProcess 139
7.6 An aspect representing the process MPCore 139
7.7 An aspect representing the concept RecoveryUnit 140
7.8 An aspect representing the global recovery unit 141
7.9 An aspect representing the local recovery unit for UserInterface process141
7.10 An aspect representing the concept ProcessManager 142
7.11 An aspect to implement ProcessManager for the global recovery . . . 144
7.12 An aspect to coordinate the global and the local recoveries 144

xxvii

7.13 Declaring an event . 146
7.14 An excerpt of the class MPCore . 147
7.15 Declaring a publisher . 148
7.16 A reactor chain implementing the concept AppProcesss 149
7.17 An event module representing the child processes of interest 151
7.18 A reactor chain implementing the concept RecoveryUnit 152
7.19 An event module representing the global recovery unit 153
7.20 An event module representing a local recovery unit 154
7.21 A reactor chain implementing the concept ProcessManager 154
7.22 Event modules representing process managers 155
7.23 Representing recovery constraints . 156
7.24 A reactor chain implementing an application-specific composition con-

straint . 156
7.25 An event module representing an application-specific composition

constraint . 157

Chapter 1
Introduction

In today’s practices, software is usually composed of multiple subsystems that are
possibly developed in various languages and are distributed across multiple pro-
cesses. The behavior of such software is affected by an increasing number of external
factors since they are generally integrated in networked environments, interacting
with many systems and users. As the complexity of software and its execution en-
vironment increases, ensuring that the software is failure-free becomes a challenge.

Several validation and verification techniques exist for this matter. However, due
to the complexity of the software and its execution environment, it is economically
and technically unfeasible to ensure that the software is failure-free. This motivates
techniques that enable the software to tolerate failures and to continue operating in
case of failures. An example is runtime enforcement techniques [9, 24] that check
the actual execution of software against the formally specified properties of the
software. If a failure is detected, diagnosis and recovery actions may be performed
to respectively detect the causes of the failure and to recover the software from the
failure.

There is a considerable number of frameworks [55, 27, 85, 17, 82, 66, 47, 64, 11, 12, 86,
60, 38, 71, 94, 10, 81, 26, 8] that can be employed to implement runtime enforcement
techniques. However, they fall short in representing runtime enforcement concepts
naturally. This thesis introduces Event Composition Model, which is a computation
model for runtime enforcement frameworks to facilitate a natural representation of
runtime enforcement concepts.

In the following sections, we first give motivations for using runtime enforcement
techniques. Second, we discuss the contributions of the thesis, which are: a) the
identification of the problems in natural representation of concepts, b) Event Com-

1

2 Chapter 1. Introduction

position Model, c) the EventReactor language as a realization of Event Composition
Model, d) support for multiple-language software in EventReactor, and e) support
for multiple-process software in EventReactor. The chapter concludes with giving
information about the remaining chapters of the thesis.

1.1 Motivations

The work presented in this thesis was partially carried out within the TRADER [92]
project, which aimed at developing methods and tools for ensuring the reliability of
digital television (DTV) sets. In consumer electronic devices, the implementation
of functionality is shifting from hardware to embedded software. Such software is
formed around multiple layers. For example software modules that directly interact
with hardware, operating systems, and drivers reside at the lower layers. At higher
levels controllers and application software reside. Software modules may be devel-
oped in various languages and may be distributed across multiple processes, since
different kinds of functions are involved.

To ensure the correct functioning of software, one may try to prevent faults in soft-
ware during the development process. There are various different techniques that
can be employed for this purpose in practice. Testing [39, 51], model checking [49]
and static analysis [72] are examples. These techniques check the software correct-
ness before it is delivered as a product.

When the television sets were largely implemented as analogue devices in hardware,
the reliability of these sets mainly depended on assuring that the hardware was
working properly. At that time, the features of the television sets were largely
limited to a few functions. Nowadays, however, the shift from analogue hardware-
based television sets to software-based ones with a lot of new and complex features,
has made assuring reliability during the production process a huge challenge.

As a complementary approach to fault prevention and/or removal before the delivery,
one may adopt fault-tolerance techniques as well. These techniques assume that
not all faults can be detected and removed from software before it is delivered [6].
Therefore, in case of failures, runtime enforcement techniques [9, 24] are developed
to enable software to continue with its operation while preserving its desired quality
features.

The thesis considers runtime enforcement techniques suitable to detect and recover
from the failures that occur in DTV’s during their operational phase in their target
environment.

Chapter 1. Introduction 3

There is a considerable number of frameworks [55, 27, 85, 17, 82, 66, 47, 64, 11,
12, 86, 60, 38, 71, 94, 10, 81, 26, 8] that can be employed to implement runtime
enforcement techniques. In this thesis, software that is augmented with runtime
enforcement characteristics is termed as base software.

In runtime enforcement, the active execution trace of base software is verified against
its specified properties. If any deviation between these two is detected, it is consid-
ered a failure in the base software. In this case, the causes of the failure are diagnosed
dynamically, and appropriate recovery actions are carried out to enforce the desired
properties. Repairing the failures at runtime can be regarded as a distinguishing
characteristic of runtime enforcement techniques compared to other verification and
validation techniques.

To ease the design process, current runtime enforcement frameworks generally adopt
specification languages that are used to define the properties of the base software,
diagnosis rules and recovery actions. These specifications are also used to generate
code rather than implementing the runtime enforcement functionalities manually.

Unfortunately, the specification languages employ the elements of the programming
languages of the generated code, and therefore, they fall short in representing the
runtime enforcement concepts naturally. By the term concept we mean a funda-
mental abstraction or definition that exist in most runtime enforcement techniques.
For example, in object-oriented languages, objects and methods are represented as
first-class abstractions. Therefore, if a specification language employs an object-
oriented language as its underlying language, it can represent the notion of objects
and method naturally. However, the other concepts such as processes, subsystems,
and groups of these, cannot directly be represented in an object-oriented language.
As a result, programmers must map these concepts to the existing elements of the
languages. Such mappings may cause scattering and tangling of the runtime enforce-
ment concepts in implementations. This reduces the modularity and compose-ability
of the specifications of the concepts. Moreover, adoption of the elements of the un-
derlying languages in specifications causes the specifications to become too specific
to the employed programming languages and platforms. This reduces the reusability
and comprehensibility of the specifications, and increase their complexity.

Providing too abstract specifications for runtime enforcement concepts may not be
the desired solution, however. This will make the compilation of the specifications
to an efficient code too difficult or even impossible. Moreover, the compiler has
to make some assumptions how the abstract specifications must be mapped to the
code; these assumptions may not be the choice of the software engineers.

It is also not feasible to suggest a complete new set of programming languages that
are designed specifically for implementing runtime enforcement techniques. There

4 Chapter 1. Introduction

is a huge amount of legacy code implemented in various languages that cannot be
disregarded.

To overcome the above mentioned problems, this thesis claims that there is a need of
a new computation model that can be used to abstract the base software with a set
of features that are natural in implementing the runtime enforcement techniques.

1.2 Contributions

To facilitate the natural representation of runtime enforcement concepts, this thesis
defines a new computation model and its implementation that can be used to create
an executable layer on top of the base software. The contributions of this thesis and
the novel features of the computation model are briefly explained in the following
subsections.

1.2.1 Identification of Problems in Implementing Runtime
Enforcement Techniques

This thesis proposes a conceptual model termed as canonical model, which cap-
tures the common concepts among different runtime enforcement frameworks. The
canonical model identifies the following core concepts in runtime enforcement frame-
works: Specification of base software, specification of diagnosis, specification of re-
covery and specification of constraints.

To ease the code generation and integration process, the specification languages
usually adopt the elements of their underlying languages. This, however, makes it
difficult to have a natural representation of the concepts of interest. As such, the
thesis observes the following shortcomings: a) decreased modularity, b) decreased
abstraction level, and c) decreased compose-ability.

To represent the concepts of interest naturally, the thesis identifies the following
requirements to be fulfilled by specification languages:

• Modularization of specifications: the specification languages must offer
first-class abstractions that correspond one-to-one to the runtime enforcement
concepts. In this case, the concepts can directly be represented by these lan-
guages, so the scattering and tangling problem is avoided.

• Abstraction of specifications: the abstractions offered by the specification
languages must be defined naturally at the right level without incorporating

Chapter 1. Introduction 5

the implementation context i.e. implementation language and process struc-
ture, so that the portability and reuse of specifications are supported.

• Compose-ability of specifications: the composition language offered by the
specification languages must offer a rich set of constructs to implement variable
composition strategies. The composition must be able to a) integrate various
specifications; b) deal with various elements in specifications; c) cope with
different implementation languages and platforms of the base software; and d)
facilitate constructing higher-level specifications by systematically reusing the
existing ones.

To validate the canonical model and the identified requirements, the thesis elab-
orates on the existing runtime enforcement frameworks. Two categories of these
frameworks are evaluated: a) the systems with dedicated specification languages
and compiler; b) the languages supporting embedded contracts.

1.2.2 Enhancing Naturalness of Runtime Enforcement
Concepts

The thesis claims that specification languages must provide first-class abstractions
that respect the characteristic features of the concepts of interest.

The thesis identifies these features as follows: a) transient nature of runtime en-
forcement concepts; b) open ended-ness of the kinds of elements in specifications; c)
no strict hierarchy among specifications.

The transient nature implies that the runtime enforcement techniques are derived
by the changes of the system states. For example, the verification process observes
and checks the changes that occur in the execution of the base software. When
the verification of a property fails, it may trigger a diagnosis process. Therefore,
a specification language must provide elements that represent the changes in the
states of interest in each concept.

It is not easy or even possible to foresee all kinds of elements that are desired to
be represented in the specification languages of runtime enforcement frameworks
of today or in the near future. This implies that specification languages and their
implementations must also be open-ended with respect to their elements.

There is usually no strict hierarchy among the specifications. A specification may
be decomposed into sub-specifications; or the runtime enforcement concepts may
also be regarded as the base software, so it must be possible to specify their proper-

6 Chapter 1. Introduction

ties. Absence of a strict hierarchy among specifications implies that a specification
language must facilitate arbitrary composition of concepts with each other.

To achieve naturalness in the representation of the runtime enforcement concepts,
the thesis introduces a computation model termed as Event Composition Model.
In this computation model, the changes in the states of interest are termed as
event. A set of relevant events are grouped as a linguistic abstraction, which is
termed as event module. In the specification languages of runtime enforcement
frameworks, we consider event modules more natural than adopting the elements
of the underlying languages. Event modules are defined by the help of an event
composition language that selects the events of interest. Event modules are
identified by their unique names, they have input and output interfaces, and a set of
implementations that are termed as reactors. Reactors have type and may publish
their internal events to be used by other event modules. A set of related reactors that
must process events in sequence is defined as a reactor chain. Event modules may
be composed with each other; the composition constraints among event modules are
defined by the event constraint language.

Event Composition Model respects the characteristic features of the runtime en-
forcement concepts in the following ways. Events represent the transient nature of
the concepts. The model is open-ended for introducing new kinds of events and
reactor types. This allows introducing new kinds of elements in specifications, when
desired. The event composition language facilitates selecting events published by the
implementations of event modules, and grouping them to define new event modules.
This helps to form arbitrary hierarchies of event modules.

An important issue is how to implement Event Composition Model effectively, by
using the current programming languages. For this purpose, the thesis evaluates
the relevant programming languages with respect to their support for implement-
ing Event Composition Model. The evaluation reveals that none of the existing
languages can implement the model such that the desired quality attributes, such
as modularity, abstractness and compose-ability are accomplished. Nevertheless,
aspect-oriented languages offer promising features for this matter.

1.2.3 The EventReactor Language: an Implementation of
Event Composition Model

The thesis proposes the EventReactor language that implements Event Composition
Model. EventReactor provides dedicated linguistic elements to define event modules,
reactors, reactor types and events. It makes use of the Prolog language as its event
composition language.

Chapter 1. Introduction 7

EventReactor supports four sorts of predefined events in programs. These are the
events that correspond to the following state changes: a) before invocation of meth-
ods; b) after invocation of methods; c) after invocation and immediately before
execution of methods; and d) after execution of methods, which have terminated
normally

EventReactor is extendable to support new sorts of events which are termed as
user-defined events. It also provides an API to programmers for defining new sorts
of reactor types. Dedicated operators are provided to compose event modules with
each other and to specify the constraints among them.

The specifications are defined independently from any programming language, and
the compiler of EventReactor facilitates generating code for Java, C and .Net lan-
guages. Reactors and reactor chains are parameterizable, and are defined separately
from event modules. This increases the reusability of event modules and their im-
plementations.

There are two basic ways in utilizing the EventReactor language: a) as an underlying
language for the specification languages of runtime enforcement frameworks; b) as
an implementation language of runtime enforcement techniques.

In the design of the EventReactor language, we are inspired by the aspect-oriented
language Compose*. Since the Compose* language does not fulfil all the require-
ments in implementing Event Composition Model, it has to be extended considerably
for this matter.

1.2.4 Supporting Multiple-Language Software

The systems of today are more and more implemented using multiple languages
and this trend seems to continue also in the near future. For embedded systems,
for example, it is quite common that the core of the system is implemented in C,
applications in C++ and the user interface in Java. In addition, the common use
of domain specific languages accelerates this development as well.

It is reasonable to assume that the runtime enforcement frameworks that can simul-
taneously work with multiple base languages will be preferable with respect to the
ones that are designed for single language systems only.

The specification languages of runtime enforcement frameworks and the compilers
must cope with the software implemented using multiple languages. The current
runtime enforcement frameworks, unfortunately, fall short in supporting base soft-
ware implemented in different programming languages.

8 Chapter 1. Introduction

In Event Composition Model, the event composition language facilitates selecting
events from systems implemented in various languages. Since the EventReactor
language does not make any assumptions about the implementation languages of
the base software, event modules can be potentially reused for software developed in
different languages. The multiple language support is one of the key characteristics
of the EventReactor compiler.

1.2.5 Supporting Multiple-Process Software

It is now more and more usual that applications are designed to run on distributed
system architectures. The common structuring concept in system design is based
on the notion of a process. Naturally, it is preferable that runtime enforcement
frameworks are capable of working on systems with different process structures.

Unfortunately, most runtime enforcement frameworks cannot be utilized for dis-
tributed systems. There are a few runtime enforcement frameworks that can work
with distributed architectures. These systems, however, adopt specifications that
contain information about the process structure. This increases the complexity and
reduces the reusability of the specifications.

The EventReactor language and compiler facilitates distribution transparency. For
distributed Java applications that make use of Java-RMI as middleware, the specifi-
cation of event modules in EventReactor is transparent from the underlying process
structures. For this purpose, the EventReactor compiler performs code analysis of
the application software and facilitates selecting events from distributed software.

1.3 Thesis Overview

The thesis is organized as follows:

Chapter 2 defines a canonical model for the runtime enforcement frameworks,
identifies the problems in the existing runtime enforcement frameworks and out-
lines requirements to overcome these problems. The chapter validates the canonical
model and the requirements by elaborating on the existing runtime enforcement
frameworks.

Chapter 3 defines the characteristic features of the concepts in runtime enforcement
techniques. Accordingly, it introduces the computation model Event Composition
Model, and discusses the suitability of the computation model to respect the char-

Chapter 1. Introduction 9

acteristic features. The chapter evaluates the existing programming languages with
respect to their suitability to implement Event Composition Model.

Chapter 4 introduces EventReactor as the realization of Event Composition Model.
The chapter explains the language and the compiler, and by means of an example
illustrates the capability of EventReactor to define event modules.

Chapter 5 explains the runtime environment of the EventReactor language. For
this matter, it explains the data structures and algorithms employed to represent
events, event modules and to process the events.

Chapter 6 discusses how the EventReactor language and its compiler can cope
with multiplicity of processes and languages. The solutions that are offered by the
EventReactor language, such as distribution-transparent and distribution-sensitive
specifications, are discussed.

Chapter 7 evaluates the suitability of the EventReactor language in providing
natural representation of the runtime enforcement concepts. For this matter, it
provides an implementation of a runtime enforcement technique called Recoverable
Process in EventReactor. Recoverable Process, which is introduced in the TRADER
project, is a technique for making processes fault tolerant. Chapter 7 discusses three
implementations of Recoverable Process, which are in an imperative language, in an
existing runtime enforcement framework and in an aspect-oriented language. The
chapter illustrates the shortcomings of the existing frameworks and languages in
representing the concepts of Recoverable Process naturally. Finally, the chapter
discusses an implementation of Recoverable Process in the EventReactor language,
and explains the suitability of the EventReactor language to overcome the identified
shortcomings.

Chapter 8 provides conclusions and outlines the future work.

10 Chapter 1. Introduction

Chapter 2
Requirements for Runtime Enforcement
Frameworks

Due to the complexity of todays software, several different validation and verification
techniques are introduced since none of the available techniques can cover all facets
of software to ensure its failure-freeness. Testing [39, 51], model checking [49],
and static analysis [72] are examples.

In testing, software is executed to infer that, for example, it meets the requirements
and/or does not have bugs. Testing can be performed manually by programmers
or can be (partially) automated. Testing cannot assure that software is completely
failure-free. Nevertheless, it can show that software fulfills a set of requirements
under certain conditions.

In model checking, a model of the software is checked against the formally-specified
requirements that the model or the software must fulfill. Counter examples may
be reported by model checker if properties are not satisfied. The main challenges
in model checking are defining expressive models, and dealing with the state space
explosion problem in which number of states grows exponentially in the number of
model variables. In general, the more expressive models are, the more likely is that
the space explosion problem is experienced. Static analysis techniques check the
program code without executing it; for example, to find coding errors and to check
it against formally-specified properties.

The above-mentioned techniques check the behavior of software before the software
is deployed in its target execution environment. However, the behavior of software is
likely to be affected by the execution environment, for example due to the influence
of networked programs, interactions with other systems, reaction of users, etc.

11

12 Chapter 2. Requirements for Runtime Enforcement Frameworks

As complementary to the above mentioned techniques, runtime enforcement [9]
is introduced to check the correctness of software in its actual execution environ-
ment. Runtime enforcement can be regarded as a fault-tolerance technique to enable
software to continue operation in case of failure. We think that the term runtime
enforcement has a more emphasis on the correction of errors at runtime whereas
fault-tolerance, in some special applications, may aim at partial correctness or ap-
proximate results.

Runtime monitoring, runtime assertion checking, and runtime verification are also
related to runtime enforcement in that they all enable verifying the behavior of
executing software against its specification. In all these approaches, diagnosis and
recovery actions can be added in case a failure is detected. In run runtime enforce-
ment and fault-tolerance, diagnosis and recovery processes are considered as the
necessary actions, whereas in other techniques, these may be seen as optional fea-
tures. Nevertheless, in most cases, these terms can be used interchangeably. Within
this context, it looks like that the use of a term is more like a personal preference
than a fundamental choice. For the rest of the thesis, we will use the term runtime
enforcement.

Runtime enforcement consists of three complementary processes: verification, di-
agnosis and recovery.

In this thesis, software that is augmented with runtime enforcement characteristics
is termed as base software. In runtime enforcement, the active execution trace of
base software is verified against its specified properties. If any deviation between
these two is detected, it is considered a failure in the base software. In this case, the
causes of the failure are diagnosed dynamically, and appropriate recovery actions
are carried out to enforce the desired properties. Repairing the failures at runtime
can be regarded as a distinguishing characteristic of runtime enforcement techniques
compared to other verification and validation techniques.

An advantage of runtime enforcement is that the verification process is carried out
in the actual execution context of software; this creates a more realistic context for
verification. Runtime enforcement may also dynamically detect the causes of failures
and recover the base software from the failures. In addition, runtime enforcement
may scale-up better than other verification techniques such as model checking, be-
cause only the active execution trace is considered. On the other hand, only the
failures that occur in the active execution trace can be detected. This may limit the
usefulness of runtime enforcement techniques especially if all the potential failures
must be detected. The other disadvantage of runtime enforcement is the overhead
that it imposes on base software. In hard real-time systems, the overhead introduced
by runtime enforcement can cause the base software to exceed its acceptable timing
requirements.

Chapter 2. Requirements for Runtime Enforcement Frameworks 13

To identify the basic concepts and the relationships among these, in the Section 2.1,
the thesis proposes a canonical model of runtime enforcement frameworks. The
model is termed as canonical because it captures the common concepts among dif-
ferent runtime enforcement frameworks.

In Section 2.2, the chapter outlines the problems of the existing runtime enforce-
ment frameworks regarding their support for the modularization, abstraction and
composition of specifications.

In Section 2.3, the requirements to overcome the identified problems are discussed.
Finally, to show the expressivity of the canonical model and to illustrate the identi-
fied problems, Section 2.4 gives illustrative examples of runtime enforcement frame-
works.

2.1 A Canonical Model for Runtime Enforcement

Frameworks

The existing runtime enforcement frameworks usually adopt a two-layered architec-
ture that is composed of a specification layer and an implementation layer. In the
following, the canonical model is depicted from these two perspectives.

2.1.1 The Specification Layer

Figure 2.1 represents the concepts in the specification layer. By the term concept we
mean a fundamental abstraction or definition that exist in most runtime enforcement
techniques.

Specification of Base Software defines the expected and/or unexpected properties
of the base software. The specification refers to the concerns of the base software,
such as invocations to the methods, data values. The properties are usually speci-
fied in a logical formalism such as regular expression [33] and temporal logics [49].
The verification of the specified properties results in new information, for example,
indicating whether the properties are satisfied or violated. This information can be
used by the Specification of Diagnosis and Specification of Recovery.

Specification of Diagnosis defines the rules to diagnose causes of failures; for this
matter, it may refer to the concerns in the base software and/or the results of
verification process. The diagnosis also results in new information indicating the
results of the diagnosis. Specification of Recovery defines a set of rules that describe

14 Chapter 2. Requirements for Runtime Enforcement Frameworks

Base Software

Specification of

Base Software

Specification of

Diagnosis

Specification of

Recovery

Specification of

Constraint

Provides

Used by

Concern

Information

Used by

Used by

Used by
Provides

Provides

Provides

Figure 2.1: The specification layer of the canonical model

Chapter 2. Requirements for Runtime Enforcement Frameworks 15

the recovery strategies, and for this matter it may refer to the specified information
in other specifications.

Different recovery strategies may be employed based on the diagnosis results, fault
assumptions, system characteristics, etc. Examples are [88]: compensation, back-
ward recovery, and forward recovery. Compensation means that the system contin-
ues to operate without any loss of function or data in case of a failure. This requires
replication of system functionality and data. Backward recovery (i.e. rollback) puts
the system in a previous state, which was known to be failure free. Forward recov-
ery (i.e. roll-forward) puts the system in a new state to recover from a failure. The
recovery may also result in new data that are provided to the base software to heal
it from the diagnosed failures. 1

Specification of Constraints defines the interdependencies within and/or among the
specifications of runtime enforcement techniques. For example, if there are multiple
properties to be verified, it may be required to specify the order in which the prop-
erties must be verified. As another example, one may be interested in specifing that
if a recovery action is being executed, the verification of other properties must be
suspended until the base software is in a stable state.

Our definition of base software is general. As such, any software may be regarded
as a base software including a runtime enforcement technique. This allows the
definition of hierarchically organized runtime enforcement techniques.

2.1.2 The Implementation Layer

Since the specifications are more abstract than actual code, runtime enforcement
frameworks provide a compiler that translates the specification to actual code and
integrates the code with the base software. Figure 2.2 makes use of a UML compo-
nent diagram [68] to represent the implementation layer. Here, the components are
used to represent the concepts in the implementation layer rather than the imple-
mentation components.

There are five types of concepts: Base Software, Verification, Diagnosis, Recovery
and Constraint Controller. The last four concepts are termed as runtime enforce-
ment implementation concepts and can be regarded as the realization of the respec-
tive specifications shown in Figure 2.1. To ease the implementation effort and to

1Fault-tolerant computing and recovery techniques are active research areas. Our purpose here
is not to give a comprehensive overview over these techniques, since it is out of the scope of this
thesis.

16 Chapter 2. Requirements for Runtime Enforcement Frameworks

Base Software
Diagnosis

Verification

RecoveryConstraint Controller

Primitive DataVerification Data
Diagnosis Data

Recovery DataConstraints

Figure 2.2: The implementation layer of the canonical model

avoid introduction of faults in realization, preferably runtime enforcement concepts
must be generated from the specifications shown in the specification layer.

The concepts communicate with each other in various ways, for example, by publish-
ing and receiving events, by invoking the services provided by the other concepts and
by utilizing a shared memory to keep the data that must be exchanged among them.
For example, Constraint Controller communicates with the concepts of interest to
inform them about the controlling commands. In Figure 2.2, the communications
are shown via the provided and required interfaces of the components.

2.2 Problem Statement

As it is discussed earlier, the existing runtime enforcement frameworks usually adopt
a compiler that translates the specifications to code. This code can be expressed in
the same language as the base software or it can be in an intermediate language,
which abstracts the base software. In both cases, the generated code must be well
integrated with base software from the perspective of runtime enforcement. We use
the term underlying language to denote the language of the generated code.

The specification languages of the existing runtime enforcement frameworks usu-
ally adopt elements that are defined by their underlying programming language(s).
For example, the systems [17, 38] that employ aspect-oriented languages [53, 4],

Chapter 2. Requirements for Runtime Enforcement Frameworks 17

adopt the pointcut designators of these languages to specify the primitives of the
base software; or in most of the existing runtime enforcement frameworks, the
specifications of diagnosis and recovery are implemented in the underlying lan-
guage(s) [55, 17, 38, 10, 26, 8, 81]. The specification languages may provide dedicated
elements that are, for example, necessary to express properties in a formalism such
as regular expression and temporal logic.

We observe two reasons why the specification languages of the runtime enforcement
frameworks adopt the elements of their underlying languages. First, it would be
otherwise too difficult or even impossible to generate code from the specifications if
the specifications are defined at a very abstract level. Moreover, due to semantic gap
between abstract specifications and underlying languages, the compiler should have
to make certain assumptions how higher level concepts relate to low level elements;
these assumptions might not always match the intentions of the software engineers.
Second, a runtime enforcement technique consists of various concepts that have to
be integrated with the base software. Adopting the elements of the base language
in the definition of the runtime enforcement concepts makes the integration easier.

Despite its practical advantages, it may not be convenient to represent runtime en-
forcement concepts naturally, if the elements of the underlying language are adopted
by the specification languages. Consider for example the following concerns of inter-
est of the base software which may be regarded as the primitives of the specification:
Objects, functions, calls, call patterns, processes, subsystems, layers, and groups of
these. In diagnosis specifications, for instance, types of failures and data structures
may be preferred to be represented explicitly. In case of recovery, various recov-
ery strategies may be required to be specified. The underlying languages provide
dedicated elements to represent some of the above listed concepts such as objects,
functions, function calls; whereas the other kinds of concepts cannot directly be
represented. Consequently, software engineers must provide a workaround represen-
tation for them using the available elements. We identify the following problems in
such representations:

• Decreased modularity: The representation of a concept can be scattered
across the multiple underlying language elements due to not directly represent-
ing the concepts of interest. Moreover, the representation of a concept may
also get tangled with the representation of other concepts in the underlying
language. Scattering and tangling are well-known problems that are discussed
in the aspect-oriented literature [54]. They decrease the modularity of the
concepts, decrease the reusability of the concepts and increase the complexity
of software.

18 Chapter 2. Requirements for Runtime Enforcement Frameworks

A typical example is that in most of the existing runtime enforcement frame-
works, the specifications of base software properties, diagnosis rules and re-
covery strategies are tangled with each other in one specification module, and
it is not possible to reuse a specified property, diagnosis rule and/or recovery
strategy in other specification modules.

• Decreased abstraction level: The abstraction level of the specifications
that adopt underlying programming elements can be considered too low level;
this may reduce comprehensibility of the specifications. Moreover, the rep-
resentation of concepts can become too specific to the underlying language.
Consequently, it may be difficult to reuse the represented concepts for the
software developed in different programming languages and/or in different
platforms.

A typical example is that in most of the existing runtime enforcement frame-
works, the specifications of diagnosis rules and recovery actions are defined
in the Java or C languages. Therefore, it is not possible to reuse them for
software implemented in other languages.

• Decreased compose-ability: As shown in the canonical model in Figure 2.1,
in runtime enforcement techniques, various specifications have to be utilized
together to define the necessary concepts such as verification, diagnosis and
recovery. We term this as the composition of specifications.

We classify the composition strategies as fixed or variable. In the fixed
composition strategy, the system supports a predefined composition mecha-
nism. In the variable case, the composition strategy is programmable using a
composition language.

The fixed strategy can be too restrictive in one or more of the following cases:
a) a large variety of verification, diagnosis and recovery concepts are required
to be supported; b) base software is implemented in different languages and/or
platforms; c) the application semantics demand tailor-able composition seman-
tics.

Adopting a variable strategy in composition is not trivial in general. The
composition language must be rich enough to support the desired compositions
in a flexible and effective way.

In case the specifications adopt the elements of the underlying languages, the
composition strategies can be required to be defined and implemented in the
underlying languages as well. Similar to the previously defined problems, if
the composition language does not support the composition strategies natu-
rally, the complexity of the composition specifications may increase, and the
comprehensibility and reuse may decrease.

Chapter 2. Requirements for Runtime Enforcement Frameworks 19

A typical example for this case is that most of the existing runtime enforcement
frameworks support a fixed strategy to compose specified recovery strategies
with the specified properties of the base software. Here, the composition can
only be performed upon the violation or validation of the properties. There-
fore, they fall short in supporting more complex composition strategies, for
example, conditional composition of recovery strategies with the properties.

2.3 Requirements for Runtime Enforcement

Frameworks

To overcome the problems discussed in the previous section, we claim that a runtime
enforcement framework must fulfill the following three requirements:

• Modularization of specifications: the specification languages must offer
first-class abstractions that correspond one-to-one to the runtime enforcement
concepts. In this case, the concepts can directly be represented by these lan-
guages, so the scattering and tangling problem is avoided. For example, the
specification language must provide abstractions to represent the verification,
diagnosis and recovery concepts as individual modules.

• Abstractions of specifications: the abstractions offered by the specification
languages must be defined naturally at the right level without incorporating
the implementation context i.e. implementation language and process struc-
ture, so that the portability and reuse of specifications are supported. For
example, the specification language must facilitate specifying the verification,
diagnosis and recovery concepts independently from the implementation lan-
guages of the base software.

• Compose-ability of specifications: the composition language offered by
the specification languages must offer a rich set of constructs to implement
variable composition strategies. The composition must be able to a) integrate
various specifications; b) deal with various elements in specifications; c) cope
with different implementation languages and platforms of the base software;
and d) facilitate constructing higher-level of specifications by systematically
reusing the existing ones.

For example, the specification language must enable the specified verification,
diagnosis and recovery concepts be composed with each other such that the
overall functionality of a runtime verification technique is accomplished.

20 Chapter 2. Requirements for Runtime Enforcement Frameworks

2.4 An Overview of Runtime Enforcement

Frameworks

To validate the canonical model and to illustrate the identified problems, this section
presents two categories for runtime enforcement frameworks with representative ex-
amples. The categories are: a) dedicated runtime enforcement frameworks explained
in Section 2.4.1; and b) languages supporting embedded contracts explained in Sec-
tionsec:embeddedREF. These systems differ from each other in their specification
languages, in the realization of programming languages and/or process structures of
the base software.

2.4.1 Dedicated Runtime Enforcement Frameworks

The runtime enforcement frameworks in this category provide a dedicated language
to define specifications separately from the base software. A compiler is also provided
to generate code for runtime enforcement concepts and to integrate the base software
with the generated code. In comparison with general-purpose languages such as
Java and C, dedicated languages are usually more declarative and as a consequence
they simplify programming by focusing on what computation does but not how the
program accomplishes the computation.

MaCS (Monitoring, Checking and Steering)

MaCS [55, 27, 85] provides three specification languages called PEDL (Primitive-
Event Definition Language), MEDL (Meta-Event Definition Language), and SADL
(Steering Action Definition Language). PEDL defines the primitive data that must
be collected from the base software; MEDL defines the properties of the base soft-
ware; and SADL defines the recovery actions. MaCS does not provide a specification
language to express diagnosis rules. PEDL and SADL are dependent on the imple-
mentation language of the base software, where MEDL is language-independent. A
Java-based implementation of MaCS is available.

PEDL specifies the objects of interest in the base software. It provides dedicated
elements to specify events and conditions of interest that must be collected from
the base software. Such events and conditions are defined in terms of methods and
variables of the specified objects. An event corresponds to the updates of specified
variables, the state when control enters a method, the state when control returns
from a method, and/or when a specified condition becomes true or false. Primitive
conditions are specified as Boolean-valued expressions over the specified variables.

Chapter 2. Requirements for Runtime Enforcement Frameworks 21

Composite conditions are built from the primitive conditions using boolean connec-
tives.

MEDL specifications import specified events and conditions from the PEDL speci-
fications, use them to define composite events and conditions, and to define safety
properties and/or alarms. The properties are expressed in an extension of the linear-
time temporal logic [49] or in the regular expression formalism [43].

SADL defines recovery actions (i.e. steering actions in MaCS terminology) for
the objects. A steering specification consists of two main sections: the declaration
of base software objects that are involved in steering, and the definition of steering
actions where the declared objects are used.

MaCS supports a fixed composition strategy by offering a fixed set of operators to
compose primitive events and conditions with each other. In addition steering ac-
tions can only be composed with properties and alarms, when a safety property is
violated or an alarm occurs; such compositions are specified within MEDL specifi-
cations.

MaCS provides a compiler to generate runtime enforcement modules from the spec-
ifications and to integrate them with the base software. The module Verification is
executed in a separate process from the base software that is automatically instru-
mented to send the specified events and states to this process. The base software is
also instrumented to execute the specified recovery actions.

MaCS falls short in fulfilling the identified requirements, because: a) its PEDL and
SADL only facilitate specifying Java objects as the concepts of interest; b) PEDL
and SADL incorporate implementation context, because they are specific to Java
software; c) it offers a fixed and non-programmable composition language, and it
does not facilitate defining specifications at higher-level of abstraction by reusing
the existing specifications. For example, it is not possible to define a composite
property by reusing and composing the existing properties.

MOP (Monitoring-Oriented Programming)

MOP [17, 82, 66, 47] is a framework for the development of runtime enforcement
techniques. MOP aims at supporting software systems that are developed in various
languages. JavaMOP and BusMOP are two available implementations of MOP.
The former supports centralized Java programs, and the latter supports monitoring
system buses using FPGA-based monitors.

JavaMOP makes use of AspectJ [53] as its underlying language. JavaMOP adopts
the pointcut designators of AspectJ to specify the events of interest in the base

22 Chapter 2. Requirements for Runtime Enforcement Frameworks

software. An event corresponds to the following state changes: when a method is
invoked, when a method starts executing, when the invocation of a method or its
execution terminates.

JavaMOP provides dedicated elements to express properties in various formalisms,
and is extendable to support new sorts of formalisms. Currently Extended Regular
Expression, Past-Time LTL and Future-Time LTL are supported. Java code blocks
can be attached to a specified property, which are executed when the property is
matched or failed at runtime. Such code blocks can be used to specify diagnosis and
recovery actions.

The JavaMOP compiler translates each specification module to an aspect in AspectJ
and some utility classes, which are further integrated with the base software using
AspectJ compiler.

An illustration of the MOP shortcomings in fulfilling the previously-mentioned re-
quirements is provided in Section 7.3 by means of an illustrative example. In the
following, we provide a generic discussion of the shortcomings.

The modularization requirement is not fulfilled by JavaMOP, because a) the run-
time enforcement concepts (e.g. primitives, properties, diagnosis and recovery) are
defined in one specification module; b) it only supports the concept of object and
groups of correlated objects. The abstraction requirement is not fulfilled because
the specifications incorporate AspectJ and Java elements, so its abstraction level is
close to program code.

Since JavaMOP is extendable with new formalisms, it offers a variable composition
strategy for the composition of events with each other to form the properties of
the base software. However, it offers two fixed operators termed @fail and @match
for the composition of diagnosis and recovery specifications. JavaMOP offers raw
specifications that require no formalism and allow programmers to write code in
the target language (e.g., Java) to express the specifications. One may claim that
it is possible to support variable composition strategy; however, this sacrifices the
abstraction of specifications because they are basically the code in target language.
JavaMOP also does not facilitate forming higher level specifications by reusing the
existing ones.

PQL (Program Query Language)

PQL [64] checks if a centralized Java program conforms to certain design rules
that are expressed as sequences of events associated with a set of related objects.
The PQL language provides elements to abstract the program execution as a trace

Chapter 2. Requirements for Runtime Enforcement Frameworks 23

of events. Each event contains a unique event ID, an event type, and a list of
attributes. Eight types of events are represented: field loads and stores, array loads
and stores, method calls and returns, object creations, and end of program.

The properties and recovery actions are specified in terms of PQL queries, which
are patterns to be matched on the execution trace and actions to be performed
upon a match. PQL supports two dedicated constructs replace and execute to
define recovery actions. The former prevents a method to be executed and the
latter invokes new methods. PQL does not facilitate specifying the specification of
diagnosis rules.

A query may contain subqueries, which allow users to specify recursive event se-
quences or recursive object relations. Subqueries are defined in a manner analogous
to functions of programming languages. They can return multiple values, which are
bound to the variables in the calling query. By recursively invoking subqueries, each
with its own set of variables, queries can match against an unbounded number of
objects.

The PQL compiler translates the specifications to Java code that is inserted in the
base software; it is executed in the same process as the base software.

PQL falls short in fulfilling the modularization requirement, because it only sup-
ports the concept of objects and the events that occur on objects. The abstraction
requirement is not fulfilled because specifications are defined at the code-level and
incorporate the elements of Java language. By the notion of subqueries, it is possi-
ble to form higher-level of specifications; however, the compose-ability requirement
is not addressed by PQL, because it provides a fixed set of operators to compose
events with each other in the definition of the specification of the base software, and
to compose recovery actions with the specification of the base software.

Polymer

Polymer [11, 12] aims at enforcing security policies on centralized Java applications.
It provides a language to define security policies that have three main elements: a)
a side-effect free query method that determines how to react to security-sensitive
method calls. Polymer uses the term action to refer to such method calls, and it
makes use of a pattern-matching mechanism to allow programmers to summarize a
collection of method calls as an abstract action; b) security state that can be used
to keep track of the states of the software during execution; c) methods to update
the security state of policies.

24 Chapter 2. Requirements for Runtime Enforcement Frameworks

A query method returns one of six suggestions indicating that: the action is ir-
relevant to the policy; the action is OK ; the action should be reconsidered after
some other code is inserted ; the return value of the action should be replaced by a
pre-computed value; a security exception should be thrown instead of executing the
action; or, the application should be halted. These are referred to as suggestions
because there is no guarantee that the policy’s desired reaction will occur when it
is composed with other policies. These suggestions may be considered as recovery
actions.

To support flexible but modular security policy programming, all policies, sugges-
tions, and software actions are treated as first-class objects. Consequently, it is
possible to define higher-order security policies that query one or more subordinate
policies for their suggestions and then combine these suggestions in a semantically
meaningful way, returning the overall result to the system, or other policies higher
in the hierarchy.

Polymer does not facilitate specifying the specification of diagnosis rules. It also falls
short in fulfilling the modularization requirement defined in the previous section,
because it only supports the concept of objects and allows primitives be collected
from the objects. The abstraction requirement is not fulfilled because specifications
are defined at the code-level and incorporate the elements of Java language. It is
possible to form higher-level of specifications by reusing the existing specifications;
nevertheless the compose-ability requirement is not fully addressed by Polymer,
because it provides a fixed set of operators to compose software actions with each
other and to compose strategies with actions.

DIANA

DIANA [86] provides a language and compiler for the runtime verification of dis-
tributed Java programs. It proposes the PT-DTL formalism, a variant of past time
linear temporal logic, that is suitable for expressing temporal properties of dis-
tributed systems. The properties expressed in PT-DTL are relative to a particular
process and are interpreted over a projection of the trace of global states that the
process is aware of. A property relative to one process may refer to local states of
the other processes through remote expressions and remote formulae.

In order to correctly evaluate remote expressions, DIANA introduces the notion of
Knowledge Vector and provides an algorithm which keeps a process aware of the
local states of other processes that can affect the validity of a monitored PT-DTL
formula.

Chapter 2. Requirements for Runtime Enforcement Frameworks 25

To the best of our knowledge, the primitives that can be abstracted from the base
software are events occurring on objects. The specification language of DIANA
does not provide elements to define diagnosis and recovery actions. Since events
that occur on objects are the only primitives that are supported by DIANA, the
modularization requirement is not fulfilled by DIANA. The specification of proper-
ties is dependent on the process structure of the base software, so the abstraction
requirement is not fulfilled. It offers a fixed set of operators, i.e. PT-DTL operators,
to compose events with each other and does not facilitate forming higher-levels of
specifications by reusing the existing ones.

MOTEL

MOTEL [60] facilitates the runtime monitoring of distributed software built on top
a distributed object-oriented processing environment such as CORBA [22]. MOTEL
provides a user interface through which users can select lists of objects and opera-
tions to be observed. Monitoring code is automatically generated and is inserted in
the base software.

The monitoring is performed at the level of middleware, at the abstraction level
provided by ODL/IDL specifications. Seven observable events are supported as
primitives: out request occurs when an object (or the environment) requests the
invocation of an operation on an object (target object); in request occurs when the
request arrives at the target object; accept request occurs when the target object
accepts the request and starts executing the operation; out reply occurs when the
operation request has been processed and the target object is ready to transfer the
result back to the source object; in reply occurs when the source object (or the
environment) receives the results of the operation; creation occurs when an object
is created; and deletion occurs upon the deletion of an object.

Similar to the other evaluated systems, MOTEL falls short in fulfilling the outlined
requirements. It can only collect events from objects operating in a distributed
environments. Consequently, the modularization and abstraction requirements are
not fulfilled. It does not provide operators to compose events with each other, and
to form higher-levels of specifications. Therefore, the compose-ability requirement
is not satisfied.

RMOR

RMOR [38] is a runtime enforcement framework for centralized C software. It makes
use of AspectC [4] as the intermediate language, and provides a pointcut designator

26 Chapter 2. Requirements for Runtime Enforcement Frameworks

language similar to the one of AspectC, to express the specifications. An event
corresponds to function calls or to variable assignments. Events may be composed
with each other using Boolean operators. It is possible to share the specified events
among multiple specifications.

The properties are specified as textual state machines. It is possible to define code
blocks as C call-back functions, which are executed if the properties are violated.
Diagnosis and recovery actions may be defined via such code blocks. The RMOR
compiler translates the specifications to C code, which is inserted in the base soft-
ware. The generated code is executed in the same process as the base software.

RMOR also falls short in fulfilling the modularization requirement, because it only
supports the concepts of function calls and variable assignment, and only facilitates
collecting event from these. The abstraction requirement is not fulfilled because the
specifications incorporate the elements of the C language. Finally, the compose-
ability requirement is not fulfilled, because it provides a fixed set of composition
operators, i.e. Boolean operators and state machine; and it is not possible to define
higher-level of specifications by reusing the existing ones.

2.4.2 Languages Supporting Embedded Contracts

Design by Contract [69] is an approach that recommends defining verifiable spec-
ifications for software modules, in terms of pre-conditions, post-conditions and in-
variants. The pre- and post-conditions respectively specify the properties that must
be guaranteed prior to the execution and after the execution of some section of
code. Invariants are properties that must always hold. Contracts may be checked
statically or dynamically at runtime.

There is a set of technologies, referred to as embedded contracts, that extends
an existing programming language with constructs to define pre-conditions post-
conditions, and invariants, and to insert them into programs. Pre- and post-
conditions are predicates that must respectively be TRUE before and after a block
of code is executed. If a predicate must be TRUE before and after a block of code
is executed, it is considered invariant. Programmers must identify the places in the
base software code where the primitives of interest can be collected from, and embed
the contracts there.

A benefit of the embedded contract is that the compiler and the existing features
of the language can be reused, so tool developers do not have to duplicate the full
compiler infrastructure, and the existing well-tested infrastructure can be reused
to manipulate and analyze the target code. Another benefit is that users do not

Chapter 2. Requirements for Runtime Enforcement Frameworks 27

have to learn a completely new language, compiler and IDE [29]. A drawback of
embedded contracts is that the specifications are scattered across and tangled with
software; consequently the complexity of software increases and the reusability of
both software and specifications decreases.

The embedded contract technologies fall short in fulfilling the identified require-
ments, because of the following reasons. These technologies provides elements to
represent contracts for methods and/or classes, but they do not provide elements
to represent other concepts of interest such as processes; so the modularization re-
quirements is not fulfilled. The contracts are specific to one programming language
and they incorporate the elements of the programming languages; so the abstraction
requirement is not fulfilled. The compose-ability requirement is not fulfilled also,
because, these languages provide fixed operators to compose contracts with recov-
ery code, and do not facilitate defining higher-level contracts by reusing the existing
ones.

JASS (Java with Assertions)

JASS [10] is implemented for sequential, concurrent, and reactive software written in
Java. It allows contracts be defined in the form of method pre- and post-conditions,
class invariants, loop invariants. JASS also allows properties be expressed using
universal and existential quantifications that range over finite sets. Trace assertions,
based on the process algebra CSP [41], describe the observable behavior of a class
and are used to verify the correct invocations of methods as well as the order and
timing of method invocations.

If the specified properties are violated, a trace exception is thrown that can trigger
a user-defined rescue block written in Java. A pre-compiler translates specifications
to programs written in JASS into pure Java code, and inserts them in the base
software.

APP (Annotation PreProcessor)

APP [81] provides linguistic constructs to define assertions and violation actions for
C programs developed in Unix-based development environments. It also provides
a compiler to translate the assertions into C code and inserts them in the base
software.

The properties can be specified for function interfaces and/or functions bodies. For
the specification of function interfaces, APP provides assertions to check consistency
between arguments, dependency of return value on arguments, effect on global state,

28 Chapter 2. Requirements for Runtime Enforcement Frameworks

the context in which a function is called, frame specifications, subrange membership
of data, enumeration membership of data, and non-null pointers. For the specifi-
cation of function bodies, APP provides assertions to check condition of the else
part of complex if statements, condition of the default case of a switch statement,
consistency between related data, and intermediate summary of processing. APP
allows code blocks in C be attached to the properties. Such blocks can be employed
to define recovery code.

Temporal Rover

Temporal Rover [26] supports software developed in Java, C, C++, Verilog, or
VHDL. It supports the formalisms Linear-Time Temporal Logic (LTL) and Metric
Temporal Logic (MTL) to express properties of the base software as future time
temporal formulae as well as lower and upper bounds, relative-time and real-time
properties. The assertions can be defined for methods, and recovery code can be
written in the language of the base software.

Spec#

Spec# [8] extends C# with constructs for non-null types, pre-conditions, post-
conditions, and object invariants. It supports the specification and reasoning about
object invariants also in the presence of callbacks and multi-threading.

Spec# supports both static and dynamic checking of the specifications. For the
dynamic checking, the Spec# compiler generates inlined code from the specified
pre-conditions and post-conditions of methods. The inlined code evaluates the con-
ditions and, if violated, throws an appropriate contract exception. Spec# supports
inheritance of specifications, where a method’s contract is inherited by the method’s
overrides. The run-time checks evoked by the method contract are thus also inher-
ited.

JML

The Java Modeling Language (JML) [16] is a behavioral interface specification lan-
guage for Java. It facilitates specifying class invariants, method pre- and post-
conditions, frame properties, data groups, ghost and model fields.

Frame properties specify which parts of the system state may change as the result
of the method execution. Any location outside the frame property is guaranteed to

Chapter 2. Requirements for Runtime Enforcement Frameworks 29

have the same value after the method has executed (called the post-state) as it did
before the method executed (in the pre-state).

In JML, it is possible to group a set of variables and refer to the group in the spec-
ifications, instead of referring to the variables individually. Such a group is termed
as data group. JML supports the notion of model field, which is a specification-only
field that provides an abstraction of (part of) the concrete state of an object. While
a model field provides an abstraction of the existing state, a ghost field can provide
some additional state, which mayor may notbe related to the existing state. Unlike
a model field, a ghost field can be assigned a value.

Two sets of tools are provided for checking that JML annotated Java modules meet
their specifications: Runtime assertion checking (RAC) tools, and Static verifica-
tion (SV) tools. JMLC [18] is the main runtime assertion checking tool for JML.
ESC/Java2 [20] is one of the existing static verification tools for JML specifications.

JML contracts may contain invocations to the methods. Such methods must be pure
meaning that they are not allowed to have side-effects. Purity is statically checked
by JML tools.

JML tools enforces behavioral subtyping [67], i.e. instances of a given type T must
meet the specifications of each of type T’s supertypes.

2.5 Summary

This chapter provides a canonical model for runtime enforcement frameworks, which
illustrates the core concepts in the runtime enforcement frameworks and the relations
among these concepts. Afterwards, the chapter claims that because the specifica-
tion languages of the existing runtime enforcement frameworks employ the elements
of their underlying programming languages, they fall short in representing various
concepts such as processes, layers, subsystems, etc. Consequently, programmers
must map these concepts to the elements of the underlying programming languages.
Such mappings cannot always be modularized and become specific to the employed
programming languages and platforms. These reduce the reusability and compre-
hensibility of the specifications, and increase their complexity. Moreover, the com-
position of concepts must be mapped to the elements of the underlying programming
languages, which requires extra effort.

To overcome the identified problems, this chapter outlines three requirements that
must be fulfilled by runtime enforcement frameworks: a) providing a rich set of
first-class abstractions to represent various concepts modularly; b) representing the

30 Chapter 2. Requirements for Runtime Enforcement Frameworks

concepts at higher levels of abstraction than the code level, so they can be reused
from different implementation languages and process structures; c) providing a rich
set of composition operators to facilitate expressing various composition strategies.

The chapter evaluates a representative set of runtime enforcement frameworks to
illustrate their conformance with the canonical model and to discuss the degree to
which they fulfill the identified requirements.

Chapter 3
Enhancing Naturalness of Runtime
Enforcement Concepts

The aim of this chapter is to seek solutions to overcome the identified shortcomings
of the existing runtime enforcement frameworks. To this aim, first the characteris-
tic features of runtime enforcement concepts are defined in Section 3.1. Second, in
Section 3.2 a computation model named as Event Composition Model is intro-
duced.

The hypothesis of this chapter is that the proposed Event Composition Model can
be a good basis in implementing runtime enforcement frameworks. To justify this
hypothesis, Event Composition Model is briefly evaluated with respect to the charac-
teristic features of runtime enforcement concepts in Section 3.3. In Sections 3.4, 3.5
and 3.6, a relevant set of current programming languages are evaluated to deter-
mine their suitability in implementing Event Composition Model. The result of the
evaluation is summarized in Section 3.7.

3.1 Towards Natural Representation of Runtime

Enforcement Concepts

The shortcomings of current runtime enforcement frameworks are discussed in Chap-
ter 2. In particular, adopting underlying implementation language constructs in the
specifications leads to three problems: a) reduced modularization due to scatter-
ing and tangling of runtime enforcement concepts in implementation; b) reduced
abstraction level due to adopting the elements of the underlying languages in the

31

32 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

specifications; c) reduced compose-ability due to fixed composition strategies and/or
due to the adoption of underlying languages in composition.

The source of these problems is due to the inability to specify and implement run-
time enforcement concepts naturally. We think that a natural representation im-
plies the following two requirements: a) the runtime enforcement concepts must be
represented as the first-class abstractions1 of the specification languages. b) The
specification languages and their implementations must respect the characteristic
features of the concepts.

A closer look at the existing runtime enforcement techniques lets us observe the
following characteristic features:

• Transient nature of runtime enforcement concepts: The interactions
among the concepts of runtime enforcement techniques have by nature a tran-
sient characteristic (i.e. are event-driven). For example, the verification pro-
cess in the implementation layer of runtime enforcement techniques observes
the changes that occur in the execution of the base software. These changes
may correspond to calls on methods, returning of calls, assigning values to
variables, etc. In other words, changes in the states of the base software are
events that drive the verification process. This fact can be also observed in
other concepts. For example, when the verification of a property fails, it may
trigger a diagnosis process. Similarly, a recovery process may be activated as
a result of the diagnosis process.

The transient nature of the runtime enforcement concepts implies that a spec-
ification language must provide elements that represent the changes in the
states of interest in each concept.

• Open ended-ness of the kinds of elements in specifications: The speci-
fications that are supported by most of runtime enforcement frameworks can be
briefly classified under four categories: specification of the base software, spec-
ification of diagnosis, specification of recovery and specification of constraints.
Based on the requirements of applications, the specification languages define
a set of linguistic elements to represent the concerns of interest. For example,
for some applications, it may be sufficient to specify the properties of the func-
tions in the base software. In some other applications, it may be necessary to
specify processes, subsystems, or specialized kinds of these concepts such as
highly available processes and subsystems.

1A language provides a set of first-class abstractions that are directly supported by the mech-
anisms of that language. A first-class abstraction may be passed as an argument of a call, it may
be returned as a result of a call, it may be stored or retrieved, etc. First class abstractions are
important factors in evaluating languages.

Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts 33

It is not easy or even possible to foresee all kinds of elements that are de-
sired to be represented in the specification languages of runtime enforcement
frameworks of today or in the near future. This implies that specification
languages and their implementations must also be open-ended with respect to
their elements.

• No strict hierarchy among specifications: Although Figure 2.1 shows a
fixed hierarchy of specifications, for a general case, there should be no strict
hierarchy among the specifications. For example, a system with diagnosis and
recovery processes may be considered as base software as well. This results in
multi-levels of runtime enforcement concepts.

A specification may be decomposed into sub-specifications as well. For exam-
ple, if the base software is composed of several subsystems, its specification
may be decomposed in a set of sub-specifications, each one expressing the
properties of a subsystem. In this case, it may be also preferable to organize
diagnosis and recovery specifications per subsystem.

The absence of a strict hierarchy among specifications implies that a speci-
fication language must facilitate arbitrary composition of concepts with each
other.

3.2 Event Composition Model

This section introduces a computation model, which can help in implementing run-
time enforcement techniques more effectively. The model is named as Event Com-
position Model. In the following subsection, we explain the abstractions in the
computation model followed by a meta-model of the computation model.

3.2.1 The Abstractions in Event Composition Model

We term a change in the state of interest as event. In the dictionary [1], an event
is defined as ”something that happens or is regarded as happening; an occurrence,
especially one of some importance”.

Definition of a state change can be different. For example, it can refer to an in-
vocation of a method on an object, calling a function, begin or end of a thread of
execution, a success or failure of a verification process, triggering a diagnosis pro-
cess, committing a recovery action, etc. Nevertheless, in Event Composition Model,
all such state changes are considered as events. We also do not assume a fix set of

34 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

events in the system. New kinds of events can be defined by application programs,
or they can be introduced as libraries.

Although the notion of event seems to be a fundamental concept for runtime en-
forcement techniques, it is a too low-level representation with respect to the concerns
of interest in specifications. For example, it may be necessary to represent all the
events that are related to an object, a function, a thread of execution, a process, or
a subsystem as linguistic abstraction. It is therefore logical to consider a group of
related events as a module, which we term as event module.

In the literature [19], a module is defined as a software unit with input and output
interfaces. The former defines the services that the module requires from its context;
the latter specifies the services that the module provides for its context. A module
promotes information hiding by separating its interface from its implementation.

We think that like the modules in programming languages, an event module must
be uniquely identifiable for example by its name, must provide input and output
interfaces and must separately specify its implementation.

The input interface of an event module is defined by the events that it groups.
One important difference between the input interface of modules in programming
languages and the input interface of event modules is that in programming languages
input interfaces are invoked explicitly, whereas in event modules, invocations are
implicit. An implicit invocation means that when the declared event occurs, the
corresponding implementation is invoked without explicitly writing a code for it.

Events have publishers. For the set of related events that form the input interface
of an event module, we consider their publishers also correlated.

The implementations of event modules are termed as reactors. Each reactor has
a type, which defines the semantics of the reactor. Reactor types can be defined
imperatively, by means of a program, or declaratively, by means of a domain specific
reactor definition language. Each reactor type may publish new events during its
operation. These are termed as reactor events.

Two sorts of reactor types are distinguished: read-write and read-only. In con-
trast to the read-write reactors, the read-only reactors cannot modify the states of
software, so they do not have functional side-effects on software. The read-only re-
actor types can represent the concepts that must only collect information from the
base software, without changing the base software. The verification and diagnosis
concepts are examples. Recovery concepts can be represented as read-write reactors,
since they modify the base software to heal the failures.

Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts 35

Each reactor has an input interface and an output interface, which are defined by a
set of events. The input interface specifies a set of events of interest, which refers to
zero or more events that are defined at the input interface of the corresponding event
module. The output interface is the set of the reactor events that are published by
the corresponding reactor type.

Reactors may be grouped in a module termed as reactor chain. Such reactors are
composed with each other sequentially. It means that they process the events in a
sequence starting from the first specified reactor within the reactor chain until the
last reactor.

Zero or more reactor chains can be attached to an event module. The output
interface of an event module is a union of the reactor events that are published by
the reactors attached to the event module.

The selection of the events of interest, and the grouping of the events in an event
module is carried out by an event composition language. The language is capable
of selecting any event that is declared in the system and is in the scope. The reactor
events can be selected and can form the input interface of other event modules.
This enables the designers to create more abstract event modules by systematically
composing the existing ones.

Event modules can be composed with each other at shared or non-shared events. In
the former case, an event is part of the input interface of multiple event modules.
The compositions may be constrained; the constrains is defined by using an event
constraint language.

3.2.2 The Meta-Model of Event Composition Model

Figure 3.1 shows the meta-model of Event Composition Model to represent its el-
ements and the relationships among them. This model is shown using the UML
language.

Starting from the top, as the name implies, class Event Module represents event
modules. This class has three outgoing associations and two incoming associations.

The outgoing association input interface refers to zero or more input events that are
grouped by the event module.

The outgoing association output interface refers to zero or more events that are
published by the reactors of other event modules.

36 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

Class Event is the base class for representing various sorts of events. Class Base Soft-
ware Event is an example subclass that represents the events that are published by
various elements in the base software. Examples of elements are objects, processes,
and groups of objects.

Class Reactor Event represents the events that are published by reactors.

Various attributes are defined for each kind of event. We classify these in three
categories: StaticContext, DynamicContext and ReturnContext. The static context
of an event represents the set of attributes whose values do not change, and are used
to select the event from the system. The name of an event is an example.

The dynamic context of an event represents the set of attributes whose values change
at runtime. The unique identifier of the thread of execution in which the event is
published is an example.

The return context of an event represents a set of attributes whose values are pro-
vided by the reactors that process the event. These are used to return values to the
publisher of the event.

Every Event has a Publisher. The events forming the input interface of an event
module may be published by various publishers. We consider such publishers cor-
related, as such their events are also related to each other and are grouped in one
event module. Publishers are distinguished by their unique identifier.

Every Event is published in a thread of execution, which is shown by class Thread.
By the thread of execution we mean an operating system thread, or a causal thread
of execution that spans across multiple processes if the publishers of the events are
distributed across multiple processes. The detail of maintaining such causal threads
of execution is explained in Chapter 6. The threads of execution are distinguished
by their unique identifier to which is assigned by the operating system or by the
algorithm explained in Chapter 6.

The outgoing association has of class Event Module specifies that one or more reactor
chains may be bound to an event module. The chains are represented by class
Reactor Chain.

Class Reactor Chain shows that each chain is identifiable by a name, and has zero
or more Attributes and one or more Reactors. Reactors can exchange information
with each other via the attributes of the reactor chain.

Each Reactor specifies zero or more of the events, which are in the input interface
of an event module, as its input interface.

Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts 37

-n
a
m
e

R
e
a
c
to
r
C
h
a
in -n
a
m
e

-t
y
p
e

-p
a
ra
m
e
te
rs

R
e
a
c
to
r

1

1
..
*

R
e
a
d
-O
n
ly

R
e
a
d
-W
ri
te

C
o
m
p
o
s
it
io
n
 C
o
n
s
tr
a
in
t O
v
e
rr
id
e

Ig
n
o
re

P
re
c
e
d
e

E
v
e
n
t

*

-c
o
n
s
tr
a
in
s

*

-n
a
m
e

-t
y
p
e

-v
a
lu
e

A
tt
ri
b
u
te
s

1

*

-n
a
m
e

E
v
e
n
t
M
o
d
u
le

B
a
s
e
 S
o
ft
w
a
re
 E
v
e
n
t

R
e
a
c
to
r
E
v
e
n
t

-o
u
tp
u
t
in
te
rf
a
c
e

-s
p
e
c
if
ie
s

1

*

-n
a
m
e

R
e
a
c
to
r
T
y
p
e

-h
a
s

1
*

-n
a
m
e

-t
y
p
e

-v
a
lu
e

A
tt
ri
b
u
te
s

S
ta
ti
c
C
o
n
te
x
t

D
y
n
a
m
ic
C
o
n
te
x
t

1

*

R
e
tu
rn
C
o
n
te
x
t

1

-h
a
s

-i
n
p
u
t
in
te
rf
a
c
e

1
..
*

1

*

-I
dP
u
b
li
s
h
e
r

-I
d

T
h
re
a
d

-i
s
P
u
b
lis
h
e
d
B
y

-i
s
P
u
b
lis
h
e
d
In

S
in
g
le
to
n

P
e
r-
In
s
ta
n
c
e
-T
h
re
a
d

P
e
r-
T
h
re
a
d

P
e
r-
In
s
ta
n
c
e

In
s
ta
n
ti
a
ti
o
n
 S
tr
a
te
g
y

1

-i
s
D
e
fi
n
e
d

1

-h
a
s

1

1
..
*

1 1

1 1

1

-s
p
e
c
if
ie
s

*

F
ig
u
re

3.
1:

A
m
et
a-
m
o
d
el

fo
r
E
ve
n
t
C
om

p
os
it
io
n
M
o
d
el

38 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

Each Reactor has a type, which is represented in the figure by Reactor Type. Two
kinds of reactor types are distinguished: Read-Only and Read-Write.

Each Reactor Type publishes zero or more Reactor Event during its execution. These
events form the output interfaces of event modules to which the corresponding re-
actors are bound.

The incoming association constraints of class Event Module refers to zero or more
constraints among the event modules. We defined three constraints: Precede, Ignore
and Override.

The constraint Precede specifies that if a selected event is a part of the input interface
of two event modules A and B, the implementations of the event module A must
react to the event first.

The constraint Override specifies that if a selected event is a part of the input
interface of two event modules A and B, only the implementations of A must react
to the event.

The constraint Ignore specifies that if a selected event is generated during the exe-
cution of reactors bound to the event module B, this event is ignored by the event
module A.

The incoming association instantiation to class Event Module specifies the policy
to instantiate event modules. Based on the publisher of the events, which form
the input interface of event module, and thread of execution in which the events are
published we consider four instantiation strategies. These are shown via classes Per-
Instance-Thread, Per-Instance, Per-Thread and Singleton in Figure 3.1. An intuitive
representation of these strategies is provided in Table 3.1, which is explained in the
following.

The strategy Per-Instance-Thread means that we must distinguish both the pub-
lishers of the events, and the thread of execution in which the events are published.
Here, individual instances of an event module must be created for each group of
correlated publishers that announce events in the same thread of execution.

The strategy Per-Instance means that we must only distinguish the publishers of
the events. Here, individual instances of an event module must be created for each
group of correlated publishers, regardless of the thread of execution in which the
events are announced.

The strategy Per-Thread means that we must only distinguish the thread of exe-
cution in which the events are published. Here, individual instances of an event
module must be created for all correlated publishers, depending on the thread of
execution in which the events are announced.

Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts 39

The strategy Singleton means that we must not distinguish the publishers nor the
thread of execution in which the events are published. Here, a single instance of an
event module must be created, shared among all the correlated publishers partici-
pating in the threads of execution.

Table 3.1: Four possible instantiation strategies for event modules

Publisher Thread Instantiation Strategy
1 1 Per-Instance-Thread
1 0 Per-Instance
0 1 Per-Thread
0 0 Singleton

3.3 Motivations for Adopting Event Composition

Model

This section provides a brief evaluation of Event Composition Model in addressing
the shortcomings of current runtime enforcement frameworks. A more detailed study
will be presented in the following chapters. For this purpose, we investigate if event
modules can offer a natural way in expressing the concepts of runtime enforcement
techniques. To this aim, we refer to the characteristic features of the concepts that
are described in the previous section:

• Transient nature of runtime enforcement concepts: We consider the
notion of event fundamental in supporting the transient nature of runtime
enforcement concepts. In Event Composition Model, input-output interface
specifications of event modules and reactors are defined as events.

• Open ended-ness of the kinds of elements in specifications: In Event
Composition Model, we do not assume a fix set of events in the system. This
means that if needed, new event modules can be introduced to represent the
emerging concerns of interest.

• No strict hierarchy among specifications: In Event Composition Model,
since reactor types can publish events, and the event composition language
can select these events as well, it is possible to compose event modules with
each other such that a hierarchy of event modules can be formed.

In order to conveniently implement the presented computation model, preferably
the implementation language must fulfill the the following requirements:

40 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

• Declaration of arbitrary state changes as an event; this provides flexibility
for runtime enforcement specification languages in defining the concerns of
interest.

• Implicit invocation on the event module implementations (reactors) upon the
occurrence of events.

• An event composition language with the following properties:

– Declarative so that explicit reasoning over specifications is eased.

– Selection of any event that is declared in the system and in the scope, so
that event modules of interest can be flexibly defined.

– Explicit naming of the group of events that are selected, so that event
modules can be defined and referred to by name.

• Definition of a set of reactor types with the following properties:

– From a reactor type, one or more instances can be created and named.
This enhances the reusability of types.

– A reactor instance can be bound to an event module through the use of
an explicit language keyword or statement, so that flexibility in defining
the semantics of event modules are accomplished.

– Encapsulates its own implementation, so that modularity is supported.

– Reactor types may be programmed by their domain-specific specification
languages, so that the semantics of reactors can be expressed in their
natural form.

– Variety of composition strategies for events can be expressed as domain-
specific reactor types, so that strategies can be represented in their nat-
ural form rather than in general-purpose imperative languages.

– A reactor type can publish its own events, so that new event modules can
be formed using the existing ones.

3.4 Implementing Event Composition Model in

Object-Oriented Languages

In the previous sections, we have informally introduced the concept of event modules
as a possible way to overcome the shortcomings of the programming languages in
implementing runtime enforcement techniques. We have also briefly motivated the

Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts 41

proposed approach by evaluating it with respect to the characteristic features of
runtime enforcement concepts. We will now evaluate object-oriented languages to
infer whether they fulfill the requirements mentioned in the previous section to
implement Event Composition Model effectively.

Object-oriented programs are formed around a set of objects that specify real-world
entities and the operations that can be performed on them [7]. An object is composed
of a set of attributes and methods that group a set of statements. Methods inspect
and update attributes. Classes abstract over objects that have similar attributes and
methods. A class may implement one or more interfaces. Classes may be related to
one another by dependency, inclusion (inheritance) or by containment (aggregation).
In the dependency relation, the methods of a class invokes the methods of another
class; invoking a method is also termed as sending a message. In the inclusion
relation, one class is a subclass of another one. In the containment relation, objects
of one class contain objects of another or the same class.

For a straightforward implementation of Event Composition Model in object-oriented
languages, we assume that there is an interface which defines a list of methods, and
there are classes which implement that interface. We assume that the methods
defined in the interface form the input interface of an event module. The classes
represent reactors. Since classes are data types in object-oriented languages, the
reactors are also typed.

To bind multiple reactors to an event modules, multiple classes that implement the
interface must be defined. Classes may publish new events by invoking the methods
that are defined in an interface. Various sorts of events can be encapsulated and
represented as methods (i.e. input interface of an event module).

For the following reasons we claim that object-oriented languages do not fulfill the
requirements mentioned in the previous section; hence, cannot effectively implement
Event Composition Model.

First of all, event module interfaces are activated by the occurrence of the corre-
sponding events, whereas the methods of an object must be invoked explicitly.

Second, an event module is formed dynamically through the execution of an event
composition program, while the interface of an object is fixed by its class definition.

Third, in the case of event modules, it is possible to bind an implementation to a
group of events that form an event module. If this mechanism has to be imple-
mented by an object-oriented language, an application must be written to select the
corresponding events and linked these to their implementation code. This causes
scattering and tangling in the object-oriented implementation. We assume that in

42 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

event modules, binding implementations to a group of events is supported by an
explicit language keyword, and therefore scattering is avoided.

Fourth, the use of interfaces is not obligatory in all object-oriented languages. There-
fore, an object-oriented implementation of an event module might not offer the
separation of the interface and the implementations of the event module.

Fifth, although it might be possible to program various composition strategies, the
implementations would be expressed in imperative object-oriented programs, rather
than in a domain-specific composition language.

3.5 Implementing Event Composition Model in

Aspect-Oriented Languages

The key concepts in aspect-oriented programming [54, 13, 75, 58] are join points,
pointcut designators, advices and aspects. Join points are identifiable state changes
in the execution of programs. Examples are execution of methods, creation of ob-
jects, and throwing of exceptions. Pointcut designators are linguistic constructs for
querying join points from the program.

Advice is a program code that is executed when the corresponding join point is
activated. An advice is bound to a set of join points through a pointcut designator.
In most aspect-oriented languages, the combination of an advice and its pointcut
designator is called an aspect.

The join point model of aspect-oriented languages defines the join points available
for writing aspect-oriented programs, which are fixed in general.

Aspect-oriented languages introduce aspects as units of modularization for the code
that scatters across and tangles with other program pieces in case object-oriented
and/or procedural languages would have been used. Aspect-orientation promotes
better separation of concerns than object-oriented programming, in case the scat-
tered and tangled code can be abstracted as an aspect.

Let us assume that we implement event modules using aspects. In this case, the
input interface of an event module may correspond to the join points selected by
the pointcut designator of an aspect. A pointcut designator has a similar function
as the event composition language, and the advice is similar to the implementation
of event modules (reactor).

Aspect-oriented languages seems to provide a suitable basis for implementing Event
Composition Model. To elaborate on this, we need a more detailed look at the cur-

Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts 43

rent widely known aspect-oriented languages. These are discussed in the following
sections.

3.5.1 AspectJ

An illustration of the AspectJ shortcomings in supporting Event Composition Model
is provided in Section 7.4 by means of an example. In the following, we provide a
generic discussion of the shortcomings.

The join point model of AspectJ [53, 56] defines a rich set of events corresponding to
method calls and executions, constructor calls and executions, field get and set op-
erations, pre-initializations, initializations, static initializations, handler and advice
executions.

The declarative pointcut designator language of AspectJ facilitates selecting events
based on the static and dynamic information of join points. The static information
can be for example the method names, and the dynamic information may refer to
the arguments of the selected methods. Advices in AspectJ are pieces of Java code
executed upon the activation of the corresponding join points.

Although event modules and aspects in AspectJ show similarities, there are also
important differences. Firstly, events in Event Composition Model are assumed to
be open-ended; new kinds of events can be introduced if necessary. The events in
AspectJ are defined by its join point model and they are fixed.

Secondly, the pointcut designator of AspectJ is rather limited and mainly used for
selecting the join points. If more complex operations are needed, such as grouping
of join points, these have to be realized in the implementation of aspects (in advice
code).

Thirdly, in event modules, arbitrary implementations may be bound to event mod-
ules using an explicit language keyword. In AspectJ different implementations can
be bound to pointcut designators through subclassing of aspects or by writing an
application code that use multiple aspects.

Fourthly, the implementations of event modules, which are called reactors, have
types. We assume that reactor types can be specified using their domain specific
(declarative) languages. In AspectJ, however, advices are expressed in an imperative
Java code.

Fifthly, the pointcut designator language of AspectJ provides a fixed set of operators
to compose events, to define variety of composition strategies, one must implement

44 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

the strategies as advices. In this case, composition strategies are implemented in an
imperative language, rather than a domain-specific composition language.

Finally, reactors can publish arbitrary events. These define the output interfaces of
the event modules, which can be selected and composed into new event modules if
necessary. These events are treated in the same way as the events that are generated
through the execution of programs. In AspectJ, however, advices do not have types
and are regarded as anonymous methods. The pointcut designators of AspectJ are
limited to select events that are published by all advices defined in an aspect without
the possibility of distinguishing advices. An application code can be provided to
partially address this deficiency. For example, one may try to rewrite an advice by
putting its original body in a method and invoke this method from within the advice.
By this way, an AspectJ pointcut specification can be used to select the event that is
published by the advice. As it is studied by [79], this approach however, cannot deal
with advices that utilize contextual information. Also, the complexity of software
increases due to the additional application code.

3.5.2 AspectJ Extensions

In the literature, a number of extensions to AspectJ have been published to overcome
some of its shortcomings.

To enhance the AspectJ pointcut designators with history information, Tracematches
is introduced [76]. Tracematches adopts the regular expression formalism over As-
pectJ pointcuts to express history-based information. The history-based pointcuts
of Tracematches are more expressive than the one of AspectJ, because it supports
selecting events from multiple objects and allows representing a sequence of events
occurring in a group of objects. In Event Composition Model, the event composition
language is more general than the pointcut designator of Tracematches, because in
Tracemacthes input interface of aspects are limited to a regular expression formal-
ism.

In AspectJ, the binding of advices to objects is limited. It is either possible to bind
a singleton instance of an aspect to all the selected objects, or a separate instance
of an aspect is bound per object. Association Aspects [84] has been introduced to
enhance AspectJ pointcut designators with a possibility to flexibly bind an advice
to a designated group of objects. In Association Aspects, because an aspect is pa-
rameterized with a fixed-length group of objects, it is not possible to bind an aspect
to arbitrary groups of objects. In Event Composition Model, the event composition
language facilitates selecting arbitrary groups of events from one or more objects
and allows attaching implementations to these.

Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts 45

The current AspectJ system is developed to work on a single-process Java platforms.
To offer aspect-oriented programming for distributed Java implementations, DJCut-
ter [73] is developed. DJCutter extends AspectJ with remote pointcut designators
that can identify join points in the execution of a program running on a remote
host. In DJCutter, advices are executed in a process called Aspect Server. In Event
Composition Model, the event composition language must be able to select events
generated by programs implemented in different programming languages, processes
and possibly running at different hosts.

There have been various attempts to extend the fixed join point model of AspectJ.
One may decorate, for example, the program code with annotations, and with the
help of annotation based pointcut designator, these code can be selected. However,
in AspectJ, the use of annotation is limited to certain language elements only.

The other way is to extend the join point model of AspectJ with new elements. For
example in [37], the so called loop join point is introduced. Unfortunately, each such
extensions do not change ”the fixed set of elements feature” of the join point model.

In the language EJP [42], a new join point can be declared as a special kind of
method interface. A declaration specifies a name for the explicit join point along
with a return value, formal parameters, and a throws list. In the code where a join
point must be activated, a reference to the corresponding join point declaration is
made. In EJP, the implementation of a join point can be scattered to the different
locations in the code. Moreover, the activation of a join point is explicit. In Event
Composition Model, event publication is implicit.

IIIA [89] aims to extend the AspectJ join point model through the notion of typed
join points. Such a type defines a set of context variables and a pointcut predicate.
Individual classes in the program may bind to a declared join point explicitly with
the use of a dedicated keyword. In IIIA, similar to EJP, the implementation of a
join point can be scattered to different locations in the code. Also, the activation of
a join point is explicit.

3.5.3 Compose*

Compose* [21] is a language- and platform-independent aspect-oriented language,
which supports the languages C, Java and the .Net languages. The Compose*
language is mainly a composition language and can be used to enhance various
different implementation languages. The join point model of Compose* includes the
events that correspond to the incoming and outgoing messages to and from objects.
To react on the incoming and/or outgoing messages, Compose* defines the notion

46 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

of filters that are attached to objects. Each filter has a type that implements its
functionality. The pointcut designator in Compose* is termed as a superimposition
specification, which is expressed using a Prolog [90] program. A superimposition
specification selects the objects of interest and binds the corresponding filters to
these objects. Superimposition specifications are defined separately from filters;
this increases the reusability of filters due to flexibility in bindings.

A straightforward way to implement event modules in Compose* is to represent an
event module via filters and superimposition specifications. Here, filter types are
means to define reactor types, and superimposition selectors are means to select
the events of interest and bind an instance of a filter type to them. The pointcut
designator of Compose* is expressed using the declarative Prolog language, and it
facilitates selecting events from programs written in different languages. Dedicated
different filter types can be employed to define various different composition strate-
gies for events. Some filter types in Compose* are specified using their domain
specific languages.

Despite its advantages, the Compose* language has some important shortcomings.
First, the join point model of Compose* supports a fixed sorts of events, which are
the events that correspond to incoming and outgoing messages. In Event Compo-
sition Model, however, events may refer to any state-change in the execution of the
program.

Second, the event composition language of Compose* can only select the events that
are activated per object. Therefore, it falls short in grouping events activated by
arbitrary groups of objects, as it is defined by Event Composition Model. This also
limits the possibility of selecting events from a group of objects that are distributed
across multiple processes and/or are implemented in different languages.

Third, the filters in Compose* do not publish their events of interest. As such, it is
not possible to compose event modules.

Finally, since events in Compose* are defined per object, distribution of events to
different hosts is not supported.

3.5.4 AWED

AWED (Aspect With Explicit Distribution) [71] is an aspect-oriented extension to
Java. The AWED language provides a dedicated pointcut designator to select events
that may occur at different hosts. In addition, the pointcut designator can express
history information; sequences of events are defined in terms of transitions of non-
deterministic finite-state automata; The events can involve different hosts. It is

Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts 47

possible to specify a transition in the automaton that can trigger advises, which can
execute remotely.

AWED partially fulfills the requirements in implementing event modules due to its
support of distribution. However, AWED has some shortcomings as well. Firstly, it
offers a fixed join point model that supports mainly method invocations. Secondly,
similar to AspectJ, AWED does not separate implementation of aspects (advice
code) from their interfaces (pointcut designator). Moreover, the pointcut designator
cannot select the events that occur in advice code. By means of history-based
pointcuts, AWED facilitates selecting events from multiple objects; however similar
to Tracematches, the input interfaces of event modules can only be defined in terms
of the history-based pointcut expressions that are available. Similar to AspectJ,
AWED falls short in supporting varierty of composition strategies.

3.5.5 AspectWerkz and EOS

AspectWerkz [5] and EOS [78] are two languages that aim at unifying aspects with
classes. The pointcut designators of these languages can select events that can
be activated in both classes and aspects. This makes it possible to implement
hierarchically organized aspects.

In AspectWerkz, aspects are defined as normal Java classes, and methods are used
to define advices. However, a class representing an aspect must fulfill certain re-
strictions such as providing a set of methods with certain properties. AspectWerkz
separates interfaces (pointcuts) of aspects from their implementation (advices). The
other characteristics of AspectWerkz are similar to the ones of AspectJ, and there-
fore it has similar shortcomings in implementing event modules.

EOS, which is an extension to C#, also unifies aspects and classes such that an
aspect can explicitly be instantiated. Advices are defined as normal methods with-
out any constraint. This makes EOS more flexible than AspectWerkz. Similar to
Association Aspects, EOS supports selecting events from a group of objects. The
other characteristics of EOS is similar to the ones of AspectJ, and therefore it has
similar shortcomings in implementing event modules.

48 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

3.6 Implementing Event Composition Model in

Languages Supporting Implicit Invocation Mech-

anisms

In implicit invocation, instead of invoking a procedure directly, a procedure pub-
lishes one or more of its events. Other procedures that are interested in that event
can register for the event. When an event is published, the implicit invocation mech-
anism invokes the procedures that are registered for that event. In this manner, the
publisher of the event is decoupled from the procedures that react to the event.

There are a number of systems and languages that offer implicit invocation mecha-
nisms. For example, Java virtual machine provides a tool interface that allows native
libraries to select the events of the virtual machine and to control the Java virtual
machine [50] accordingly. Similarly, the Linux operating system publishes events
that can be processed by applications, in response to a condition such as mem-
ory segment violation and process destruction [59]. Also, some databases provide
notations for defining active data triggers [32].

Apart from aspect-oriented languages, there are also languages or language exten-
sions that support implicit invocations by providing dedicated elements to define
events, to publish events and to react to events.

3.6.1 C#

C# provides the event-delegate mechanism [15] to define events and publish them.
Events are defined as special class members and are published explicitly from within
the class. Methods that are interested in an event must register for it. It is also
possible to unregister from an event.

Let us assume that an event module is defined as a class in C#. Here, the class
must implement the functionality to register for the events of interest that form
the input interface of the event module, and to group them as it is desirable. The
implementations of event module can be provided as methods in the same or in
different classes. The implementations are explicitly invoked by the event module
class.

There are the following shortcomings in implementing of event modules in C#.
First, there is no (declarative) language to select and group events; consequently,
the input interface of event modules cannot be expressed directly. Second, the
invocation of implementation is explicit. Third, the implementations of event mod-

Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts 49

ules are expressed in imperative C# code, whereas in Event Composition Model
the implementation of event modules can be specified using their domain specific
(declarative) languages. Fourth, the separation of the interface and the implemen-
tations of event modules is not directly supported by the languages, and it depends
on the way programmers implement the event modules. Fifth, a fixed composition
strategy is supported for events.

3.6.2 EventJava

EventJava [28] is an extension to Java with a generic support for event-based dis-
tributed programming. EventJava introduces the notion of event methods that are
a special kind of asynchronous method, and are used to define application-specific
events. The invocation of event methods is a means to publish events. An event
method can represent a single event or a group of events. An event method may
have a set of formal arguments that are used to maintain the attributes of the cor-
responding event. EventJava considers a set of implicit attributes for each event,
which convey contextual information.

Let us assume that an event module is implemented as an event method. In this
case, a state change can be represented as a dedicated event method, and correlated
events can either be grouped using an array-like constructs, or they can be composed
with each other to form a sequence. The body of an event method defines the
implementation of the event module. The implementation of an event module can
publish new events.

There are the following shortcomings in implementing event modules in EventJava.
First, events are published explicitly by program code. Second, the input interface
of an event module is fixed by the definition of the corresponding event method in
EventJava, because it is not possible to select events. Third, the event composition
language provides a limited set of operators to group and compose events; whereas,
in Event Composition Model an expressive domain-specific language is required to
define variety of composition strategies. Fourth, the interface of an event module is
not separated from its implementation, because, it is defined as one event method.
Fifth, the implementation of an event module is imperative Java code, whereas, in
Event Composition Model domain-specific reactor types are desirable.

3.6.3 EScala

EScala [35, 36] is an extension to the language Scala [74] with object-oriented events.
EScala adopts the notions of join points and pointcut designators to facilitate the

50 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

selection of events. In EScala, events are declared as class members that can be ac-
cessed as attributes of objects. The definition of an event can refer to the state of the
objects, to the relationships of objects with other objects, and to the events declared
in the public interfaces of other objects. Events can either explicitly be published,
or they can be selected from the software by the available pointcut designators. In
the latter case, only method calls are available as events.

Let us assume that an event module is implemented as a class in EScala. In this
case, the methods of the class must either explicitly register for the events that they
are interested in, or the events of interest can be selected via pointcut designators.
The methods in the EScala class provide an implementation for the event module.
We identify the following problems in implementing event modules in EScala:

Firstly, events in Event Composition Model are assumed to be open ended; new
kinds of events can be introduced if necessary. However, in ESclala the events that
can be selected by the pointcut designators are fixed by the join point model of
EScala.

Secondly, Event Composition Model expects expressive languages for the selection of
arbitrary events, group them and define variety of composition strategies. However,
the pointcut designator of EScala has a limited expressive power for this matter.

Thirdly, the separation of the interface and the implementations of event modules is
not directly supported in EScala, and it depends on the way programmers implement
the event modules.

Fourthly, the implementations of event modules, i.e. reactors, have types and can
be specified using their domain specific (declarative) languages. In EScala, however,
methods are expressed in the imperative Scala language.

3.6.4 Ptolemy

Ptolemy [77] is an expression language built on top of Java, which positions itself
between implicit invocation mechanisms and aspect-orientation. It allows the exe-
cution of arbitrary expressions be identified as events, and facilitates defining event
types to abstract over such events. An event type has a name, a return type and
is composed of a set of context variable declarations. These context declarations
specify the types and the names of reflective information exposed by conforming
events. In Ptolemy, events must explicitly be announced, by binding an event type
to an expression in the base program. Ptolemy allows handlers to be declaratively
registered for a set of events using one succinct pointcut designator in a binding
expression.

Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts 51

Let us assume that an event module is implemented as a class in Ptolemy. In this
case, by means of pointcut designators, the class can select the events of interest
and bind an implementation to them. We identify the following problems.

Firstly, because an event type must be explicitly bound to expressions in the pro-
grams, the announcement of events is explicit. Secondly, the pointcut designators
of Ptolemy are not expressive enough to select arbitrary events and to compose or
group them; it only facilitates the composition of events via disjunction operator.
Thirdly, Ptolemy does not support domain-specific implementation of event mod-
ules. Fourthly, the input interface of an event module is not separated from its
implementation, because pointcut designators and handlers are defined in one class.

3.7 Summary of the Evaluation

Table 3.2 summarizes the strengths and the shortcomings of the evaluated program-
ming languages in supporting Event Composition Model. Here the abbreviation
ECL stands for Event Composition Language. The first column represents the
features that are expected to be supported by a language; these are taken from
Section 3.3. The other columns in the first row list the evaluated languages. The
characters ’+’,’o’ and ’-’ mean that the language fully supports, to some extent
supports, and does not support the listed feature.

As it can be seen in the table, none of the evaluated languages fully provide the
desired features of Event Composition Model. A detailed discussion of the short-
comings are provided in the previous sections. In the following, we provide a brief
explanation of the cells that are marked as ’o’ for a selected set of languages that
are considered relevant.

The cell ”Separation of interface and implementation of event module” is marked as
’o’ for the object-oriented languages, because not in all the object-oriented languages
the separation of interfaces from implementations are compulsory and/or possible.
For example, in Java it is optional to define interface for a class.

The cell ”Publishing events of implementations” is marked as ’o’ for AspectJ, be-
cause the pointcut designators of AspectJ provides a limited support to select events
occurring from within advices. The cell ”Separation of interface and implementation
of event module” is marked as ’o’, because even if pointcuts are defined separately
from advices, the composition of advices with pointcuts is defined as a part of the
advice.

52 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

The cell ”Implicit invocation” is marked as ’o’ in AspectJ extensions, because in
EJP and IIIA, events must explicitly be published from within the program.

The cell ”Selecting events (from multiple languages and processes)” is marked as ’o’
for Compose*, because Compose* does not facilitate selecting events from multiple-
process software. The events can be selected from a single object; therefore, although
Compose* supports multiple base languages, it falls short in selecting events from
multiple objects implemented in different languages. AWED also falls short in se-
lecting events from languages other than Java.

The cell ”Variable event composition strategies” is marked as ’o’ in Compose*,
because Compose* facilitates defining new composition operators via dedicated filter
types. However, the composition is limited to the event published by a single object.

The cell ”Explicit naming and grouping in ECL” is marked as ’o’ in EOS, because
EOS supports selecting events from a group of objects, however, it is not possible
to bind an aspect to arbitrary groups of objects.

The cell ”Selecting events (from multiple languages and processes)” is marked as ’o’
in EventJava, because EventJava only supports Java language. The cell ”Explicit
naming and grouping in ECL” is marked as ’o’, because EventJava only provides a
fixed set of operators to compose and group events.

The cell ”Event declaration” is marked as ’o’ in EScala, because in case of implicit
events, EScala supports a fixed join point model. The cell ”Implicit invocation” is
marked as ’o’, because in EScala in addition to implicit invocation, event publication
is supported as well.

3.8 Conclusion

The existing runtime enforcement frameworks fall short in providing natural rep-
resentation for the concepts of interest. This is mainly because the specification
languages of these systems adopt the linguistic elements of their underlying imple-
mentation languages. The problem is amplified, since the current implementation
languages fall short in representing the natural characteristics of runtime enforce-
ment concepts. These characteristics are: a) transient nature of runtime enforcement
concepts; b) open ended-ness of the kinds of elements in specifications; and c) no
strict hierarchy among specifications.

To naturally support these features, the computational model Event Composition
Model is introduced informally. This model is justified briefly against the desired
features.

Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts 53

T
ab

le
3.
2:

Im
p
le
m
en
ti
n
g
E
ve
n
t
C
om

p
os
it
io
n
M
o
d
el

in
th
e
ex
is
ti
n
g
p
ro
gr
am

m
in
g
la
n
gu

ag
es

54 Chapter 3. Enhancing Naturalness of Runtime Enforcement Concepts

Finally, object-oriented languages, aspect-oriented languages, and the languages
that support implicit invocation are evaluated to determine if they are eligible to
implement Event Composition Model effectively. This assessment shows that none
of the languages satisfy the requirements completely, although aspect-oriented lan-
guages are somewhat more suitable than the others.

Chapter 4
EventReactor: an Implementation of
Event Composition Model

Chapter 3 provides a computation model, termed as Event Composition Model, to
enable a natural representation of runtime enforcement concepts. Different program-
ming languages are evaluated for their suitability in implementing the computation
model. The evaluation reveals that none of the existing programming languages
can implement the model as it is desired. According to the evaluation provided in
Chapter 3, Compose* provides promising features in implementing Event Compo-
sition Model. However, considerable extensions to Compose* are required if it is to
be adopted to implement Event Composition Model.

This chapter introduces the EventReactor language and compiler, as the successor
of Compose*. EventReactor provides dedicated linguistic elements to define events,
event modules, reactors, reactor types and reactor chains. It makes use of the
Prolog language as its event composition language. EventReactor supports four
kinds of primitive events that are identifiable in program code. It provides an API
to programmers to declare so-called user-defined events.

The EventReactor language provides an API to programmers to define reactor types.
It also provides dedicated operators to compose event modules with each other and
to specify the constraints among them.

In the EventReactor language, the specifications are defined independently from any
programming language, and the compiler of EventReactor facilitates generating code
for Java, C and .Net languages. Reactors and reactor chains are parameterizable,
and are defined separately from event modules. This increases the reusability of
event modules and reactors.

55

56 Chapter 4. EventReactor: an Implementation of Event Composition Model

EventReactor can be used as an underlying language for the specification languages
of runtime enforcement frameworks, or it can be utilized to directly implement
runtime enforcement techniques.

Section 4.1 explains the EventReactor language, and Section 4.2 discusses the com-
piler of the EventReactor language. The support of the EventReactor for predefined
events is illustrated by means of an example in Section 4.3. Section 4.4 evalu-
ates EventReactor with respect to the criteria provided in Chapter 3. A discussion
about the similarities and differences between EventReactor and Compose* is given
in Section 4.5. Future work and conclusion are outlined in Sections 4.6 and 4.7,
respectively1.

4.1 The EventReactor Language

The following subsections explain specification of events, event modules, reactor
chains and reactor types in the EventReactor language.

4.1.1 Specification of Events

The EventReactor language supports a predefined set of events, which correspond to
the following state changes: a) before invocation of methods; b) after invocation of
methods; c) after invocation and immediately before execution of methods; and d)
after execution of methods, which have terminated normally2. These are considered
as predefined because the compiler of the EventReactor language identifies them in
the program code and defines them in the language.

The language provides an API to programmers to define new sorts of events, which
are termed as user-defined events.

The EventReactor language makes use of the Prolog language to select the events
that are defined in the language. The predefined events are declared as Prolog facts
by the compiler of the EventReactor language. The user-defined events must be
declared as well. The definition of events provides the necessary information about
the events and their publishers, so that it is possible to select them by the Prolog
language.

Listing 4.1 shows a list of Prolog facts that are used to declare predefined events.

1An earlier version of this chapter is published in [14].
2Some aspect-oriented languages [53] can identify the states after execution of methods, which

are not terminated normally. In our work, we only focus on the normal termination of an execution.

Chapter 4. EventReactor: an Implementation of Event Composition Model 57

The expression isBeforeInvocation represented in line 1 is used to define an event
that corresponds to the state change before an invocation of a method.

The argument <event-name> specifies the unique name of the event in the language.
The unique name is assigned by the compiler of the EventReactor language.

The argument <method-id> specifies the unique identifier of the method of interest
in the program code.

The character ’.’ in Prolog represents the termination of a fact.

Likewise, the Prolog expressions isAfterInvocation, isBeforeExecution and
isAfterExecution are used to declare other sorts of predefined events.

The expression isMethodWithName represented in line 6 is used to provide necessary
information about a method. The argument <method-id> represents the unique
identifier of the method, which is assigned to by the compiler of the EventReactor
language. This can be, for example, the signature of the method. The argument
<method-name> represents the name of the method in the program code.

The expression isClassWithName represented in line 8 is used to provide neces-
sary information about a class that is defined in the program code. The argument
<class-id> represents the unique identifier of the class, which is assigned to by the
compiler of the EventReactor language. The argument <class-name> represents
the name of the class in the program code.

The expression isDefinedIn represented in line 10 specifies a relation among the
program elements. In this example, it specifies that a specified method is defined
within a specified class.

Other program elements, such as packages and interfaces, and the relations among
the elements are also defined as Prolog facts. In [40], a list of Prolog expressions that
exist in Compose* and are also reused by the EventReactor language is provided.

1 ’isBeforeInvocation’ ’(’ <event−name> ’,’ <method−id> ’).’
2 ’isAfterInvocation’ ’(’ <event−name> ’,’ <method−id> ’).’
3 ’isBeforeExecution’ ’(’ <event−name> ’,’ <method−id> ’).’
4 ’isAfterExecution’ ’(’ <event−name> ’,’ <method−id> ’).’
5

6 ’isMethodWithName’ ’(’ <method−id> ’,’ <method−name> ’).’
7

8 ’isClassWithName’ ’(’ <class−id> ’,’ <class−name> ’).’
9

10 ’isDefinedIn’ ’(’ <method−id> ’,’ <class−id> ’).’

Listing 4.1: Prolog facts to represent predefined events

58 Chapter 4. EventReactor: an Implementation of Event Composition Model

The Prolog facts representing user-defined events differ for each event. Chapter 7
provides examples of user-defined events that are defined to represent process-related
events.

4.1.2 Specification of Event Modules

Listing 4.2 shows the structure of the linguistic construct eventpackage, which can
be used to declare a group of event modules. The role of this construct is mainly
grouping, like the package construct in Java. In addition, the programmers can
define the constraints among the event modules declared in a single package.

Line 1 of Listing 4.2 indicates that every event package has a unique name in a given
software system. Lines 2 and 3 are used to declare the events of interest, which is
denoted by the keyword selectors.

The EventReactor language makes use of the Prolog language to select the events
of interest that are defined in the language. Line 3 shows a Prolog variable and ex-
pression, represented by the non-terminals <var-name> and <PrologExpression>,
respectively. The meaning of this statement is as follows. The Prolog expression
selects a set of events, and stores the results in the Prolog variable <var-name>.
Each set of selected events are associated with a unique name within its package.
The name is specified by the non-terminal <selector-name>.

The statement in line 3 can be repeated for arbitrary times to declare groups of
events.

Lines 5 to 9 show a declaration of an event module. The declaration includes binding
a set of reactors to a set of events. In the following, this is explained in more detail.

The non-terminal <eventmodule-name> indicates that every event module must
have a unique name in the enclosing package.

In line 6, the terminal ’:=’ can be interpreted as is defined by.

The non-terminal <selector-name>,.... denotes a comma-separated group of
selected events, which form the input interface of the event module.

The terminal ’<-’ is the keyword that indicates the binding of the specified reactors
to the event module.

Chapter 4. EventReactor: an Implementation of Event Composition Model 59

1 ’eventpackage’ <name> ’{’
2 ’selectors’
3 <selector−name> ’=’ ’{’ <var−name> ’|’ <PrologExpression> ’};’
4

5 ’eventmodules’
6 [<eventmodule−name> ’:=’] ’{’<selector−name>,...’}’
7 ’<−’
8 ’perinstancethread’ | ’perinstance’ | ’perthread’ | ’singleton’
9 ’{’<reactorchain−name>[<args>],...’};’

10

11 ’constraints’
12 ’precede’ ’(’ <eventmodule−name> ’,’ <eventmodule−name> ’);’
13 ’override’ ’(’ <eventmodule−name> ’,’ <eventmodule−name> ’);’
14 ’ignore’ ’(’ <eventmodule−name> ’,’ <eventmodule−name> ’);’
15 ’}’

Listing 4.2: The structure of event packages

As it is explained in Section 3.2.2, four instantiation strategies are considered for
event modules. These are specified in the specification of event modules via the
keywords perinstancethread, perinstance, perthread and singleton.

The non-terminal <reactorchain-name> in line 9 refers to a reactor chain, which
provides an implementation for the event module. Reactor chains can be parame-
terized. The non-terminal <args>, here shows the parameters that can be passed
to the reactor chain. A comma-separated list of reactor chains can be bound to an
event module.

The output interface of the event module is the union of the events that are published
by the reactors attached to the event module. The list of these events is provided
by the specification of reactor types, which is explained in Section 4.1.4.

In lines 11 to 14, by the help of the keyword constraints, the composition con-
straints among event modules are specified. Currently, the composition constraints
precede, override and ignore are supported.

The constraint precede(A, B) specifies that if a selected event is a part of the input
interface of two event modules A and B, the implementations of the event module A
must react to the event first.

The constraint override(A, B) specifies that if a selected event is a part of the
input interface of two event modules A and B, only the implementations of A must
react to the event.

60 Chapter 4. EventReactor: an Implementation of Event Composition Model

The constraint ignore(A, B) specifies that if a selected event is generated during
the execution of reactors bound to the event module B, this event is ignored by the
event module A.

4.1.3 Specification of Reactor Chains

Listing 4.3 shows the structure of a reactor chain in the EventReactor language.

The keyword reactorchain in line 1 indicates a declaration of a reactor chain,
with the name <rechain-name>. A comma-separated list of optional parameters is
specified via the expression [<’?’param-name> | <’??’param-name>,...]. Either
the character ? or characters ?? must proceed the name of the parameters. These
indicate a single-valued and a multiple-valued parameter, respectively.

Each reactor chain may define two categories of attributes, which are denoted by the
keywords internals and externals. The keyword internals defines the objects
that are instantiated for each instance of a reactor chain. The keyword externals

defines the objects that are instantiated outside the reactor chain. The externals
may be referred to in different parts of the program, and be shared between the
multiple instances of a reactor chain.

As shown in lines 2 and 7, internal or external attributes can be instantiated from a
type as <var-name> : <type>. In case of an external attribute, it is also possible
to specify the name of a method that returns the external attribute. This is shown
in line 7 as [’=’<method-name> ’(’[<arg-values>]’)’].

Every reactor chain declares a set of reactors, which are denoted by the keyword
reactors. Each reactor is declared for the purpose of implementing one or more
event modules. This is shown between the lines 9 and 13.

The expression <reactor-name> : <type> in line 10 shows an instantiation of a
reactor from its type.

As shown by line 11, each reactor may specify its events of interest, which is specified
with the keyword event, followed by a comma-separated list of events.

As shown by lines 12 to 15, a reactor may have a set of its own parameters, which
can be used to initialize the reactor. The initialization of a reactor may be used for
various purposes, for example to specify the behavior of the reactor with the help
of its domain specific language.

If there are multiple reactors defined in a reactor chain, they are sequentially com-
posed with each other using the operator ’;’ as indicated in line 16. This means

Chapter 4. EventReactor: an Implementation of Event Composition Model 61

an event goes through a chain of reactors, from the first specified one to the last one
in the reactor chain.

1 ’reactorchain’ <rechain−name> [<’?’param−name> | <’??’param−name>,...] ’{’
2 ’internals’
3 <var−name> ’:’ <type> ’;’
4

5 ’externals’
6 <var−name> ’:’ <type> =
7 [’=’<method−name> ’(’ [<arg−values>] ’)’] ’;’
8

9 ’reactors’
10 <reactor−name> ’:’ <type>
11 [’=’ ’(’ ’event’ ’==’ ’[’ <events>,...’]’ ’)’]
12 {
13 <reactorparam−name> ’=’ <value>;
14 ...
15 }
16 ’;’
17 }

Listing 4.3: The structure of reactor chains

4.1.4 Specification of Reactor Types

Each reactor type has a behavioral specification that provides the following in-
formation about the reactor type: a) the name of the reactor type, b) whether it is
read-only or read-write, c) the so-called action class that implements the function-
ality of the reactor type, and d) the name of events that can be published by the
type. The structure of behavioral specifications is provided in Listing 4.4.

1 ’@ReactorTypeDef’ ’(’ ’name’ ’=’ <type−name> ’,’ ’effect’ ’=’ <read−only | read−write> ’,’
2 ’implementation’ ’=’ <actionclass−name> ’,’ ’events’ ’=’ <event,...> ’)’

Listing 4.4: The structure of behavioral specifications of reactor types

Listing 4.5 shows an excerpt of an action class. Here, the class ReactorAction is the
base class for action classes, which is provided by the EventReactor language. The
method execute implements the functionality of processing an event, for example,
the functionality to enforce a property. Terminating the execution of software,
invoking a method, and preventing the execution of a method are example actions
that can be carried out by reactor types.

62 Chapter 4. EventReactor: an Implementation of Event Composition Model

The event that must be processed is provided as an argument to the method. The
execution context of the reactor is also provided as an argument to the method
execute. The execution context contains, for example, information about the pa-
rameters of the reactor and the instance of the corresponding reactor chain.

For each reactor event whose name is specified in the behavioral specification of the
reactor name, a method with the same name must be defined in the class. Invoca-
tions to such methods are considered as reactor events. The method publish an event

in Listing 4.5 is an example.

1 public class anAction extends ReactorAction{
2

3 @Override
4 public void execute(RTEvent event, ReactorExecutionContext ctx) {
5 ...
6 publish an event();
7 ...
8 }
9

10 public Object publish an event() {
11 ...
12 }
13 }

Listing 4.5: An example implementation of a reactor type

4.2 The Compiler of the EventReactor Language

Figure 4.1 provides a global overview of the compiler of the EventReactor language.3

The EventReactor language does not incorporate the elements of the underling pro-
gramming language; and its compiler supports the Java, C and .Net languages.

The modules Event Recorder, Event Module Recorder and Analyzer of the compiler
are language-independent, and the modules Type Harvester, Code Generator and
Weaver must be implemented for each supported programming language.

3This section mainly focuses on a high-level design of the compiler, rather than the implemen-
tation details.

Chapter 4. EventReactor: an Implementation of Event Composition Model 63

Event Module

Recorder

Analyzer

Code

Generator
Weaver

Event Module

Catalogue

Event

Recorder

Event Catalogue

Type Harvester

Java

C

.Net

Compiler

Event Record(s) Program Code
Specification of

Event Package(s)

Specification of

Reactor Chain(s)
Reactor Type(s)

Behavioral

Specification

Notifier

Weave

Specification

Runtime

Environment

Executable

Program Code

Event Record(s)

Publisher

Record(s)

Action Class

Figure 4.1: An overall view of the EventReactor compiler

64 Chapter 4. EventReactor: an Implementation of Event Composition Model

4.2.1 Input and Output of the Compiler

As shown at the top of the Figure 4.1, the compiler receives the following input:
Event Record(s), Publisher Record(s), Program Code, Reactor Type(s), Specification
of Reactor Chain(s), and Specification of Event Packages(s).

The language supports a predefined set of events, whose information is extracted
by the compiler of the EventReactor language from program. The language and
compiler are also extendable with user-defined events. These are defined via the
input Event Record(s), which are Prolog facts with the necessary static contextual
information about the event. This facilitates the selection of the events via Prolog
queries.

The necessary information about the publishers of the user-defined events is provided
as a set of Prolog facts via Publisher Record(s).

The input Program Code represents the program publishing user-defined events
and/or the program from which the list of predefined events must be extracted.
As it is explained before, the compiler generates a set of Prolog facts to represent
the predefined events.

The language provides an API to define new types of reactors. Each type of reactor
is represented by a Behavioral Specification and an Action Class that implements
the functionality of the reactor type.

Specification of Event Packages(s) and Specification of Reactor Chain(s) contain the
information about the event modules and reactor chains, respectively.

As its output, the compiler creates the runtime environment of the program and
modifies Program Code such that it can announce events to the runtime environ-
ment. These are shown as Runtime Environment and Executable Program Code in
Figure 4.1, respectively.

4.2.2 Event Catalogue

The Prolog facts defined by Event Record(s) and Publisher Record(s) are stored in
Event Catalogue. The module Event Recorder is the interface to this catalogue.

As shown in Figure 4.1, the module Type Harvester accepts Program Code as input.
Since Program Code can be expressed in different languages, Type Harvester converts
the input to a common internal representation. This representation contains, for
example, the following information: a) the static structure of the program code, in
terms of the classes defined in the program; b) the interfaces that are implemented

Chapter 4. EventReactor: an Implementation of Event Composition Model 65

by each class; c) the methods and attributes defined in each class; and d) The
methods that are invoked by the classes.

For each invocation on a method, two event records are created: a) one for the
event that represents the state change before the invocation; b) one for the event
that represents the state change after the invocation.

In addition, for each method defined in a class, two event records are created: a) one
for the event that represents the state change after the invocation and immediately
before the execution of the method; b) one for the event that represents the state
change after the execution of the method, which terminates normally.

Type Harvester assigns unique identifiers to the identified events, and to the code
segments (e.g. method and class) in Program Code from which the events are to be
published. This information is also maintained in the event records.

The module Event Recorder receives these records from Type Harvester and stores
them in Event Catalogue.

4.2.3 Event Module Catalogue

The module Event Module Recorder accepts Reactor Type(s), Specification of Re-
actor Chain(s) and Specification of Event Package(s) as input, and performs the
following:

It stores a reference to Reactor Type(s) in Event Module Catalogue.

It checks whether the reactor types which are used in Specification of Reactor
Chain(s) exist in Event Module Catalogue.

It parses Specification of Event Packages(s), and extracts the following information:
list of specified event modules, the specified events of interest that form the input
interface of event modules, the reactor chains that are attached to event modules
and the instantiation strategy of event modules. These are stored in Event Module
Catalogue to be used at runtime for instantiation of event modules.

It extracts the list of reactor events by parsing behavioral specification of reactor
types, specifications of event modules and specifications of reactor chains. For each
event, an event record is created, which defines a set of Prolog facts expressing
the static contextual information of the event. This information specifies the name
of the event, the name of the corresponding reactor type, the name of reactors
declared from the reactor type, the name of reactor chains in which these reactors

66 Chapter 4. EventReactor: an Implementation of Event Composition Model

are declared, and the event modules to which the reactor chains are bound. The
Prolog facts are provided to Event Recorder to be stored in Event Catalogue

4.2.4 Analysis and Checking

Although events occur at runtime, the event records stored in Event Catalogue
facilitate performing various checks statically on the specifications. These checks
are performed by the module Analyzer.

The module Analyzer evaluates the specified Prolog queries stored in Event Module
Catalogue against the Prolog facts stored in Event Catalogue, and selects the event
records that satisfies the queries.

Analyzer keeps a link between an event record that is stored in Event Catalogue, the
selectors that match the event record, and the corresponding event modules. This
information is maintained in Event Module Catalogue. If a selector is not used in the
declaration of any event module, Analyzer reports a warning to the programmers.

Afterwards, Analyzer performs the following checks on the specifications of event
packages:

• If no event record is selected by the specified Prolog queries, Analyzer reports
a warning indicating that the specified events are not defined in the language.

• If a selected event record is referred to by multiple event modules, Analyzer
checks whether the constraint precede is specified. If not, Analyzer reports a
warning to indicate that the reactor chains are to be executed in a random
order.

• If a selected event record is referred to by two event modules A and B, Ana-
lyzer checks whether the constraint ignore (A,B) is specified. If so, Analyzer
tags the reactors that are bound to A as conditional. As a result, the corre-
sponding reactors ignore the events that are published during the execution of
the reactors bound to B.

• If the constraint override(A, B) is specified, it checks whether a selected event
record is referred to by both event modules A and B. If it is the case, Analyzer
tags the reactors bound to B as conditional. As a result, the corresponding
reactors do not process the events.

Analyzer stores the above-mentioned changes in the specification of reactors in Event
Module Catalogue.

Chapter 4. EventReactor: an Implementation of Event Composition Model 67

In addition, Analyzer checks the side-effect freeness of the read-only reactor types.

4.2.5 Code Generation

The module Code Generator creates the executable program and the runtime envi-
ronment of the EventReactor language for the program. These are shown in Fig-
ure 4.1 as Executable Program Code and Runtime Environment, respectively. The
code generation is performed as follows:

To be able to locate the code segments that publish the predefined events to the
corresponding event modules, Code Generator retrieves the corresponding event
records from Event Catalogue. The information about the location of the code
segments is provided as Weave Specification.

Code Generator creates the module Notifier(s) as part of the runtime environment
of the EventReactor language, which informs the runtime environment of the occur-
rence of the specified predefined event.

The generated Weave Specification and Program Code are input to the module
Weaver, which inserts invocations to Notifier(s) in specified places in Program Code.

4.3 An Illustrative Example: File Access Control

This section makes use of an example to illustrate a possible use of the EventReactor
language. The example focuses of the support of the EventReactor language for
predefined events.

Assume that a runtime enforcement system has to be designed to ensure that a file is
utilized correctly. The correct usage of the file must comply with the usage protocol
defined for the file. The usage protocol of a file is defined as follows: First the files
must be opened, then zero or more read and write operations can be performed
on the file, and finally the file must be closed. If the utilization of the file does not
satisfy the usage protocol, two recovery actions have to be carried out: (1) Reporting
of the error to the user; (2) Preventing the access to the file.

In the following, the specifications of event packages and reactor chains along with a
discussion about the dedicated reactor types that are implemented for this example
are explained.

Listing 4.6 shows the specification of the event package for checking the correct
usage of a file. As line 1 shows, the name of the package is file usage.

68 Chapter 4. EventReactor: an Implementation of Event Composition Model

Lines 2 to 25 select the events of interest. Lines 3 to 7 select the event corresponding
to the state before the file is opened.

1 eventpackage file usage{
2 selectors
3 open event = {E |
4 isBeforeExecution(E, M),
5 isMethodWithName(M,’open’),
6 isClassWithName(C,’File’),
7 isDefinedIn(M, C)};
8

9 close event = {E |
10 isBeforeExecution(E, M),
11 isMethodWithName(M,’close’),
12 isClassWithName(C,’File’),
13 isDefinedIn(M, C)};
14

15 read event = {E |
16 isBeforeExecution(E, M),
17 isMethodWithName(M,’read’),
18 isClassWithName(C,’File’),
19 isDefinedIn(M, C)};
20

21 write event = {E |
22 isBeforeExecution(E, M),
23 isMethodWithName(M,’write’),
24 isClassWithName(C,’File’),
25 isDefinedIn(M, C)};
26

27 eventmodules
28 file eventmodule := {open event, close event, read event, write event} <−
29 perinstancethread
30 {regularexpression REChain(’
31 (open event (read event | write event)∗ close event)∗’)};
32 }

Listing 4.6: A specification of event module for the usage protocol of a file

In line 4, the Prolog expression isBeforeExecution (E, M) selects the events E,
which correspond to the state after the invocation and immediately before the exe-
cution of the methods M.

The expression isMethodWithName (M, ’open’) in line 5 selects the methods whose
names match the string ’open’.

The Prolog expression isClassWithName(C,’File’) in line 6 selects all the classes
whose names match the string ’File’.

Chapter 4. EventReactor: an Implementation of Event Composition Model 69

The Prolog expression isDefinedIn(M, C) selects the methods M that are defined
in classes C.

The character ’,’ between the Prolog expressions is a conjunction operator.

As a result of these queries, all the events that correspond to the state changes after
the invocation and immediately before the execution of the method open defined in
class File are selected.

The assumption here is that the file is represented by class File in the program code,
and the events correspond to the methods that are to be executed on the instances
of this class. Such events have the same name as their corresponding methods.

Lines 9 to 25 select the other three events of interest, which are named as close event,
read event and write event.

Lines 28 to 31 define the event module file eventmodule as follows. It groups the
events selected by open event, close event, read event, and write event; and
binds the reactor chain regularexpression REChain as its implementation, and
initializes the reactor chain with a parameter.

The parameter is expressed in a domain specific language, which is a regular expres-
sion formula. Here, (open event (read event| write event)* close event)*

indicates that a correct usage of a file starts with the event open event, followed
by zero or more times read event or write event, and finally terminated by the
event close event.

Since the keyword perinstancethread is used in the declaration of the event mod-
ule, for each individual instance of class File and each thread of execution in which
the methods of File are invoked and executed, a separate instance of the event
module is created. This facilitates verifying the usage of each File object sepa-
rately.

Listing 4.7 shows the definition of the reactor chain regularexpression REChain

with one initialization parameter, which represents a regular expression formula.

1 reactorchain regularexpression REChain(?regformula){
2 reactors
3 regexp REC: RegularExpression {
4 reactor.formula = ?regformula;
5 };
6 }

Listing 4.7: A specification of the reactor chain for the usage protocol of a file

70 Chapter 4. EventReactor: an Implementation of Event Composition Model

The reactor chain declares the reactor regexp REC of type RegularExpression.
We implemented the type RegularExpression for this thesis. It is a read-only
reactor type, which receives a regular expression formula as its input argument, and
checks a selected event against the formula. If the formula is violated, it publishes
the event violated. The runtime behavior of RegularExpression is explained in
Section 5.5.1.

In Line 4 of Listing 4.7, the parameter ?regformula is assigned to the attribute
formula that is defined by type RegularExpression.

Assume that the method open is invoked on an instance of class File. According to
the statements in lines 3 to 7 of Listing 4.6, the events that correspond to the state
changes after the invocation and immediately before the execution of the method
open are selected and named as open event. These events form the input interface
of the event module file eventmodule. Therefore, this event module is notified
and the reactor chain that is bound to it receives the events.

The reactor regexp REC checks these events against its regular expression formula.
If the events violate the formula, regexp REC publishes the event violated with a
reference to the event open event.

Listing 4.8 defines an event module to implement the recovery actions for the ex-
ample. Line 1 defines the event package file recoveryactions.

Lines 3 to 7 show three Prolog statements. The events that are selected by these
statements are named as verification event. The meaning of these statements is
described as follows. The event violated, which is published by the event module
named file eventmodule is selected.

1 eventpackage file recoveryactions{
2 selectors
3 verification event = {E |
4 isEventWithName(E, ’violated’),
5 isEventModuleWithName(EM, ’∗.file eventmodule’),
6 isPublishedBy(E, EM)
7 };
8

9 eventmodules
10 recovery eventmodule := {verification event} <− singleton {recovery actions REChain};
11 }

Listing 4.8: A specification of event module for the recovery actions

Line 10 defines the event module recovery eventmodule, which groups the events
selected by verification event, and as its implementation specifies the reactor

Chapter 4. EventReactor: an Implementation of Event Composition Model 71

chain recovery actions REChain. Since the keyword singleton is used, at runtime
only one instance of recovery eventmodule is created to handle the event violated
published by all instances of the event module file eventmodule.

Listing 4.9 shows the definition of the reactor chain recovery actions REChain.
Lines 3 to 5 define the reactor logger REC of type Log that is implemented for this
thesis. It is a read-only reactor type, which reports a message on the screen when
the selected events occur. The message to be reported on the screen is passed to
the reactor via the parameter info.

Line 7 defines the reactor forcereturn REC of type ForceReturn that is also im-
plemented for this thesis. It is a read-write reactor type, which prevents a method
to be executed by returning the flow of execution to the caller of the method.

The reactor forcereturn REC processes the event violated published by the re-
actor regexp REC defined in Listing 4.7. This event keeps a reference to the
event whose occurrence caused the regular expression fail. Through this reference,
forcereturn REC retrieves information about the method whose execution must be
prevented, and prevents the execution of the method. The details of the runtime
behavior ForceReturn is explained in Section 5.5.2.

Since the reactors logger REC and forcereturn REC are composed with each other
using the operator ’;’ in line 6, they form a chain such that logger REC processes
the selected events first.

1 reactorchain recovery actions REChain{
2 reactors
3 logger REC: Log {
4 reactor.info = ’the file is accessed incorrectly’;
5 }
6 ;
7 forcereturn REC: ForceReturn;
8 }

Listing 4.9: A specification of reactor chain for the recovery actions

4.4 Evaluation of the EventReactor Language

This section evaluates the EventReactor language with respect to the following re-
quirements, which are defined in Section 3.3 as the typical characteristics of a lan-
guage that can be used in implementing Event Composition Model.

72 Chapter 4. EventReactor: an Implementation of Event Composition Model

• Declaration of arbitrary state changes as an event: In the EventReactor lan-
guage, user-defined events can be expressed as a set of Prolog facts, which are
stored in Event Catalogue. This facilitates defining arbitrary state changes as
events.

• Implicit invocation on reactors: An interface is provided for the publishers to
announce events. For the predefined kinds of events, Notifiers are generated
for this matter. Upon the occurrence of an event, the runtime environment
informs the corresponding event modules and the reactor chains. This is an
implementation of implicit invocation.

• Selection of any event that is defined: EventReactor makes use of Prolog as
its event composition language. Prolog enables the definition of a rich set of
expressions to select the defined events.

• A declarative event composition language: Since Prolog is a declarative lan-
guage, it is possible to perform various sorts of analysis. For example, the
specifications precede, ignore and override can be analyzed as defined in the
previous section.

• Explicit naming of the group of events that are selected: Event modules are
named, and dedicated Prolog expressions are available to select and refer to
them.

• Definition of a set of reactor types: The language is extendable with new
reactor types.

• Declaration of one or more instances from a reactor type: Within a reactor
chain, it is possible to declare one or more reactors from a reactor type.

• Binding a reactor instance to an event module: Reactor chains are defined
separately from the event modules. The EventReactor language provides a
dedicated operator for binding.

• Modularized reactor types: The separation of reactor types from event modules
increases the modularity of event modules.

• Programmable reactor types: It is possible to define reactor types that are
parameterized by specifications in their domain-specific languages. The reac-
tor type RegularExpression, which accepts a regular expression formula as its
parameter, is an example.

• Publishing events by reactor types: Reactor types may publish new events.
Dedicated Prolog expressions are provided to select these events and group
them in the definition of event modules.

Chapter 4. EventReactor: an Implementation of Event Composition Model 73

• Variety of composition strategies: Since reactor types may publish new events,
which can be selected, definition of hierarchy of event modules is supported.
The event modules residing at the higher levels of the hierarchy can compose
the event modules residing at the lower levels. Dedicated reactor types can be
provided to express various composition strategies among the events that are
published by the lower level event modules.

4.5 Similarities and Differences with Compose*

Since the EventReactor language has been inspired from Compose*, in this section
we elaborate on the similarities and differences between these two languages.

The similarities are as follows:

• Reactor types resemble filter types in Compose*.

• Both reactor types and filter types may be parameterized by specifications in
their domain-specific languages.

• Both languages are open-ended in the definition of these types.

• Reactor chains resemble filter modules in Compose*.

• Both reactor chains and filter modules may declare internal and external at-
tributes.

• Reactor chains and filter modules are parameterizable.

• Both languages make use of the Prolog language for the selection elements of
interest.

• Both languages support language- and platform-independent specifications.

The differences between these two languages are summarized as follows:

• The composition language of Compose* is limited to selecting classes and
superimposing filters on them. The filters only process incoming and outgoing
messages to/from objects.

In contrary to Compose*, the event composition language of EventReactor can
select arbitrary sorts of events, provided that they are known in the language.
For this reason, the following features are provided:

74 Chapter 4. EventReactor: an Implementation of Event Composition Model

– There are dedicated Prolog expressions to select individual and/or groups
of declared events.

– Since events come to life at runtime, it is facilitated to detect the events
and inform their occurrence to the corresponding event modules. This is
in contrary to Compose* in which Prolog expressions and superimposi-
tions are evaluated at compile time.

– Events are first-class entities, in the sense that they can be selected and
passed as arguments to reactor chains.

• The composition language of Compose* is limited to superimposing individual
instances of filters (modules) on individual objects only. The event composi-
tion language of EventReactor, however, facilitates grouping events that are
published by single and/or multiple objects. These objects can be implemented
in different languages and distributed across multiple processes.

• Reactor types can publish events; this cannot be realized by filters in Com-
pose*.

• In Compose* it is not possible to declare filter types as read-only.

• Superimpositions in Compose* are not named; therefore, it is not possible
to refer to them. In EventReactor, however, event modules are named, and
dedicated Prolog expressions are provided to select them.

• EventReactor introduces four instantiation strategies for event modules.

• EventReactor provides three composition constraints precede, ignore and over-
ride.

4.6 Future Work

In the previous sections, the compiler of the EventReactor language was explained.
Implementing a full-fledge compiler for a language like EventReactor is a labor-
intensive task. Due to the limited resources, the following strategy was followed to
demonstrate the feasibility of the compiler:

The similarities between EventReactor and Compose*, which are discussed in the
previous section, enabled us to reuse and extend the modules of the Compose*
compiler in implementing the EventReactor language. Here is a brief summary of
the modules that are reused/extended:

Chapter 4. EventReactor: an Implementation of Event Composition Model 75

• The module Type Harvester of Compose* is extended to extract the predefined
events in program code.

• The module Event Module Recorder partially reuses the features provided by
the Compose* compiler to parse the specifications and stores them in a shared
data storage.

• The module Code Generator is partially reused to create the executable pro-
grams, and to generate Notifiers.

• The module Weaver is taken as it is.

• The high-level design of the compiler of the EventReactor language is similar
to the Compose* compiler, where shared data storages are used for exchanging
information among the modules.

As a proof of concept several distinguishing features of the EventReactor compiler
have been implemented and published in various papers [63, 61]. For example in [63],
we discuss an implementation of the compiler that facilitates selecting events from
a group of objects that are implemented in different languages. The possibility to
publish events from reactor (filter) types and forming a hierarchy of specifications are
also explained in [63]. In [61], we explain the feature of the compiler that facilitates
selecting events from a group of objects distributed across multiple processes.

Some of the features of the compiler are currently being investigated. Ensuring the
side-effect freeness of reactor types is an example. In the following, we focus on how
the side-effect freeness of reactors can be checked effectively.

For each reactor type that is specified as read-only in its behavioral specification,
Analyzer checks that the reactor type do not have functional side-effects on other
reactors and/or on the program. There are several research works [52, 3, 95, 96] in
the aspect-oriented area that categorize aspects based on their side-effects on the
program, and analyzes aspects to infer the category to which they belong. The so-
called spectative or observer aspects [52, 3] are the ones that do not have functional
side-effects on the program. We consider the read-only reactor types similar to the
spectative aspects.

There are data-flow analysis tools [3, 96] based on the Soot framework [87], which
analyze an aspect to infer whether it is spectative. We consider reusing these tools in
the module Analyzer to ensure that the reactors specified as read-only are actually
side-effect free. Adopted from [3, 96], the following analysis is to be performed for
each reactor type that is specified as read-only.

76 Chapter 4. EventReactor: an Implementation of Event Composition Model

1. Identifying the variables, including the parameters of the reactor, that are
bound to the variables defined in Program Code, to the internal or external
attributes of reactor chains, or to the attributes of the events.

2. Checking that none of the variables identified in the previous step appears on
the left-hand side of an assignment in the reactor type. The checking is also
performed for all methods that are invoked from within the reactor type, to
ensure that the identified variables are not also modified from within these
methods.

3. Checking that the code of the reactor type terminates. Although generally
an undecidable problem, syntactic special cases such as loop-freeness can be
checked.

4. Checking that the the code of reactor type does not disable independent un-
derlying operations. This is applicable to the aspect-oriented languages in
which an aspect can change the structure of base software by introducing new
fields, methods and classes to the software. The details can be found in [96].

5. Checking that the processing of an event is resumed at each point where the
execution was interrupted by reactors. In addition, checking that the enabling
conditions for the underlying operations have not been affected by the reactors.
Thus there cannot be exceptions thrown in the reactor types that lead to
abnormal termination or do not resume the underlying execution at the point
from which it was interrupted.

4.7 Conclusion

This chapter introduces the EventReactor language, which implements Event Com-
position Model. The chapter explains in detail the syntax of the language and its
compiler. By means of an example, the suitability of the EventReactor language for
implementing Event Composition Model is illustrated.

The chapter provides detailed evaluation of EventReactor with respect to the re-
quirements mentioned in Chapter 3. The chapter discusses similarities and differ-
ences between EventReactor and Compose* in detail.

Chapter 5
Design of the Runtime Environment of
EventReactor

This chapter discusses the runtime environment of the EventReactor language. Sec-
tion 5.1 outlines the requirements that must be addressed in the design of the
language. Section 5.2 explains the data structures employed by the EventReac-
tor language to represent events and event modules. The runtime behavior of the
EventReactor language is discussed in Section 5.3, and is illustrated by means of an
example in Section 5.4.

The EventReactor language is extendable with new types of reactors, and each type
has its dedicated runtime behavior. Section 5.5 explains the runtime behavior of two
reactor types RegularExpression and ForceReturn, which are used in implementing
a runtime enforcement example. Finally, Section 5.6 outlines the conclusion.

5.1 Requirements for the Implementation of the

Runtime Environment

To be able to identify the requirements in the design of the EventReactor language,
we assume that a typical execution flow has the following steps:

1. Publishers of the events of interest are created: For example, if an event of
interest corresponds to the state after the execution of a method by an object,
the object is regarded as the publisher of the event, which is created at some
point during the execution of the program.

77

78 Chapter 5. Design of the Runtime Environment of EventReactor

2. An event of interest occurs.

3. The event is detected and published to the runtime environment in a syn-
chronous manner.

4. The runtime environment identifies the corresponding event modules and the
reactor chains that are bound to them.

5. The runtime environment chooses a suitable instantiation strategy for the
identified event modules and reactor chains, based on their specifications. Af-
terwards, it instantiates the event modules and the reactor chains accordingly.

6. The runtime environment delegates the detected event to the corresponding
reactor chains.

7. The runtime environment applies the specified constraints to the reactors in
processing events.

8. The event is processed by reactors.

9. While processing the event, the reactors may publish new events, or may
provide the results of their operation as state variables.

10. The flow of execution eventually returns to the publisher of the event, which
is blocked due to its synchronous communication with the runtime environ-
ment to publish the event. The necessary information about the operations
performed on the event is also returned to the publisher.

A closer look at the above-mentioned steps and the features of the EventReactor
language, which are explained in Chapter 4, helps us to observe the following facts:

• The events that are published can be either predefined or user-defined. Ac-
cordingly, we classify the publishers as predefined or user-defined.

• Published events must be defined in the language.

• Various publishers may be correlated with each other; hence, the events that
are published by them may also be correlated with each other. The correlated
events are grouped as event modules.

• Individual instances of event modules and their corresponding reactor chains
may be created for each group of correlated publishers that announce events
in the same thread of execution. This is termed as per-instance-thread
instantiation strategy.

Chapter 5. Design of the Runtime Environment of EventReactor 79

• Individual instances of event modules and their corresponding reactor chains
may be created for each group of correlated publishers, regardless of the
thread of execution in which they announce the events. This is termed as
per-instance instantiation strategy.

• Individual instances of event modules and their corresponding reactor chains
may be created for all correlated publishers, depending on the thread of exe-
cution in which they announce events. This is termed as per-thread instan-
tiation strategy.

• A singleton instance of event modules and their corresponding reactor chains
may be created, shared among all the correlated publishers and the threads of
execution. This is termed as singleton instantiation strategy.

• Correlated publishers may be distributed across multiple processes.

• Correlated publishers may be implemented in different languages.

• Multiple instances of event modules may exist to process an event.

• Three sorts of constraints can be applied to reactors: precede, ignore and
override.

Based on the above-mentioned flow of execution and facts, we identify the follow-
ing requirements to be addressed in the design of the runtime environment of the
EventReactor language:

• Data structures are required to represent events at runtime. These must fa-
cilitate maintaining sufficient static and dynamic contextual information for
events. The static contextual information helps to match events to the event
records stored in Event Catalogue to ensure that the events are known in the
language.

• Data structures and algorithms are required to keep track of groups of corre-
lated publishers, which may be distributed across multiple processes and/or
implemented in different languages.

• Data structures and algorithms are required to represent the instances of event
modules and their corresponding reactor chains, and to bind them to the
corresponding group of correlated publishers.

• Data indexing and retrieval mechanisms are required to identify the instances
of event modules that must process an event.

80 Chapter 5. Design of the Runtime Environment of EventReactor

• Standard interfaces are required to receive events published by various different
kinds of publishers.

5.2 Data Structures

This section explains the data structures designed for the runtime environment of
the EventReactor language, such that the requirements identified in the previous
section are addressed. Relevant design alternatives are explained for each case, if
any.

5.2.1 Representing Events at Runtime

Events are represented by the data structure named RTEvent, which has three fields:
StaticContext, DynamicContext and ReturnContext.

The field StaticContext keeps the following two attributes to represent the static
context of an event: a) name represents the name of the event; and b) PrologFacts,
which as its name implies, represents a set of Prolog facts that are used to match a
published event and declared events in Event Catalogue.

The field DynamicContext keeps a list of attributes representing the dynamic con-
textual information of the event. Each attribute is defined by a name, a type and
a value. We consider three predefined attributes: a) thread represents the unique
identifier of the thread of execution which causes the event; process represents the
unique identifier of the process where the event occurs; and c) publisher represents
the unique identifier of the publisher of the event.

In EventReactor, the predefined events correspond to the state changes before and
after the invocation and the execution of methods. For the predefined events, we
consider the following extra attributes to represent the dynamic context of an event :
a) caller represents the object that invokes a method of interest. b) callee represents
the object on which the method is invoked. c) args represents the arguments of the
method; the return value of the method is also represented by an argument. d)
stacktrace represents the stack trace1 of the methods whose executions cause the
invocation of the method.

Reactor events are published when a reactor processes an event. For the reactor
events, we consider the following two predefined attributes: a) innerEvent repre-

1A stack trace is a report of the active stack frames at a certain point in time during the
execution of a program.

Chapter 5. Design of the Runtime Environment of EventReactor 81

sents the event whose processing causes a reactor event be published. b) stacktrace
represents the stack trace of the methods whose executions cause a reactor event be
published.

User-defined events may have their own dedicated attributes.

As a result of event processing, reactors may want to return information to the
publisher of an event. The field ReturnContext keeps a list of attributes representing
such information. These attribute varies for each kind of event.

For predefined events we consider the predefined attribute flow for the return con-
text, which indicates the flow of execution after an event is processed. This attribute
can have one of the following values: a) Continue means that the corresponding in-
vocation and/or the execution of the method of a predefined event must proceed.
b) Return means that the corresponding invocation and/or the execution of the
method of a predefined event must not proceed. c) Exit means that the execution
of the program must terminate.

5.2.2 Representing Event Modules and Publishers at Run-
time

To keep track of groups of correlated publishers and their corresponding instances
of event modules and reactor chains, the runtime environment of the EventReactor
language creates a so-called event module table for each specified event module.
In the following, the structure of event module tables is explained.

The Structure of Event Module Tables

Event module tables are implemented as relational database tables [80]. Each table
has the name of the corresponding event module.

Each table has a column named col thread, which keeps the unique identifier of a
thread of execution.

For each reactor chain that is bound to the event module, there is a separate column
named as col <reactorchainname>, which stores a reference to an instance of the
reactor chain.

For each set of selected events, which are identifiable by selector-name (see List-
ing 4.2), there is a separate column named col publisher <selector-name>. The
column stores the unique identifier of the publishers of the selected events.

82 Chapter 5. Design of the Runtime Environment of EventReactor

If an event module is specified to be instantiated as per-instance-thread, each row
of the table will represent a separate instance of the event module. An instance is
created for each combination of the correlated publishers participating in the same
thread of execution.

If an event module is specified to be instantiated as per-instance, the column
col thread of the corresponding table will have the value null. Each row of the
table will represent a separate instance of the event module for a group of correlated
publishers, regardless of the threads of execution in which they publish events.

If an event module is specified to be instantiated as per-thread, the value null will
be stored in the columns col publisher <selector-name> of the corresponding table.
Each row of the table will represent a separate instance of the event module for each
thread of execution, without distinguishing between the correlated publishers that
participate in the thread.

If an event module is specified to be instantiated as singleton, the value null will
be stored in the columns col publisher <selector-name> and col thread of the cor-
responding table. The table will always have one row referring to a single instance
of the event module.

By adopting a relational data structure for representing the correlations among pub-
lishers and the instances of event modules, we benefit from the common relational
operations on tables.

Sharing of Event Module Tables

We consider the following alternatives in the sharing of event module tables at
runtime:

• There is only one publisher for the selected events. In this case, a direct
reference can be provided from the publisher to its corresponding event module
tables. This reduces the look up time for the event modules.

• A group of correlated publishers executing in a single process publish the
selected events. In this case, we consider the following implementation alter-
natives:

1. The publishers share the tables through a common storage. Upon the
occurrence of an event, the runtime environment of EventReactor looks
up for the corresponding tables directly.

Chapter 5. Design of the Runtime Environment of EventReactor 83

2. The publishers share the tables through a common storage. In contrast
to the first case, each publisher has a direct access to the corresponding
rows. This may reduce the required lookup up time.

If a new set of correlated publishers is activated, or a new thread of exe-
cution starts, a new sets of rows will be created in the tables to represent
the participation of the correlated publishers in the thread of execution.
This implies that the references, which are provided to the publishers,
must be updated accordingly.

3. A local copy of the table is provided to each publisher. When a new pub-
lisher is activated or a new thread of execution is started, the distributed
tables must be synchronized to maintain the consistency. Similar to the
previous case, synchronization of multiple tables causes additional over-
head.

• There is a group of correlated publishers distributed across multiple processes:
The three alternatives mentioned in the previous case can be also considered
here. We identify the following challenges:

1. If the tables are shared by multiple processes, a performance bottle-
neck [25] may occur.

2. If a reference to the corresponding rows are provided to each publisher,
updating these reference may impose considerable overhead due to the
latency in the inter-process communications. The same problem may also
appear if local copies of the tables are provided to publishers.

To be able to choose the best alternative, one needs to consider the actual timing
characteristics of the systems being considered. In this thesis, we consider main-
taining the event module tables in a shared data storage a practical solution. In the
rest of the thesis, we use the term table repository to refer to such a data storage.

If all the specified events of interest are the predefined-ones, and all the publishers
are executing in a single process, the table repository is also maintained in the same
process. If publishers are distributed across multiple processes, the table repository
is maintained in a dedicated process, separately from the application processes. If
any of the specified events of interest is the user-defined one, the process in which
the tables must be maintained is specified by programmers and its information is
provided to the compiler.

84 Chapter 5. Design of the Runtime Environment of EventReactor

5.3 Runtime Behavior

The runtime environment makes use of the Observer design pattern [34] to provide
a standard interface for publishers. The publishers must register themselves for the
interface and send instances of the data structure RTEvent to announce the events.

If a group of correlated publishers is implemented in the same language, the interface
is also created in the same language. This eases the intercommunication between
the publishers and the interface.

If a group of correlated publishers is implemented in different languages, the interface
is created in the Java language. Publishers that are implemented in languages other
than Java make use of Java-JNI [45] technique to communicate with the interface.

This section explains the runtime behavior in publishing and processing events. The
behavior is explained for the case publishers are executing in a single process. A
group of correlated publishers is distributed across multiple processes. The runtime
behavior for the distributed case is explained in Chapter 6.

Derived from the scenario explained in Section 5.1, we consider the following signif-
icant cases at runtime.

5.3.1 Publishers of the events of interest are created

As it is explained in Section 4.2, for the predefined events, the compiler of the
EventReactor language has identified the code segments where the events of interest
are published, and inserted invocations to the module Notifier there.

In object-oriented programs, we consider objects as predefined publishers. Upon the
creation of an object, which publishes an event, firstly, an instance of the module
Notifier is created and is bound to the object. Secondly, Notifier assigns a unique
identifier to the object. Thirdly, Notifier registers itself for the corresponding run-
time interface. In this way, Notifier functions as a wrapper for the publisher object.

In non-object-oriented programs, we consider software files as predefined publishers
to which the module Notifier is bound at compile time. Notifier assigns a unique
identifier to each file to be used as the unique identifier of the publisher.

User-defined publishers become known when they are registered using the corre-
sponding interface.

If the event is published by a reactor, an instance of Notifier is created and bound
to the reactor.

Chapter 5. Design of the Runtime Environment of EventReactor 85

alt[er == null]
[else]

p re : RTEvent Runtime Evironment Event Catalogue Event Module Catalogue1 : detect()2 : instantiate()34 : initialize()5 6 : publish() 7 : er := retrieveEventRecord()8
9 : raiseException() 10 : retrieveSelectors()1112

Figure 5.1: The sequence of actions to detect and publish an event

5.3.2 An event of interest is detected and published

Assume that an event is detected and published in a thread of execution. We repre-
sent the event, the thread of execution and the publisher as e, t and p, respectively.

Figure 5.1 makes use of a UML sequence diagram [68] to show the sequence of actions
to detect and publish an event. First, p creates an instance of the data structure
RTEvent, and initializes the necessary static and dynamic contextual information to
represent e. This information, among others includes p and t as the unique identifier
of the publisher and the unique identifier of the thread of execution, respectively.

The announcement of the event is performed by sending the instance of RTEvent to
the corresponding interface provided by the runtime environment of the EventRe-
actor language.

86 Chapter 5. Design of the Runtime Environment of EventReactor

The runtime environment keeps a copy of Event Catalogue, to check if the published
event is known in the language or not.

The runtime environment reads the static contextual information of the event, and
converts it to a set of Prolog queries. It evaluates the queries against the facts
stored in Event Catalogue to retrieve the event record that matches the event. If
there is no such a record, the runtime environment raises an error. Otherwise from
Event Module Catalogue the list of specified selectors that match the event record
is retrieved.

5.3.3 Corresponding event modules are instantiated

The compiler of the EventReactor language keeps a link between the following items:
the event record that is stored in Event Catalogue, the selectors that match the event
record, and the corresponding event modules. This information is maintained in
Event Module Catalogue. As an illustrative example, let us assume that <selector-
e> matches the event record that is selected in the previous step.

The sequence of actions to identify the event modules that correspond to a specified
selector is shown in Figure 5.2. The runtime environment keeps a copy of Event
Module Catalogue to access the information about the specified selectors and event
modules. It retrieves the list of event modules that refer to the selector <selector-e>.
If there is no any event module, it ignores the event.

Let us also assume that <eventmodule-e> refers to <selector-e>. The runtime
environment looks up for the table <eventmodule-e> in the table repository. The
following possibilities are considered:

1. There is no such a table: This happens when none of the events of interest
has been occurred so far; therefore, no event module was instantiated. In this
case, the runtime environment creates a table and inserts a row in the table.

If the event module is specified to be instantiated as per-instance-thread, the
runtime environment retrieves the unique identifier p of the publisher from the
corresponding instance of RTEvent. The value p is then inserted in the column
col publisher <selector-e> of the newly added row. The unique identifier of
the corresponding thread t is also retrieved from the instance of RTEvent, and
inserted in the column col thread of the same row.

If the event module is specified to be instantiated as per-instance, only p is
inserted in the column col publisher <selector-e> of the row.

Chapter 5. Design of the Runtime Environment of EventReactor 87

alt[emList == null]
[else]alt[tb == null]
[else]

Runtime Environment Event Module Catalogue Table Repository1 : emList := retrieveEventModules()23 : ignoreEvent() 4 : tb := lookupEventModuleTable()56 : createTable()78 : fillTable()910 : fillTable()11
Figure 5.2: The sequence of actions to identify event modules

88 Chapter 5. Design of the Runtime Environment of EventReactor

If the event module is specified to be instantiated per-thread, only t is inserted
in the column col thread of the row.

If the event module is specified to be instantiated as singleton, the value null
is inserted in (a) all the columns corresponding to the publishers, and (b) the
column that represents the thread of execution.

From Event Module Catalogue, the information about the reactor chains that
are bound to the event module is retrieved. The reactor chains and their
enclosed reactors are instantiated, and references to the instantiated reactor
chains are inserted in the corresponding columns in the table.

2. If the table contains at least one row: The following cases are considered:

(a) If the event module is specified to be instantiated as singleton, the de-
tected event is processed by the reactor chains. These are instantiated as
defined in the previous case.

(b) If the event module is specified to be instantiated as per-instance thread,
the runtime environment selects all the rows whose column
col publisher <selector-e> contains p and whose column col thread con-
tains t.

If any row is selected, the event is processed by the corresponding in-
stances of the reactor chains.

If no row is selected, the following cases are considered:

i. There are rows whose column col publisher <selector-e> contains
null, and whose column col thread contains t. This happens when
some other correlated publishers are already participated the in t. In
this case, the runtime environment replaces the value null with p.
As a result, the publisher will participate in the thread of execution
along with the other correlated publishers.

ii. There are rows whose column col thread contains t, but the column
col publisher <selector-e> does not contain null : This case happens
when multiple publishers announce a defined event and p announces
this event in t for the first time.
In this case, a new set of rows is added to the table, for representing
the participation of p together with the other correlated publishers
in t. The value p is inserted in the column col publisher <selector-e>
of the newly added rows, and t is inserted in the column col thread.
The unique identifier of the correlated publishers are inserted in their
corresponding column. New instances of reactor chains are created
for these newly added rows, and the event is processed by the reactor
chains.

Chapter 5. Design of the Runtime Environment of EventReactor 89

iii. There is no row whose column col publisher <selector-e> contains p,
or whose column col thread contains t : This case happens when p is
the first publisher among the correlated publishers that announces
an event of interest in the thread of execution t.
In this case, a new row is added to the table, with p in its column
col publisher <selector-e>, and t in its column col thread. The value
null is inserted in the columns corresponding to the other publishers.
New instances of the reactor chains are created for this new row, and
the event is processed by the reactor chains.

(c) If the event module is specified to be instantiated as per-instance, the run-
time environment selects all the rows whose column
col publisher <selector-e> contains p.

If any row is selected, the event is processed by the corresponding in-
stances of the reactor chains.

If no row is selected, the cases are similar to the ones of 2.b.i, 2.b.ii and
2.b.iii are considered, except that the unique identifier of t is not taken
into the account.

(d) If the event module is specified to be instantiated as per-thread, the run-
time environment selects all the rows whose column col thread contains
t.

If a row is selected, the event is processed by the corresponding instances
of the reactor chains.

If no row is selected, a new row is added to the table, with t in its
col thread. A new instance of the reactor chains is created for this new
row, and the event is processed by the reactor chains.

5.3.4 An event is processed by the corresponding reactor
chains

After the corresponding event modules and reactor chains are instantiated, the event
represented by an instance of RTEvent is processed by the reactor chains. This is
performed in the following steps:

1. Based on the information available in Event Module Catalogue, the order of
reactor chains in processing the event is determined. The order can be defined
by the help of two operators: precede in the specification of event packages, or
’;’ in the specification of reactor chains.

90 Chapter 5. Design of the Runtime Environment of EventReactor

2. In processing the event, the operators ignore and override are considered into
account, if relevant. Starting from the first reactor in the list, if any of these
operators are utilized (see Section 4.2.4), the event processing is continued by
the next reactor in the list.

3. If a reactor is selected, the event is checked against the specification of events
of interest (see Section 4.1.3) that is defined for the reactor, if any. If the event
matches the specification, the reactor will process it. Otherwise, the event is
passed to the next reactor in the list, and the processing continues from the
step 2.

4. After the termination of the execution of the last reactor, the flow-of-control
is returned to the publisher of the event. Reactors may return the result of
the executions through the field ReturnContext of the corresponding instance
of RTEvent.

During the processing of an event, a reactor may publish new events. Similar to
other events, instances of RTEvent are used to represent the necessary static and
dynamic information. Announcement to the corresponding reactor is carried out by
Notifier that is bound to the publishing reactor.

5.3.5 An event or an event module is passed as argument

In the EventReactor language, it is possible to pass an event or an instance of an
event module as an argument to reactor chains. When the runtime environment
is informed of an event or when it instantiates an event module, it retrieves the
list of corresponding reactor chains from Event Module Catalogue, and passes the
event or the instance of the event module as argument. In the current version of the
EventReactor language, only the event modules that are instantiated as singleton
can be passed as arguments.

5.3.6 A publisher no longer exists

If a publisher no longer exists, using the unique identifier of the publisher, the
corresponding instances of reactors are retrieved from the event module tables and
informed. When the notification is handled, the corresponding rows in the event
module tables are tagged as inactive. Every reactor type may respond to such
notification differently.

Chapter 5. Design of the Runtime Environment of EventReactor 91

1.1: store
1.1.2: open

1.1.3: write

1.1.4: close

aDocument:

Document

aStorage:

Storage

1: save

User

Figure 5.3: The sequence of events to store a document

5.3.7 A thread of execution is terminated

In this case, none of the events of interest occur in a terminated thread. With
the help of the unique identifier of a terminated thread, all the corresponding rows
are retrieved from all event module tables. Afterwards, a notification to the corre-
sponding instances of reactors are sent. Every reactor type may respond to such
notification differently. When the notification is handled, the corresponding rows in
the event module tables are tagged as inactive.

5.4 Illustration of Runtime Behavior

Assume that there is a document-editing software, with two core modules Document
and Storage, which provide services to edit a document and to save its contents,
respectively. Assume that it is required to verify at runtime that a request to save
a document by the user eventually results in storing the document content on the
file system.

Figure 5.3 shows a UML collaboration diagram [68], which depicts the sequence of
events that handles this request. We assume that each event corresponds to the
state change after the invocation and immediately before the execution of a method
on modules Document and Storage.

If the events that handle the user’s request do not occur as specified in the figure,
the execution of the corresponding method must be prevented, and an error message
must be logged.

The following subsections define the specifications of event modules and reactor
chains for this example, and explain the runtime behavior of the application.

5.4.1 Specifications of Event Modules and Reactor Chains

Listing 5.1 defines the event package user request. Lines 3 to 7 select the event
save that corresponds to the state immediately before the execution of the method

92 Chapter 5. Design of the Runtime Environment of EventReactor

save on instances of class Document. The selected event is represented by the
variable save event.

Similarly, lines 9 to 31 select the events that correspond to the states immediately
before the execution of the methods store, open, write and close on the instances
of class Storage.

Lines 34 to 40 define the event module document storage eventmodule, by group-
ing the selected events and binding the reactor chain regularexpression REChain

to them. The argument of the reactor chain specifies the acceptable sequence of
events as a regular expression formula.

Chapter 5. Design of the Runtime Environment of EventReactor 93

1 eventpackage user request{
2 selectors
3 save event = {E |
4 isBeforeExecution(E, M),
5 isMethodWithName(M,’save’),
6 isClassWithName(C,’Document’),
7 isDefinedIn(M, C)};
8

9 store event = {E |
10 isBeforeExecution(E, M),
11 isMethodWithName(M,’store’),
12 isClassWithName(C,’Storage’),
13 isDefinedIn(M, C)};
14

15 open event = {E |
16 isBeforeExecution(E, M),
17 isMethodWithName(M,’open’),
18 isClassWithName(C,’Storage’),
19 isDefinedIn(M, C)};
20

21 close event = {E |
22 isBeforeExecution(E, M),
23 isMethodWithName(M,’close’),
24 isClassWithName(C,’Storage’),
25 isDefinedIn(M, C)};
26

27 write event = {E |
28 isBeforeExecution(E, M),
29 isMethodWithName(M,’write’),
30 isClassWithName(C,’Storage’),
31 isDefinedIn(M, C)};
32

33 eventmodules
34 document eventmodule := {save event, store event, open event,
35 write event, close event}
36 <−
37 perinstancethread
38 {regularexpression REChain(’
39 (save event store event open event write event+ close event)∗’
40)} ;
41 }

Listing 5.1: A specification of event module for the document-editing software

The definition of regularexpression REChain is presented in Listing 5.2. Here, the
reactor regexp REC is defined of type RegularExpression, which accepts a regular
expression in its formula attribute.

94 Chapter 5. Design of the Runtime Environment of EventReactor

1 reactorchain regularexpression REChain(?regformula){
2 reactors
3 regexp REC: RegularExpression {
4 reactor.formula = ?regformula;
5 };
6 }

Listing 5.2: A specification of reactor chain for storing a document

Listing 5.3 shows the specification of an event module for the recovery actions. The
event violated, which is published from the event module document eventmodule

defined in Listing 5.1, is selected and forms the input interface of the event module
recovery eventmodule. The reactor chain recovery actions REChain is bound
to this event module, and singleton is specified as the instantiation strategy of the
event module.

1 eventpackage file recoveryactions{
2 selectors
3 verification event = {E |
4 isEventWithName(E, ’violated’),
5 isEventModuleWithName(EM,
6 ’user request.document eventmodule’),
7 isPublishedBy(E, EM)};
8

9 eventmodules
10 recovery eventmodule := {verification event}
11 <−
12 singleton {recovery actions REChain};
13 }

Listing 5.3: A specification of event module for the recovery actions

Listing 5.4 shows the implementation of recovery actions REChain. Here, the re-
actors logger REC and forcereturn REC are defined of types Log and ForceReturn,
respectively. These types are explained in Chapter 4.

1 reactorchain recovery actions REChain{
2 reactors
3 logger REC: Log {
4 reactor.info = ’the sequence of events is incorrect.’; }
5 ;
6 forcereturn REC: ForceReturn;
7 }

Listing 5.4: A specification of reactor chain for the recovery actions

Chapter 5. Design of the Runtime Environment of EventReactor 95

5.4.2 Runtime Behavior

Table 5.1 shows the structure of the table user request.document eventmodule, which
is created for the event module document eventmodule (see Listing 5.1).

Table 5.1: The structure of the table user request.document eventmodule

col thread:
STRING

col publisher
save event:
STRING

col publisher
store event:
STRING

col publisher
open event:
STRING

col publisher
close event:
STRING

col publisher
write event:
STRING

col regularexpression
REChain:
OBJECT

The column col thread maintains the unique identifier of the thread of execution
in which the corresponding event has occurred. Since in Listing 5.1, five sets of
events are selected, there are five columns to store the unique identifier of the pub-
lishers of the events. As defined in Listing 5.1, only one reactor chain is bound to
the event module document eventmodule, whose instance is stored in the column
col regularexpression REChain.

Figure 5.4 shows the runtime view of EventReactor for the illustrative example. In
the figure, aDocument and aStorage represent the instances of class Document and
Storage, respectively.

As the name indicates Runtime Environment represents the runtime environment of
the program, which accesses Event Module Catalogue, Event Catalogue, and Table
Repository.

Assume that the following scenario happens at runtime:

1. A predefined publisher is created: This matches the case explained in
Section 5.3.1.

In an object-oriented program, objects are considered as predefined (potential)
publishers of events. Assume for example, the object aDocument is created at
runtime. According to Listing 5.1, the event save event can be published from
instances of class Document. Therefore, upon the instantiation of aDocument,
an instance of Notifier is created and bound to it. This instance is named
as Notifier(D) in Figure 5.4. Similarly, when the object aStorage is created,
Notifier(S) is created and bound to it.

2. The event save is published by aDocument : This matches the cases
explained in Sections 5.3.2 and 5.3.3.

Assume that during the execution thread t, the method save is invoked on
the object aDocument. According to the specification in Listing 5.1, the event

96 Chapter 5. Design of the Runtime Environment of EventReactor

aDocument

logger_REC

recovery_actions_REChain

forcereturn_REC

regularexpression_REChain

regexp_REC

Table Repository

store,

open,

write,

close

save

Runtime

Environment

aStorage

manages

Events/ Event records

Control message

Event Catalogue
Event Module

Catalogue

Notifier(D) Notifier(S)

Notifier(R)

Instances of

RTEvent

Instances of

RTEvent

Runtime element of

EventReactor

Reactor/ Reactor chain

Data storage

Program object/ module

Instances of

RTEvent

Figure 5.4: The runtime view of the document-editing software

Chapter 5. Design of the Runtime Environment of EventReactor 97

corresponding to the state change after the invocation and immediately before
the execution of save must be published.

As it is explained in Section 5.3.2, Notifier(D) creates an instance of class
RTEvent. For the static contextual information, ’save’ is stored as the name
of the event. The Prolog facts

isBeforeExecution(e1, m1).
isMethodWithName(m1,save).
isClassWithName(c1,Document).
isDefinedIn(m1,c1).

are kept to identify the state to which the event correspond. The literals e1, m1
and c1 represent the unique identifiers that the module Type Harvester of the
EventReactor compiler assigned to the event, to the corresponding method,
and to the class in which the method is defined.

For the dynamic contextual information, Notifier(D) specifies aDocument as
the publisher and the active stack frame as the stack trace of the event. Other
reflective information about the method, e.g. its call and return arguments
are also kept as a part of the dynamic contextual information. The value t is
used as the unique identifier of the thread of execution where the event has
occurred.

An instance of RTEvent is published by Notifier(D).

As it is explained in Section 5.3.3, the static contextual information about the
event is read and converted into a set of Prolog queries. The queries are then
evaluated against the facts that have been stored in Event Catalogue. If an
event record matches, it is retrieved. In this example scenario we assume that
there is a matching event in Event Catalogue.

A list of event modules that refer to the event are then retrieved. In our
example, it is document eventmodule. Afterwards, it looks up for the table
user request.document eventmodule in Table Repository.

Since save is the first event of interest that is published, the corresponding
table has not been created yet. This matches the case 1 in Section 5.3.3.
Here, first a table is created and a new row is inserted. Within this row, the
unique identifier of aDocument and the thread of execution t are stored in the
columns col publisher save event, and col thread, respectively. The value null
is inserted in the columns col publisher store event, col publisher open event,
col publisher close event and col publisher write event.

From Event Module Catalogue, the information about the reactor chains, which
are bound to the event module is retrieved. In the illustrative example, this is

98 Chapter 5. Design of the Runtime Environment of EventReactor

regularexpression REChain. After the initialization of the reactors, a reference
to these is inserted in the column col regularexpression REChain.

The content of the table user request.document eventmodule is as follows.

col thread:
STRING

col publisher
save event:
STRING

col publisher
store event:
STRING

col publisher
open event:
STRING

col publisher
close event:
STRING

col publisher
write event:
STRING

col regularexpression
REChain:
OBJECT

t ID of
aDocument

null null null null Ref(1) to
regularexpression

REChain

In the illustrative example, according to the specification in Listing 5.3, the
events published from within the event module document eventmodule are se-
lected for the purpose of recovery. To inform the occurrence of these events,
Notifier(R) is created and bound to the instance of the reactor type reg-
exp REC.

After the instantiation, the event save is processed by the reactor regexp REC.

3. The event store is published by aStorage in the thread t : Similar
to the event save, an instance of RTEvent is created to pass the necessary
information about this event.

At this stage, the table document eventmodule, which contains a single row has
been created and instantiated already with the following data: The columns
col thread and col publisher store event contain the values t and null, respec-
tively.

As it is explained by the case 2.b.i in Section 5.3.3, the value null is replaced
with the unique identifier of aStorage, and the event is provided to the reactor
chain instance which is kept in the column col regularexpression REChain.

The content of the table user request.document eventmodule is as follows.

col thread:
STRING

col publisher
save event:
STRING

col publisher
store event:
STRING

col publisher
open event:
STRING

col publisher
close event:
STRING

col publisher
write event:
STRING

col regularexpression
REChain:
OBJECT

t ID of
aDocument

ID of
aStorage

null null null Ref(1) to
regularexpression

REChain

4. The event close is published by aStorage in the thread t : Similar
to the previous case, the value null in the column col publisher close event is
replaced with the unique identifier of aStorage, and the event is provided to
the corresponding instance of the reactor chain..

The content of the table user request.document eventmodule is as follows.

Chapter 5. Design of the Runtime Environment of EventReactor 99

col thread:
STRING

col publisher
save event:
STRING

col publisher
store event:
STRING

col publisher
open event:
STRING

col publisher
close event:
STRING

col publisher
write event:
STRING

col regularexpression
REChain:
OBJECT

t ID of
aDocument

ID of
aStorage

null ID of
aStorage

null Ref(1) to
regularexpression

REChain

The occurrence of the event close violates the regular expression specified in
Listing 5.1. As a result, the reactor regexp REC publishes the event violated.
This is accomplished by the corresponding Notifier(R) through creating and
instantiating an instance of RTEvent.

For the static contextual information, Notifier(R) initializes the name of the
event as ’violated’ and the publisher as ’user request.document eventmodule.
regularexpression REChain.regexp REC’.

The dynamic contextual information is initialized as follows: the unique iden-
tifier of regexp REC is stored as the identifier of the publisher. The attribute
innerEvent is set to RTEvent, which corresponds to the event close. As it is
explained in Section 5.2.1, innerEvent is a predefined attribute, which refers
to the event that caused a reactor event be published. The value t is set as
the unique identifier of the current thread of execution.

RTEvent is published by Notifier(R).

5. The event violated is processed by ForceReturn : When the reactor
forcereturn REC receives the event violated, it retrieves the information about
the event that caused violated be published, which is the event close in this
case. Afterwards, the reactor retrieves the information about the correspond-
ing method in the program, which is the method close of aStorage.

Since close is a predefined event, it has the attribute flow in its ReturnContext.
The reactor sets the value Return for this attribute. This indicates that the
invocation and/or the execution of the method must not proceed.

When the control returns to Notifier(S), it checks the attribute flow, and
accordingly it prevents the execution of the method close to proceed.

6. Another instance of class Document is created and publishes the
event save : There can be multiple instances of a class that publish events
of interest in the same or different threads of executions. Assume the object
aDocument’ is another instance of Document, and in the thread of execution
t the method save is invoked on aDocument’.

Similar to the previous cases, upon the creation of aDocument’ an instance of
Notifier is created and is bound to it. Notifier announces the occurrence of
the event save.

100 Chapter 5. Design of the Runtime Environment of EventReactor

There is already a table named user request.document eventmodule in the ta-
ble repository. There is already one row in the table, whose column col thread
contains t. But the column col publisher save event of this row does nor con-
tain the unique identifier of aDocument’. This is similar to the case 2.b.ii
explained in Section 5.3.3.

Here, a new row is added to the table. The unique identifier of aDocument’
and t are inserted in the corresponding columns of the newly added row.
The unique identifier of the other publishers are inserted in the corresponding
columns. A new instance of the reactor chain regularexpression REChain is
created and its reference is inserted in the corresponding column of this row
too. The new row indicates that when aDocument’ starts participating in
the thread t, aStorage has already been participating in the thread t, and has
already published the events store and close.

The content of the table user request.document eventmodule after this scenario
is as follows.

col thread:
STRING

col publisher
save event:
STRING

col publisher
store event:
STRING

col publisher
open event:
STRING

col publisher
close event:
STRING

col publisher
write event:
STRING

col regularexpression
REChain:
OBJECT

t ID of
aDocument

ID of
aStorage

null ID of
aStorage

null Ref(1) to
regularexpression

REChain
t ID of

aDocument’
ID of

aStorage
null ID of

aStorage
null Ref(2) to

regularexpression
REChain

7. The event save is published by aDocument in the thread t’ : Assume
that t’ is a new thread of execution in which save is published. This matches
the case 2.b.iii in Section 5.3.3.

A new row is added to the table user request.document eventmodule. The
value t’ and the unique identifier of aDocument are inserted in the corre-
sponding columns. The value null is inserted in the columns correspond-
ing to the other publishers. A new instance of the reactor chain regular-
expression REChain is created and its reference is inserted in the column
col regularexpression REChain of this row.

The new row indicates that t’ is a new thread of execution and so far only
aDocument has participated in this thread.

The content of the table user request.document eventmodule after this scenario
is as follows.

Chapter 5. Design of the Runtime Environment of EventReactor 101

col thread:
STRING

col publisher
save event:
STRING

col publisher
store event:
STRING

col publisher
open event:
STRING

col publisher
close event:
STRING

col publisher
write event:
STRING

col regularexpression
REChain:
OBJECT

t ID of
aDocument

ID of
aStorage

null ID of
aStorage

null Ref(1) to
regularexpression

REChain
t ID of

aDocument’
ID of

aStorage
null ID of

aStorage
null Ref(2) to

regularexpression
REChain

t’ ID of
aDocument

null null null null Ref(3) to
regularexpression

REChain

5.5 Runtime Behavior of Reactor Types

The runtime behavior of a reactor type is defined by the implementation of that
type. This section describes types RegularExpression and ForceReturn, which are
illustrative examples for implementing dedicated reactor types.

5.5.1 The Runtime Behavior of RegularExpression

The type RegularExpression wraps the 3rd-party tool [2] that accepts a regular
expression and translates it to a deterministic finite state automaton according to
the algorithm discussed in [43]. The 3rd-party tool provides an API to programmers
through which the transition function δ can be invoked on the created automaton.
The reactor type RegularExpression makes use of this API to verify an event against
a regular expression formula. It publishes various reactor events according to the
result of verification.

The automaton is defined as A := <Q, Σ , δ, q0, F, Θ>, where:

• Q is a finite set of states.

• Σ is a finite set of events, specified by the regular expression predicate, which
must be selected for verification.

• δ is a transition function that takes an event e ∈ Σ and a state ∈ Q as its
input, and returns a state ∈ Q.

• q0 ∈ Q is the start state.

• F ⊆ Q is the set of final (or accepting) states.

• Θ ∈ Q is the trap state, which is reached by all events that do not satisfy the
regular expression predicate.

102 Chapter 5. Design of the Runtime Environment of EventReactor

Algorithm 1 shows the runtime behavior of the reactor r of the type RegularExpres-
sion in verifying the event e.

Algorithm 1 The algorithm for verifying the event e by the reactor r from the
type RegularExpression

1: if m indicates the termination of the thread t or e indicates the destruction of
a publisher then

2: if currentState ∈ F then
3: return
4: end if
5: end if
6: targetState← δ(e, currentState)
7: define result as a reactor event
8: result.innerEvent← e
9: result.publisher← r.uniqueID
10: if currentState = q0 then
11: result.name← ’started’
12: publish result
13: end if
14: currentState← targetState
15: if targetState = Θ then
16: result.name← ’violated’
17: publish result
18: return
19: end if
20: if targetState ∈ F then
21: result.name← ’validated’
22: publish result
23: return
24: end if
25: result.name← ’intermediate’
26: publish result

The algorithm defines the variables currentState, targetState and result, which re-
spectively keep the current state of the automaton, the target state of the transition
caused by the verification of e, and the event that is generated as the result of the
verification. The algorithm assumes that in the beginning, currentState has the
value q0.

In lines 1 to 5, if e indicates a systemic event, i.e. the termination of an execution
thread or the destruction of a publisher, and if the automaton is in a final state, the

Chapter 5. Design of the Runtime Environment of EventReactor 103

event is ignored and the algorithm terminates. This means that e does not influence
the results of the verification, because the regular expression predicate is already
satisfied. Otherwise, line 6 verifies e by invoking the transition function δ. The
result is returned in the variable targetState.

Lines 7 to 9 define the reactor event result, set the event e as its inner event, and
set the unique identifier of the reactor r as the publisher of it.

In lines 10 to 13, if currentState equals to q0, the reactor event is named started
indicating that the verification is started, and the event is published. Afterwards
currentState is updated with targetState.

In lines 15 to 19, if targetState is the trap state, the reactor event is named violated,
is published and the processing terminates.

Likewise, in lines 20 to 24 the reactor event is named validated, and is published if
targetState is a final state.

In lines 25 and 26, the reactor event is named intermediate, and is published to
indicate that the final result of the verification is not determined yet.

According to this algorithm, if the verification fails, the automaton remains in the
trap state, and any other event causes the reactor event violated be published.

In certain applications, it may be necessary to reset the instance of RegularEx-
pression to its initial state. This can be programmed by accessing the variable
currentState which is defined in the dynamic context of the reactor event.

5.5.2 The Runtime Behavior of ForceReturn

As it is discussed in Section 5.2.1, at runtime an event is represented by an instance
of RTEvent, which defines various attributes for the event. For the predefined events,
the attribute flow is defined as the return context of the event. It indicates the flow
of execution after an event is processed by a reactor.

As shown in Algorithm 1, reactors may publish new events while processing an event.
The attribute innerEvent stores a reference to the original event. This is shown in
line 8 of Algorithm 1. It is possible to access the chain of events that are causally
published after each other through this attribute. The reactor type ForceReturn
assumes that such a chain of events is initiated by a predefined event.

When a reactor of type ForceReturn receives an event, it iterates over the chain of
events until it reaches the instance of RTEvent that represents a predefined event.

104 Chapter 5. Design of the Runtime Environment of EventReactor

The reactor type sets the value Return for the attribute flow of this event. This
indicates that the invocation and/or the execution of the method must not proceed.

When the control returns to Notifier, which is bound to the publisher of the prede-
fined event, it reads the attribute flow and accordingly prevents the the execution
of the corresponding method.

5.6 Conclusion

This chapter presents the requirements that must be fulfilled in the design and the
implementation of the runtime environment of the EventReactor language. It de-
scribes the data structures that are used to represent events, groups of correlated
publishers, and instances of event modules and their corresponding reactor chains.
Based on this information, the chapter explains the runtime behavior of the Even-
tReactor language, and illustrates it by means of an example. Along this line, the
reactor types RegularExpression and ForceReturn are explained.

This chapter explains several alternatives in designing the runtime environment of
the EventReactor language. Each alternative has its advantages and disadvantages.
A precise evaluation requires a detailed analysis of the specific characteristics of the
implementation context. As future work, we consider carrying out more practical
experiments along this line.

Chapter 6
Multiplicity of Processes and
Implementation Languages

Software may adopt various process structures during its life time. This may happen,
for example, to fulfill scalability and performance requirements. The changes to the
process structure may be manually applied or may be supported by tools [91].

Software may be also implemented using various programming languages. There is
a considerable number of software systems implemented in multiple languages. Typ-
ically, for example, modules which directly interact with hardware, such as device
drivers, are implemented in the C language. The Java language is generally adopted
in implementing application modules and user interfaces. Throughout the lifetime
of software, a module may be replaced with another one that is implemented in a
different language.

To support software systems with various process structures and/or implementation
languages, this chapter claims that a runtime enforcement framework must fulfill the
following requirements: a) its specification languages must abstract from the process
structure through distribution transparency (i.e. process and location transparency)
at least to the level that is provided by the middleware. b) Its specification lan-
guages and compiler must facilitate specifying and enforcing end-to-end behavior
of software. Here, the term end-to-end behavior refers to a sequence of execution
traces from the first initiating event until the final event; the execution traces are
causally dependent on each other and may belong to different processes. c) Its com-
piler must facilitate automatic generation of enforcement components for arbitrary
process structures. d) Its specification language must be transparent from the im-

105

106 Chapter 6. Multiplicity of Processes and Implementation Languages

plementation languages of software; and e) Its compile must facilitate generating
runtime enforcement components so that multiple-language software is supported.

Fulfilling these requirements increases the applicability of a runtime enforcement
framework to software systems with various process structures and implementation
languages. In addition, it increases the reusability of specifications for such software.

In this chapter, Section 6.1 elaborates on the shortcomings of the existing runtime
enforcement frameworks in dealing with the variety of process structures and imple-
mentation languages. The chapter discusses the degree to which these requirements
are addressed by the EventReactor language and its compiler. Fulfilling all the
requirements without making any compromise is a challenging task.

This chapter elaborates on two approaches. The first solution, which is explained
in Section 6.2, is to offer process transparency and end-to-end verification without
supporting multiple implementation languages. In this case, the implementation of
the EventReactor language is based the Java-RMI technology, and therefore it only
supports the Java platform. Section 6.3 explains the second solution, which assumes
a more relaxed form of distribution transparency, nevertheless offers implementation
language transparency. Section 6.4 outlines the conclusion and future work.1

6.1 Problem Statement

It becomes a commodity to develop distributed software on top of middleware. Dis-
tributed Java software that makes use of Java-RMI for inter-process communication
is an example. The behavior of distributed software is accomplished by a sequence
of events exchanged among objects (modules) running in one or more processes.
The objects (modules) may be implemented in the same or different languages.

This section first provides an illustrative example, which is used to discuss the
shortcomings of the existing runtime enforcement frameworks. Second, it presents
a set of requirements for runtime enforcement frameworks in case multiple-process
and/or multiple-language software has to be supported. Finally, it elaborates on
the shortcomings of the existing runtime enforcement frameworks in fulfilling these
requirements.

1Earlier versions of this chapter are published in [61, 63, 62].

Chapter 6. Multiplicity of Processes and Implementation Languages 107

6.1.1 An Illustrative Example

Consider for example that there is a distributed implementation of the document-
editing software which was introduced in the previous chapter. Figure 6.1 shows
a UML collaboration diagram, which depicts the sequence of events that handles
user’s request to save a document.

1.1: store

1.1.1: send(“store”)

1.1.2: send(“store”)

1.1.3: store

1.1.4: store

1.1.5: open

1.1.6: write

1.1.7: close

aDocument:

Document

aClientStub:

ClientStub

aRemoteCommunicator:

RemoteCommunicator

aRemoteCommunicator:

RemoteCommunicator

aServerStub:

ServerStub

aStorage:

Storage

1: save

Client

Server

User

Figure 6.1: An example causally-dependent sequence of events

Starting from the left, the request to save a document by the user results in a set of
causally dependent occurrence of events; first save occurs on the object aDocument
in the process Client, subsequently store on the objects aClientStub, aRemoteCom-
municator, aServerStub, and finally, on aStorage in the process Server.

In this implementation, the sequence of events is distributed across two processes.
To facilitate distribution and inter-process communication, a middleware is utilized.
Here, aClientStub, aServerStub and aRemoteCommunicator are representing the
middleware objects.

108 Chapter 6. Multiplicity of Processes and Implementation Languages

6.1.2 Requirements for a Runtime Enforcement Framework

To effectively apply runtime enforcement to software systems with various process
structures and implementation languages, the thesis claims that a runtime enforce-
ment framework must fulfill the following requirements:

1. Distribution transparency in specifications: As middleware facilitates
the development of distributed software by abstracting the distribution details
away, at least the same level of distribution-transparency should be provided
in specifications. Consequently, a) the specification task is eased, because the
details of process structure are not included in the specifications; b) if the
process structure of software changes without changing its algorithmic behav-
ior, the specification may be preserved; c) there is a conformance between the
development of distributed software and its specification in terms of trans-
parency.

2. End-to-end enforcement: To ensure the correctness of a distributed se-
quence of events, it is necessary to specify and verify a sequence of application
events that occur in one causal thread of execution, from the first initiating
event until the occurrence of the final event. Here, the term causal thread
refers to a thread of execution that starts from a process and spans across
multiple processes.

3. Automatic generation of enforcement modules for arbitrary process
structures: To apply runtime enforcement to multiple-process software, in
principle, one needs to specify and verify the events exchanged in the applica-
tion part and the middleware part of software integrally. Nowadays, middle-
ware becomes more and more reliable. By considering middleware as a reliable
component, to ensure the correctness of software behavior, it is sufficient to
focus on the sequence of application events.

For example, in Figure 6.1, the events 1.1 to 1.1.3 can be excluded from the
verification. However, it is still necessary to consider the causal dependency
of application events in Server to the application events in Client, in case
multiple processes send a request to Server. As the process structure of soft-
ware may be different, it is required that a runtime enforcement framework
can automatically generate the enforcement modules for various process struc-
tures, and can keep track of causality. This decreases the programmers’ effort
to utilize a runtime enforcement framework for software systems with various
process structures.

4. Language transparency in specifications: As for the process structure, we
claim that a runtime enforcement framework must offer specification languages

Chapter 6. Multiplicity of Processes and Implementation Languages 109

that are transparent from the implementation languages of the base software.
This increases the reusability of specifications, and decreases programmers’
effort in maintaining the specifications, if the implementation languages of the
base software change.

5. Automatic generation of runtime enforcement components for var-
ious implementation languages: A runtime enforcement framework must
offer a compiler that can generate and integrate components in a variety of
languages.

6.1.3 Shortcomings of the Existing Runtime Enforcement
Frameworks

Although there are numerous runtime enforcement frameworks in the literature,
they are usually dedicated to support a specified process structure and/or imple-
mentation language. In the following, a brief evaluation of some of the existing
runtime enforcement frameworks are provided:

1. Adopting runtime enforcement frameworks [17, 38, 55, 64, 10, 76] that can
only support single-language and single-process software. Therefore, they do
not fulfill the previously-mentioned requirements. Among these, [38] supports
software implemented in C, and the others support software implemented in
Java.

One may aim at employing these frameworks for multiple-process and/or mul-
tiple language software. Consider for example the sequence of events depicted
in Figure 6.1. For the end-to-end enforcement of events, one could consider di-
viding this sequence of events into two parts according to the process structure,
and verifying them separately.

This would not, however, provide the desired end-to-end enforcement, since
the causal dependency of the events between Server and Client cannot be
checked. Consequently, one cannot be sure that the occurrence of the event,
say store on object aStorage in Figure 6.1, is a result of the occurrence of the
event save in Client, especially if there are multiple client processes sending
the store request to the process Server.

To overcome the above problem, one should develop a dedicated runtime en-
forcement framework for checking the causal dependency of event sequences
occurring in individual processes. However, since the inter-process communi-
cation can be arbitrarily complex, this would largely increase the verification

110 Chapter 6. Multiplicity of Processes and Implementation Languages

effort. Moreover, the solution may be too specific and therefore can be difficult
to reuse it in different software architectures.

Instead of seeking for dedicated solutions, it is considered more feasible to de-
velop a generic runtime enforcement framework that can deal with any process
structure in distributed occurrence of events.

2. Adopting runtime enforcement frameworks [60, 48, 97] that are tailored to
inter-process communication at the middleware level.

If end-to-end enforcement of distributed software is aimed at, additional run-
time enforcement frameworks must be utilized that can deal with verifying
events within a subsystem at the application level. Even so, one needs to imple-
ment dedicated algorithms to check the causality of events that are distributed
across multiple processes. Therefore, the requirement end-to-end enforcement
is not satisfied by these frameworks. Moreover, because the enforcement is lim-
ited to inter-process communications, specifications are distribution-sensitive.
Finally, the automatic generation of enforcement components for arbitrary
process structures is not fulfilled by these frameworks.

3. Adopting runtime enforcement frameworks [71, 86] that support multiple-
process software.

These frameworks can specify events executing within and across different
processes, but without fulfilling the requirement distribution-transparency in
specifications. Therefore, if the distribution of software changes, programmers
are forced to adapt the specifications accordingly; and this may be an error-
prone and time-consuming task. Moreover, these frameworks are also limited
to software developed in the Java language.

6.2 Supporting Multiple-Process Java Software in

EventReactor

As it is shown in the previous chapters, the EventReactor language is independent
of the programming languages, and its compiler supports software implemented in
the Java, C and .Net languages.

If the base software is implemented in Java and makes use of Java-RMI [46] as the
middleware, the EventReactor language facilitates defining distribution-transparent
specifications for it. To infer whether the base software is distributed or not, the
compiler of the EventReactor language analyzes it and accordingly generates code.

Chapter 6. Multiplicity of Processes and Implementation Languages 111

Assume, for example, that our illustrative example is Java-RMI based software.
Since EventReactor supports distribution- and language-transparent specifications,
the specifications in Listings 5.1, 5.2, 5.3 and 5.4 can be reused for out illustrative
example.

The following subsections explain how the compiler and the runtime behavior of
the EventReactor language support distributed Java software. Along this line, a
discussion about the runtime overhead and the limitations of the EventReactor
language is presented as well.

6.2.1 The Compiler Support for Distribution-Transparent
Specifications

The EventReactor compiler must generate code for the runtime environment and
the necessary modules such as notifiers for arbitrary process structure.

If the base software consists of multiple processes, it is possible to execute the run-
time environment of the EventReactor language and the notifier modules in separate
processes. In this case, the notifier modules make use of inter-process communica-
tion to inform the occurrence of events. Naturally, inter-process communication
introduces a certain overhead.

To avoid unnecessary overhead, the compiler analyzes the base software to infer
whether it is distributed or not, and accordingly generates code. Figure 6.2 provides
an overview of the compiler, which supports distribution-transparent specifications.

To avoid repetition, in the following, we only explain the parts of the compiler that
differ from the one discussed in Chapter 4.

Input and Output

As shown at the top of the Figure 4.1, the compiler receives the following input:
Event Record(s), Publisher Record(s), Program Code, Reactor Type(s), Specification
of Reactor Chain(s), Specification of Event Package(s), and Client-Side & Server-
side Stubs.

In RMI-based software, the methods that can be invoked remotely by classes at the
client side must be defined in interfaces that extend the interface java.rmi.Remote.
These interfaces must also be implemented by the classes at the server side. The
Java-RMI compiler generates server-side and client-side stubs accordingly, which are
shown in the figure as Client-Side & Server-Side Stubs.

112 Chapter 6. Multiplicity of Processes and Implementation Languages

Event Module

Recorder

Analyzer

Code

Generator
Weaver

Event Module

Catalogue

Event

Recorder

Event Catalogue

Type Harvester

Java

C

.Net

Compiler

Event Record(s) Program Code
Specification of

Event Package(s)

Specification of

Reactor Chain(s)

Reactor Type(s)

Behavioral

Specification

Notifier

Weave

Specification

Runtime

Environment(s)

Executable

Program Code

Event Record(s)

Code

Analyzer

Causal Thread

Manager

Client-Side &

Server-Side

Stubs

Modified

Client-Side &

Server-Side

Stubs

Modified

Program Code

Publisher

Record(s)

Action Class

Figure 6.2: An overall view of the EventReactor compiler
with the support for distribution-transparent specifications

Chapter 6. Multiplicity of Processes and Implementation Languages 113

The compiler modifies Client-Side & Server-Side Stubs to keep track of the causality
of events among clients and servers.

As its output, the compiler generates Executable Program Code and Runtime Envi-
ronment(s).

Code Analyzer

From Event Catalogue, Code Analyzer retrieves the event records that represent the
predefined events. From Event Module Catalogue, Code Analyzer retrieves the event
modules that refer to the actual event. To infer whether the events that form the
input interface of an event module are distributed across multiple processes, Code
Analyzer performs a two-phase analysis:

1. Program Analysis: A Java program has a method named main, which
starts the execution of the program. If the base software is distributed, to
run client and server subsystems, there will be multiple main methods. Code
Analyzer retrieves main methods defined in Program Code and for each re-
trieved method, it computes its call graph [83].

A call graph is a directed graph, which represents a call-relationship between
two methods. The module Code Analyzer makes use of the Soot framework
to construct call graphs. The details can be found in [87].

In constructing a call graph, the Soot framework does not distinguish between
the objects that are instantiated at the client and server sides. Therefore, a
call graph may also contain the methods that are executed at the server-side.

Code Analyzer traverses the constructed call graph in a depth-first search [23]
manner to conclude two facts: (a) the specified event occurs in the control
flow of the method main. In this case, the method main is tagged as relevant.
(b) A remote method (i.e. a method defined in a remote interface) is invoked
in the control flow of the method main. This indicates that the main thread
of execution may span across multiple processes at runtime. In this case,
the method main is tagged as the client-side of distribution, and the remote
methods are identified as the points where the thread of execution may span
across multiple processes.

2. Specification Analysis: for each specified event module, Code Analyzer
checks if the events that form the input interface of the event module cor-
respond to the previously identified remote methods. If so, the event module
is tagged as distributed.

114 Chapter 6. Multiplicity of Processes and Implementation Languages

If not, the call graph of the identified remote methods is constructed and the
depth-first search is performed to infer if any of the specified events occurs
during the execution the remote method. If so, the event module is tagged as
distributed, because the event that it groups occur in a thread of execution
which spans across multiple processes.

All other event modules that refer to the events published by the tagged event
module are also tagged as distributed.

The remote methods which do not refer to any event of interest are ignored.

Code Analyzer stores information about the tagged event modules in Event Module
Catalogue.

Causal Thread Manager

For each tagged main method, the module Causal Thread Manager assigns a unique
identifier to the physical thread executing the method main. This is used as the
identifier of the causal thread. In the current implementation, the unique identifier
of the causal thread is stored at the Java class ThreadLocal[44] as a local variable.

Program Code is also changed such that when the execution of the method main
terminates, the systemic event indicating the termination of the thread is sent to
the runtime environment of the EventReactor language.

To maintain the unique identifier of causal threads across processes, Causal Thread
Manager takes the same approach as [93]. The implementation of Causal Thread
Manager supports older as well as the newest version of Java-RMI in which the
functionality of server-side stub is inserted within the server class. In this case,
for each remote method identified by Code Analyzer, the module Causal Thread
Manager adds a new method that wraps the remote method. The wrapper has the
same signature as the wrapped method but with one additional parameter holding
the causal thread identifier received from the client-side stub. Pseudo code of the
wrapper is shown in Listing 6.1.

The wrapper code first binds the physical thread of the server-side subsystem to the
causal thread, and thereafter invokes the wrapped method. After the termination
of the execution of the wrapped method and before the return of the call to the
client thread, the wrapper code unbinds the server thread from the causal thread.
For the older versions of Java-RMI the same modifications are applied to skeleton
modules, only the wrapper method wraps the stub method corresponding to the
remote method.

Chapter 6. Multiplicity of Processes and Implementation Languages 115

1 remoteProc (long causalThreadID,...) {
2 calleePhysicalThread.causalThreadID := causalThreadID
3 invoke remoteProc (...)
4 calleePhysicalThread.causalThreadID := null
5 }

Listing 6.1: Spanning the causal thread of execution to server-side

For each tagged client-side method main and for each identified remote method,
Causal Thread Manager changes the client-side stubs so that the stub methods
invoke the wrapper method in the server-side stub with the causal thread identifier
that has already been assigned to the physical client-side thread. Listing 6.2 shows
the pseudo code for a modified client-side method.

1 remoteProc (...) {
2 invoke remoteProc (callerPhysicalThread.causalThreadID ,...)
3 }

Listing 6.2: Spanning the causal thread of execution from client-side

The module Weaver of the compiler accepts the modified Program Code and the
modified Client-Side & Server-Side Stubs as input, and generates an integrated code
as explained in Chapter 4.

Code Generator

If any of the specified event modules is tagged as distributed, Code Generator creates
two sorts of runtime environment modules for the EventReactor language: (1) The
one that is executed in a dedicated process called Enforcement Server, and (2) The
ones that are executed locally in application processes.

The event modules which are not tagged as distributed are managed by local run-
time environments, which also communicate with the server runtime environment
to inform it of the occurrence of events.

6.2.2 Runtime Behavior

The runtime behavior explained in Section 5.3 is also valid for the distributed case.
There are some differences between the single process and multiple process imple-
mentations of the runtime environment due to inter-process communication. In the

116 Chapter 6. Multiplicity of Processes and Implementation Languages

following, we provide a generic explanation of the runtime behavior for the multiple
process case.

If there is any event module tagged as distributed, a process called Enforcement
Server is created, which executes the runtime environment of the EventReactor
language.

To manage the instances of the event modules that are not distributed, and to
communicate with the runtime environment executing in Enforcement Server, there
is an instance of runtime environment locally executing in each application process.
These make use of Java-RMI to communicate with their counterpart in Enforcement
Server. Therefore, the communications are synchronous. We assume that Java-RMI
is a reliable middleware and the problems such as event loss and out-of-order events
are negligible.

Assume that the event e is detected in the thread t executing within an application
process. The thread t can be a local thread in the process, or a causal thread.

Notifier, which is bound to the corresponding publisher object p, creates an instance
of the data structure RTEvent and initializes the necessary static and dynamic
contextual information. This includes p and t, which are the unique identifier of the
publisher and the unique identifier of the corresponding thread, respectively.

Notifier announces the event by sending the instance of RTEvent to Runtime Envi-
ronment that is executing in the application process. Using the protocol explained in
Chapter 5, Runtime Environment accesses Event Catalogue to check if the published
event is known in the system. If the evaluation results in TRUE, it retrieves the
corresponding event modules from Event Module Catalogue. There may be multiple
corresponding event modules. Some of these may be tagged as distributed.

If none of the event modules are distributed, the event is processed as it is explained
in Chapter 5. Otherwise, Runtime Environment that is locally executing in the
application process, determines the execution order of the event modules by referring
to the constraint precede, if there is any2. If an event module is tagged as distributed,
the local Runtime Environment forwards the instance of RTEvent to its counterpart
executing in the process Enforcement Server.

When the event is processed, the instance of RTEvent is returned to the local
Runtime Environment. This facilitates accessing the return context of the event in
the application process.

2The current version of EventReactor does not support the constraints ignore and override for
distributed event modules.

Chapter 6. Multiplicity of Processes and Implementation Languages 117

6.2.3 An Illustration of Runtime Behavior

This section makes use of the document-editing software to illustrate the runtime
behavior of the EventReactor language for multiple process software.

Assume that the document-editing software is compiled against the specifications
defined in Listings 5.1, 5.2, 5.3 and 5.4. We also assume that the compiler of Even-
tReactor tags the event module document eventmodule as distributed.

Figure 6.3 illustrates the runtime view of the document-editing software. Here, the
emphasis is on the application objects which are the publishers of the events. In the
figure, the runtime environments are distinguished with suffixes (C), (S) and (E),
standing for Client, Server and Enforcement

Consider the following scenarios:

A publisher is created

The objects aDocument and aStorage are the publishers of the events of interest.
Upon their creations, an instance of Notifier is created and bound to them.

A sequence of causally-dependent events occurs

Assume, for example that in the main thread of execution within Client, the method
save is invoked on aDocument. This results in the detection of the event save.

Notifier(D) creates an instance of RTEvent and initializes its fields. The unique
identifier of aDocument is specified as the unique identifier of the publisher of the
event. During the compilation process, the main thread of execution in Client is
detected as a causal thread that spans across multiple processes. Therefore, a unique
identifier is assigned to it. This value is kept in the corresponding field of the instance
of RTEvent.

Runtime Environment(C) identifies that the event module document eventmodule is
registered for the event. Since this event module is tagged as distributed, Runtime
Environment(C) forwards the instance of RTEvent to its counterpart Runtime En-
vironment(E) in the process Enforcement Server. Further, the same procedure as
discussed in Section 5.3 is used in creating the event module table and initializing
it.

To process events that are published by the event module document eventmodule,
an instance of recovery actions eventmodule is created by Runtime Environment(E).

118 Chapter 6. Multiplicity of Processes and Implementation Languages

aDocument

logger_REC

recovery_actions_REChain

forcereturn_REC

regularexpression_REChain

regexp_REC

Table Repository

store,

open,

write,

close

save

Runtime

Environment(E)

aStorage

manages

Event Catalogue
Event Module

Catalogue

Notifier(D) Notifier(S)

Notifier(R)

Client

Instances of

RTEvent

Table Repository

Runtime

Environment (C)

Event Catalogue
Event Module

Catalogue
Table Repository

Runtime

Environment(S)

Event Catalogue
Event Module

Catalogue

Proxy of Runtime

Environment (E)

Proxy of Runtime

Environment (E)

Instances of

RTEvent

Server

Enforcement Server

Instances of RTEventInstances of RTEvent

In
s
ta
n
c
e
s
 o
f

 R
T
E
v
e
n
t

In
s
ta
n
c
e
s
 o
f

 R
T
E
v
e
n
t

Events/ Event records

Control message

Runtime element of

EventReactor

Reactor/ Reactor chain

Data storage

Program object/ module

Process

Figure 6.3: A runtime view for the distributed document-editing software

Chapter 6. Multiplicity of Processes and Implementation Languages 119

When the event save is processed in Enforcement Server, the instance of RTEvent
is returned to Runtime Environment(C), which provides it to other event modules,
if any.

Assume that as the result of the execution of the method save, the method store
is invoked on the object aStorage. Notifier(S) creates an instance of RTEvent to
represent the event, and initializes its fields. The unique identifier of the current
causal thread is assigned to the corresponding field in RTEvent. This has the same
value as the one assigned to the event save in the process Client, because the causal
thread spanned across these two processes.

The event store is forwarded to Runtime Environment(E), and is processed.

An event of interest occurs in a local thread of execution

Now, assume for example that the event store occurs in a local thread within the
process Server.

An instance of RTEvent is created by Notifier(S). This time the unique identifier
of the local thread of execution is assigned to the event. The event module docu-
ment eventmodule has registered for the event store and it is tagged as distributed.
Therefore, the event is forwarded to Runtime Environment(E).

Listing 5.1 specifies the event module as perinstancethread. Therefore, Runtime
Environment(E) inserts a new row in the event module table, with the unique iden-
tifier of the local thread in its column col thread. A new instance of the reactor
chain regularexpression REChain is created to process the event.

There are multiple clients and/or servers

In distributed software, there can be multiple clients that make use of the services
provided by a server. Individual clients initiate their own causal thread of execution
with different identifiers. This helps to distinguish between the events published by
different clients.

The number of servers depends on the application program. Assume, for example,
the document-editing software evolves such that documents are stored in multiple
servers. Each server has an instance of class Storage.

Since Java-RMI is used as the underlying middleware, clients communicate with
servers in a synchronous manner. This means that a request to store a document

120 Chapter 6. Multiplicity of Processes and Implementation Languages

Figure 6.4: The runtime overhead for filling event module tables

within two servers is handled by one causal thread of execution, which sequence
spans over two servers. The processing is then carried out sequentially.

Since there are two instances of class Storage, with each of them has its own unique
identifier, two separate rows are created in the event module table. A separate
instance of the reactor chain regularexpression REChain is created for each row.
The event module table is maintained in the process Enforcement Server.

6.2.4 Evaluation

We measured the runtime overhead of EventReactor in verifying the specified se-
quence of events for a distributed implementation, as well as a centralized imple-
mentation of the illustrative example.3

The runtime overhead is influenced by the number of publishers that are participat-
ing in a thread of execution. We consider four cases: 5, 10, 15 and 20 instances per
class Document and Storage. Since the specified regular expression is verified for all
the possible participation of these objects in a single thread, there are 25, 100, 225
and 400 combinations for which the verification must be carried out.

The runtime overhead is divided into two parts: time to create and fill the event
module tables, and time to process events for each row of the event module tables.

3The evaluation is performed using a preliminary implementation of the EventReactor language.

Chapter 6. Multiplicity of Processes and Implementation Languages 121

Figure 6.5: The runtime overhead for processing events

The evaluation was conducted on a 2.00 GHz Intel Core 2, with 2GB RAM running
the Hotspot Client JVM version 1.6.0 under Windows XP. All on a single machine.

Figures 6.4 and 6.5 show the results of the evaluation. The X-axis represents the
number of rows in the table created for the event module document event module.
The Y-axis represents the time for filling the tables and/or for verifying the execution
in milliseconds. The graph shows the overhead in a logarithmic scale.

Maintaining the table in a separate process for a distributed software, imposes an
extra overhead due to the inter-process communication. There are different opti-
mization techniques that can be employed. For example, caching techniques may
be used to keep a copy of the tables in each application process, so the amount
of inter-process communication decreases. However, in general there is no single
optimum solution for all possible variations.

6.2.5 Limitations in Supporting Distribution Transparency

We identify two major shortcomings in the proposed solution for supporting distribution-
transparent specifications:

1. In RMI-based software, a remote interface may be bound with a local or a
remote server object, dynamically. Code Analyzer of EventReactor does not
distinguish between local and remote objects. Therefore, sequences of events
will be always considered distributed. This does not influence the functionality,

122 Chapter 6. Multiplicity of Processes and Implementation Languages

but increases the runtime overhead due to maintaining event module tables in
separate processes. We identify two possible solutions to this problem:

First, there are techniques known as points-to analysis [57] that statically
determine the set of objects pointed by a reference variable or a reference
object field. The points-to analysis technique can be applied for distinguishing
remote and local objects from each other. Second, it is possible to give up the
distribution-transparency of specifications in a controlled manner, by including
information about the distribution of modules.

2. To support distributed multiple-language software, code analyzer must extract
the call-graph of software that expands across modules developed in various
languages. However, it may not always be possible to attain an adequate call
graph. For example, assume that there is a C function that makes use of Java-
JNI API to invoke a Java method whose name is defined as a variable. If the
value of the variable is determined at runtime, it is not possible to extract an
adequate call graph before the actual execution of software at runtime. The
same problem exists in single-language software that makes use of a reflection
technique [31] to invoke a method.

6.3 Supporting Distribution-Sensitive Specifications

in EventReactor

To overcome the above mentioned limitations, it is possible to relax the distribution-
transparency requirement by enabling the programmers to specify the distribution
information.

Listing 6.3 shows a distribution-sensitive specification for the document-editing soft-
ware. As line 37 shows, programmers can make use of the keyword distributed

to specify that the events forming the input interface of an event module are dis-
tributed. The distribution-transparency can nevertheless be preserved for the spec-
ifications of reactor chains.

The specifications are input to the EventReactor compiler. Since no code analysis
is performed by the compiler, it is also not possible to automatically maintain the
causal thread of execution among multiple processes. We consider two solutions for
this matter.

First, programmers may manually modify the program code to keep track of the
causality of events, by putting the unique identifier of the causal thread in a mem-
ory location that is known by the runtime environment of EventReactor. Second,

Chapter 6. Multiplicity of Processes and Implementation Languages 123

programmers may wrap the inter-process communication code in a client- and server-
side stub modules as it is the case in Java-RMI. In this case, the module Causal
Thread Manager in the EventReactor compiler can be extended to modify these stub
modules for passing the unique identifier of causal threads across the processes.

1 eventpackage user request{
2 selectors
3 save event = {E |
4 isBeforeExecution(E, M),
5 isMethodWithName(M,’save’),
6 isClassWithName(C,’Document’),
7 isDefinedIn(M, C)};
8

9 store event = {E |
10 isBeforeExecution(E, M),
11 isMethodWithName(M,’store’),
12 isClassWithName(C,’Storage’),
13 isDefinedIn(M, C)};
14

15 open event = {E |
16 isBeforeExecution(E, M),
17 isMethodWithName(M,’open’),
18 isClassWithName(C,’Storage’),
19 isDefinedIn(M, C)};
20

21 close event = {E |
22 isBeforeExecution(E, M),
23 isMethodWithName(M,’close’),
24 isClassWithName(C,’Storage’),
25 isDefinedIn(M, C)};
26

27 write event = {E |
28 isBeforeExecution(E, M),
29 isMethodWithName(M,’write’),
30 isClassWithName(C,’Storage’),
31 isDefinedIn(M, C)};
32

33 eventmodules
34 document eventmodule := {save event, store event, open event,
35 write event, close event}
36 <−
37 distributed perinstancethread
38 {regularexpression REChain(’
39 (save event store event open event write event+ close event)∗’
40)} ;
41 }

Listing 6.3: A distribution-sensitive specification of event modules

124 Chapter 6. Multiplicity of Processes and Implementation Languages

6.4 Conclusion and Future Work

This chapter defines requirements that should be fulfilled by a runtime enforcement
framework to facilitate runtime enforcement of multiple-language and/or multiple-
process software. These are: a) distribution transparency in specifications; b) end-
to-end enforcement; c) automatic generation of enforcement modules for arbitrary
process structures; d) language transparency in specifications; and e) automatic gen-
eration of runtime enforcement components for various implementation languages.
The chapter argues that fulfilling these requirements helps to increase the reusability
of specifications for distributed and/or multiple language software.

The chapter discusses the degree to which these requirements are addressed by the
current implementation of the EventReactor language. First a solution is proposed
that fulfills the first four requirements. Here, the compiler of the EventReactor
language only supports the Java software that makes use of Java-RMI as middleware.

The chapter discusses that it may not be feasible in practice to fulfill all the men-
tioned requirements for distribute and/or multiple-language software that makes use
of various middleware and/or inter-process communication techniques. As a solu-
tion, the chapter proposes to relax the distribution-transparent specifications in a
controlled manner.

In the current implementation of the EventReactor language, if an event module
is specified/tagged as distributed, its corresponding table is maintained in a shared
process called Enforcement Server. One may argue that maintaining this informa-
tion in a separate process results in the well-known problem of shared memories
(e.g. bottleneck). As it is discussed in Section 5.2.2, there are also other alterna-
tives for this matter, which may impose more runtime overhead due to the amount
of the interprocess communications that they require. The degree to which selected
events are distributed may influence the imposed runtime overhead. The evaluation
of these alternatives is considered as future work.

Currently, the module Causal Thread Manager provided by the EventReactor com-
piler only considers the physical thread of execution that is created by Java virtual
machine for executing the method main. However, there might be other threads
of execution in multi-threaded software, which are created and destroyed explicitly
by software. As a future direction of the implementation of the EventReactor lan-
guage, it is considered to extend Causal Thread Manager to recognize such threads
of execution so that a casual thread can be maintained for each of them.

The EventReactor language provides three constraints precede, override and ignore
for event modules. The constraints precede and override are evaluated statically
by the compiler and are not influenced by the distribution of software. The oper-

Chapter 6. Multiplicity of Processes and Implementation Languages 125

ator ignore is evaluated at runtime based on the stack of executing events. In the
distributed case, a global stack must be maintained across multiple processes for
each causal thread of execution. This is also regarded as a future direction in the
implementation of the EventReactor language.

Both proposed solutions for the runtime enforcement of distributed software are lim-
ited to the processes that communicate in a synchronous manner. However, there is
a vast number of distributed software that makes use of an asynchronous communi-
cation technique. Since in such software events may occur concurrently, a suitable
formalism must be adopted to express the desired properties of software in the speci-
fications. The algorithm to analyze the code remains the same for both synchronous
and asynchronous cases. An existing algorithm such as the one presented in [65, 30]
may be employed to keep track of causality of events. The runtime environment
must deal with the well-known problems of asynchronous communications such as
global clocks, or out of order events. Supporting these features is considered a future
direction of the implementation of the EventReactor language.

We consider extending the offered linguistic constructs of the EventReactor language
with distribution-sensitive specifications, such as process and the machine identities.
Such constructs enable programmers to have more control over the distribution of
the runtime enforcement components.

126 Chapter 6. Multiplicity of Processes and Implementation Languages

Chapter 7
A Case Study for the Evaluation of the
EventReactor Language

As it is discussed in Chapter 2, since the specification languages of runtime enforce-
ment frameworks adopt the elements of their underlying languages, they may fall
short in representing various runtime enforcement concepts naturally. To overcome
the limitations, the computation model Event Composition Model and its imple-
mentation the EventReactor language have been introduced.

This chapter presents an evaluation of the EventReactor language from the perspec-
tive of its support in natural representation of runtime enforcement concepts. For
this matter, the chapter makes use of an example runtime enforcement technique
named Recoverable Process, which aims at providing fault-tolerant processes. This
technique was introduced for the TRADER project [92].

The chapter discusses some of the possible implementations of Recoverable Process
in existing runtime enforcement frameworks and programming languages. A detailed
discussion about the shortcomings of such implementations is provided, followed
by a possible implementation in the EventReactor language, which overcomes the
shortcomings.

Section 7.1 explains the Recoverable Process technique and its application to a media
player software. Section 7.2 discusses an implementation of Recoverable Process in
the C language, which was provided for the TRADER project.

Section 7.3 outlines a possible implementation of Recoverable Process in an existing
runtime enforcement framework, and discusses the shortcomings of this implemen-
tation in providing a natural representation for the concepts of Recoverable Process.

127

128 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

Section 7.4 discusses a possible implementation of Recoverable Process in an existing
aspect-oriented language, and discusses the shortcomings of this implementation in
providing a natural representation for the concepts of Recoverable Process.

Section 7.5 outlines a possible implementation of Recoverable Process in the Even-
tReactor language. It explains the extendability of the language with user-defined
events, which plays an important role to represent the concepts of Recoverable Pro-
cess naturally.

Finally, Section 7.6 outlines the conclusions.

7.1 An Illustrative Runtime Enforcement

Technique

This section first provides an example runtime enforcement technique called Recov-
erable Process, which detects the failures of processes and recovers them. Secondly,
it applies this technique to the development of a media player software.

7.1.1 Recoverable Process

In [88], a runtime enforcement technique called Recoverable Process is published to
make processes fault-tolerant. Here, processes are monitored to detect their failures,
and a failed process is restarted along with other processes that are semantically
related to it.

The technique treats various failures of a process, for example, the crash of a process,
and a deadlock within a process. If processes exchange messages among each other,
a failed process may not be available to receive the messages from other processes.
Therefore, Recoverable Process also considers the recovery of such messages through
message queuing and dispatching.

Recoverable Process assumes that after recovery, processes can continue their normal
operation. This implies that the failures must have a transient nature, i.e. the chance
that a failure reoccurs after a restart is low.

Figure 7.1 provides an overall view of the concepts in Recoverable Process. For the
sake of brevity, [88] assumes that only child processes that have a common parent
process can be recovered; this thesis also makes the same assumption.

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 129

+queue()

+release()

CommunicationManager

+recover()

ProcessManager

+notify()

RecoveryUnit

+inited()

+killed()

-id

-name

-status

-init

-kill

AppProcess

1

1..*

-parent

1

*

1

-sender

*

+SigChldHdr()

Parent

controls
recovers

executesexecutes

Figure 7.1: The concepts of the Recoverable Process technique

AppProcess represents a child process, and has the attributes id, name, status, init
and kill. The attribute id is the unique identifier of the process, which is generated
by the operating system. The attribute name is the developer-specified name of
the process. The attribute status is the execution state of the process, which can
either be running, terminated or under-recovery. The attributes init and kill are
the methods that create or kill the process, respectively.

The events initiated and killed, which are shown as operations in the figure, occur
if the process is created or killed, respectively.

The concept RecoveryUnit of Recoverable Process represents a group of child pro-
cesses that must be recovered together. RecoveryUnit also detects failures in the
grouped processes and triggers an event when a failure is detected.

The concept Parent represents the parent process of AppProcess. When a child
process is killed, the method SigChldHdr of Parent triggers the event killed in the
corresponding instance of AppProcess.

The concept Parent executes the module ProcessManager, which performs a recovery
action if RecoveryUnit triggers a process-failure event. ProcessManager changes the
status of processes that form the recovery unit to under-recovery, and restarts them.
After a successful recovery, it changes the status of the processes to running.

If other processes send messages to a process that is being recovered, Commu-
nicationManager queues the messages and sends them to the process after it is
successfully recovered. CommunicationManager is also executed by Parent.

130 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

For the sake of brevity, this thesis only considers the (unexpected) termination of
processes as failure, and does not discuss the details to distinguish between the
normal termination of a process by the user and the un-expected termination of a
process. In addition, we do not discuss the implementation of CommunicationMan-
ager.

7.1.2 An Application of Recoverable Process

In this section we discuss an application of the Recoverable Process technique to
an example media-player software1. An abstract block diagram of the media player
software is shown in Figure 7.2.

The software is structured around five processes. The surrounding rectangle is the
parent process Runner, which is initiated by the module Main. The parent process
creates the child processes and is notified if the child processes are destroyed. The
four contained dashed rectangles represent the child processes.

The process UserInterface runs the module GUI that provides a user interface
for the media player software. The process MPCore runs the module Core that
implements the main functionality of the media player software, e.g. reading a
media file and buffering it, separating audio and video channels, synchronizing audio
and video channels, and handling input commands. The processes Audio and Video
respectively run the modules Libao and Libvo to play audio and video channels. The
arrows in the figure represent the messages that are exchanged among processes.

There are various ways to apply Recoverable Process to the media player software.
For example as Figure 7.2 shows, the processes Audio, Video and UserInterface
receive information from the process MPCore. If MPCore is killed, the other child
processes cannot continue their operation as well. Therefore, one may group all the
child processes as one recovery unit such that if MPCore is killed, the recovery unit
reports a failure. This is known as global recovery [88]. One may also assume that
if any of the processes Audio, Video and UserInterface is killed, it can be restarted
individually. In this case, it is possible to define separate recovery units for the
individual recovery of Audio, Video and UserInterface. This is known as local
recovery [88] which aims at improving the availability of non-faulty processes.

1This is a reduced version of the MPlayer software [70] that was used in the TRADER project
as the case study.

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 131

«subsystem»

Main

Runner

«subsystem»

Core

MPCore

«subsystem»

Gui

UserInterface

«subsystem»

Libao

Audio

«subsystem»

Libvo

Video

process

Inter-process communication

Figure 7.2: An abstract block diagram of the media player software

7.2 Implementing Recoverable Process in

Imperative Languages

Within the TRADER project, the Recoverable Process technique for the MPlayer
software is implemented in the C language [88].

In this implementation, the modules ProcessManager and CommunicationManager
are defined as separate modules. These modules also maintain information about the
processes that must be recovered, and the recovery units to which they belong. The
code to detect the failure of the child processes, and the invocations to the modules
ProcessManager and CommunicationManager to activate the recovery actions upon
the failure of the child processes, are scattered in the base software .

This implementation of Recoverable Process falls short to represent the concepts
of Recoverable Process naturally because of the following reasons. First, there is
no explicit and modular representation of processes of interest and recovery units;
their definition is tangled in the modules ProcessManager and CommunicationMan-
ager. This also reduces the modularity and compose-ability of the modules Process-
Manager and CommunicationManager, because they cannot be reused for different
processes and recovery units.

Second, the concepts of Recoverable Process are not modularized from the base
software, because programmers must write code to invoke the functionality of Pro-
cessManager and CommunicationManager from within the base software.

132 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

Third, the concepts are considered at a too low level of an abstraction, since they are
expressed in the C language. This reduces the comprehensibility of the represented
concepts and their reusability for software developed in other languages.

7.3 Implementing Recoverable Process in

Existing Runtime Enforcement Frameworks

To represent the concepts of Recoverable Process such that the representations are
modular, compose-able and are at right abstraction level, we try to make use of an
existing runtime enforcement framework.

To implement the Recoverable Process technique in existing runtime enforcement
frameworks, the specification languages must facilitate natural representation of the
following concepts: a) the child processes of interest, b) RecoveryUnit as an abstrac-
tion over a group of related child processes, and c) the recovery action provided by
ProcessManager. The specification languages must also facilitate the composition
of these concepts so that the Recoverable Process technique is achieved.

There is an increasing number of runtime enforcement frameworks in the literature.
For the sake of representation, we make use of JavaMOP to illustrate a possible
implementation of the Recoverable Process2. The discussions over the shortcomings,
nevertheless, can be generalized to other runtime enforcement frameworks.

JavaMOP provides a specification language which makes use of the aspect-oriented
language AspectJ as its underlying language. The specification language adopts the
pointcut designators of AspectJ to specify the events of interest in the base software.
It provides various formalisms to specify the properties of the base software, and is
extendable with new formalisms. The specifications of diagnosis and recovery are
defined using the elements of the Java language. JavaMOP provides a compiler that
translates the specifications to AspectJ code, which can be further integrated with
the base software via the AspectJ compiler.

Chapter 2 discusses that JavaMOP, and other evaluated runtime enforcement frame-
works, do not facilitate natural representation of the concepts of the Recoverable
Process technique. As a result, we must map these concepts to the elements avail-
able in the specification language. As it is discussed in Chapter 2 such mappings

2Although MPlayer is implemented in the C language, for the purpose of demonstration we
make use of a Java-based runtime enforcement framework. Compared to the existing C-based
frameworks, the Java-based ones are more mature and they benefit from advanced features of
their underlying aspect-oriented language. However, they are still deficient to fulfill our identified
requirements for a runtime enforcement system.

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 133

suffer from three problems: a) decreased modularity, b) decreased abstraction level,
and c) decreased compose-ability. To illustrate these problems, the following subsec-
tions provides specifications of the concepts of Recoverable Process in the JavaMOP
language.

7.3.1 Decreased Modularity

The representation of a concept can be scattered across the multiple underlying lan-
guage elements due to not directly representing the concepts of interest. Moreover,
the representation of a concept may also get tangled with the representation of other
concepts.

Assume for example that we would like to utilize Recoverable Process for the global
recovery of the media player software. Listing 7.1 shows an excerpt of JavaMOP
specification for this matter.

As it is defined in Section 7.1.2, in the global recovery we would like to restart
the processes MPCore, Audio, Video and UserInterface when MPCore is killed.
Therefore, all these child processes form a recovery unit.

Lines 2 to 16 of Listing 7.1 represent the concept RecoveryUnit. Here, the variable
recoveryunit mapping maintains the list of child processes that form the recov-
ery unit. The events e MPCoreCreated, e AudioCreated, e VideoCreated, and
e UserInterfaceCreated are the events of interest that must be detected in the
base software. These represent the creation of child processes of interest. After
a child process is created, its unique name and unique identifier is inserted in the
variable recoveryunit mapping. This is shown for example in line 5 of Listing 7.1.

The event e MPCoreKilled, specified in line 16, is detected when the process MP-
Core is killed.

Lines 17 to 26 represent the concept ProcessManager. In this code block, the child
processes UserInterface, Audio and Video, which are also elements of the recovery
unit, are killed and the child processes are restarted. We have developed the utility
class RecProcess for this matter.

Although in Figure 7.1, the concepts RecoveryUnit and ProcessManager are repre-
sented as two modules, we could not preserve their modularity in their specification,
and they are tangled with each other in one specification module depicted in List-
ing 7.1.

This, in the first place, does not match the intentions of the software engineers be-
cause the specifications do not preserve the characteristics of the design. Moreover,

134 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

the reusability of the concepts decreases, because it is not possible to reuse them
independently in other contexts. Last but not least, the comprehensibility of the
specifications decreases, because as the number and the complexity of the concepts
increase, it may not be easy for the software engineers to comprehend the concepts
that are represented within one specification module.

1 GlobalRecovery(){
2 HashMap <String, Integer> recoveryunit mapping = new HashMap<String, Integer>();
3

4 event e MPCoreCreated after() returning (Integer id): call (Integer Main.createMPCore(..))
5 {this.recoveryunit mapping.put(”MPCore”, id);}
6

7 event e AudioCreated after() returning (Integer id): call (Integer Main.createAudio(..))
8 {this.recoveryunit mapping.put(”Audio”, id);}
9

10 event e VideoCreated after() returning (Integer id): call (Integer Main.createVideo(..))
11 {this.recoveryunit mapping.put(”Video”, id);}
12

13 event e UserInterfaceCreated after() returning (Integer id): call (Integer Main.createUI(..))
14 {this.recoveryunit mapping.put(”UserInterface”, id);}
15

16 event e MPCoreKilled after() : execution (∗ Main.MPCoreKilled(..)) {
17 Iterator i = this.recoveryunit mapping.entrySet().iterator();
18 while(i.hasNext()){
19 Map.Entry me = (Map.Entry)i.next();
20 if (me.getKey().equals(”MPCore”))
21 RecProcess.reinitialize(”MPCore”);
22 else{
23 RecProcess.kill(me.getValue());
24 RecProcess.reinitialize(me.getKey());
25 }
26 }
27 }
28 }

Listing 7.1: A specification for the global recovery in JavaMOP

7.3.2 Decreased Abstraction Level

If concepts are represented via the elements of the underlying languages, their ab-
straction level remains very close to the code level. Consequently, the represen-
tations become restricted to a specific programming language and platform. This
reduces the reusability of concepts for software developed in different programming
languages and platforms.

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 135

For example, the representations provided in Listing 7.1 make use of the element
of Java and AspectJ languages, so they cannot be reused if the base software is
developed in another language. This is in contrast with the design of Recoverable
Process depicted in Figure 7.1, where no constraints is specified about the language
and/or platform of the base software.

7.3.3 Decreased Compose-ability

As Figure 7.1 shows, the Recoverable Process technique contains various concepts
that are composed with each other so that the overall process recovery functionality
is accomplished. If the specifications adopt the elements of the underlying lan-
guages, the composition strategies can be required to be defined and implemented
in the underlying languages as well. Similar to the previously defined problems,
if the composition language does not support the composition strategies naturally,
the complexity of the composition specifications may increase, and the comprehen-
sibility and reuse may decrease. In the following this problem is represented by two
examples.

Application-specific semantics in compositions:

Assume for example that we want to apply local recovery to the process User-
Interface. Listing 7.2 shows a JavaMOP specification to represent the concepts
RecoveryUnit and ProcessManager for this matter.

In line 4, the event e UserInterfaceCreated represents the state when the child
process UserInterface is created, and accordingly, its name and unique identifier is
inserted in the variable recoveryunit mapping.

In line 8, the event e UserInterfaceKilled must be detected in the media player
software, when the child process is killed. As a result, in line 9 the process is re-
initialized by the method reinitialize defined in the application class RecProcess.

136 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

1 UILocalRecovery() {
2 HashMap<String, Integer> recoveryunit mapping = new HashMap<String, Integer>();
3

4 event e UserInterfaceCreated after() returning (Integer id):
5 call (Integer Main.createUserInterface(..))
6 {this.recoveryunit mapping.put(”UserInterface”, id);}
7

8 event e UserInterfaceKilled after() : execution (∗ Main.UserInterfaceKilled(..))
9 {RecProcess.reinitialize(”UserInterface”);}

10 }

Listing 7.2: A specification for the local recovery of UserInterface in JavaMOP

The specifications in Listings 7.1 and 7.2 both specify the process UserInterface as
an element of their recovery unit. Assume that at runtime the process MPCore fails;
consequently as it is specified in lines 17 to 26 of Listing 7.1, the processes Audio,
Video, UserInterface are killed for the global recovery and the child processes are
re-initialized.

the event e UserInterfaceKilled, which is specified in line 4 of Listing 7.2, is
detected when the process UserInterface is killed for the global recovery. In line 9
the process UserInterface is re-initialized. As a result, there will be two processes
running as UserInterface.

To overcome the above problem, it must be possible to compose the concepts rep-
resented in Listings 7.1 and 7.2 with each other, and constrain their applicability to
the process UserInterface. For this matter, we want for example to specify that if
global recovery is being executed on a group of processes, these processes must not
be recovered locally.

JavaMOP offers a fixed set of operators for the composition of concepts, and it is not
possible to tailor the semantics of these operators based on application demands.
Consequently, we must provide workaround representations for the application-
specific composition operators via the elements that are available in the language.

For example to specify the above-mentioned constraint between global and local
recovery, we must merge the Listings 7.1 and 7.2 in one specification module,
and make use of Java conditional statements to control the execution of the local
recovery. This is shown in Listing 7.3. This workaround, however, reduces the
modularity of concepts further and increases their complexity.

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 137

1 LocalandGlobalRecovery() {
2 ...
3 boolean globalrecovery = false;
4 ...
5 event MPCoreKilled after() : execution (∗ Main.MPCoreKilled(..))
6 {
7 globalrecovery = true;
8 //recovery code
9 globalrecovery = false;

10 }
11

12 event UserInterfaceKilled after() : execution (∗ Main.UserInterfaceKilled(..))
13 {
14 if (globalrecovery == false)
15 //recovery code
16 }
17 ...
18 }

Listing 7.3: A specification for the global and local recoveries

Representing (higher-level) concepts by reusing the existing ones:

Assume that we would like to extend Recoverable Process with a new concept termed
Availability that reports the time elapsed on the recovery of processes. We would
like to represent the concept Availability such that it can be applied to the both
global and local recovery of the media player software.

Listing 7.4 shows an excerpt of the JavaMOP specification for defining Availability.
In lines 5 and 8, we define two events e started and e finished that must be
mapped to the beginning and the end of the recovery action performed by the con-
cept ProcessManager in Listings 7.1 and 7.2. However, because it was not possible
to provide a natural representation for the concept ProcessManager, it is also not
possible to identify the events that occur from within the concept ProcessManager.
This hinders the compose-ability of the concept Availability with ProcessManager.

As a workaround, we may represent the concept ProcessManager as a class with a
method say recover, and replace the lines 17 to 26 in Listing 7.1, and line 9 in
Listing 7.2 with an invocation on this method. In this case, it is possible to map the
events e started and e finished to the states where the execution of this method
starts and finishes. Since recover is a normal Java method, it can be invoked
from within various specifications or from within the base software. Therefore, it
is still necessary to specify that only those invocations of recover that occur from

138 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

within Listing 7.1 and 7.2 are of the interest. However, it is not possible to do so in
JavaMOP and other evaluated runtime enforcement frameworks.

1 Availability() {
2 long timer = 0;
3 Calendar cal = Calendar.getInstance();
4

5 event e started before() : //start of the recovery code in Listings 7.1 and 7.2
6 { timer = cal.getTimeInMillis();}
7

8 event e finished after() : //end of the recovery code in Listings 7.1 and 7.2
9 { System.out.println(”The recovery took ”+ cal.getTimeInMillis()−timer);}

10 }

Listing 7.4: A specification of timing property for the global recovery of processes

7.4 Implementing Recoverable Process in Aspect-

Oriented Languages

The shortcomings of the existing runtime enforcement frameworks in representing
the concepts naturally may urge us to implement Recoverable Process in an existing
programming language.

In this section, we represent the concepts of the Recoverable Process technique
in the AspectJ language, which is the underlying language of JavaMOP. The rep-
resentations are evaluated with respect to their modularity, abstraction level and
compose-ability.

7.4.1 Representing the Concept AppProcess

Assume that we would like to implement Recoverable Process for the global and
local recovery of the media player software. To achieve a modular representation
of the concepts, we implement each concept of Recoverable Process as an aspect.
The defined aspects are composed with each other to accomplish the desired process
recovery.

Listing 7.5 shows an excerpt of the abstract aspect AppProcessAspect, which rep-
resents the concept AppProcess. The aspect defines the attributes id, name, init
and kill, as it is specified by AppProcess depicted in Figure 7.1.

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 139

1 public abstract aspect AppProcessAspect {
2 public int id;
3 public String name;
4 public Method init;
5 public Method kill;
6

7 abstract pointcut e Initiated();
8 abstract pointcut e Killed();
9

10 after(): e Initiated() { initiated(); ...}
11 after(): e Killed() { killed(); ...}
12

13 public void initiated() { status=”running”;}
14 public void killed() { status=”terminated”;}
15 }

Listing 7.5: An aspect representing the concept AppProcess

Lines 7 and 8 define the pointcut designators e Initiated and e Killed that rep-
resent the process events initiated and killed depicted in Figure 7.1.

After the event initiated occurs, the attribute status must be initialized with
the value ’running’. After the event killed occurs, the attribute status must be
initialized with the value ’terminated’. These are performed by the advice code
defined in lines 13 to 14, which are composed with the pointcuts e initiated, and
e killed.

Each child process of interest is represented as a sub-class of AppProcessAspect.
For example, Listing 7.6 shows an excerpt of the aspect MPCoreProcess to represent
the child process MPCore of the media player software. Here, for example, the child
process is created by the method initMPCore defined in the class Main. Line 3 maps
the pointcut e Initiated to the invocations on this method. Likewise, the pointcut
e Killed is mapped to the invocations on the method killMPCore defined in the
class Main.

1 public aspect MPCoreProcess extends AppProcessAspect{
2 ...
3 pointcut e Initiated(): call (∗ Main.initMPCore(..));
4 pointcut e Killed(): call (∗ Main.killMPCore(..));
5 ...
6 }

Listing 7.6: An aspect representing the process MPCore

140 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

7.4.2 Representing the Concept RecoveryUnit

Listing 7.7 defines the abstract aspect RecoveryUnitAspect, which represents the
concept RecoveryUnit of the Recoverable Process technique.

1 public abstract aspect RecoveryUnitAspect {
2 public abstract AppProcessAspect[] getProcesses();
3 public abstract AppProcessAspect getInitiator();
4

5 pointcut e processfailed (AppProcessAspect p) :
6 call(∗ AppProcessAspect.killed()) &&
7 target(p) && destroyedProcess(AppProcessAspect);
8

9 abstract pointcut destroyedProcess (AppProcessAspect x);
10

11 after (AppProcessAspect process) :
12 e processfailed(process) {notifyFailure();}
13

14 public void notifyFailure(){}
15 }

Listing 7.7: An aspect representing the concept RecoveryUnit

In line 2, the method getProcesses returns the processes that form a recovery unit.

In line 3, the method getInitiator returns the so-called initiator process whose
failure must be reported as the failure of the unit. This example assumes that if the
initiator process is killed, recovery units must report a failure event.

In lines 5 to 9, the pointcut designators e processfailed and destroyedProcess

select the points where the initiator process is killed.

The advice code in line 11 triggers a failure-notification event by invoking the method
notifyFailure.

We can define application-specific recovery units as subclasses of RecoveryUnitAspect.
Listing 7.8 shows GlobalRecoveryUnitAspect that defines a recovery unit for the
global recovery of the media player software.

The method getProcesses specifies the processes MPCore, UserInterface, Audio
and Video as the elements of the recovery unit. This is achieved by retrieving the
corresponding instance of the aspect AppProcessAspect via the operator aspectOf
of AspectJ.

The method getInitiator specifies MPCoreProcess as the initiator process.

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 141

The pointcut destroyedProcess specifies that the destruction of MPCoreProcess
is considered as the failure of the recovery unit.

Likewise, Listing 7.9 defines a recovery unit for the local recovery of the process
UserInterface.

1 public aspect GlobalRecoveryUnitAspect extends RecoveryUnitAspect{
2 public AppProcessAspect[] getProcesses(){
3 return new AppProcessAspect[] {
4 MPCoreProcess.aspectOf(),
5 UserInterfaceProcess.aspectOf(),
6 AudioProcess.aspectOf(),
7 VideoProcess.aspectOf()};
8 }
9 public AppProcessAspect getInitiator(){ return MPCoreProcess.aspectOf(); }

10

11 pointcut destroyedProcess(AppProcessAspect x) :
12 target(x) && if(x == MPCoreProcess.aspectOf());
13 }

Listing 7.8: An aspect representing the global recovery unit

1 public aspect UILocalRecoveryUnitAspect
2 extends RecoveryUnitAspect{
3

4 public AppProcessAspect[] getProcesses(){ return new AppProcessAspect[]
5 { UserInterfaceProcess.aspectOf() }};
6 public AppProcessAspect getInitiator(){ return UserInterfaceProcess.aspectOf();}
7

8 pointcut destroyedProcess(AppProcessAspect x) :
9 target(x) && if(x == UserInterfaceProcess.aspectOf());

10 }

Listing 7.9: An aspect representing the local recovery unit for UserInterface
process

7.4.3 Representing the Concept ProcessManager

Listing 7.10 defines ProcessManagerAspect, which represents the concept Process-
Manager of the Recoverable Process technique. The aspect reacts to the events
generated by a recovery unit, and restarts the processes forming the recovery unit.

The pointcut notified selects the invocations of the method notifyFailure defined
within RecoveryUnitAspect.

142 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

The advice code first re-initializes the initiator process, then retrieves all other
processes forming the recovery unit, kills and re-initializes them.

1 public aspect ProcessManagerAspect{
2 pointcut notified (RecoveryUnitAspect ru):
3 call(∗ RecoveryUnitAspect.notifyFailure())&& target(ru) ;
4

5 after(RecoveryUnitAspect ru): notified(ru) {
6 //invoke init method of
7 //the initiator process via reflection
8 ...
9 for (AppProcessAspect p : ru.getProcesses())

10 if (p != ru.getInitiator()){
11 //invoke kill method via reflection
12 //invoke init method via reflection
13 }
14 }
15 }

Listing 7.10: An aspect representing the concept ProcessManager

ProcessManagerAspect refers to AppProcessAspect and RecoveryUnitAspect in-
stead of their concrete subclasses. Therefore, it can be reused for various child
processes and recovery units.

7.4.4 Evaluation

To represent the child processes of interest we need to represent the process-related
events initiated and killed. AspectJ supports a fixed set of events, which are defined
in its join point model. New kinds of events must be mapped to the supported events
by AspectJ. For example to represent the process-related events initiated and killed,
we assume that there are methods in the base software which create and kill a child
process. Accordingly, as lines 3 and 4 in Listing 7.6 shows, pointcuts are expressed
to define these events.

The concepts of the Recoverable Process technique are represented via aspects.
The inheritance mechanism enables us to provide reusable representations for the
concepts of interest. These are defined as abstract aspects. Application-specific
representations of the concepts are defined via sub-classes. This is shown for example
in Listings 7.5 and 7.6. Such representations are modular.

AspectJ provides a fixed set of operators for the composition of pointcuts and/or ad-
vice code. The variety of composition strategies must be mapped to these operators
if possible, or must be defined via advice code. This may reduce the modularity of

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 143

the composition strategies, because they become scattered across and tangled with
aspects. Consider the following example.

As the aspects GlobalRecoveryUnitAspect and ProcessManagerAspect defined in
Listings 7.8 and 7.10 show, during the global recovery of the media player software,
the process UserInterface is killed and re-initialized. UILocalRecoveryUnitAspect
detects the destruction of UserInterface during the global recovery, and notifies it
to ProcessManagerAspect. Consequently, there will be two processes executing as
UserInterface, because a new process is also created by ProcessManagerAspect.

To prevent the above situation, we must compose GlobalRecoveryUnitAspect and
UILocalRecoveryUnitAspect such that UILocalRecoveryUnitAspect does not pub-
lish a failure event if UserInterface is killed during the global recovery. This con-
straint can be represented as the clause ”!cflow(adviceexecution() &&

within(RecoveryUnit))”, which must be conjuncted to the pointcut
destroyedProcess in Listing 7.9. The tangling of this composition constraint with
the aspect UILocalRecoveryUnitAspect increases the complexity of the aspects,
and makes it fragile to the changes in the composition constraint.

Supporting a fixed set of composition operators may reduce the compose-ability of
the concepts further, if the implementation of a composition strategy imposes major
changes on the existing aspects. Assume that the local recovery of UserInterface
must ignore the case that UserInterface is killed during the global recovery. However,
if the global recovery cannot re-initialize UserInterface, the local recovery must try
to do so. There are various possibilities to implement this composition constraint.

One possibility is to encode it in the aspect ProcessManagerAspect. In this solution
also the constraint is tangled with the dentition of other aspects.

Another solution, which is explained below, improves the modularity of composition
constraints, but imposes the following two changes:

First, ProcessManagerAspect must be replaced with two aspects, so that it is pos-
sible to distinguish between the action for the global and local recovery. We name
these two aspects as ProcessManagerAspect4GR and ProcessManagerAspect4LR.

Second, the aspects GlobalRecoveryUnitAspect and UILocalRecoveryUnitAspect
must also be modified so that the method notifyFailure is invoked from within
them, instead of from their base class.

Listing 7.11 shows an excerpt of the aspect ProcessManagerAspect4GR. Here, line
12 initializes a process and assigns the result of initialization to the variable result.
If the initialization succeeds, the unique identifier of the process, which is generated
by the operating system, is returned; otherwise the return value is -1. In lines 13

144 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

and 14 if the result equals -1, the method failedRecovery is invoked with the name
of the failed process as its argument.

Listing 7.12 defines the aspect CoordinatorAspect that modularizes the composi-
tion constraint. It selects the invocations of the method failedRecovery on the
instances of ProcessManagerAspect4GR. If the failed process is UserInterface, it
invokes the method notifyFailure on the aspect UILocalRecoveryUnitAspect.
Consequently, the recovery is performed for the process UserInterface.

1 public aspect ProcessManagerAspect4GR{
2 pointcut notified (GlobalRecoveryUnitAspect ru):
3 call(∗ GlobalRecoveryUnitAspect.notifyFailure())&& target(ru) ;
4

5 after(GlobalRecoveryUnitAspect ru): notified(ru) {
6 //invoke init method of
7 //the initiator process via reflection
8 ...
9 for (AppProcessAspect p : ru.getProcesses())

10 if (p != ru.getInitiator()){
11 //invoke kill method via reflection
12 int result = //invoke init method via reflection
13 if (result == −1)
14 failedRecovery(p.name);
15 }
16 }
17 protected void failedRecovery(String name){}
18 }

Listing 7.11: An aspect to implement ProcessManager for the global recovery

1 public aspect CoordinatorAspect{
2 pointcut notified (String name):
3 call(∗ ProcessManagerAspect4GR.failedRecovery(String))
4 && args(name);
5

6 after(String name): notified(name) {
7 if (name.equals(”UserInterface”))
8 UILocalRecoveryUnitAspect.aspectOf().notifyFailure();
9 }

10 }

Listing 7.12: An aspect to coordinate the global and the local recoveries

As the above example shows, the implementation of a composition strategy may
impose widespread changes on the existing aspects. Applying such changes is time-
consuming task for programmers and may be error-prone.

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 145

7.5 Implementing Recoverable Process in

EventReactor

To represent the concepts of Recoverable Process in the EventReactor language, the
following actions must be carried out:

• The process-related events must be defined in the EventReactor language.
As Figure 7.1 shows, initiated and killed are two events of interest that are
published for the concept AppProcess. In the EventReactor terminology, these
are user-defined events, which according to Figure 4.1 are defined via event
records.

• The user-defined events must be published to the runtime environment of the
EventReactor language. As Figure 7.2 shows, the process Runner is the parent
process for the processes MPCore, UserInterace, Audio, and Video. It creates
these child processes, and is informed if they are destroyed. Therefore, we
consider Runner as the publisher of the events initiated and killed for the
corresponding child processes.

• The publishers of events must be defined in the EventReactor language. As
the input Publisher Record(s) in Figure 4.1 shows, the necessary information
about the publisher of the events must also be provided as a set of Prolog
facts.

• Dedicated reactor types must be provided to implement the functionality of
the concepts of Recoverable Process.

• Reactor chains and event modules must be defined to represent the concepts
of Recoverable Process. According to Figure 7.1, the specified event modules
and reactors are also executed by the parent process Runner.

The above-mentioned steps are explained in detail in the following subsections.

7.5.1 Declaring Process-Related Events

As the concept AppProcess in Figure 7.1 shows, for each child process of interest
two events initiated and killed must be defined. The definitions are carried out via
event records. Each event record specifies three attributes to represent the static
contextual information of these events. The attribute name represents the name
of the event. The attribute process represents the application-specific name of the

146 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

corresponding child process. The attribute PrologFacts represents a set of Prolog
facts, which are used to select the event.

Listing 7.13 shows an excerpt of the code to define the event initiated of the child
process MPCore. The other events of interest are defined likewise.

1 EventRecord event = new EventRecord();
2 event.staticcontext.add(”name”, ”initiated”);
3 event.staticcontext.add(”process”, ”MPCore”);
4 event.staticcontext.add(”PrologFacts”, ”isEventWithName(’e1’, ’initiated’).
5 isProcessWithName(’p1’, ’MPCore’).
6 isPublishedBy(’e1’,’p1’).”);
7

8 EventReactor.define(event);

Listing 7.13: Declaring an event

Line 1 defines the variable event of type EventRecord that is a data type provided
by EventReactor. Line 2 specifies ’initiated’ as the name of the event, and line 3
specifies ’MPCore’ as the name of the corresponding process. Lines 4 to 6 specify the
Prolog facts. Via the fact "isEventWithName(’e1’, ’initiated’).", we specify
’e1’ as the static unique identifier of the event and ’initiated’ as the name of the
event. The character ’.’ is the standard Prolog operator that represents the termi-
nation of a fact. Via the fact "isProcessWithName(’p1’, ’MPCore’)." we specify
’p1’ as the static unique identifier of the process MPCore, and ’MPCore’ as the
application-specific named of the process. The fact "isPublishedBy(’e1’,’p1’)."
specifies that the event ’e1’ is published by and the process ’p1’. The other events
of interest must be defined in a similar way.

7.5.2 Publishing the Events

To publish the events initiated and killed for each child process, we extend the media
player software with a class that defines two methods: one for initiating the child
process and one for killing it. The media player software is also changed to invoke
these methods when needed.

Listing 7.14 shows an excerpt of the class MPCore, which defines two methods
initMPCore and killMPCore. In line 4 of the method initMPCore, the child process
MPCore is created and its unique identifier is assigned to the variable processID.

To publish the event initiated, an instance of the class RTEvent is created, and its
attributes are initialized with necessary static and dynamic contextual information
for the event. For the static contextual information, lines 6 to 11 specify the same

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 147

attributes as the one in Listing 7.13, so it is possible to match a published event
with a defined event in the language.

For the dynamic contextual information, lines 13 to 15 specify the unique identifier
of the corresponding child process, the unique identifier of the publisher process (i.e.
the process Runner) and the current stack trace of methods whose execution caused
the event initiated to be published3.

After the necessary attributes are set, the event is announced to the runtime envi-
ronment of the EventReactor language.

1 public class MPCore{
2 int initMPCore() {
3 ...
4 int processID = \\ create the child Process...
5 ...
6 RTEvent event = new RTEvent();
7 event.staticcontext.add(”name”, ”initiated”);
8 event.staticcontext.add(”process”, ”MPCore”);
9 event.staticcontext.add(”PrologFacts”, ”isEventWithName(’e1’, ’initiated’).

10 isProcessWithName(’p1’, ’MPCore’).
11 isPublishedBy(’e1’,’p1’).”);
12

13 event.dynamiccontext.add(”id”, processID);
14 event.dynamiccontext.add(”publisher”, getParentProcessID());
15 event.dynamiccontext.add(”stacktrace”, getStackTrace());
16 EventReactor.publish(event);
17 }
18 void killMPCore(){
19 ...
20 //kill the child process
21 //announce the killed event
22 ...
23 }
24 }

Listing 7.14: An excerpt of the class MPCore

The method killMPCore is defined likewise to destroy the child process. This
method must be invoked by the media player software when the process much be
killed by the software. If a child process terminates abnormally for example due
to an exception in the software, the operating system notifies the parent process.
For this case, the media player software must also be changed such that the parent
process also publishes the event killed for the corresponding child process.

3In the EventReactor language, we assume that the active stack trace is available to be set as
the dynamic contextual information of events. If the programming language does not provide the
stack trace, this feature must be provided by the programmers.

148 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

7.5.3 Declaring the Publishers of Events

For each user-defined events, we must also provide the necessary information about
its publisher for the EventReactor language. This information is also represented as
Prolog facts.

For example the method initMPCore defined in the class MPCore in Listing 7.14
is publisher of the event initiated for the process MPCore. Listing 7.15 shows an
excerpt of the code to define this method in the EventReactor language. The other
publisher methods are defined similarly.

1 ...
2 PublisherFacts fact = new PublisherFacts();
3 fact = ”isMethodWithName (’m1’, ’initMPCore’).
4 isClassWithName (’p1’, ’MPCore’).
5 isDefinedIn(’m1’, ’p1’).”;
6 EventReactor.define (fact);
7 ...

Listing 7.15: Declaring a publisher

7.5.4 Declaring the Reactor Types

We provide two reactor types React and RestartProcess for implementing Recover-
able Process in the EventReactor language.

React is a read-only reactor type, whose only function is to publish a new event
when it receives an event to process. The name of the new event may be provided
as an argument to the reactor type. Otherwise the new event has the same name as
the event being processes.

RestartProcess is a read-write reactor type, which restarts the specified child pro-
cesses. For this matter, it access the information about the methods that kill and
initializes child processes. These methods are defined in the base software, as it
is explained in Section 7.5.2. This reactor type publishes the event restarted if
it successfully restarts a process; otherwise it publishes the event notrestarted.
These events have a parameter named as processName, which specifies the process
that the reactor type aims to restart.

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 149

7.5.5 Representing the Concept AppProcess

Listing 7.16 defines the reactor chain AppProcess REChain to implement the func-
tionality of the concept AppProcess of the Recoverable Process technique.

The reactor chain receives four parameters. The parameters ?pinit and ?pkill

represent the methods that create or kill a child process, respectively. The parame-
ters ?pinited and ?pkilled represent the events indicating that a child process is
initiated or killed, respectively.

As Figure 7.1 shows, the concept AppProcess of Recoverable Process has a set of
attributes and events. These attributes and events are represented via the attributes
and reactors in the reactor chain, respectively.

1 reactorchain AppProcess REChain (?pinit,?pkill,?pinited, ?pkilled) {
2 internals
3 init : Method = ?pinit;
4 kill : Method = ?pkill;
5 pid : Integer;
6 status : String;
7

8 reactors
9 initiated REC : React = (event == [?pinited]) = {

10 status = ’running’;
11 pid = event.id;
12 name = ’inited’;
13 };
14 killed REC : React = (event == [?pkilled]) = {
15 status = ’terminated’;
16 pid = −1;
17 name = ’killed’;
18 };
19 }

Listing 7.16: A reactor chain implementing the concept AppProcesss

In lines 3 and 4, the attributes init and kill are defined of type Method, which are
initialized with the parameters ?pinit and ?pkill, respectively. These attributes
are later on used to retrieve information about the methods that kill and re-initialize
the corresponding child processes.

Line 5 defines the attribute pid of type Integer, which maintains the unique iden-
tifier of the corresponding child process.

Line 6 defines the attribute status, which maintains the state of the corresponding
child process.

150 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

Lines 9 to 13 define the reactor initiated REC of type React.

Line 9 makes use of the keyword event to specify that the events represented by
?pinited are of interest. Lines 10 to 12 define the body of the reactor.

Line 10 assigns the value ’running’ to the attribute status of the reactor chain.

Line 11 retrieves the unique identifier of the created process from the attribute id

of the selected event, and assigns it to the attribute pid of the reactor chain.

Line 12 specifies the value ’inited’ as the name of the event that will be published
by the reactor. As a result, upon the occurrence of the event ?pinited, the event
inited is published by the reactor, and the specified values are assigned to the
attributes of the reactor chain.

Lines 14 to 18 define the reactor killed REC of type React, which specifies the
event ?pkilled as of interest. As it is specified in the body of the reactor, upon
the occurrence of ?pkilled, the value ’terminated’ is assigned to the attribute
status, the value -1 is assigned to the attribute pid, and the value ’killed’ is
specified as the name of the event that will be published by the reactor.

In the following we would like to make use of the reactor chain AppProcess REChain

to represent the child processes of the media player software.

Listing 7.17 defines the event package MediaPlayerProcesses to represent the child
processes of the media player software. Lines 3 to 6 select the user-defined event
initiated that represents the initialization of the process MPCore. This event is de-
fined in the EventReactor language in Listing 7.13. Likewise, lines 8 to 11 select the
user-defined event killed, which represents the termination of the process MPCore.

Lines 13 to 16 select the method initMPCore whose execution in the media player
software initializes the process MPCore. This method is defined in class MPCore in
Listing 7.14. Likewise, lines 18 to 21 select the method killMPCore whose execution
in the media player software terminates the process MPCore.

Lines 24 to 29 define the event module MPCoreProcess, which represents the process
MPCore. The events selected by inited event and killed event form the input
interface of the event module. The reactor chain AppProcess REChain is bound to
this event module in a singleton manner, because there is only one process executing
as MPCore. The selected events and methods are passed to the reactor chain as
arguments.

At runtime when the child process MPCore is created in the media player software,
the event initiated is detected in the software and is announced to the runtime
environment of the EventReactor language. The announcement is performed by

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 151

the code represented in Listing 7.14. Consequently, an instance of the reactor chain
AppProcess REChain is created, and the reactor initiated REC processes the event.
After initializing the attributes of the reactor chain, the reactor publishes the event
inited. The other child processes of interest are specified in the event package
MediaPlayerProcesses in a similar way.

1 eventpackage MediaPlayerProcesses {
2 selectors
3 inited event = {E |
4 isEventWithName(E, ’initiated’),
5 isProcessWithName (P, ’MPCore’),
6 isPublishedBy(E, P)};
7

8 killed event = {E |
9 isEventWithName(E, ’killed’),

10 isProcessWithName (P, ’MPCore’),
11 isPublishedBy(E, P)};
12

13 init method = {M |
14 isMethodWithName (M, ’initMPCore’),
15 isClassWithName (C, ’MPCore’),
16 isDefinedIn(M, C)};
17

18 kill method = {M |
19 isMethodWithName (M, ’killMPCore’),
20 isClassWithName (P, ’MPCore’),
21 isDefinedIn(M, P)};
22 ...
23 eventmodules
24 MPCoreProcess := {inited event, killed event } <−
25 singleton
26 AppProcess REChain (
27 init method, kill method,
28 init event, kill event
29);
30 UserInterfaceProcess := ...
31 AudioProcess := ...
32 VideoProcess := ...
33 }

Listing 7.17: An event module representing the child processes of interest

7.5.6 Representing the Concept RecoveryUnit

Listing 7.18 defines the reactor chain RecoveryUnit REChain to implement the func-
tionality of the concept RecoveryUnit of the Recoverable Process technique.

152 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

The reactor chain receives the list of processes that form a recovery unit via the
parameter ??processes. In the part internals, the attribute processes is defined,
and is initialized with ??processes.

In the part reactors, the reactor reportFailure REC is defined of type React.
Line 7 specifies ’failure’ as the name of the event that will be published by
reportFailure REC.

1 reactorchain RecoveryUnit REChain (??processes) {
2 internals
3 processes : List = ??processes;
4

5 reactors
6 reportFailure REC : React {
7 name = ’failure’;
8 };
9 }

Listing 7.18: A reactor chain implementing the concept RecoveryUnit

Listing 7.19 defines the event package MediaPlayerGlobalRecoveryUnit, which
defines a recovery unit for the global recovery of the media player software. In
this example, we assume that the failure of the process MPCore is regarded as the
failure of the recovery unit. Lines 3 to 6 select the event killed, which is published
by the event module MPCoreProcess, indicating that the process MPCore is killed.
The selected event is represented by the variable mpcoreKilled event in the event
package.

Lines 8 and 9 of Listing 7.19 select the event module MPCoreProcess. Likewise, lines
10 to 15 select other event modules representing the child processes of the media
player software.

Lines 18 to 24 define the event module globalRecoveryUnit, which represents
a recovery unit for the global recovery of the media player software. The event
mpcoreKilled event is specified as the input interface, RecoveryUnit REChain is
bound to it in a singleton manner because in this example there is only one instance
of the event module MPCoreProcess, which publishes the events of interest. There-
fore, there is no need to distinguish between publishers. All the selected processes
are passed as the argument to the reactor chain RecoveryUnit REChain .

At runtime if the process MPCore is killed, the event killed is published by
the event module MPCoreProcess, and is selected as mpcoreKilled event in List-
ing 7.19. The event is provided to the instance of RecoveryUnit REChain that is
bound to the event module globalRecoveryUnit. The reactor notifyFailure REC

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 153

defined in the reactor chain RecoveryUnit REChain processes the event, and pub-
lishes the event failure, as it is specified in line 7 of Listing 7.18.

1 eventpackage MediaPlayerGlobalRecoveryUnit{
2 selectors
3 mpcoreKilled event = {E |
4 isEventWithName(E, ’killed’),
5 isEventModuleWithName (EM, ’∗.MPCoreProcess’),
6 isPublishedBy(E, EM)};
7

8 mpcoreProcess = {EM |
9 isEventModuleWithName (EM, ’∗.MPCoreProcess’)};

10 uiProcess = {EM |
11 isEventModuleWithName (EM, ’∗.UserInterfaceProcess’)};
12 audioProcess = {EM |
13 isEventModuleWithName (EM, ’∗.AudioProcess’)};
14 videoProcess = {EM |
15 isEventModuleWithName (EM, ’∗.VideoProcess’)};
16

17 eventmodules
18 globalRecoveryUnit := {mpcoreKilled event} <−
19 singleton
20 RecoveryUnit REChain({mpcoreprocess,
21 uiProcess,
22 audioProcess,
23 videoProcess
24 });
25

26 }

Listing 7.19: An event module representing the global recovery unit

154 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

Likewise, Listing 7.20 defines a recovery unit for the local recovery of the process
UserInterface.

1 eventpackage MediaPlayerLocalRecoveryUnit{
2 selectors
3 uiKilled event = {E |
4 isEventWithName(E, ’killed’),
5 isEventModuleWithName (EM, ’∗.UserInterfaceProcess’),
6 isPublishedBy(E, EM)};
7

8 uiProcess = {EM |
9 isEventModuleWithName (EM, ’∗.UserInterfaceProcess’)};

10

11 eventmodules
12 uiLocalRecoveryUnit := {uiKilled event} <−
13 singleton
14 RecoveryUnit REChain({uiProcess});
15 }

Listing 7.20: An event module representing a local recovery unit

7.5.7 Representing the Concept ProcessManager

Listing 7.21 defines the reactor chain ProcessManager REChain to implement the
functionality of the concept ProcessManager of the Recoverable Process technique.

Line 3 defines the reactor recovery REC of user-defined type RestartProcess. The
type can process the events that are published by the instances of the reactor chain
RecoveryUnit REChain. It retrieves the list of processes to be recovered from the
attribute processes of the corresponding instance of RecoveryUnit REChain. Each
process is actually represented by an instances of AppProcess REChain. The meth-
ods that kill and re-initialize a process are defined in the attributes init and kill

of AppProcess REChain. The reactor type RestartProcess invokes these methods
for each process to re-initialize it.

At runtime, if the event failure is published by any of the specified recovery units,
the reactor recovery REC is informed of the event, and restarts the processing form-
ing the recovery unit.

1 reactorchain ProcessManager REChain{
2 reactors
3 recovery REC : RestartProcess;
4 }

Listing 7.21: A reactor chain implementing the concept ProcessManager

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 155

Listing 7.22 defines the event package MediaPlayerProcessManagers. Lines 3 to 6
select the event failure that is published by the event module globalRecoveryUnit,
and represent it via the variable globalFailure event in the event package.

1 eventpackage MediaPlayerProcessManagers{
2 selectors
3 globalFailure event = {E |
4 isEventWithName(E, ’failure’),
5 isEventModuleWithName (EM, ’∗.globalRecoveryUnit’),
6 isPublishedBy(E, EM)};
7

8 localFailure event = {E |
9 isEventWithName(E, ’failure’,

10 isEventModuleWithName (EM, ’∗.uiLocalRecoveryUnit’),
11 isPublishedBy(E, EM)};
12

13 eventmodules
14 globalRecovery := {globalFailure event} <− singleton ProcessManager REChain;
15

16 uiLocalRecovery := {localFailure event} <− singleton ProcessManager REChain;
17 }

Listing 7.22: Event modules representing process managers

Here, lines 8 to 11 select the event failure that is published by the event module
uiLocalRecoveryUnit, and represent it via the variable localFailure event in
the event package.

Line 14 defines the event module globalRecovery, specifies the event selected by
globalFailure event as its input interface, and binds ProcessManager REChain

to it in a singleton manner, because there is only one instance of the event mod-
ules globalRecoveryUnit and uiLocalRecoveryUnit. Likewise, the event module
uiLocalRecovery is defined in line 16.

7.5.8 Representing Recovery Constraints

Listing 7.23 defines the event package RecoveryConstraint, which specifies a con-
straint between the global recovery of the media player software and the local re-
covery of the process UserInterface.

Lines 3 and 5 select the event modules globalRecovery and uiLocalRecovery,
which are defined in Listing 7.22. The selected event modules are represented them
via variables globalrecovery em and uilocalrecovery em in the event package
RecoveryConstraint.

156 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

Line 8 specifies that the event module represented by uilocalrecovery em must
ignore the events that are published during the execution globalrecovery em.

1 eventpackage RecoveryConstraint{
2 selectors
3 globalrecovery em = {EM | isEventModuleWithName (EM, ’∗.globalRecovery’)};
4

5 uilocalrecovery em = {EM | isEventModuleWithName (EM, ’∗.uiLocalRecovery’)};
6

7 constraints
8 ignore(uilocalrecovery em, globalrecovery em);
9 }

Listing 7.23: Representing recovery constraints

More complex composition constraints can be implemented via dedicated reactor
types. For example, assume that if the global recovery fails to re-initialize UserIn-
terface, the local recovery must try to do so. As it is explained in Section 7.5.4, the re-
actor type RestartProcess publishes the event restarted if it successfully restarts
a process; otherwise it publishes the event notrestarted. These events have a pa-
rameter named as processName, which specifies the process that RestartProcess
aimed to restart.

Listing 7.24 defines the reactor chain Coordinator REChain, which receives two pa-
rameters. The parameter ?failedProcess represents the name of a process that was
failed to be re-initialized. The process is represented by the parameter ??processes.

Lines 3 to 5 define the reactor recovery secondtry of type RestartProcess. The
reactor selects those events whose attribute processName equals to ?failedProcess.
In the body of the reactor, the parameter ??processes is assigned to the parameter
processes of the reactor.

1 reactorchain Coordinator REChain (?failedProcess, ??processes) {
2 reactors
3 recovery secondtry : RestartProcess = (event.processName ==?failedProcess){
4 processes = ??processes;
5 }
6 }

Listing 7.24: A reactor chain implementing an application-specific composition
constraint

Listing 7.25 defines the event package Coordination. Lines 3 to 6 select the event
notrestarted that is published by the event module globalRecovery. Line 8
selects the event module UserInterfaceProcess.

Chapter 7. A Case Study for the Evaluation of the EventReactor Language 157

Lines 11 and 12 define the event module coordinator, which specifies the event
represented by the variable failure event as its input interface. The reactor chain
Coordinator REChain is bound to this event module in a singleton manner, and
the selected process and its name are passed as its argument.

As a result, if the event module globalRecovery publishes the event notrestarted
for the process UserInterface, the event module coordinator will be instantiated,
and the reactor chain Coordinator REChain will restart the process.

1 eventpackage Coordination{
2 selectors
3 failure event = {E |
4 isEventWithName (E, ’notrestarted’),
5 isEventModuleWithName (EM, ’∗.globalRecovery’),
6 isPublishedBy(E, EM)};
7

8 uiProcess = {U | isEventModuleWithName (EM, ’∗.UserInterfaceProcess’)};
9

10 eventmodules
11 coordinator := {failure event} <− singleton
12 Coordinator REChain(’UserInterface’, {uiProcess});
13 }

Listing 7.25: An event module representing an application-specific composition
constraint

7.5.9 Evaluation

An evaluation of the EventReactor language with respect to its support for Event
Composition Model is provided in Chapter 4. In the following, we make use of
the implementation provided for Recoverable Process to discuss the suitability of
EventReactor in providing a natural representation for the concepts of interest.

As the listings in previous subsections show, because of implementing Event Com-
position Model, natural representation of concepts can be achieved in EventReactor.
The open ended-ness with new events enables us to define process-related events to
the language and consequently, represent the concept AppProcess.

Open ended-ness with new reactor types facilitates defining the behavior of various
different concepts and application-specific composition constraints. Parameterizable
reactor chains enables us to provide abstract and reusable implementations for the
concepts; where the application-specific representations of the concepts are provided
via event modules.

158 Chapter 7. A Case Study for the Evaluation of the EventReactor Language

The flexibility of binding reactor chains to event modules improves the modularity
of events modules and reactor chains. Since reactors can publish events, and dedi-
cated Prolog expressions are provided to select such events, we can compose event
modules with each other in a hierarchal manner. This improves the modularity and
compose-ability of the event modules. In addition, the abstraction level of event
modules increases as their position in the hierarchy elevates. For example, the event
module representing the concept RecoveryUnit is an abstraction over the processes
that belong to a recovery unit. The abstraction level increases further due to the
language-independency of the EventReactor language.

As Listing 7.23 shows, constraints can be defined among event modules. Such con-
straints can be modularized in separate event packages, without influencing the
specification of event modules. This helps to increase the reusability of event mod-
ules.

7.6 Conclusion

This chapter makes use of a runtime enforcement technique called Recoverable Pro-
cess to illustrate the shortcomings of existing runtime enforcement frameworks and
their underlying languages in providing natural representation for the concepts of a
process recovery technique.

The chapter provides an implementation of Recoverable Process in the EventRe-
actor language. It shows that the support for Event Composition Model by the
EventReactor language enables us to represent the concepts of Recoverable Process
naturally.

Chapter 8
Conclusion and Future Work

Due to the ever increasing complexity of software, it may not be possible to detect
all potential failures before the actual execution of the software in its target envi-
ronment. Therefore, runtime enforcement techniques are introduced to allow the
software continuing its operation in case of failures.

Runtime enforcement techniques check the actual execution of software against the
formally specified properties of the software. If a failure is detected, diagnosis and
recovery actions may be performed to detect the causes of the failures and to recover
the software from the failure, respectively.

There is an increasing number of runtime enforcement frameworks in the literature.
These frameworks offer specification languages to express the properties, diagnosis
rules and recovery strategies. They also offer a compiler that generates code from the
specifications. This code can be expressed in the same language as the base software
or it can be in an intermediate language, which abstracts the base software. The
generated code is integrated with base software from the perspective of runtime
enforcement.

8.1 Problem

In the thesis, the term underlying language is used to refer to the language of the
generated code. To ease the code generation and integration, specification languages
usually adopt the elements of their underlying languages.

159

160 Chapter 8. Conclusion and Future Work

Despite the practical advantages of this approach, the thesis identifies that it may
not be possible to represent runtime enforcement concepts naturally, if the elements
of the underlying language are adopted by specification languages. Consequently,
we must provide workaround representations for the concepts of interest using the
elements available in specification languages. The thesis identifies the following three
shortcomings in such workarounds:

• Decreased modularity: The representation of a concept can be scattered
across multiple underlying language elements due to not directly representing
the concepts of interest. Moreover, the representation of a concept may also
get tangled with the representation of other concepts.

• Decreased abstraction level: The abstraction level of specifications may
be too close to the level of code in underlying languages. Consequently, the
specifications cannot be reused for software developed in different languages
and platforms.

• Decreased compose-ability: The composition of concepts cannot also be
represented naturally. Therefore, workarounds must be provided for them,
and such workarounds also suffer from the decreased modularity, decreased
abstraction level and decreased compose-ability.

To overcome these shortcomings, the thesis discusses that specification languages
must offer first-class abstractions that correspond one-to-one to the runtime en-
forcement concepts. These abstractions must not incorporate the implementation
languages and process structure. Specification languages must also offer a rich set
of constructs to implement variable composition strategies.

The thesis evaluates a representative set of runtime enforcement frameworks with
respect to their support for the above-mentioned requirements. It identifies that
none of these frameworks completely fulfill these requirements, so they fall short in
providing natural representation for the concepts of interest.

8.2 Solution

To facilitates a natural representation of concepts, the thesis identifies the char-
acteristic features of runtime enforcement techniques, and accordingly proposes a
computation model named as Event Composition Model that respect these features.
The thesis introduces the EventReactor language as an implementation of this com-
putation model.

Chapter 8. Conclusion and Future Work 161

8.2.1 Characteristic Features of Runtime Enforcement Tech-
niques

To propose a solution to the identified problems, chapter 2 of the thesis identifies
that the existing runtime enforcement techniques have the following characteristic
features, which must be taken into account by specification languages:

• Transient nature of runtime enforcement concepts: The interactions
among the concepts of runtime enforcement techniques have by nature a tran-
sient characteristic. Here, the changes to the states of a concept may derive
other concepts. Therefore, specification languages must provide elements that
represent the changes in the states of interest in each concept.

• Open ended-ness of the kinds of elements in specifications: It may be
required to represent various different kinds of concepts in the specifications.
Functions, objects, processes, subsystems are examples. It is not easy or even
possible to foresee all kinds of elements that are desired to be represented
in the specification languages. Therefore, specification languages and their
implementations must also be open-ended with respect to their elements.

• No strict hierarchy among specifications: In general, there is no strict
hierarchy among the specifications. This implies that, for example, a system
with diagnosis and recovery processes may be considered as base software as
well. This results in multi-levels of runtime enforcement concepts. The thesis
claims that specification languages must facilitate arbitrary composition of
concepts with each other.

8.2.2 Event Composition Model

Chapter 3 of the thesis proposes Event Composition Model, which is a computa-
tion model for specification languages of runtime enforcement frameworks. Event
Composition Model offers a set of elements that respect the previously-mentioned
characteristic features of runtime enforcement techniques.

Event Composition Model considers the notion of event suitable to represent the
transient nature of concepts. However, event is a too low-level of a representation
with respect to the concerns of interest in specifications.

Event Composition Model offers the notion of event modules, which abstracts over
a group of correlated events. The selection of group of events is defined by an event
composition language, which is capable of selecting any event that is declared in

162 Chapter 8. Conclusion and Future Work

the system and is in the scope. The composition language is expressive enough to
select events of interest that occur in programs implemented in different languages,
running on different processors and/or hosts.

An event module has input interface, output interface and a set of implementations
that are termed reactors. The set of events that are grouped by an event module
form the input interface of the module. Reactors may publish new events. These
are regarded as the output interface of the event module, and can be selected by the
event composition language. If multiple reactors process an event, their applicability
to the event can be constrained via an event constraint language.

Reactors have type, and two kinds of types are distinguished: Read-only and Read-
write. In contrast to the read-write reactors, the read-only reactors cannot modify
the states of software, so they do not have functional side-effects on software. Some
concepts such as verification and diagnosis have read-only nature, meaning that
they only gather information from other concepts and reason about the information
without modifying the information. Some other concepts such as recovery have read-
write nature, because they modify other concepts. The distinction between read-only
and read-write reactor types helps to represent the concepts more naturally.

Event Composition Model is extendable with new kinds of events, event modules
and reactors. This enables us to introduce new kinds of elements in specifications.
The event composition language facilitates selecting events published by the imple-
mentations of event modules, and grouping them to define new event modules. This
helps to form arbitrary hierarchies of event modules.

8.2.3 The EventReactor Language

The thesis evaluates a representative set of programming languages with respect
to their support for Event Composition Model. The evaluation reveals that these
languages do not fully support the computation model.

Chapter 4 of the thesis introduces the EventReactor language, as an implementation
of Event Composition Model. The EventReactor language has the following features:

• It supports a set of predefined events in programs, and is extendable with
new user-defined events. It provides an API to publishers to announce the
occurrence of the user-defined events.

• It utilizes the Prolog language as its event composition language. The prede-
fined and user-defined events are defined in the language via a set of Prolog
facts, which provide sufficient information to select them.

Chapter 8. Conclusion and Future Work 163

• It offers a linguistic construct to define event modules, which groups a set
of selected events, binds a set of reactors to it and specifies the instantiation
strategy of the event module.

• It facilitates defining and instantiating reactor types, which may also publish
new events. Dedicated Prolog expressions are provided to select such events.

• It supports the notion of reactor chains, which is a module consisting a set of
reactors that are composed with each other to process events in sequence.

• It provides linguistic constructs to compose event modules, according to spe-
cific constraints.

• It enables defining dedicated composition constraints via reactor types.

• It modularizes the specifications of event modules, reactors, reactor chains and
compositions.

• Its linguistic constructs are independent of the implementation languages of
the base software. Its compiler supports Java, .Net and C languages. This fea-
ture of the EventReactor language facilitates reusing specifications for software
developed in various languages. This is illustrated in Chapter 6.

• For distributed Java base software that makes use of RMI as middleware,
its linguistic constructs are transparent from the process structures of the
base software. For multiple-language base software, programmers must specify
the distribution information for the specification of event module. This is
illustrated in Chapter 6.

8.3 Evaluation of the EventReactor Language

The thesis makes use of a runtime enforcement technique named Recoverable Process
to evaluate the suitability of the EventReactor language in representing the concepts
of interest naturally. As it is defined in Chapter 2 of the thesis, by the term naturally,
we mean a representation that is modular, is at the right abstraction-level without
incorporating implementation context, and is compose-able with the representations
of other concepts.

Recoverable Process aims at making processes fault-tolerant, by monitoring the pro-
cesses, detecting their failures and restarting a failed process along with the other
processes that are semantically related to it. The core concepts in Recoverable Pro-
cess are: the processes of interest, a group of semantically related processes, which

164 Chapter 8. Conclusion and Future Work

is named as RecoveryUnit, ProcessManager that implements the functionality to re-
cover the processes, and CommunicationManager that implements the functionality
to recover inter-process messages.

In the literature, an implementation of Recoverable Process in the C language is
available. Here, ProcessManager and CommunicationManager are implemented as
separate modules. These modules also maintain information about the processes
that must be recovered and their memberships in the recovery units. These modules
are invoked from within the modules of the base software.

In Chapter 7, the thesis explains that the C-based implementation of Recoverable
Process falls short in representing the concepts of Recoverable Process naturally,
because of the following three reasons. First, there is no explicit and modular
representation of the processes of interest and recovery units; their definition is
tangled in ProcessManager and CommunicationManager. Second, the invocations to
ProcessManager and CommunicationManager are scattered across and tangled with
the modules in the base software. Third, the abstraction level of the representations
is at the code level, because they are represented via the C language.

To overcome the above-mentioned shortcomings, Chapter 7 explains a possible im-
plementation of Recoverable Process in the JavaMOP language. JavaMOP facili-
tates representing the concepts of interest in specification modules separately from
the base software. However, the composition mechanism of JavaMOP does not fa-
cilitate composing individual specification modules with each other. As a result, we
have to sacrifice the modularity of the concepts RecoveryUnit and ProcessManager
and represent them in one specification module. Moreover, some of the concepts of
interest, such as processes, cannot directly be represented in JavaMOP. Finally, the
abstraction level of representations is at the code level, because they incorporate the
elements of the Java language.

The thesis discusses a possible implementation of Recoverable Process in the AspectJ
language. A modular representation of processes, RecoveryUnit and ProcessMan-
ager is provided via abstract aspects. The application of these concepts to base
software is represented via concrete aspects. To some extent, this helps to achieve
a modular representation for the concepts of interest. The thesis illustrates that
the composition of concepts with each other cannot be modularized as it is desired,
and changes in composition constraints may impose major changes on the existing
aspects. Moreover, the abstraction level of the representations is at the code level.

In Chapter 7, the thesis illustrates that natural representation of the concepts of
Recoverable Process can be achieved in the EventReactor language. For this matter,
the set of process-related events and their publishers are defined in the EventReactor

Chapter 8. Conclusion and Future Work 165

language. Dedicated reactor types are defined to implement the functionality of the
concepts.

The concepts are represented via event modules. A reusable implementation of the
event modules is provided via reactor chains, which are defined independently from
the implementation language and distribution of the base software.

The distinction between read-only and read-write reactor types in the EventReactor
language helps to preserve natural characteristics of the concepts. For example,
processes of interest and RecoveryUnit are represented via a set of read-only reactor
types. Whereas process manager is represented via read-write reactor types, because
it has side-effects on the base software, i.e. restarting the processes.

The modularity and compose-ability of the concepts increases due to the possibility
to compose event modules with each other in a hierarchal manner. For example in
the implementation of Recoverable Process, the processes of interest are represented
via event modules that reside at the lowest level of the hierarchy, and RecoveryUnit
is an event module that resides at one level higher and composes the event mod-
ules representing the processes. ProcessManager is another event module that is
composed with RecoveryUnit, and so on. Chapter 7 shows that Application-specific
composition constraints are implemented via dedicated reactor types, and are rep-
resented as event modules that apply to other event modules of interest.

The EventReactor language is declarative and various checks is provided by its
compiler to ensure the correctness of the specifications.

8.4 Implementation Challenges

The main challenge that we face is to manage instances of event modules for a group
of correlated publishers. We make use of relational tables to maintain information
about the groups of correlated publishers and the corresponding instances of event
modules. This enables us to benefit from the features of the relational tables in
various ways.

As our experiments in Chapter 6 reveal, the size of the table can easily grow if the
number of publishers or threads of execution increases. As a result, the time to look
up information in the table and the required memory space to maintain the table
increase. If the publishers are distributed across multiple processes, the table is
maintained in a separate process. This imposes inter-process communication, which
increases the time to access information in the table further.

166 Chapter 8. Conclusion and Future Work

We still need to investigate more along this line to reduce the size of the tables and
to increase the speed of the operations that are performed on the tables.

A possible solution to reduce the size of the tables is to specify constraints for
the correlated publishers. A typical example of such constraints in the runtime
enforcement literature is the Java Collection and Iterator classes. It is said in
the literature that linguistic constructs must be offered for selecting Collection and
correlated Iterator objects effectively.

The current version of the EventReactor language only facilitates grouping the corre-
lated publishers, without the possibility to constrain them. Nevertheless, we believe
that desired constraints can be expressed as Prolog expressions, and can be added
to the language. For example, by the help of Prolog expressions, it is possible to
select the classes that have inheritance correlation among each other. One may also
adopt the expressions that select the classes whose instances are reachable from the
instances of a specified class.

The implementation of such constraints is feasible, due to the use of relational tables.
It is possible to define a set of conditions for each column of a relational table, as an
access control constraint; only if the conditions are satisfied, access can be allowed.
Since event module tables are also relational tables, a specified correlation constraint
can be defined as the condition that publishers must satisfy before the tables are
modified.

To reduce the required time to look up in the tables, we may consider investigating
on the other alternatives mentioned in Chapter 5. For example, if all the selected
events of interest are announced by one publisher, it will be more efficient to keep a
direct link between the publisher and the corresponding instances of event modules.

8.5 Future Work

As future work, we consider utilizing the EventReactor language in various differ-
ent domains, whose concepts have the same characteristic features as the runtime
enforcement domain.

The runtime environment of the EventReactor language can be improved in various
ways. Currently, information about events and event modules are maintained in
shared data storage. Upon the occurrence of an event, the runtime environment
accesses the shared data storage, and retrieves the information about the event,
corresponding event modules and reactor chains. To eliminate or reduce the look up

Chapter 8. Conclusion and Future Work 167

time, it may be possible to inline this information in the program code. We consider
investigating more along this line.

Another direction is the distribution of event modules and reactor chains across mul-
tiple processes. We are interested to investigate on the other alternatives in sharing
event module tables among multiple processes, and measure their runtime overhead.
We are also interested in considering the possible link between the process structure
of the base software, the degree to which the specified events are distributed, and
the runtime overhead.

Providing more linguistic constructs to allow programmers specify the process struc-
ture of the base software, and to specify the process in which the instances of event
modules and reactor chains must be maintained is another future line of research.

We also consider extending EventReactor with various compile-time checks. An
example is to check if multiple read-write reactors have side-effects on a shared
resource, and to ensure that the effects are not conflicting.

168 Chapter 8. Conclusion and Future Work

Bibliography

[1] Dictionary.com, http://dictionary.reference.com/browse/event.

[2] Regexp, http://swtch.com/ rsc/regexp/dfa0.c.txt.

[3] Yevgenia Alperin-Tsimerman and Shmuel Katz. Dataflow Analysis for Prop-
erties of Aspect Systems. In 5th Haifa Verification Conference (HVC), LNCS,
2009.

[4] AspectC. http://www.cs.ubc.ca/labs/spl/projects/aspectc.html.

[5] AspectWerkz. http://aspectwerkz.codehaus.org.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on De-
pendable and Secure Computing, 1(1):11–33, 2004.

[7] David A.Watt. Programming Language Design Concepts. Wiley, 2004.

[8] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Pro-
gramming System: An Overview. pages 49–69. Springer, 2004.

[9] Howard Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup
Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann, edi-
tors. Runtime Verification - First International Conference, RV 2010, St. Ju-
lians, Malta, November 1-4, 2010. Proceedings, volume 6418 of Lecture Notes
in Computer Science. Springer, 2010.

[10] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass - Java with As-
sertions. Electronic Notes in Theoretical Computer Science, 55(2):1–15, 2001.

[11] Lujo Bauer, Jay Ligatti, and David Walker. Composing Security Policies with
Polymer. SIGPLAN Not., 40:305–314, June 2005.

169

[12] Lujo Bauer, Jay Ligatti, and David Walker. Composing Expressive Runtime
Security Policies. ACM Trans. Softw. Eng. Methodol., 18, 2009.

[13] Lodewijk Bergmans, Mehmet Aksit, and Bedir Tekinerdogan. Aspect Compo-
sition using Composition Filters. In M. Aksit, editor, Software Architectures
and Component Technology, International Series in Engineering and Computer
Science, pages 357–384. Kluwer Academic Publishers, 2002.

[14] Christoph Bockisch, Somayeh Malakuti, Shmuel Katz, and Mehmet Aksit.
Making Aspects Natural: Events and Composition. In Proceedings of the 10th
international conference on Aspect-oriented software development (modularity
vision track), AOSD, pages 285–299, Porto de Galinhas, Brazil, 2011. ACM.

[15] Microsoft Corporation. C# language specification.
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx.

[16] Patrice Chalin, Joseph Kiniry, Gary Leavens, and Erik Poll. Beyond Assertions:
Advanced Specification and Verification with JML and ESC/Java2. In Frank
de Boer, Marcello Bonsangue, Susanne Graf, and Willem-Paul de Roever, ed-
itors, Formal Methods for Components and Objects, volume 4111 of Lecture
Notes in Computer Science, pages 342–363. Springer Berlin / Heidelberg, 2006.

[17] Feng Chen and Grigore Roşu. MOP: An Efficient and Generic Runtime Verifi-
cation Framework. In Object-Oriented Programming, Systems, Languages and
Applications(OOPSLA’07), pages 569–588. ACM press, 2007.

[18] Yoonsik Cheon and Gary T. Leavens. A Runtime Assertion Checker for the
Java Modeling Language (jml). In Proceedings Of The International Conference
On Software Engineering Research And Practice (Serp 02), Las Vegas, pages
322–328. CSREA Press, 2002.

[19] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, and
Reed Little. Documenting Software Architectures: Views and Beyond. Addison-
Wesley Professional, 2002.

[20] David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML
- Progress and Issues in Building and Using ESC/Java2. In In Construction
and Analysis of Safe, Secure and Interoperable Smart Devices: International
Workshop, CASSIS 2004. SpringerVerlag, 2004.

[21] Compose*. http://composestar.sourceforge.net/.

[22] CORBA. http://www.corba.org.

170

[23] T.H. Cormen, C.E. Leiserson, R.L. Riyest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, 2001.

[24] N. Delgado, A.Q. Gates, and S. Roach. A Taxonomy and Catalog of Runtime
Software-Fault Monitoring Tools. Software Engineering, IEEE Transactions
on, 30(12):859 – 872, 2004.

[25] Dhananjay.M. Dhamdhere. Operating Systems: A Concept-Based Approach.
McGraw Hill Higher Education, 2006.

[26] Doron Drusinsky. The Temporal Rover and the ATG Rover. In Proceedings of
the 7th International SPIN Workshop on SPIN Model Checking and Software
Verification, pages 323–330, London, UK, 2000. Springer-Verlag.

[27] Arvind Easwaran, Sampath Kannan, and Oleg Sokolsky. Steering of Discrete
Event Systems: Control Theory Approach. Electron. Notes Theor. Comput.
Sci., 144:21–39, May 2006.

[28] Patrick Eugster and K. R. Jayaram. EventJava: An Extension of Java for Event
Correlation. In Proceedings of the 23rd European Conference on ECOOP 2009
— Object-Oriented Programming, Genoa, pages 570–594, Berlin, Heidelberg,
2009. Springer-Verlag.

[29] Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded Con-
tract Languages. In Proceedings of the 2010 ACM Symposium on Applied Com-
puting, SAC ’10, pages 2103–2110, Sierre, Switzerland, 2010. ACM.

[30] C. J. Fidge. Partial orders for parallel debugging. In Proceedings of the 1988
ACM SIGPLAN and SIGOPS workshop on Parallel and distributed debugging,
PADD ’88, pages 183–194, Madison, Wisconsin, United States, 1988. ACM.

[31] Ira R. Forman and Nate Forman. Java Reflection in Action. Manning Publi-
cations, 2004.

[32] Robert G. Freeman and Arup Nanda. Oracle Database 11g New Features.
McGraw-Hill Osborne Media, 2007.

[33] Jeffrey E.F. Friedl. Mastering Regular Expressions. O’Reilly Media, 2006.

[34] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1994.

[35] Vaidas Gasiu nas, Lucas Satabin, Mira Mezini, Angel Núñez, and Jacques
Noyé. Declarative Events for Object-Oriented Programming. Research Report
RR-7313, INRIA, 05 2010.

171

[36] Vaidas Gasiunas, Lucas Satabin, Mira Mezini, Angel Núñez, and Jacques Noyé.
EScala: Modular Event-Driven Object Interactions in Scala. In Proceedings
of the 10th international conference on Aspect-oriented software development,
AOSD, pages 227–240, Porto de Galinhas, Brazil, 2011. ACM.

[37] Bruno Harbulot and John R. Gurd. A Join Point for Loops in AspectJ. In
Proceedings of the 5th international conference on Aspect-oriented software de-
velopment, AOSD, pages 63–74, Bonn, Germany, 2006. ACM.

[38] Klaus Havelund. Runtime Verification of C Programs. In Kenji Suzuki, Teruo
Higashino, Andreas Ulrich, and Toru Hasegawa, editors, Testing of Software
and Communicating Systems, volume 5047 of Lecture Notes in Computer Sci-
ence, pages 7–22. Springer Berlin / Heidelberg, 2008.

[39] Linda G. Hayes. Automated Testing Handbook. Software Testing Inst., 2004.

[40] Michiel Hendriks. Compose* Annotated Reference Manual. 2007.

[41] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 21:666–
677, August 1978.

[42] Kevin Hoffman and Patrick Eugster. Cooperative Aspect-Oriented Program-
ming. Sci. Comput. Program., 74:333–354, March 2009.

[43] J. E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison Wesley, 2000.

[44] Java. http://www.oracle.com/technetwork/java/index.html.

[45] Java-JNI. http://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html.

[46] Java RMI. http://www.oracle.com/technetwork/java/javase/tech/index-jsp-
136424.html.

[47] JavaMOP. http://fsl.cs.uiuc.edu/index.php/JavaMOP Syntax.

[48] Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger. Monitoring Dis-
tributed Systems. ACM Trans. Comput. Syst., 5:121–150, March 1987.

[49] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model Checking.
The MIT Press, 1999.

[50] JVMTool Interface. http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html.

[51] Cem Kaner, Jack Falk, and Hung Q. Nguyen. Testing Computer Software.
Wiley, 1999.

172

[52] Shmuel Katz. Aspect Categories and Classes of Temporal Properties. In
TAOSD, LNCS, pages 106–134. 2006.

[53] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An Overview of AspectJ. In Proceedings of the 15th Euro-
pean Conference on Object-Oriented Programming, ECOOP ’01, pages 327–353,
London, UK, UK, 2001. Springer-Verlag.

[54] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. In ECOOP, pages 220–242, 1997.

[55] MoonZoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg
Sokolsky. Java-MaC: A Run-Time Assurance Approach for Java Programs.
Formal Methods in System Design, 24:129–155, 2004.

[56] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications.

[57] Ondřej Lhoták and Laurie Hendren. Scaling Java Points-to Analysis using
SPARK. In Proceedings of the 12th international conference on Compiler con-
struction, CC’03, pages 153–169, Berlin, Heidelberg, 2003. Springer-Verlag.

[58] Karl J. Lieberherr and David Lorenz. Coupling Aspect-Oriented and Adaptive
Programming. In Robert Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet
Aksit, editors, Aspect-Oriented Software Development. Addison-Wesley, 2004.
In press.

[59] Linux. http://www.linux.org.

[60] Xavier Logean, Falk Dietrich, Hayk Karamyan, and Shawn Koppenhöfer. Run-
Time Monitoring of Distributed Applications. In Proceedings of the IFIP In-
ternational Conference on Distributed Systems Platforms and Open Distributed
Processing, Middleware ’98, pages 459–474, London, UK, 1998. Springer-Verlag.

[61] Somayeh Malakuti, Mehmet Aksit, and Christoph Bockisch. Distribution
Transparency in Runtime Enforcement. In Proceedings of the 2011 IEEE/F-
TRA International Conference on Advanced Software Engineering. IEEE Press,
2011.

[62] Somayeh Malakuti, Mehmet Aksit, and Christoph Bockisch. Runtime Verifi-
cation in Distributed Computing. Journal of Convergence: An International
Journal of Future Technology Research Association International, 2(1):11, 2011.

173

[63] Somayeh Malakuti, Christoph Bockisch, and Mehmet Aksit. Applying the Com-
position Filter Model for Runtime Verification of Multiple-Language Software.
In Proceedings of the 20th IEEE international conference on software reliability
engineering, ISSRE’09, pages 31–40, Piscataway, NJ, USA, 2009. IEEE Press.

[64] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding Application
Errors and Security Flaws Using PQL: A Program Query Language. SIGPLAN
Not., 40:365–383, October 2005.

[65] Friedemann Mattern. Virtual Time and Global States of Distributed Systems.
In Parallel and Distributed Algorithms: proceedings of the International Work-
shop on Parallel and Distributed Algorithms. 1989.

[66] Patrick Meredith, Dongyun Jin, Feng Chen, and Grigore Roşu. Efficient Mon-
itoring of Parametric Context-Free Patterns. Journal of Automated Software
Engineering, 17(2):149–180, June 2010.

[67] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 2000.

[68] Russ Miles and Kim Hamilton. Learning UML 2.0. Manning Publications,
2006.

[69] Richard Mitchell and Jim McKim. Design by Contract, by Example. Addison-
Wesley Professional, 2001.

[70] MPlayer. http://www.mplayerhq.hu.

[71] Luis Daniel Benavides Navarro, Rémi Douence, and Mario Südholt. Debugging
and Testing Middleware with Aspect-Based Control-Flow and Causal Patterns.
In Proceedings of the 9th ACM/IFIP/USENIX International Conference on
Middleware, Middleware ’08, pages 183–202, Leuven, Belgium, 2008. Springer-
Verlag.

[72] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, 2004.

[73] Muga Nishizawa, Shigeru Chiba, and Michiaki Tatsubori. Remote Pointcut: A
Language Construct for Distributed AOP. In Proceedings of the 3rd interna-
tional conference on Aspect-oriented software development, AOSD, pages 7–15,
Lancaster, UK, 2004. ACM.

[74] Martin Odersky. Programming in Scala: A Comprehensive Step-by-Step Guide.
Artima Inc, 2008.

174

[75] Harold Ossher and Peri Tarr. Multi-Dimensional Separation of Concerns and
the Hyperspace Approach. In Mehmet Aksit, editor, In Software Architectures
and Component Technology: The State of the Art in Research and Practice.
Kluwer, 2001.

[76] Chris Allan Pavel, Chris Allan, Pavel Avgustinov, Aske Simon Christensen,
Laurie Hendren, Sascha Kuzins, Oege De Moor, Damien Sereni, Ganesh Sit-
tampalam, and Julian Tibble. Adding Trace Matching with Free Variables to
AspectJ. In OOPSLA, pages 345–364, 2005.

[77] Hridesh Rajan and Gary Leavens. Ptolemy: A Language with Quantified,
Typed Events. In Jan Vitek, editor, ECOOP 2008 Object-Oriented Pro-
gramming, volume 5142 of Lecture Notes in Computer Science, pages 155–179.
Springer Berlin / Heidelberg, 2008.

[78] Hridesh Rajan and Kevin Sullivan. Eos: Instance-Level Aspects for Integrated
System Design. In Proceedings of the 9th European software engineering confer-
ence held jointly with 11th ACM SIGSOFT international symposium on Foun-
dations of software engineering, ESEC/FSE-11, pages 297–306, Helsinki, Fin-
land, 2003. ACM.

[79] Hridesh Rajan and Kevin J. Sullivan. Classpects: Unifying Aspect- and Object-
Oriented Language Design. In Proceedings of the 27th international conference
on Software engineering, ICSE ’05, pages 59–68, St. Louis, MO, USA, 2005.
ACM.

[80] M.R. Riordan. Designing Relational Database Systems. Microsoft Press, 1999.

[81] David S. Rosenblum. Towards a Method of Programming with Assertions. In
Proceedings of the 14th international conference on Software engineering, ICSE
’92, pages 92–104, Melbourne, Australia, 1992. ACM.

[82] Grigore Roşu, Feng Chen, and Thomas Ball. Synthesizing Monitors for Safety
Properties – This Time with Calls and Returns –. In Workshop on Runtime
Verification (RV’08), volume 5289 of Lecture Notes in Computer Science, pages
51–68. Springer, 2008.

[83] B.G. Ryder. Constructing the Call Graph of a Program. Software Engineering,
IEEE Transactions on, SE-5(3):216 – 226, May 1979.

[84] Kouhei Sakurai, Hidehiko Masuhara, Naoyasu Ubayashi, Saeko Matsuura, and
Seiichi Komiya. Association Aspects. In Proceedings of the 3rd international
conference on Aspect-oriented software development, AOSD, pages 16–25, Lan-
caster, UK, 2004. ACM.

175

[85] Usa Sammapun and Oleg Sokolsky. Regular Expressions for Run-Time Verifi-
cation. In Proceedings of the 1st International Workshop on Automated Tech-
nology for Verification and Analysis, 2003.

[86] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. Efficient Decen-
tralized Monitoring of Safety in Distributed Systems. In Proceedings of the
26th International Conference on Software Engineering, ICSE ’04, pages 418–
427, Washington, DC, USA, 2004. IEEE Computer Society.

[87] Soot Framework. www.sable.mcgill.ca/soot/.

[88] Hasan Sozer. Architecting Fault-Tolerant Software Systems. PhD thesis, Uni-
versity of Twente, 2009.

[89] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and Christian Kästner.
Types and Modularity for Implicit Invocation with Implicit Announcement.
ACM Trans. Softw. Eng. Methodol., 20:1:1–1:43, July 2010.

[90] Leon Sterling and Ehud Shapiro. The Art of Prolog, Second Edition: Advanced
Programming Techniques (Logic Programming). The MIT Press, 1994.

[91] Eli Tilevich and Yannis Smaragdakis. J-Orchestra: Automatic Java Ap-
plication Partitioning. In Proceedings of the 16th European Conference on
Object-Oriented Programming, ECOOP ’02, pages 178–204, London, UK, 2002.
Springer-Verlag.

[92] TRADER project, ESI, 2009. http://www.esi.nl.

[93] Danny Weyns Eddy Truyen. Distributed Threads in Java. In In Proceedings of
the International Symposium on Distributed and Parallel Computing, ISDPC,
2002.

[94] Wim Vanderperren, Davy Suvée, Maŕıa Agustina Cibrán, and Bruno De Fraine.
Stateful Aspects in JAsCo. In Thomas Gschwind, Uwe Aßmann, and Oscar
Nierstrasz, editors, Software Composition, LNCS, pages 167–181. 2005.

[95] Nathan Weston, Francois Taiani, and Awais Rashid. Interaction Analysis for
Fault-Tolerance in Aspect-Oriented Programming. In MeMoT, pages 95–102,
2007.

[96] Dehua Zhang, E. Duala-Ekoko, and L. Hendren. Impact Analysis and Visual-
ization Toolkit for Static Crosscutting in AspectJ. In Program Comprehension,
2009. ICPC ’09. IEEE 17th International Conference on, pages 60 –69, May
2009.

176

[97] Jun Zhu, Changguo Guo, Quan Yin, Jianlu Bo, and Quanyuan Wu. A Runtime-
Monitoring-Based Dependable Software Construction Method. In Young Com-
puter Scientists, 2008. ICYCS 2008. The 9th International Conference for,
pages 1093 –1100, 2008.

177

178

Samenvatting

Runtime enforcement technieken zijn in de literatuur gentroduceerd om het hoofd te
bieden aan fouten die optreden wanneer software wordt gexecuteerd in zijn doelomgev-
ing. Deze technieken bieden diagnose- en herstelacties om respectievelijk de oorzaken
van de fouten te identificeren en deze te herstellen.

Aangezien het ontwikkelen van runtime enforcement technieken ingewikkeld, fout-
gevoelig en duur kan zijn, worden runtime enforcement frameworks voorgesteld om
het ontwikkelingsproces te vergemakkelijken. Hiertoe ondersteunen deze frameworks
verschillende talen om de gewenste eigenschappen van software te specificeren, en
om herstelstrategien te definiren. Gebaseerd op de specificaties genereren runtime
enforcement frameworks code en integreren ze deze met de software die geverifieerd
of hersteld moet worden. De code wordt gewoonlijk gegenereerd in dezelfde taal als
die gebruikt is om de software te implementeren, of in een tussentaal die de software
abstraheert.

Ongelukkigerwijs gebruiken de specificatietalen de elementen van de programmeer-
talen van de gegenereerde code, en daarom schieten zij tekort om op natuurlijke wijze
runtime enforcement concepten te representeren. Met de term concept bedoelen we
een fundamentele abstractie of definitie die voorkomt in de runtime enforcement
technieken. Dientengevolge kan implementatie van runtime enforcement concepten
kampen met verstrooing en verwarring. Dit beperkt de modulariteit en samenstel-
baarheid van de specificatie van runtime enforcement concepten. Bovendien, gebruik
van de elementen van de onderliggende talen in specificaties doet de specificaties te
zeer toegesneden zijn op de gebruikte programmeertalen en platformen. Dit ver-
mindert de herbruikbaarheid en de begrijpelijkheid van de specificaties, en verhoogt
hun complexiteit.

Om een natuurlijke representatie van runtime enforcement concepten mogelijk te
maken introduceert dit proefschrift een berekeningsmodel, Event Composition Model

179

geheten, dat rekening houdt met de karakteristieke kenmerken van runtime enforce-
ment concepten. Dit berekeningsmodel biedt een verzameling nieuwe taalabstrac-
ties, die events, event modules, reactors, reactor chains, event composition
language en event constraint language worden genoemd. Events representeren
veranderingen in de van belang zijnde toestanden. Event modules zijn middelen om
events te groeperen, hebben input-output interfaces, en implementaties. Reactors
zijn de implementaties van event modules. Reactor chains zijn groepen gerelateerde
reactors die een serie events behandelen. De event composition language faciliteert
het selecteren van van belang zijnde events, en de event constraint language facili-
teert het definiren van constraints tussen reactors of event modules.

Een belangrijk aandachtspunt is de vraag hoe het Event Composition Model kan
worden gemplementeerd met gebruikmaking van huidige programmeertalen. Hiertoe
worden in dit proefschrift de relevante programmeertalen gevalueerd met betrekking
tot hun ondersteuning van implementatie van het Event Composition Model. De
evaluatie laat zien dat geen van de bestaande talen het model kan implementeren
zodanig dat de gewenste kwaliteitsvereisten, zoals modulariteit, abstractie en samen-
stelbaarheid, vervuld worden. Niettemin, aspect-gerienteerde talen bieden hiertoe
de meest veelbelovende eigenschappen.

Het proefschrift introduceert de taal EventReactor, als de opvolger van de aspect-
gerienteerde taal Compose*, die het Event Composition Model implementeert. De
taal is geschikt voor nieuwe soorten events en reactor typen. Dit ondersteunt het rep-
resenteren van nieuwe soorten concepten. De taal maakt gebruik van de taal Prolog
als zijn event composition language. Reactors en reactor chains zijn parametriseer-
baar, en worden gescheiden van event modules gedefinieerd. Dit verhoogt de her-
bruikbaarheid van event modules en hun implementaties.

Hedendaagse systemen worden meer en meer gemplementeerd met gebruikmaking
van meerdere talen, en deze trend lijkt ook in de nabije toekomst voort te duren. De
huidige runtime enforcement frameworks schieten echter tekort in het ondersteunen
van software die is gemplementeerd in verschillende talen. In het Event Composition
Model maakt de event composition language het mogelijk om events te selecteren van
systemen die in verscheidene talen gemplementeerd zijn. In de taal EventReactor
worden specificaties onafhankelijk van enige programmeertaal gedefinieerd, en de
compiler van EventReactor maakt het mogelijk code te genereren voor de talen Java,
C en .Net. Bijgevolg kunnen de specificaties worden hergebruikt voor software die
wordt ontwikkeld in verschillende talen.

Het is nu meer en meer gebruikelijk dat applicaties worden ontworpen om gexecu-
teerd te worden op gedistribueerde systeemarchitecturen. Helaas kunnen de meeste
runtime enforcement frameworks niet gebruikt worden voor gedistribueerde syste-
men. Er zijn een paar runtime enforcement frameworks die wel kunnen werken met

180

gedistribueerde architecturen. Deze systemen hebben echter specificaties die infor-
matie bevatten van de onderliggende proces-structuur. Dit verhoogt de complexiteit
en vermindert de herbruikbaarheid van de specificaties als de proces-structuur van
de software verandert. De taal EventReactor pakt dit probleem aan door het on-
dersteunen van transparantie van gedistribueerdheid.

Er zijn twee basismanieren om de taal EventReactor te gebruiken: a) als een taal
die ten grondslag ligt aan de specificatietalen van runtime enforcement frameworks;
b) als een implementatietaal van runtime enforcement technieken.

Dit proefschrift legt het Event Composition Model, de taal EventReactor die dit
model implementeert, en de compiler van deze taal uit door middel van het gebruik
van illustratieve voorbeelden. Het proefschrift maakt gebruik van een voorbeeld van
een runtime enforcement techniek, Recoverable Process genaamd, om de geschik-
theid te evalueren van de taal EventReactor om de van belang zijnde concepten op
natuurlijke wijze te representeren.

181

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof
System for Multithreaded Java -Theory
and Tool Support- . Faculty of
Mathematics and Natural Sciences,
UL. 2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights
Control - Expression and Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty
of Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita. Scenario-Based Sys-
tem Architecting - A Systematic Ap-
proach to Developing Future-Proof Sys-
tem Architectures. Faculty of Math-
ematics and Computing Sciences,
TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-
work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures
for Equality Logic with Uninterpreted
Functions. Faculty of Mathematics and
Computer Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engineer-
ing, TU/e. 2005-11

J. Eggermont. Data Mining us-
ing Genetic Programming: Classifica-
tion and Symbolic Regression. Faculty
of Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science,
UU. 2005-13

G.F. Frehse. Compositional Verifi-
cation of Hybrid Systems using Simu-
lation Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Science,
TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics
and Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing and
Rewriting. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and
link-layer security of wireless sensor
networks: energy-efficient attack and
defense. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty of
Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-
ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffel-
ers. Formal Specification and Anal-
ysis of Hybrid Systems. Faculty of
Mathematics and Computer Science
and Faculty of Mechanical Engineering,
TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty
of Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applica-
tions. Faculty of Science, Mathematics
and Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences,
VUA. 2006-07

C.-B. Breunesse. On JML: topics
in tool-assisted verification of JML pro-
grams. Faculty of Science, Mathematics
and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty of
Biomedical Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and Nat-
ural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data
Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-
istic and Probabilistic Choices. Faculty
of Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal
methods and protocol standardization.
Faculty of Mathematics and Computer
Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of

Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising
Interface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Imple-
mentation and Composition. Faculty
of Mathematics and Natural Sciences,
UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for stream-
ing DSP applications. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2007-02

M. van Veelen. Considerations
on Modeling for Early Detection of
Abnormalities in Locally Autonomous
Distributed Systems. Faculty of
Mathematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applications
of Process and Program Algebra. Fac-
ulty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2007-05

I. Loeb. Natural Deduction: Shar-
ing by Presentation. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2007-09

A. van Weelden. Putting types
to good use. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-10

J.A.R. Noppen. Imperfect Infor-
mation in Software Development Pro-
cesses. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series of
Empirical Studies about the UML. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and
Delivery. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence,UvA. 2007-15

B.S. Graaf. Model-Driven Evolu-
tion of Software Architectures. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2007-19

W. Pieters. La Volonté Machi-
nale: Understanding the Electronic Vot-
ing Controversy. Faculty of Science,

Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Id-
iomatic Crosscutting Concerns in Em-
bedded Systems. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Systems.
Faculty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Parsing,
and Assimilation of Language Conglom-
erates. Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Verifica-
tion of Optimistic Fair Exchange Pro-
tocols. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical En-
gineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Algo-
rithms: Two Taxonomies and a Toolkit.
Faculty of Mathematics and Computer
Science, TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Speci-
fications Using Context-Sensitive Wild-
cards. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2008-14

P. E. A. Dürr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-15

E.M. Bortnik. Formal Methods in
Support of SMC Design. Faculty of Me-
chanical Engineering, TU/e. 2008-16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applications.
Faculty of Mathematics and Computer
Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Ex-
perimental Aspects of Pattern Evalua-
tion. Faculty of Mathematics and Nat-
ural Sciences, UL. 2008-22

R. Brijder. Models of Natural Compu-
tation: Gene Assembly and Membrane
Systems. Faculty of Mathematics and
Natural Sciences, UL. 2008-23

A. Koprowski. Termination of
Rewriting and Its Certification. Faculty
of Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Devel-
opment. Faculty of Mathematics and
Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochas-
tic Time in Process Algebras for Per-
formance Evaluation. Faculty of
Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-28

R.S. Marin-Perianu. Wireless Sen-
sor Networks in Motion: Clustering Al-
gorithms for Service Discovery and Pro-
visioning. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Effi-
cient Rewriting Techniques. Faculty
of Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for
Context Sensitive Program Transforma-
tion. Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reason-
ing about Java programs in PVS using
JML. Faculty of Science, Mathematics
and Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digital
Exchange. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness and Avail-
ability: Building Computer Algebra on
top of Proof Assistants and making

Proof Assistants available over the Web.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of
Science, Mathematics and Computer
Science, RU. 2009-19

B. Ploeger. Improved Verification
Methods for Concurrent Systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2009-20

T. Han. Diagnosis, Synthesis
and Analysis of Probabilistic Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-
gies for Parameter Optimization and
Their Applications to Medical Image
Analysis. Faculty of Mathematics and
Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computa-
tional Complexity of Probabilistic Net-
works. Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-24

A.I. Baars. Embedded Compilers.
Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-

ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-26

J.F.J. Laros. Metrics and Visualisa-
tion for Crime Analysis and Genomics.
Faculty of Mathematics and Natural
Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking
Nondeterministic and Randomly Timed
Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented
Languages. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Software.
Faculty of Mathematics and Natural
Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2010-09

D. Costa. Formal Models for Compo-
nent Connectors. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Faculty
of Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: For-
mal Analysis of Epidemic Protocols.
Faculty of Sciences, Department of
Computer Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty
of Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-03

L. Astefanoaei. An Executable The-
ory of Multi-Agent Systems Refinement.
Faculty of Mathematics and Natural
Sciences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Faculty
of Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based
Confidentiality Risk Assessment in Net-
works of Organizations. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2011-06

M. van der Bijl. On changing mod-
els in Model-Based Testing. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis
of Information Leakage in Probabilistic
and Nondeterministic Systems. Faculty
of Science, Mathematics and Computer
Science, RU. 2011-09

M. Atif. Formal Modeling and Verifi-
cation of Distributed Failure Detectors.
Faculty of Mathematics and Computer
Science, TU/e. 2011-10

P.J.A. van Tilburg. From Com-
putability to Executability – A process-
theoretic view on automata theory. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-11

Z. Protic. Configuration manage-
ment for models: Generic methods
for model comparison and model co-
evolution. Faculty of Mathematics and
Computer Science, TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty

of Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition
Model: Achieving Naturalness in Run-
time Enforcement. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2011-14

