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SUMMARY

This thesis describes the research on the accuracy and speed of
different methods for the visualization of three-dimensional (3D)
sets of (measured) data. In medical environments, these 3D
datasets are generated by for instance CT and MRI scanners. The
medical application makes special demands on the visualization
methods.

Medical application of 3D visualization methods asks for high
accuracy. For practical application, the speed of the visualization
should also be high, preferably real-time (25 images per second or
higher). Because most 3D visualization methods are very
computational intensive, real-time high quality visualization is not
(yet) possible in software. As a consequence, many different
visualization methods have been developed that either sacrifice the
speed for quality or sacrifice the quality to obtain high speed.

To meet both the demand for high speed as well as the demand for
high quality, a visualization method has been developed that
reduces the number of computations drastically without affecting
the image quality. This visualization method, called Iso-Surface
Volume Rendering, is able to find and visualize surfaces in a three-
dimensional dataset with high speed (approximately 5 images per
second).

To be able to compare the accuracy of different visualization
methods, the signal theoretic background of the visualization
methods and the data acquisition process for CT and MRI scanners
1s investigated. Using this information, the accuracy of the
approximation of the location of a measured step edge is
investigated. This accuracy only depends on the parameters used
for acquisition, and i1s hence independent of the visualization
method used. It is possible to approximate the location of the step
edge using a surface at which the measured data has constant



value. This value is called the iso-value and the corresponding
surface is called the iso-surface.

Next, the accuracy at which the different visualization methods are
able to determine and visualize the location (and shape) of this iso-
surface is investigated. Some methods are not able to visualize a
surface, while the accuracy of other methods is limited because the
data values are only determined at some fixed locations. The
accuracy of these methods can be improved by decreasing the
distance between these points. This will however also increase the
calculation time dramatically. The Iso-Surface Volume Rendering
method uses iteration to find the location of the iso-surface with a
very high accuracy, without significantly affecting the calculation
time.

Finally, a description of the different optimizations used to
increase the speed and some examples of application of the Iso-
Surface Volume Rendering on medical data are given.
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SAMENVATTING

In dit proefschrift wordt het onderzoek beschreven naar de
nauwkeurigheid en snelheid van verschillende methodes voor de
visualisatie van drie-dimensionale (3D) sets van (meet-) waarden.
In de medische wereld worden deze 3D datasets gegenereerd door
bijvoorbeeld CT en MRI scanners. De medische toepassing stelt
bijzondere eisen aan de visualisatie methodes.

Voor de toepassing van 3D visualisatie technieken in de medische
wereld is een hoge nauwkeurigheid vereist. Voor de praktische
toepasbaarheid moet de snelheid van deze visualisatie hoog zijn,
liefst real-time (25 beelden per seconde of meer). De meeste 3D
visualisatie methodes zijn echter zeer rekenintensief, waardoor
real-time visualisatie met hoge kwaliteit in software (nog) niet
mogelijk is. Daarom zijn veel verschillende visualisatie methodes
ontwikkeld die of een goede kwaliteit hebben met een lage
snelheid, of een hoge snelheid met een lage kwaliteit.

Om aan beide eisen tegemoet te komen is een visualisatie methode
ontwikkeld die het rekenwerk drastisch reduceert zonder de
kwaliteit aan te tasten. Deze visualisatie methode, genaamd Iso-
Surface Volume Rendering, is in staat om met vrij hoge snelheid
(plm. 5 beelden per seconde) oppervlakken in een drie-
dimensionale set van meetwaarden te berekenen en visualiseren.

Om de nauwkeurigheid van verschillende visualisatie methodes
met elkaar te kunnen vergelijken, wordt eerst de signaal-
theoretische achtergrond van de visualisatie methodes en de data
acquisitie door middel van CT en MRI scanners bekeken. Met
behulp van deze informatie wordt gekeken hoe nauwkeurig de
locatie van een gemeten stapovergang kan worden benaderd. Deze
nauwkeurigheid is alleen afhankelijk van de instelling van de
scanner en is dus onafhankelijk van de gebruikte visualisatie
methode. Het blijkt vrij goed mogelijk om de locatie van een 3D
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stapovergang te benaderen met behulp van een oppervlak waarop
de meetwaarde constant is. Deze meetwaarde wordt de iso-waarde
genoemd en het bijbehorende oppervlak het iso-oppervlak.

Vervolgens wordt gekeken hoe nauwkeurig de verschillende
visualisatie methodes de locatie (en vorm) van dit iso-oppervlak
kunnen bepalen en visualiseren. Sommige methodes zijn niet in
staat om een oppervlak te visualiseren. Andere methodes zijn
beperkt in de nauwkeurigheid doordat de meetwaardes slechts op
enkele vaste locaties worden bepaald. De nauwkeurigheid van deze
methodes kan worden verhoogd door de afstand tussen deze
punten kleiner te maken, maar dit resulteert tevens in een sterke
toename van de rekentijd. De ontwikkelde Iso-Surface Volume
Rendering methode maakt gebruikt van iteratie om de locatie van
het oppervlak met vrij te kiezen nauwkeurigheid te bepalen zonder
dat daarbij de rekentijd sterk wordt beinvloed.

Tot slot wordt een beschrijving gegeven van de verschillende
optimalisaties die gebruikt worden om de snelheid te verhogen en
wordt een aantal voorbeelden gegeven van toepassingen van de
Iso-Surface Volume Rendering methode op medische data.
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INTRODUCTION

In this first chapter, an overview of the problem
area will be given. Furthermore, this chapter will
give an overview of the outline of this thesis.




2 1. Introduction

1.1 Problem area

The projection of three dimensional data into two dimensional
images requires a huge amount of computations. A lot of research
has been done in the last years with the goal to obtain interactive
(multiple images per second) to real-time (25-30 images per second)
rendering speed. One approach to obtain a high rendering speed is
by implementing the algorithms in hardware. The main
disadvantage of this approach is the required time to develop this
hardware and the impossibility to change the algorithm once the
hardware is built. A lot of research has therefore been done on
optimization of visualization algorithms in software. This has
increased the rendering speed drastically because of both the
improved algorithms as well as the increased speed of general
purpose processors.

To achieve low computation times, many visualization algorithms
sacrifice the image quality for rendering speed. In most algorithms,
the volume data is re-sampled. As the computation time in these
algorithms depends heavily on the chosen re-sampling frequency,
the re-sampling frequency is often chosen as low as possible. This
will however significantly affect the perceived image quality by
introducing re-sampling artefacts.

When three-dimensional visualization algorithms are used for
medical applications, these rendering artefacts are intolerable.
Although interactive to real-time speed is also important for a
visualization algorithm to be useful in medical applications, image
quality should not be sacrificed to obtain this goal.

To be able to find a visualization algorithm that is able to achieve
the highest possible image quality, some knowledge about the
signal-theoretic background of the medical acquisition device as
well as the digital image processing steps in visualization
algorithms is necessary.

1.2 Outline of this thesis

First, in the following chapter, some aspects of the signal
theoretical background that is used to investigate data acquisition
and volume rendering will be discussed. In this chapter, the theory
of ideal reconstruction of sampled data will be discussed as well as
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more practical reconstruction methods. Furthermore, an overview
of different methods for calculation of gradient fields in a discrete
three-dimensional data field and an overview of methods to find an
edge in a sampled data field will be given.

In Chapter 3, an overview of some frequently used volume
visualization methods (especially for medical applications) will be
given. Chapter 4, will give some more detail on one of these
visualization methods called volume rendering. In this chapter, an
overview of the basic volume rendering algorithms as well as some
improved implementations will be given.

Chapter 5 will give a definition of an iso-surface in a discrete three-
dimensional data field. In this chapter, also a new volume
rendering algorithm called iso-surface volume rendering is
described. This algorithm aims to visualize the iso-surfaces
described.

As mentioned earlier, a thorough understanding of the signal
theoretic aspects of data acquisition is necessary. Chapter 6 will
describe these aspects of the two medical acquisition devices that
are most often used as a source for volume rendering applications.

In Chapter 7, the accuracy of two steps in the signal processing
chain is investigated. First, the accuracy of estimating a step edge
location after filtering and sampling will be investigated.
Hereafter, a spatial error bound for the visualization of iso-surfaces
in three-dimensional data will be introduced. The volume
rendering algorithms described before will be evaluated using this
spatial error bound.

Chapter 8 contains some details about an efficient implementation
of the iso-surface volume rendering algorithm. This chapter will
describe some methods to improve the speed of this algorithm with
minimal loss of image quality.

In Chapter 9, some examples of applications of the iso-surface
volume rendering to real medical (patient) data will be given.

Chapter 10 will present some come conclusions and topics for
future research.



1. Introduction




SIGNAL THEORETIC
BACKGROUND

To be able to investigate the accuracy of different
visualization techniques, it is important to have a
good insight in the basic principles of the different
signal processing steps used. This chapter will
describe the signal theoretic background of the
main signal processing steps that are used in the
whole signal processing chain, from data
acquisition to visualization.




6 2. Signal theoretic background

2.1 Ideal reconstruction

The ideal reconstruction of sampled 1D data assumes that the
original input signal is band-limited with some cut-off frequency f,.
The frequency at which the signal should be subsequently sampled
should be at least twice as high as the highest possible signal
frequency f, to allow an ideal reconstruction of the input data. This
criterion will be referenced as the Nyquist frequency domain
criterion [OPP75]. This criterion can be extended to the
reconstruction of 3D (medical) data as well.

u(t) > —u'(t)>~ __—>u'(n)

u’(n)— —u'(t)

Figure 2.1 Sampling and reconstruction steps in a
typical one-dimensional digital signal
processing chain

In Figure 2.1, the sampling and reconstruction steps in a typical
digital signal processing chain are shown. Characteristic for
systems for ideal reconstruction of one dimensional data is the
presence of an ideal analog low-pass filter which cuts off all
frequency components which, when this analog filter would be
omitted, would fold back during sampling. In this way, a non band-
limited signal u(t) is filtered to obtain a band-limited signal u'(t)
with cut-off frequency f.. According to the Nyquist criterion, this
band-limited signal can now be sampled without folding when the
sample frequency is at least 2-f,. By using an ideal low-pass filter
with the same cut-off frequency as the pre-filter, the band-limited
signal u'(t) can be reconstructed from this sampled data without
error. The original non band-limited signal u(t) can however not be
reconstructed.

The reconstruction of scanned objects from scanner data using
volume rendering techniques differs in many ways from this
traditional one dimensional signal processing problem. The latter
technique mainly uses linear, time invariant filters, whereas the
processing step in volume rendering is essentially place variant
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and non-linear as far as the calculation of the opacity and the
shading of the surface concerns.

2.2 Data acquisition

In 3D scanners, like for instance the CT and MR scanners, there is
no explicit pre-filter. Instead, the acquisition process in the
apparatus measures a physical quantity in a region of interest. The
intrinsic properties of these scanners can be characterized by a
continuous point-spread function (PSF), which is more or less
independent of the position of actual measurement.

While this point-spread function is continuous, the data is only
acquired at discrete locations. Due to this sampling mechanism, a
3D array of numbers representing measured physical quantities on
a 3D grid is obtained.

The data acquisition process can also be described by calculating
the convolution of the continuous point-spread function with the
input data, after which the data at discrete locations can be
calculated by sampling the resulting continuous function. Using
this approach, the data acquisition can be described in the
frequency domain by multiplication of the Fourier transform of the
point-spread function, also called the modulation transfer function
(MTF), with the Fourier transform of the data, after which the
resulting signal is sampled. The Nyquist criterion is hence met
when this frequency domain product is negligible at frequencies
higher than half the sampling frequency.

Figure 2.2 shows a 2D equivalent example of this data acquisition
process. The letter E has been acquired with a CCD camera. The
left image shows the original object, while the right image shows
the acquired image. Each sample (square) in this image has a grey-
value that corresponds to the amount of the original object that is
present in the surrounding of the sample location. Inside the
object, the samples are black while outside the samples are white.
At the edge of the object, the acquired value has a grey-value that
depends on the distance to the border of the object. In 2D and 3D
imaging, the acquired samples are often depicted as grey pixels.
For this reason, the sample values are often referred to as grey-
values.
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Figure 2.2 A two-dimensional equivalent example
of the data acquisition process showing
the original (left) and acquired object

It can also be seen in the right image of Figure 2.2 that the
acquired grey-value of the background is not pure white. This is
caused by noise in the acquisition device. Both the point-spread
function as well as the noise properties of two medical acquisition
devices will be described in a chapter about the signal theoretic
aspects of data acquisition in these medical scanners.

2.3 Reconstruction and interpolation

Sharp low-pass filters have in general a rather long impulse
response. The ideal low-pass filter has an impulse response which
has a sin(x) / x shape, as shown in Figure 2.3.

As described in section 2.1, an ideal low-pass filter can be used to
reconstruct a properly sampled band-limited signal without error.
This filter is however unusable in practical applications. Because
the filter has an infinitely long impulse response it can only be
applied to infinitely long input signals. In most 2D and 3D
applications however, the input signal is very short. In 1D
applications, the input signal may be much longer. This is
especially true for audio signals. The non causality of this filter
however prohibits real-time processing because also signals in the
future are necessary. Using a non causal filter for real-time
processing is only possible by introducing a delay as long as half
the width of the filter and hence with filters with a finite length.
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20 0 40

Figure 2.3 Impulse response of an ideal
low-pass filter

Although it is possible to use a reconstruction filter with a long
impulse response, this will generally not be desirable due to the
high computational cost. When for instance a reconstruction filter
with a width of sixteen samples is used, this would require 4096
samples in a 3D reconstruction filter.

As the point-spread function of the acquisition device is generally
not an ideal low-pass filter and the Nyquist criterion is often not
met, it is also not useful to use an ideal low-pass filter for the
reconstruction of the data. To reduce the complexity, especially in
3D applications, a reconstruction filter with a very short impulse
response is desirable.

The reconstruction filter with the shortest possible impulse
response is the nearest neighbor interpolation function. This
function assigns the value of the nearest sample to a non sample
location. This requires only one input sample and no computations
in 1D, 2D as well as 3D applications. The discontinuity of this
reconstruction filter will however result in clearly visible artefacts
when used in 2D or 3D visualization algorithms.

The simplest and smallest continuous reconstruction filter is the
linear interpolation function. In one dimension, this function uses
two samples and approximates the intermediate values by a
straight line.
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L(a,b,x) = a(l—-x)+bx = a+(b-a)x 2.1

Where a is the value of the first sample, b the value of the second
sample and x the location between the two samples (x € [0, 1]).

The linear interpolation function is due to the low cost and the
continuity an often used reconstruction filter in one, two and
especially three dimensional applications.

The definition of the nearest neighbor interpolation function can
also be applied to higher dimensional fields. In 2D imaging
applications for instance, the reconstructed value is equal to the
value of the nearest pixel. The linear interpolation however is not
linear in all directions in 2D and 3D. This is caused by the repeated
application of the linear interpolation in each dimension. In 2D,
two interpolations are used to interpolate in the x-direction, while
a third interpolation is used to interpolate these two interpolated
values in the y-direction.

L2(a,b,c,d,x,y) = L(L(a, b,x), L(c,d, x),y) (2.2)
= (a(l-x)+bx)(1—y) + (c(1-x) +dx)y

While this function is linear in the x- and y-directions, on the
diagonal where y=x this yields:

L2(a,b,c,d,x, x) (2.3)
= (a(l=-x)+bx)(1—x)+(c(l—x) +dx)x

= (a=b-c+d)x?+(-2a+b+c)x+a

The two dimensional linear interpolation function (also known as
the bi-linear interpolation function) is hence in general a quadratic
function. In a similar way, it can be derived that the three
dimensional linear interpolation function (tri-linear interpolation)
is in general a third order polynomial.

Although the linear interpolation function is a continuos function,
its derivative is a discontinuous function. This discontinuity may
lead to visible artefacts when the derivative is used in a
visualization algorithm. Hence, these applications will in general
ask for a reconstruction filter with a continuous derivative.

Figure 2.4 gives an overview of a family of filters that can be
constructed by repeated convolution of a square function. The
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convolution of two square functions results in a triangular
function. Convolving the square function three times results in a
quadratic function that will be explained more thoroughly later in
this section. Repeating this convolution will in the end lead to a
Gaussian function.

0.8,
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1 1 1 1 x>
f 08 08 0.8 08
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0 0 0 0 —
Nearest Linear Quadratic Gaussian
Neighbor

Figure 2.4 A family of reconstruction filters

Because convolution in the place domain corresponds to a
multiplication in the frequency domain, convolving the square
function n times will result in a frequency response that is the n-th
power of the frequency response of the square function, as shown in
the bottom row of Figure 2.4. Because the frequency response of
the square function has the form sin(f)/f, the n-th convolution will
have the form (sin(f)/f)*. When n approaches infinity, this will
result in a function with a Gaussian shape, which could be
expected because the Fourier transform of a Gaussian function is
also Gaussian.

This family of filters is known as the B-spline polynomials
[SCH46]. In computer graphics, these polynomials are often used
for tracking a path or surface through sample locations. They can
however also be used as reconstruction filters.

The first two filters have already been described as the nearest
neighbor and the linear interpolation functions. Hence, these
filters will be called interpolating reconstruction filters.

The third filter in this family, the third order B-spline, is a piece-
wise quadratic reconstruction filter with a continuous derivative
([BOS95a],[DOD97)).
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h(—x) x<0
%— 2 03x<%
h(x) = N (2.4)
1‘ 2_= = 1‘< =
5% x+ 2_x<2
| O otherwise

Because the impulse response of this filter is not equal to one at
x=0, the reconstructed value at a sample location is not equal to the
sample value itself. Instead this value will be equal to 3/4-th of its
own sample value plus 1/8-th of the value of its two neighbors (x=1
and x=-1). As this reconstruction filter is not a real interpolation
function, this filter will be called an approximating reconstruction
filter.

When applied in 3D, the reconstructed value at a sample location
will be 27/64-th (42%) of the sample value, while 37/64-th (58%) of
its value is contributed by the 26 surrounding samples. As a result,
small details of about the size of a single sample will be filtered out.
This may however also be an advantage, because uncorrelated
noise will also be filtered out. Higher order filters in this family of
filters will filter the sampled data even more severely. For
instance, the fourth order B-spline, also known as the cubic B-
spline, has a value of 2/3 at x=0, which means that only 30% of the
sample value contributes to the reconstructed value at a sample
location. This cubic B-spline function will be described later as a
member of the cubic-spline functions. Higher order B-spline filters
will in general not be used as 3D reconstruction filters because of
the high attenuation of high frequency signals and the high
computational cost.

The same family of filters will also play an important role in the
signal theoretic analysis of the data acquisition process. In CT
scanners, the point-spread function can be described by a similar
convolution of square functions.

Besides this family of filters, other reconstruction filters can be
constructed that can be approximating or interpolating. To be
suitable for being used in visualization algorithms that are (partly)
based on the derivative, these filters must satisfy a number of
conditions:
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the function should be continuous
the derivative of the function should be continuous

the function should be symmetrical

A W N P

the value should be one at x=0 and zero at x=n,, with n, the
locations of the other samples (only interpolating)

5 when the data is constant, the reconstructed value should be the
same constant for all values of x

6 when the value of the samples is a linear function of the place,
the reconstructed values should also be a linear function of the
place

These conditions apply to one-dimensional reconstruction filters
that are applied repeatedly in multi-dimensional reconstruction
filters. The last condition is especially important when the
reconstruction filter has to be used to extract or visualize a shape
in two or more dimensions. This will be made clear later in section
5.1 about surfaces in a reconstructed volume.

Based on these conditions, it is possible to derive piece-wise
polynomial (interpolating) reconstruction filters that satisfy these
conditions. It is obvious that a reconstruction filter based on a
single sample (such as nearest neighbor interpolation) cannot
satisfy these conditions. A reconstruction filter based on two points
that satisfies all conditions except the second is the linear
interpolation function. This is also the only possible reconstruction
filter based on two sample points that satisfies the sixth condition.
The quadratic reconstruction filter described earlier satisfies all
conditions except the fourth one. A real interpolating function
based on three sample points that satisfies all the conditions is a
piece-wise fourth order function:

>h(—x) x<0
Ax*—3x2+1 OSx<%
h(x) = ) 9 2 (2.5)
1 1
_ 0.4 3_44.2. 2 —< 2
2x%+ 8x 2x +2x 2_x<2
e otherwise

A family of filters that is also commonly used in image processing
1s the set of cubic-spline functions [MIT88]. This family is a
collection of third order polynomials:
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h(_x) x<0
(Z—EB—C)x3+(—3+ZB+ C)x2+1—:—:;B O<x<1

h(x) = (2.6)

(—%3 - C)x?’ +(B+5C)x%+

(—2B—8C)x+4?B+4C 1<x<2

0 otherwise

This piecewise polynomial function is continuous, symmetrical and
has a continuous derivative for all values of B and C. Furthermore,
a constant value is always reconstructed to the same value
regardless of the value of B and C. Only the fourth and the sixth
conditions are not guaranteed. To be able to accurately reconstruct
a straight line, the value of B should equal -2C+1. The derivative at
x=1 is then automatically fixed to -1/2. Only when this condition is
met, the sixth condition is met.

The previously mentioned cubic B-spline is one of the functions in
which this condition is met. The corresponding parameters are B=1
and C=0, resulting in the following function:

» h(—x) x<0
%x3—x2+§ 0<x<1
h(x) = 2.7

1. 4
a3 4 42 + = <
6x x%—2x 3 1<x<?2

| 0 otherwise

It is clear that this function is not an interpolating but an
approximating reconstruction filter. The cubic-spline functions
that are interpolating all have a value for B equal to zero. The only
interpolating cubic-spline function that is able to reconstruct a
straight line is the function with B=0 and C=1/2, resulting in the
following reconstruction filter:



2.3. Reconstruction and interpolation 15

» h(—x) x<0
§x3—gx2+l 0<x<1
h(x) = (2.8)

—%x3+gx2—4x+2 1<x<2

e otherwise

This cubic-spline interpolation function is also known as the
Catmull-Rom spline. Because this is the only interpolating cubic-
spline function able to reconstruct a straight line, this function will
be referred to as the cubic-spline interpolation function. Although
this function has a continuous derivative, the second order
derivative is not continuous. The only cubic-spline function that
has a continuous second order derivative and is able to reconstruct
a straight line is the cubic B-spline.

The Catmull-Rom spline can also be described as a subset of a set
of fourth order polynomials with parameter a:

» h(—x) x<0

ax4+(—2a+:—23)x3+(a—g)x2+1 0<x<1
h(x) = L . (2.9
ax*+ (Ga—i)x?’ + (— 13a + E)xz +
(@l2-d)x+2—4a 1<x<?2
| 0 otherwise

For a=0, this function is equal to the Catmull-Rom cubic-spline
interpolation function. When a is equal to -1/2, not only the first
derivative, but also the second derivative of this function is
continuous.

In the same way, polynomials for reconstruction filters using more
than four sample points can be derived. This will however
significantly increase the complexity of the (3D) algorithm. Besides
the piece-wise polynomial functions, it is also possible to derive
other functions that also satisfy the six conditions.

Figure 2.5 shows a collection of the reconstruction filters described
in this section. Three of these functions are real interpolation
functions (linear, three point, and cubic-spline interpolation), while
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--- Linear

— 3p. B-spline

— Cubic-spline
3p. interpol.

.......... 4p. B-spline

Figure 2.5 Collection of reconstruction filters
described

the other two, the third and fourth order B-spline, are
approximating reconstruction filters.

As mentioned before, using a reconstruction filter that does not
satisfy the six conditions will lead to visible artefacts, especially in
3D visualization algorithms. The effect of these artefacts on the
visualized shape will be shown later.

2.4 Volume gradients

In some 3D visualization applications, the volume gradient is used
(see section 4.1.2). In a continuous 3D data field D(x,y,z), this
volume gradient would be equal to the vector:

)
=D
0x (%, 3, 2)

G(x,y,2) = aa_yD(x, v, 2) (2.10)

]
°D
= (x,9,2)
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In discrete data fields, the volume gradient at a sample location
(ny,ny,n;) is generally determined by the central difference:

(D(n,+Ln,n,)-D(n,—-1n,n,))/ 2
G(n,, n,n) =| (D(n,n,+1,n,)-D(n,n,—1,n,))/2 (2.11)
(D(ny, ny,n,+1)=D(n,,n,n,—1))/2

This central difference gradient is used to calculate the gradient on
the same grid as the original grey-values. Using a reconstruction
filter, this discrete gradient field can be extended to an arbitrary
(x,y,2z) location.

Although this approach is commonly used, the rather large
distance of two samples to calculate the central difference gradient
will result in unacceptable filtering of the gradient. Much better
results can be achieved when instead of the central difference
gradient, the intermediate difference gradient is calculated
([BOS95a], [TER96], [BEN95], [BEN96]). With this method, two
neighboring samples are subtracted, resulting in the gradient in
the middle of two samples:

Gx(nx + %, n,, nz) = D(n,+1,n,n,)-D(n,n,n,) (2.12)

1
Gy(nx, nyt> nz) = D(n,, n,+1,n,)-D(n,n,n,)

Gz(nx, n,n,+ %) = D(ny, n,,n,+1)-D(n, n,n,)

Because the three components of the gradient vector are all shifted
by half a sample in a different direction, the intermediate
difference gradient cannot be calculated at the sample locations.
This method results in three separate grids, one for each gradient
component. By reconstructing the three components separately
however, the volume gradient can be calculated at arbitrary
locations. When a linear interpolation function is used, both
methods give the same result at the sample locations. In the
middle of two samples however, the intermediate difference
gradient is much more accurate than the interpolated central
differences. The central difference method will result in:
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3G, Lny ) + Gl ) (2.13)

1
Gx(nx + > Ty nz)

¥

= %(D(nx +2,n,n,)+D(n,+1n,n,)) -
1
5(D(ny, ny, ) + D(n =1, ny, 1))

It can be seen that the central difference gradient at this location is
equal to the intermediate difference after pre-filtering the data
with [1/2, 1/2].

The volume gradient in a discrete data field can also be calculated
as the volume gradient in the reconstructed continuous data field.
This volume gradient of the reconstructed data field will be called
the congruent gradient of the reconstructed data field. As the
reconstruction filter is applied in three directions separately, the
derivative of the reconstruction filter can be used to calculate the
three gradient components separately. The reconstruction filter is
applied in two directions, while the derivative of the reconstruction
filter is used to calculate the gradient in the third direction. To
calculate the x-direction component of the gradient vector in a
linearly reconstructed data field, both the data values aq, b1, ¢; and
d; at n,=x; as well as the data values ay, by, ¢y and d, at n,=x, are
bi-linearly interpolated. As the derivative of the linear
interpolation function is [-1,1], the x-direction gradient is the
difference of these two interpolated values:

G.(x,y,2) = %Dr(x, Y, 2) (2.14)

L2(a2’ b2’ CZ) d2’ y9 Z)_Lz(al’ bl’ cl5 dl) y; Z)

Because the linear interpolation function is continuous, the x-
direction component of the gradient is also continuous in the y- and
z-direction. This gradient component is however piece-wise
constant in the x-direction, which could be expected because the
interpolated data field is linear in the direction of the axes. In the
same way, the other components of the gradient vector are
calculated. As a consequence, the volume gradient 1is
discontinuous, which leads to visible artefacts when this gradient
1s used for visualization purposes. When a reconstruction filter
with a continuous derivative is used, the congruent volume
gradient will also be continuous.
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Figure 2.6 shows the derivatives of the reconstruction filters in
Figure 2.5. These derivatives have to be used to calculate the
congruent gradient. The derivative of the linear interpolation
function is shown to be discontinuous. The derivative of the
quadratic reconstruction filter is piece-wise linear and continuous.
The fourth order polynomial interpolation function that is based on
three sample points has a derivative that is also continuous. The
strange shape of the derivative at x=+0.5 might however also lead
to visible artefacts.

- - Linear

------- 3p. B-spline

— Cubic-spline

— 3p. interpol.
4p. B-spline

Figure 2.6 Derivatives of the reconstruction filters

The three components of the interpolated intermediate difference
gradient are piece-wise linear and continuous in all directions. This
volume gradient can also be derived by linear interpolation in two
dimensions, while the derivative of the quadratic reconstruction
filter is used to calculate the gradient component in the third
dimension. It may be concluded that the intermediate difference
gradient is a mixture of the congruent gradient of the linear and
quadratic reconstruction filters.
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2.5 Edge detection

The detection and visualization of edges in volumetric data is a
problem that plays an important role in volume rendering
algorithms. As mentioned before, the point-spread function of
(medical) acquisition devices will pre-filter the input data. A step
edge will consequently be blurred over a certain transition area.
When the point-spread function is for instance a Gaussian function
with s=1, a step edge at x=0 will be filtered to an error function:

S(x) = %erf(%ﬁx)+% (2.15)

Most edge detection algorithms in discrete fields are limited to the
sample resolution. The convolution of the object given with the
acquisition point-spread function results in the mentioned blurring
at the edges, known as the partial volume effect. The resulting
encoding of the edge location in the data values makes it possible to
determine the edge location accurately between two samples.

In continuous unsampled data, the location of the step edge can be
found by finding the maximum of the derivative of the step
response. This derivative is equal to the point-spread function of
the acquisition apparatus. Because the point-spread function is
maximal at x=0, this location will correspond to the location of the
step edge. The location of the maximum can be determined by
searching the zero crossing of the second order derivative.

This method can however not be easily extended to sampled data
fields. Although it is possible to reconstruct the data field, it is
generally not possible to get an accurate estimation of the location
of the edge based on the second order derivative in this
reconstructed field. In 1D, the derivative of linearly interpolated
data is piece-wise constant, so there is no unique place at which the
maximum 1is located. The derivative of quadratic reconstructed
data is piece-wise linear, with interval boundaries half way two
sample locations. The extreme of this piece-wise linear function
will hence always coincide with the boundaries of the piece wise
linear derivative. The second order derivative of the quadratic
reconstruction filter is piece-wise constant, so it is in general not
significant to use the location where this second order derivative
equals zero as an approximation of the edge location.
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A similar problem occurs when the cubic-spline interpolation
function is used as a reconstruction filter. Although the cubic-
spline interpolation function is a piece-wise third order function
and the second order derivative is therefore piece-wise linear, this
second order derivative is not continuous. Hence, even the cubic-
spline interpolation cannot be used to get an accurate estimation of
the location of a step edge based on the second order derivative. A
reconstruction filter that can be used to estimate an edge with sub-
sample accuracy based on the second order derivative must hence
at least have a continuous second order derivative.

Another method to find the edge location is based on the
reconstructed value. When the point-spread function 1is
symmetrical, the acquired value at the step edge is the mean of the
acquired values at both sides of the edge. When the data is
reconstructed, the location at which the reconstructed data equals
this mean can be used as an estimate of the step edge location. This
approach does not suffer from the ambiguity caused by the
discontinuity of the first and/or second order derivatives, which is
the case when a derivative based edge estimator is used. Even for a
lower order reconstruction filter as the linear interpolation
function, a non ambiguous edge location can be found when the two
neighboring samples have a different value. This will generally be
the case for samples near a step edge. Hence, the continuity of the
reconstruction filter itself is generally satisfactory to find a non-
ambiguous edge location.
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VOLUME VISUALIZATION

The term 'volume visualization'is commonly used
to describe all techniques that can be used to
visualize volumetric datasets. An important field
where these volume visualization methods can be
applied, is the visualization of volumetric datasets
generated by three-dimensional medical scanners.
The same visualization methods are however also
applicable to all other fields requiring
visualization of three-dimensional data.

Several methods have been developed to visualize
such a volumetric dataset. For a certain
application, one of these methods may be
preferable over the others, while for another
application another method might be more useful.
This chapter will describe some of the
visualization methods of particular relevance for
medical applications.
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3.1 Definitions

A volumetric dataset consists of a three dimensional set of scalar
values. The locations at which these values are given are called
voxels, which is an abbreviation of volume element. This is in fact a
three-dimensional extension of the definition of a pixel (=picture
element), known from two-dimensional image processing. The
value of a voxel is often referred to as the voxel value.

Figure 3.1 shows a cube surrounded by eight voxels. This cube will
be referred to as a voxel cube or cell. This voxel cube is the smallest
sub-volume in which the volume can be divided. A dataset
containing N, *N *N, voxels can hence be subdivided in (Ny-1)*(Ny-
1)*(N,-1) of these basic sub-volumes.

voxel

voxel cube

Figure 3.1 Vozxel cube consisting of eight
voxels

3.2 Multi planar reformatting

In medical scanners, the (grey value) data is often acquired slice by
slice. This acquired data is typically observed by also looking at
these slices in a slice by slice way. Figure 3.2 shows two slices
measured with a MRI scanner. The left image shows a slice
through the head in which the brain tissue is very well visible. The
right image shows the same slice in which only the blood vessels
are visible. While observing these slices might be sufficient to
diagnose the AVM (=malformation of arteries) in the right side of
the brain (left side of the image), it is very hard to understand the
three dimensional structures from just looking at the stack of
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slices. Especially in the right image of Figure 3.2, where blood
vessels that intersect the slice are depicted as small dots.

Figure 3.2 Slices of a MRI dataset of a patient with an AVM

Multi planar reformatting (MPR) is a technique that is used to
visualize the (re-sampled) grey values in arbitrary cross sections
through the volumetric data. The cross sections made through the
3D data will be flat in most cases, however arbitrarily bent cross
sections are of special relevance for specific application areas, such
as a survey of the spinal chord or a study of the dents. The main
advantage of the multi-planar reformatting method is that one is
not restricted to viewing in the direction the data was scanned,
which makes it possible to visualize data that was measured in
different slices in one two-dimensional image. Another advantage
of this visualization method is the speed. The main drawback is
that the visualized data is, like the original slices, two dimensional.
A single image does not give much more insight in the three
dimensional structures than the measured slices. Blood vessels
intersecting the reformatted plane will still be depicted as small
dots. To be able to visualize three dimensional structures in a
volumetric dataset in a two dimensional image, the output image
should contain more information than just the grey-values on a
plane through the dataset.
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3.3 Ray casting

More sophisticated volume visualization algorithms take as input
the complete discrete three dimensional data field D(n,,n,,n;) and
project this data field onto a two dimensional screen. This can be
achieved by casting a ray from each pixel (i,j) on this screen
through the data field, which is known as ray casting. The depth
index % defines the location on these rays, as can be seen in Figure
3.3. A coordinate transformation is used to link the display
coordinates (i,j,k) to the object-space coordinates (x,y,z). This
transformation can be organized to contain a perspective
component.

observer j
V A
J .
volumetric dataset
screen
z sample
X
y
ray
voxel

Figure 3.3 Common concepts and terms in ray
casting algorithms

3.3.1 Maximum intensity projection

Maximum intensity projection (MIP) [ZUI95] is a visualization
technique that projects the highest intensity on each ray onto the
corresponding pixel on the screen. The grey values are calculated
by re-sampling the data at discrete %k locations on the rays.
Depending on the dataset and the object to be visualized, it may
also be desirable to visualize the minimum intensity on a ray. To
distinguish between these two projection types, the abbreviations
MinIP or mIP may be used for minimum intensity projection, while
for maximum intensity projection the abbreviations MaxIP or MIP
may be used. Because the underlying visualization algorithms are
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almost identical, the abbreviation MIP will be used here for both
projection types.

In medical applications, the MIP method is mainly used to
visualize blood vessels as shown in Figure 3.4 for the MRI dataset
shown in the right image of Figure 3.2. It can be seen in this figure
that with this method the blood vessels are projected on the screen.
It is hence possible to see the blood vessels in the whole volume in a
single projection image.

Figure 3.4 Maximum intensity projection

A disadvantage of the MIP method for this purpose is the
impossibility to follow a blood vessel in the foreground when blood
vessels in the background with higher intensity cross this vessel.
Furthermore, it is possible that another object with a high grey
value makes it impossible to see the desired object.

3.3.2Closest vessel projection

To be able to see blood vessels in the foreground regardless of the
intensity of vessels in the background, the closest vessel projection
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(CVP) [ZU195] algorithm can be used. This algorithm projects the
maximum intensity of the first encountered blood vessel onto the
screen as shown in Figure 3.5.

Figure 3.5 Closest vessel projection

Ray casting can be stopped when the first vessel is found and hence
this technique can also be significantly faster than maximum
intensity projection. Because vessels in the background are
obscured by vessels in the foreground, this method also gives more
depth information than the MIP method. The main problem with
this method i1s the detection of vessels. In a straightforward
approach, the re-sampling locations on a ray where the re-sampled
grey-value exceeds a chosen threshold are supposed to be inside a
vessel. Choosing a high threshold will make the smaller vessels
invisible. Choosing a threshold just above the background grey-
value will however result in a noisy image in which the main blood
vessels may be obscured by the noise in the foreground. This
method is hence sensitive to noise.

Besides projecting the maximum or minimum value on a ray, it is
also possible to perform calculations on the whole set of values on a
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ray. For instance, the mean grey value on a ray can be projected.
This can give results similar to x-ray images. This approach is
however not (yet) commonly used in medical image processing.

3.3.3 Volume rendering

Volume rendering is a volume visualization method that projects
the shape of objects in the data set onto the screen instead of the
grey values. This can be accomplished by calculating volume
gradients in the dataset that will be used as the orientation of the
object shape. A shading model is used to calculate the observed
effect of a light source shining on this shape. By assigning
transparency and color based on the grey-values in the dataset, the
contribution of this shaded object to the value of a pixel on the
screen can be calculated using a composition formula.

Another approach applies the composition formula directly on the
(re-sampled) grey-values or after mapping the grey-values to a
color value. Yet another approach maps the grey-values to the
screen via the frequency domain by using Fourier transforms
[MAL93]. Because these volume rendering methods that do not use
shading can hardly be compared to the methods that do use
shading, the term volume rendering will be used in the remainder
of this thesis for the volume rendering methods based on shading.

A detailed description of various volume rendering algorithms will
be given in the following chapter.
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3. Volume visualization




VOLUME RENDERING

As mentioned in the previous section, volume
rendering is a volume visualization method that
projects the shape of objects in the data set onto the
screen instead of projecting the grey values.
Currently, many different volume rendering
algorithms exist, while each algorithm may have
many more or less different implementations. This
chapter will describe some of the most commonly
used volume rendering algorithms and
implementations.
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4.1 Common concepts

Many volume rendering algorithms require the calculation of the
color and opacity at an arbitrary location in the dataset and the
color of a pixel on the screen. Therefore, these common concepts
will be discussed before the description of the actual algorithms
and implementations. Although some of these common concepts
are mainly applicable to ray-casting based volume rendering
methods, they may also be used for some other volume rendering
algorithms.

4.1.1 Opacity calculation

Most volume rendering methods calculate the opacity at discrete
(sample) locations on the rays. This requires two computation
steps. Because the sample locations on the ray will generally not
coincide with the voxel locations, some re-sampling filter will have
to be used. Furthermore, the grey value data has to be converted to
an opacity value. The easiest way to calculate this opacity is to
assign an opacity to all possible grey values. In this way, a look-up
table can be used to directly convert a grey value to an opacity
value. This approach can be used when the object of interest has a
grey value that is higher (or lower) than its surrounding. The grey
values that occur inside the object that is visualized will generally
be assigned a high opacity, while the grey values that occur in the
surrounding will be assigned a low or zero opacity (fully
transparent). Consequently, we will only see the object of interest.

More complex methods assign an opacity value to the length of the
volume gradient. This approach makes regions with a large volume
gradient, such as the transition area between two tissues, opaque
or semi-transparent, while regions with a small volume gradient,
for instance inside an object, will be made fully transparent. The
grey value based and the volume gradient based opacity
calculation methods can also be combined, for instance by
multiplying the two opacity values resulting from each method.

4.1.2 Shading and coloring

To calculate the effect of a light source shining on a surface, the
direction of the surface normal has to be known. In most volume



4.1. Common concepts 33

rendering algorithms, the volume gradient is used to approximate
the direction of this normal vector.

When the surface normal (or volume gradient) is known, a shading
model can be used to calculate the effect of light shining on this
surface. A simple shading model contains three components: an
ambient, a diffuse and a specular component. The ambient
component is used to simulate reflections of the light from
surrounding objects. The diffuse component simulates the light
reflected equally in all directions. This component depends on the
amount of light that hits a unit area on the surface. The specular
component is used to simulate the reflection of the light in the
direction of the observer.

Figure 4.1 Shading model

A very popular shading model, illustrated in Figure 4.1, was
derived by Phong [PHO75]. In this shading model, the ambient
component is assumed to be a constant A. The inner product of the
light vector L and the surface normal vector N multiplied with a
constant D 1s used as the diffuse component. The specular
component is defined as the n-th power of the inner product of the
reflected light vector B with the observer vector O multiplied with
a constant S. This results in the following equation for the
observed light intensity:

I=A+D(N-L)+S@ER-0)" (4.1)

This equation only gives a single value that can be used for grey
value rendering. When objects are rendered in full color, each
object can have a different color, and even the light source can have
a color. In this case, the reflected light will have the color of the
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light source, while the color of the ambient and diffuse components
will depend on both the light and the object color.

4.1.3 Composition

Most volume rendering algorithms calculate the opacity and color
of an object along the rays at discrete k values that run from either
the position of the viewer to infinity (known as front-to-back
rendering), or the other way around (back-to-front rendering). A
composition formula [LEV88] is used to calculate the color C(i,j) of
a pixel on the screen from the opacity and color samples on a ray:

n k-1
C'G.j) = ¥ {a.j k) - Cl.j k) [] Q-0 D) (4.2)
k=1 1=1

The product in the right hand side of the equation is equal to one
minus the accumulated opacity up to point k-1. Calculation of this
product for each sample point would be extremely expensive.
Depending on the direction, one of two different algorithms can be
used. The least complex formula is the composition formula for
back-to-front rendering:

C (i, k) = a(i,j, k) - C(i, j, k) + (L—0(i, j, k) - C (i, j, k+ 1) (4.3)

In this formula, C*( i,j,k) 1s the composited color from sample n to k&
(with k<n). This can be easily implemented by storing only the
composited color.

Most volume rendering methods however use the front-to-back
rendering method. It is obvious that when the accumulated opacity
is close to one, one minus the accumulated opacity, and hence the
right hand side product in equation 4.2, will be close to zero. Hence,
the color of samples behind this point will not (or hardly)
contribute to the color of the corresponding pixel on the screen.
Casting a ray can hence be stopped at a point where the
accumulated opacity is (almost) one. This is called early ray
termination [LEV88]. By storing the accumulated opacity, the
computation of the product is reduced to a single multiplication at
each non-transparent re-sampling location k. The following
equation shows the composition formula for front-to-back
rendering:
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Ao = a(ij k) (1-0 (i, j, k=1)) (4.4)
C(l’]ak) = A(XC(Z,],k)“‘C(l,],k—l)
o (l’]’k) = o (i’j’k_l)-'-AOL

Because the contribution of the color at a sample point now
depends on the opacity of the samples in front*, not only the
composited color, but also the composited opacity o (i,j,k) has to be
stored.

When the distance between samples on a ray is changed without
adapting the opacity value at the sample locations, the perceived
transparency of the material will change. This change in perceived
transparency is in general not desirable. It is therefore better to
use an opacity setting that is independent of the sampling
distance. This means that the value of o(i,j,k) has to be adapted to
correct for the sampling distance ([BOS95a],[TER96]). As a result
of this sampling correction, the composited opacity over a fixed
distance should be unaltered when the sampling density is
changed. Hence, also one minus the composited opacity, which
equals the right hand side product in equation 4.2, should remain
unaltered:

N, -n N,-n
1-0(i.j) = [] A—o,Gii k) = T A-o, (i k) (4.5)
k=1 k=1

When considering an area with a constant opacity, equation 4.5
can be simplified to:

(L—oy)™ = (L—opy) (4.6)

When the factor N; is chosen such that the sampling distance
equals a reference distance for which o is given, the corrected
opacity for a oversampling factor N=N,,N; can be found by:

(1-0) = (1-oy)VN 4.7)
Hence,
oy = (1-Y1-o) (4.8)

Consequently, o can for instance be chosen to be the opacity per
meter. Given a sampling distance sd in meters, and hence a
sampling rate of 1/sd samples per meter, the corrected sample
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point opacity will than be oy = 1-(1-oa)s?. Although this seems to
be a rather expensive function to be evaluated at every sample
point, the table look-up approach to calculate the opacity based on
the grey values makes it possible to perform this operation only
once on each cell of the opacity look-up table and only when the
opacity value or the sampling distance is changed.

4.2 Voxel space volume rendering

Many of the current volume rendering algorithms are based on the
method introduced by Marc Levoy [LEV88]. This method pre-
computes a discrete opacity field O(n,n,,n;) and a discrete color
field C(nx,ny,nz) from the data field. The opacity field is computed
by applying a (non-linear) opacity function to the data value at
each voxel. The shading is based on the central difference volume
gradient at each voxel location. The object color is calculated by
applying a (non-linear) color function to the data value at each
voxel. For a fixed light direction, the color field is calculated from
the shading and the object color at voxel locations. The opacity and
color at the re-sampling locations on the rays are calculated
through re-sampling of the corresponding discrete fields. A
composition step is subsequently used, using a front-to-back order,
to compute the color of the pixels (i,j) on the screen.

In this way, the 2-D view of the 3-D object can be calculated from
an arbitrary viewing location, without the need to re-compute the
opacity field and the color field for each viewing angle. When the
position of the light source is changed however, the expensive color
calculation has to be redone for the whole dataset. Furthermore, it
1s almost impossible to apply the full shading model derived by
Phong [PHO75], as the position of the observer and the light vector
with respect to the surface normal are both needed for the specular
shading. Specular shading can therefore only be used when the
color dataset is re-computed for every viewing angle. As this
computation is much more expensive than the rendering itself, one
1s constrained to use the diffuse shading technique, that is
independent of the position of the observer, to compute the
additional color field.

Another disadvantage of this ray casting based voxel space volume
rendering is the high memory requirement. Besides the original
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dataset, two additional datasets are required. When a full-color
color field is used, the total memory needed can be five times the
size of the original dataset.

Because direct implementation of the ray casting algorithm just
described is not capable of rendering volumetric datasets with
interactive speed (about one frame per second) on current
workstations, several optimizations have been developed to
increase the rendering speed. Some of these optimizations, such as
early ray termination (see section 4.1.3), skipping large
transparent sub-volumes and octree based optimizations [WIL92],
[SHE96], have little to no influence on the rendered scene. With
these optimizations however, interactive rendering is still not
possible. Using a shear-warp factorization of the viewing transform
[LAC94], interactive speed is feasible for small sized datasets. In
this algorithm, the data is pre-processed (sheared) such that
during ray casting the samples on the rays coincide with an
intermediate grid so no re-sampling is necessary. This is achieved
by re-sampling (in 2D) each slice in the dataset at the locations
where the rays intersect the slice. The deformation of the resulting
image is corrected in a post-processing (warping) step. This method
however significantly affects the rendered image under certain
angles, making the algorithm view-point dependent.

4.3 Super resolution volume rendering

Due to the interpolation of voxel location opacities in Levoy’s
algorithm and the voxel projection in splatting based algorithms
(described in section 4.5), the perceived resolution is equal to the
voxel size. By oversampling the data and applying the
classification (opacity and color) functions on the higher resolution
data, renderings with a perceived resolution that is much higher
than the voxel resolution is possible. Methods that are based on

this approach are therefore referred to as super resolution volume
rendering methods [BOS95a], [BOS95b], [TER96].

An important feature of these methods is that they apply the non-
linear opacity function at the sample locations on the rays, after
the application of a re-sampling function on the raw voxel data. In
this way, the discrete data field is (implicitly) re-sampled to a
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higher resolution transformed data field and then subjected to the
opacity function.

Moreover, the shading is calculated at the re-sampling locations as
well. This implies that a technique should be used that is able to
compute the volume gradient vector G(x,y,z) at arbitrary (x,y,z)
locations. The voxel location (central difference) volume gradients
can be re-sampled to find the gradient vector at the re-sampling
location, requiring three (tri-linear) interpolations, as described in
section 2.4. This approach is a three-dimensional extension to
Phong normal interpolation [PHO75], where the surface normals
are calculated at the three vertices of a triangle and interpolated to
find the normal at arbitrary positions on this triangle. In this
respect, the color interpolation scheme in Levoy’s algorithm can be
seen as the three-dimensional extension to Gouraud shading
[GOU71], where the colors are calculated at the vertices of
triangles and interpolated to find the color of arbitrary points.

A preferred method calculates the intermediate difference
gradients of the data values in between the voxels, as described in
section 2.4. Because the three gradient component fields are
shifted in a different direction, this re-sampling has to be done with
different coefficients, while the re-sampling of the three central
difference gradient components can be done with the same
coefficients. The calculation of these coefficients makes the
intermediate difference method slightly more expensive. However,
the intermediate difference gradient calculation results in a higher
resolution gradient field than the central difference gradient
method. Furthermore, the central difference method uses four data
points in addition to the intermediate difference method, for each
gradient component.

Figure 4.2 shows a cross section of a cone that contains sharp edges
and three slits with variable width. This object is filtered and
sampled comparable to the filtering and sampling in the data
acquisition process. The object is sampled on a 32x32x32 voxel grid
such that the slits have the width of a half, one and two voxel
distance respectively. The resulting grey-value dataset will be
referred to as the cone dataset. This dataset represents a small
object with fine details that is sampled on a rather coarse grid.
Therefore, this dataset will be used as a reference dataset to
visualize artefacts and limitations of different volume rendering
algorithms.
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Figure 4.2 Cross section of a cone with slits (left) and the
32x32x32 voxel cone dataset that will be used to
compare the artefacts in different volume
rendering algorithms

Figure 4.3 Rendering of the cone dataset using Levoy’s algorithm
(left) and the super resolution volume rendering algorithm
(right)
Figure 4.3 shows two renderings of this cone dataset. To visualize
the surface of the cone, the opacity function chosen is zero below a
certain threshold (fully transparent) and one above this threshold
(opaque). Note that although the surface of the object is rendered,
the visualization algorithm stays the same. Visualization
algorithms that are based on direct visualization of the volume will
therefore still be called volume rendering algorithms. When such a
direct volume rendering algorithm is used to visualize surfaces, it
is often called a surface rendering algorithm. This term will
however be reserved for methods that do not directly visualize the
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volume, but a surface description extracted from the volume, as
will be discussed in section 4.4. All visualization algorithms that
take the volume data as input will hence be called volume
rendering algorithms, while algorithms that take a surface
description as input will be called surface rendering algorithm,
regardless of the ability to visualize surfaces or transparent
volumes.

The left image of Figure 4.3 shows the result of interpolating voxel
location opacities as used in Levoy’s volume rendering algorithm.
At the voxel locations, the opacity is zero or one, while in between
the voxels at the surface the opacity falls of from one to zero. This
1s visible in the rendering as semi-transparent cubes. Hence, even
with this extreme opacity function, the visualization of a sharp
surface is not possible. Using the super resolution algorithm
however, visualization of sharp surfaces located between voxels is
possible, as shown in the right image of Figure 4.3.

Although calculating and shading the intermediate difference
volume gradient at the re-sampling location is much more
expensive than just interpolating the color of surrounding voxels,
the gradient is only calculated at re-sampling locations with non-
zero opacity. When an opaque surface is visualized with the super
resolution method, this gradient calculation is done only once for
each ray that hits the surface. When for instance an opaque surface
is rendered in a 256x256x256 voxel dataset, Levoy’s method would
require 16 million gradient calculations. When the dimension of
the dataset grows with a factor N, the number of pre-computations
grow with a factor of N%. When for instance all rays in a 256X256
image hit the surface, the super resolution algorithm would require
only 64,000 gradient calculations regardless of the size of the
dataset. Because typical renderings may require over a million
interpolations, the rendering speed is only marginally influenced
by the gradient calculation when an opaque surface is rendered.

4.4 Voxel based surface rendering
algorithms

Surface rendering is a technique to render a set of simple graphical
primitives that describe a surface, like a set of polygons. The
advantage of this technique is the availability of low cost hardware
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to speed-up the visualization. Although this hardware can not be
used directly to visualize surfaces in volumetric data, it is possible
to translate the volumetric dataset into a collection of polygons
such as triangles. This translation is known as triangulation.
Algorithms that translate a dataset into such a surface description
to be able to use surface rendering hardware to render this surface
description, will be referred to as voxel based surface rendering
algorithms.

The most popular approach to convert the volumetric data into a
set of polygons is the marching cubes method introduced by
Lorensen and Cline [LORS87]. In this algorithm, each unit cell
consisting of eight voxels is examined for the presence of a surface.
A surface intersects a cell when one of the voxel values is above and
another is below a certain value. This value is called the iso-value.
When a surface is found to intersect a cell, the intersection x of the
surface with the edges of the cell are calculated by solving a+x(b-
a)=Iso, with a and b the grey value of the voxels connected by the
edge. Polygons in these cells are constructed by connecting the
intersection points. The binary decision at the eight voxels leads to
256 different possible cases, of which 15 have been shown to be
topologically distinct. The surface that is extracted by connecting
the polygons is called the iso-surface.

This method can generate multiple triangles for each cell. The total
number of triangles generated with this method can therefore
become extremely large for large sized datasets with complicated
iso-surfaces, which is typical in medical datasets. This huge
amount of triangles can prohibit a high rendering speed, even on
high performance workstations. Furthermore, the generation of
the iso-surface using this approach is slow. Therefore, several
algorithms have been developed to reduce the number of polygons
created on one hand and the surface extraction time on the other.

One of the approaches to reduce extraction time is based on octrees
to decrease the time needed to traverse the cells in the volume
[WIL92]. This approach does however not influence the number of
polygons created. Although this algorithm does significantly
increase the surface extraction speed, the reported calculation
times were well above 100 seconds for rather small datasets. A
significant reduction in CPU-time is possible when a modern,
faster workstation is used. Interactive speed is however still not
feasible. Therefore, a lot of research is still done to optimize this
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algorithm especially when the iso-value should be changed and the
iso-surface should be visualized interactively.

One of the approaches that is able to reduce the number of
polygons is the adaptive marching cubes algorithm [SHU95]. This
reduction is achieved by adapting the size of the triangles to the
shape of the surface. The reported reduction is however small
compared to other methods such as octree-based decimation
[SHE96]. This approach uses adaptive downsampling of the
volume data and applying the marching cubes algorithm on larger
cells in regions where the iso-surface is mostly flat. By using a
surface tracking algorithm, both the number of polygons and the
extraction time is further reduced. Although this has some
advantages, only one (connected) surface is extracted, while the
actual iso-surface in the data may exist of multiple separate
surfaces. Other methods are based on interval volumes [FUJ96], a
multiscale method [GUO95], a modified branch on need octree
[CHU95] and a method based on spatial error bounds [KLE96].
Wilhelms and Van Gelder [WIL95] introduced multi-dimensional
trees for controlled volume rendering with fewer triangles. An
approach, in which a deformable surface is extracted, with
considerable spatial error, from volume data is given in [LUR98].

While reducing the number of polygons is necessary for high speed
visualization, the opposite approach will frequently be needed to
enhance the spatial resolution. The discrete data field is made
continuous in this case using a reconstruction filter of choice.
Triangulation of the implicit surface defined by D,(x,y,z) = Iso can
generate a lot of triangles within one unit cell [BLO88]. As the
marching cubes algorithm can already create a huge set of
triangles, this approach will however be very slow, both in terms of
surface extraction as well as in terms of rendering speed. The
rendering speed can however be improved by reducing the number
of polygons using methods comparable to the ones described before.

4.5 Splatting

A completely different approach is based on projecting voxels from
the dataset onto the pixels on the screen, such as splatting
[WES89]. The order of traversal of the index-set (ny,ny,n,) is chosen
such that the object space is traversed either in front-to-back or
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back-to-front order. A projection of a voxel cube is pre-computed as
splatting footprint. The composition process described in section
4.1.3 is modified to use a complete RGBa image as accumulator
and each splatting footprint as local contribution to the final 2D
image. The opacity and gradient are either computed at the voxel-
locations or the center of a voxel-cube.

Figure 4.4 Voxel cube and corresponding normal
and anti-aliased splatting footprints

Figure 4.4 shows a possible splatting footprint measuring 6x6
pixels. The left image shows a voxel cube from a certain angle.
Given this orientation and the size of the cube, the size and shape
of the splatting footprint can be determined. All pixels in the
footprint have the same color, as shown in the middle image. This
color can be pre-computed for each voxel given in the dataset in the
same way as in direct volume rendering. In a similar way, each
voxel is assigned an opacity. The splatting footprint may be anti-
aliased at its edges by modulating the opacity of a pixel with the
area of the pixel that is inside the contour of the actual voxel cube,
as shown in the right image of Figure 4.4. The pixels in the center
have an opacity equal to the voxel opacity (dark grey), while the
pixels at the edge are made more transparent (light grey).

The main advantage of the splatting algorithms is that they are
much faster than ray casting algorithms [CRA93]. A technique to
further speed-up this algorithm [CRA96] uses a subset of all data,
defined by a range of data values. Some optimizations, such as
early ray termination, can not be applied to this method, as it is not
ray-driven. An alternative implementation of the splatting
algorithm that uses a ray-driven approach [MUE96] is however
capable of using the same optimizations as used in ray casting
algorithms.

The algorithm introduced by Gross and Lippert [GRO95], [LIP95]
computes analytic solutions of the ray intensity integral through a
single wavelet by slicing its Fourier transform and by back-
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projecting it into the spatial domain. The resulting slices are RGBa
textures. Due to the similarity of the basis functions, the
computation of the texture map has to be figured out only once for
each 3D-mother wavelet. Hence, the final volume rendering
procedure turns out to be a superposition of self-similar,
transparent and colored textures, supported by modern hardware
accumulation buffers.



|ISO-SURFACE VOLUME
RENDERING

A new technique as far as volume rendering is
concerned is iso-surface volume rendering
[BOS98]. This algorithm has some conceptual
similarity with voxel based surface rendering
algorithms in the sense that both methods intend
to visualize an iso-surface in the 3D data field. Due
to the lack of a clear definition of this iso-surface
however, it is hard to compare the accuracy of
these methods. Hence, a definition of the iso-
surface in a discrete three dimensional data field
will be introduced first in the following section.
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5.1 Iso-surfaces in volumetric data

An iso-surface is, by definition, the surface in a (continuous) field
F(x,y,z) at which the value equals a pre-defined iso-value. When an
iso-value Iso is given, the equation F(x,y,z) = Iso will give a relation
in x, y and z, which describes the corresponding iso-surface.

In the case of a volumetric dataset however, we have to define an
iso-surface in a discrete data field D(nx,ny,nz). A reconstruction
filter R(x,y,z), that might be interpolating or approximating as
described in section 2.3, can be used to compute the values of the
discrete data field at arbitrary (x,y,z) locations. This implies that
this (continuous) reconstruction filter implicitly extends the
discrete data field to a continuous data field D,(x,y,z). Hence, it is
possible to define the iso-surface in a discrete field D(n,,n,,n,) as
the iso-surface in this extended continuous data field D,(x,y,z). This
extended field, and hence the iso-surface, is determined by the data
values in the discrete field on one hand and the reconstruction
filter of choice on the other hand. This iso-surface is equal to the
implicit surface defined by D,(x,y,z)=Iso. It is clear that this iso-
surface is not the same as the 'iso-surface' extracted with the
marching cubes algorithms. When a linear reconstruction filter is
used, only the nodes of the triangles lie exactly on the real iso-
surface.

Figure 5.1 shows two iso-surfaces in a dataset with 3x3x3 voxels (8
voxel cubes) in which the center voxel has a value of one and the
other voxels are zero. This dataset will be called the single voxel
dataset. The iso-surfaces shown are iso-surfaces in the 3D impulse
response of the reconstruction filters. The left image shows the iso-
surface in the data field reconstructed with the tri-linear
interpolation function and the right image shows the iso-surface in
the data field reconstructed with a quadratic reconstruction
function.

Although the linear reconstruction function is linear in one
dimension, the iso-surface in a tri-linearly interpolated data field is
a third order function within a voxel cube. While the iso-surface is
continuous, the orientation of the surface normal of the iso-surface
1s discontinuous at the boundaries of a voxel cube of the discrete
data field. This is caused by the discontinuity of the derivative of
the linear re-sampling function.
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Figure 5.1 Iso-surfaces in the single voxel dataset created
with tri-linear interpolation (left) and a
quadratic reconstruction function (right)

The quadratic B-spline reconstruction function (described in
section 2.3) has a continuous, piece-wise linear, derivative in one
dimension. When applied in three dimensions on a discrete data
field, this function results in a continuous iso-surface with a
continuous surface normal even at the voxel boundaries as can be
seen in the right image of Figure 5.1. This response gives a natural
surface gradient for a single voxel as well as for iso-surfaces in
arbitrary data fields.

Figure 5.2 shows three iso-surfaces in the cone dataset for three
different reconstruction functions. In the left image, the
discontinuity of the congruent gradient of the tri-linear
interpolation function is clearly visible. In the middle image, the
gradient is continuous because the derivative of the Catmull-Rom
spline interpolation function 1is continuous. The overshoot
generated by this interpolation function is also clearly visible. The
right image shows the iso-surface of a cubic-spline interpolation
function with parameters B and C equal to zero (see equation 2.6).
This function does not satisfy the sixth condition as described in
section 2.3. It can be seen that an interpolation method that does
not satisfy this condition is unsuitable for (three-dimensional)
visualization.

By choosing a reconstruction function and an iso-value, the
location of the iso-surface is uniquely defined and independent of
the viewing transform, even in perspective view or with an extreme
zoom factor. This surface does hence not suffer from the ambiguity
that is a big problem in the marching cubes algorithm when
multiple triangles lie in the same voxel cube. For these reasons, the
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Figure 5.2 Iso-surfaces of the cone dataset with tri-linear interpolation
(left), Catmull-Rom spline interpolation (middle) and an
unsuitable cubic-spline interpolation function (right)

iso-surface will be used as the reference surface to investigate
spatial errors.

5.2 Iso-surface volume rendering

The main difference between iso-surface volume rendering and
traditional volume rendering methods is that iso-surface volume
rendering aims to find the intersection point of a ray with the iso-
surface between the re-sampling locations on this ray instead of
calculating the opacity at re-sampling locations. The opacity and
gradient are calculated at the location of the intersection.

When tri-linear interpolation is used, the intersection points can be
found by finding the roots of a third order polynomial function. The
grey-value at an arbitrary (x, v, z) location inside a basic voxel cube
can be described as L3(A..H, x, y, 2), in which A..H are the voxel
values. The x location on a ray through this sub-volume can be
parameterized as x = xy+A(x;—xp), in which xy is the x
coordinate of the location where the ray enters the sub-volume and
x71 1s the x coordinate of the location where the ray exits the sub-
volume. In a similar way, also the y and z locations can be written
as a linear function of A. These values can be used to rewrite the
tri-linear interpolation function as a third order polynomial for
each line segment. By calculating the roots of the difference of this
polynomial and the iso-value, the exact intersection locations can
be calculated. Calculating the roots of a third order function is
however a extremely computational intensive operation.
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An alternative approach can find the roots of the polynomial by
using an iteration algorithm. Although the finding of the roots can
be much faster, the parameters of the polynomial will still have to
be calculated, which will now become the bottleneck. When higher
order reconstruction filters are used, the complexity will increase
dramatically, making also this approach not suitable for high speed
applications.

A combination of a sampling algorithm with iteration can be used
to find a very accurate approximation of the intersection point
without the need to re-sample the data densely. The iteration
algorithm can be started with any pair of samples: (x;, y;, z;) and
(x5, ¥5 2s), at subsequent locations k; and &, on a ray (i, j), provided
that the iso-value Iso is enclosed between the re-sampled data
values at the locations k; and %, as shown in Figure 5.3. The (x, y,
2) location of the intersection of a ray (i, j) with the iso-surface
location, can be estimated within a small error-bound through
(repeated) calculation of the intersection point of the iso-value Iso
with a straight line connecting the two re-sampled data-values, as
shown in Figure 5.3. This iteration-process is known as the regula-
falsi iteration method.

Data-value
Dcyypz) T77 77777
I
|
I
|
I
I
I
Iso 1= ------ !
| 1
I I
I I
D(xpypz) - f | :
I |
1 1
1 1 1
k, depth k,

k-position on ray (i,j)

Figure 5.3 The location of the intersection of a ray with
the 1so-surface is estimated from two
samples of which one has a (re-sampled)
data-value below the iso-value, and the
other has a data-value above the iso-value

A straightforward implementation of this algorithm searches for
two adjacent samples on a ray, such that one has a data value
below the iso-value and the other one has a value above the iso-
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value. The i1so-surface will be located between these two samples.
From the data values and the iso-value, the depth can be
calculated using the straight-line approximation. This approach
gives the following equations:

Is0—D(xq, ¥4, 27)
D(x9, ¥5, 25) —D(x1, 1, 21)

(5.1)

depth = ky+(ky—ky) - f (5.2)

In these equations, f is the location in between the two samples
where the intersection is found (fe [0, 1]).

Note that the 1D variant of this formula is used in the marching
cubes algorithm to find the intersection points of an iso-surface
with the edges of an elementary cell of the voxel-grid. In the
regula-falsi iteration method, this formula is used for the
calculation of the new base point.

When the distance between k; and k, is large, this straight-line
approximation is not reliable. Using a very small distance between
samples on the ray will however significantly increase the
rendering time. Hence, it is important to select the largest initial
re-sampling distance that guarantees convergence to any iso-
surface present. When the two points k; and k, are found, an
iterative algorithm can be used to find two points k; and k, nearer
to the iso-surface. Although the regula-falsi method will converge
quickly when the distance between two points is sufficiently small,
the performance can be poor when this distance is large. Therefore,
another iterative algorithm with a guaranteed convergence factor,
such as bi-section, can be used to derive the points ks and &k, from &;
and k, to come close enough to the iso-surface to take advantage of
the fast convergence of the regula-falsi iteration algorithm. A speed
advantage, available on most computers, is related to the fact that
the bisection steps do not need division operations, whereas a
regula-falsi step uses one division.

Any other kind of iteration can be used as well to narrow down the
initial interval. By defining a maximum distance between ks and
k4 the accuracy can be chosen freely. In this way, a trade-off can be
made between accuracy and rendering speed.

The initial re-sampling distance (ks-k;) should be chosen with care.
As mentioned, a small initial distance would lead to increased
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rendering time. When a re-sampling distance equal to or even
larger than the minimal sampling distance of the voxel grid is
chosen, it is possible that image details will be missed. This can
also occur in the super-resolution method when the re-sampling
distance on a ray is too large. Levoy’s method will suffer less from
this problem because even image details smaller than a voxel will
be visualized as a vague cube of 2x2x2 voxels. Although it is not
possible to miss these details, this visualization will not give any
insight in the shape of these small objects.

In [TIE98], an algorithm is described that also aims to find the
intersection point of a ray with the iso-surface. In this algorithm,
the possibility to miss fine details is reduced by oversampling
locally. Oversampling can however not guarantee that small
details will never be missed, while the computation time is
increased significantly. Another problem with this algorithm is
that the root is searched in an interval that may contain multiple
different functions. When for instance two samples are taken at
both sides of a boundary of a cell using tri-linear interpolation, the
function on the interval between the samples is a piece-wise third

order polynomial with a discontinuous derivative at the boundary
of the cell.

In the iso-surface volume rendering method, these problems are
solved by taking samples at the intersection points of the rays with
a unit cell consisting of eight voxels. In this way, even the smallest
image details will not be missed as long as one of the rays
intersects these details. When using a low image resolution, it is
hence possible that none of the rays will hit a very small object
(smaller than the pixel size). In this case, this small object will not
be visible. This means that the smallest object visible is about the
projected pixel size in the volume. Increasing the image resolution
or zooming in on details will make even the smallest objects visible,
as will be shown with the rendering of a single voxel.

Because the samples are taken at the boundaries of the cell, the
function on the interval between these points and the derivative of
this function are both continuous functions. This makes this
method more suitable for an iterative search for the root of this
function.

When the volume is sampled at the intersection points of the rays
with the unit cells, the initial sampling distance within each cell
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will vary from ray to ray, while the initial sampling distance on a
ray will vary from cell to cell. Hence, it is possible that the number
of iterations necessary to guarantee the maximum distance
between ks and k, will vary as well. The average initial sampling
distance will be in the order of the voxel distance.

Besides the guarantee that image details will not be missed when a
ray intersects these details, the sampling at the intersection points
with the unit cells also has a speed advantage. Because these
intersection point lie on a voxel plane, the initial re-sampling
function is a two-dimensional function, which is more than twice as
fast as a three-dimensional re-sampling function in the case of a
tri-linear interpolation and up to more than four times as fast in
the case of cubic-spline interpolation. Only the re-sampling in the
iteration phase has to be done using the full three-dimensional re-
sampling function.

When the iso-surface location is known for all rays, true surface-
gradients can be calculated instead of volume gradients. In this
way, the surface will be shaded in accordance with the estimated
shape. When the shape is estimated accurately, this surface
gradient will be equal to the congruent volume gradient at the
surface.

More details of the iso-surface volume rendering algorithm will be
given in section 7.2.5 about spatial accuracy of the method. Details
about implementation will be given in Chapter 8, while some
examples of applications on medical data will be given in Chapter
9.



SIGNAL THEORETIC ASPECTS
OF DATA ACQUISITION

As discussed in section 2.2, the grey-value data
from medical scanners is sampled in the
acquisition process. According to the Nyquist
criterion, the data should be sampled correctly to
avoid aliasing. In most (medical) acquisition
devices, the acquired data is band-limited by the
point-spread function (PSF) of the acquisition
device. Using the modulation transfer function
(MTF), which is the Fourier transform of the PSF,
the highest signal frequency and hence the lowest
sample frequency to satisfy the Nyquist criterion
without additional low-pass filtering can be
determined.

In this chapter, the point-spread function, the
modulation transfer function and the noise
properties of two medical data acquisition devices
will be described: the CT and the MR scanner.
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6.1 Computed Tomography (CT)

In CT imaging, data is acquired by shooting x-ray beams through
the object being measured. The number of photons that are
absorbed by the object can be calculated from the number of
detected photons at the other side of the object. This detection is
achieved by a row of detectors that transform the number of
photons into a measurable voltage. In this way, a set of 512 to 1024
measurements, called a profile, is obtained for each angular
position. To be able to reconstruct a single slice, 600 to 1500
profiles per rotation are measured, resulting in a total of 307,000 to
1,536,000 measurements per slice.

Figure 6.1 shows schematically the commonly used third
generation CT scanner in which the (one-dimensional) detector
array and the x-ray tube rotate together around an object in a
single plane, acquiring one slice of data.

rotation
angle

x-ray tube

Figure 6.1 Third generation CT scanner

When all measurements in a slice are depicted in a two-
dimensional image with the profiles in one direction and the angles
in the other, this will result in an image in which a point in the
object is depicted as a sine shaped line, as can be seen in Figure 6.2
for a full rotation over 360 degrees. Such a 2D image showing all
profiles in a slice is called a sinogram. One profile can be
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represented by the grey-values on a sloped line through this
sinogram.

e,

Figure 6.2 Sinogram of one acquired slice
from a CT scanner

This figure shows a sinogram that is generated from a Shepp-
Logan head phantom image that is often used in CT and other
tomographic reconstructions [SHE74]. This greyscale phantom
image is a model of the human head that consists of two large
ellipses (representing the skull and the brain) containing several
smaller ellipses (representing anatomical structures inside the
brain). The corresponding original greyscale data is shown in
Figure 6.3.

The projection of the image intensity along radial lines is known as
the radon transform [HEL99]. The acquired profile image shown in
Figure 6.2 is hence the radon transformed grey-value data of the
slice shown in Figure 6.3. Different approaches exist to reconstruct
the original grey-values in a slice from the measured profiles
[KAKS8S8]. One of these approaches is the inverse radon transform.

A commonly used inverse radon transform algorithm is the so
called filtered backprojection [RAM71]. This algorithm first filters
the profile data using a high-pass ramp filter, the so called Ram-
Lak filter. This filter can be windowed to reduce high frequency
noise. The grey value data at an output pixel location can then be
reconstructed by calculating the integral on a sine shaped path in
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Figure 6.3 Shepp-Logan phantom

the filtered sinogram. Because the points on these paths do not
coincide with the measured locations, a resampling filter will be
necessary. Figure 6.4 shows the sinogram after filtering with a
ramp filter.

Figure 6.4 Filtered sinogram

Figure 6.5 shows the resulting output image after filtered
backprojection. In this example, a low resolution phantom image of
512x512 pixels is transformed to 512 profiles containing 512
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samples. This rather low resolution might result in visible
artefacts in the reconstructed image. In this example however, the
ramp filter is windowed by a hanning window to reduce high
frequency artefacts.

Figure 6.5 Result after filtered back-
projection

6.1.1 The point-spread function

The (in-slice) point-spread function of a CT system is determined
by a number of factors: the size of the focal spot on the x-ray tube
anode, the width of the collimator that determines the slice
thickness, and the size of the detectors. Due to the divergent
nature of the radiation, and also due to the reconstruction method,
the PSF is spatially variant with respect to the distance from the
rotation centre [RAT92].

Besides this, additional variance is introduced by the scanned
object (patient) itself, because scatter (redirected radiation) and
beam-hardening (wavelength dependant absorption) locally vary
with the material inside the scanned object. In the remainder of
this thesis, the spatial variance of the PSF will be neglected.

The PSF of the CT scanner can be described as the convolution of a
number of optical transfer functions with a square shape. As
discussed in section 2.3, repeated convolution of a square function
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will result in a Gaussian function. Hence, the PSF can be
approximated by a Gaussian function:

x2

PSF(x) = e 20 (6.1)

The width w of the PSF is defined as the distance between the two
points that have a value that is half the maximum of the PSF.
Hence, the width has to satisfy the following relation:

(w/2)? 1
e 202 == (6.2)
2
And therefore,
w = 26./2In(2) = 2.356 (6.3)

When the width of one of the square optical transfer functions is
significantly larger than the others, for instance due to a large focal
spot size, the PSF cannot be described by a Gaussian function. In
this case, the width w of the PSF will increase, while the
parameter o cannot be used. Therefore, the width w will be used as
a parameter to describe the CT point-spread function.

The point-spread function in the scan direction is usually much
wider than the point-spread function within a single slice. This is
mainly caused by the shape of the detectors in the detector array.
The size of such a detector in the direction perpendicular to
scanned slice is much larger than the width. The shape of the
point-spread function in the scan direction can be controlled by
adjusting the width of the x-ray beam collimator. The width of this
scan direction point-spread function is also known as the slice
thickness, while the sampling distance between two acquired slices
1s known as the slice distance.

As a result of this deviation of the point-spread function in the slice
direction, the three dimensional point-spread function is not point
symmetrical. This may be a problem when the acquired volume is
used in three-dimensional (visualization) applications. A reason for
acquiring thick two-dimensional slices is to increase the signal to
noise ratio and contrast. The resulting data is however mainly
useful for observing the original acquired slices. The asymmetrical
point-spread function makes the data less useful for observing
perpendicular planes.
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A new generation of CT scanners solves this problem by using a
two-dimensional detector array. In a single rotation of the x-ray
source, many slices are acquired. This approach can give a much
more symmetrical three-dimensional point-spread function. The
main drawbacks of this method are the increased noise and the
large amount of acquired data. To reduce the noise, the data can be
low-pass filtered. When only slices perpendicular to the scan
direction are observed, this filtering can be done in the scan
direction, again resulting In an asymmetrical point-spread
function. For three-dimensional applications however, it might be
better to filter the data with a symmetrical three-dimensional low-
pass filter to preserve the symmetry of the point-spread function.
Because of the symmetry and flexibility of this type of scanners,
these scanners are preferable when the acquired data is used for
three-dimensional visualization.

6.1.2 Modulation transfer function

Because the Fourier transform of a Gaussian function is also a
Gaussian shaped function, the MTF of a scanner with Gaussian
PSF can also be described by a Gaussian function, with:

_£
PSF(f) = e %7 (6.4)

The product of the standard deviations of the place and frequency
domain satisfy the following equation:

60, = 51;5 (6.5)

Because both the PSF and the data are continuous signals in place
domain, the frequency spectrum before sampling is also continuous
and has no repetition. Sampling will result in a discrete frequency
spectrum that is replicated at every multiple of the sampling
frequency. Consequently, signal data above the Nyquist frequency
will be aliased. Hence, according to the Nyquist criterion, the
sampling frequency has to be at least twice the highest signal
frequency.

Because the data is in general not band-limited, the highest signal
frequency before sampling is determined by the MTF. The value of
the MTF is very small (lower than one percent) for frequencies
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higher than 30y This means that, according to the Nyquist
criterion, the sampling frequency has to be twice this frequency, or
fs = 60y Using equation 6.5, we can calculate the sample distance
sd as a function of G,:

Sd = < = x:c (6.6)

This means that for a sampling distance smaller than o,, the
Nyquist criterion is met. Using equation 6.3, the resulting
sampling distance should be at most 0.43 times the width of the
point-spread function.
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Figure 6.6 Modulation Transfer Function of a CT
scanner with a Gaussian PSF after sampling

In Figure 6.6, the MTF after sampling (MTF") is plotted, using the
sampling distance as a parameter. The frequency is normalized to
the Nyquist frequency, which is half the sampling frequency. Due
to folding, the value of the MTF"' at half the sampling frequency is
twice the value of the MTF at the same frequency. It can be seen
that when the condition sd=c, is met, the MTF has a negligibly
small value at the Nyquist frequency. For larger values of the
sampling distance, the rather large value at the Nyquist frequency
will result in aliasing. When sd=2c,, the MTF has a nonzero value
at the sampling frequency (f=2). Consequently, even the lowest



6.1. Computed Tomography (CT) 61

frequency components will be influenced by folding, which is visible
as the small offset at /=0 in Figure 6.6.

As mentioned before, the PSF cannot be described by a Gaussian
function when one of the square optical transfer functions is
significantly larger than the others. In this case, the MTF will also
be different, as can be seen in Figure 6.7.
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Figure 6.7 Modulation Transfer Function of a CT
scanner with a non Gaussian PSF

The resulting MTF is the product of a sinc function and a
Gaussian. It can be observed that high frequency data will be more
attenuated. This 1s commonly the case for the point-spread
function in the slice direction. In order to obtain maximal spatial
resolution, all the square optical transfer functions have to be
chosen as small as possible.

6.1.3 Noise

The process of counting photons at the detectors is the source of the
noise in CT acquisition, which means that the noise is not affected
by the (optical) point-spread function. Consequently, the noise in
the measured profiles has a Poisson distribution. This noise is not
correlated and therefore has an amplitude that is more or less
independent of the sampling frequency, which is also called white
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noise. Due to the interpolated filtered back-projection, the noise
will become frequency dependent with a Gaussian distribution.

The ideal ramp filter has a frequency response that grows linearly
with the frequency. After filtering the profiles, the data is back-
projected to reconstruct the final two-dimensional grey-value
slices. Different interpolation functions are used to re-sample the
measured profiles. For instance, the frequency response of filtering
with an ideal ramp filter and re-sampling using linear
interpolation is shown in Figure 6.8.
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Figure 6.8 Frequency response of filtering the profiles with an
ideal ramp filter and linear interpolation

In this figure, the frequency axis is normalized to the Nyquist
frequency (1 rad/s). Except for the frequency response of the linear
interpolation function, the amplitude axis is scaled with the same
number. In this example, the data was re-sampled at a four times
finer grid, resulting in a four times higher sampling frequency. The
re-sampling rate can be very high when a zoom reconstruction is
used, which means that small objects are reconstructed to a full
image.

The frequency response of the ideal ramp filter shows that lower
frequency noise in the profiles is attenuated, while the higher
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frequency noise is amplified. To reduce the high-frequency noise,
different types of filters are used. Consequently, the frequency
spectrum of the noise in the profiles after filtering has a band-pass
behavior, as shown in Figure 6.9.
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Figure 6.9 Frequency response of some different (windowed)
ramp filters

As mentioned before, the data in the profiles is interpolated during
the back-projection. Figure 6.10 shows the noise spectrum after
filtered backprojection using, for example, a Butterworth ramp
filter in combination with linear interpolation.

The high-frequency noise behavior, and consequently the spatial
resolution, can be influenced by the choice of the ramp filter. More
suppression of the high-frequency noise will also result in a lower
spatial resolution, and vise versa.

Figure 6.11 illustrates the noise filtering in the filtered
backprojection algorithm. The wupper left image shows the
acquisition noise in the acquired profiles, that has a Poisson
distribution and is not correlated. The upper right image shows
that the FFT of this noise is flat. The lower left image shows the
filtered backprojection of the noise image. It can be clearly seen
that this noise is correlated. Furthermore, the noise is heavily
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Figure 6.10 Frequency response of filtering the profiles with a
Butterworth ramp filter and linear interpolation

frequency dependent, as can be seen in the lower right image that
shows the FFT of the filtered backprojected noise. It is clearly
visible that the noise after filtered backprojection has a low
amplitude at low frequencies (center of the image), and that the
amplitude grows with the frequency (towards the edges of the
image). As mentioned earlier, an additional low-pass filter can be
used to reduce the high frequency noise. In this example, an
unwindowed Ram-Lak filter is used.

It is clear that the spatial resolution is limited by the sampling in
the profiles and therefore by the detector width. Using zoom

reconstruction to enlarge small objects will not enhance the detail
of those objects.

6.2 Magnetic Resonance Imaging

Although a MRI scanner [FRI89], [VLA99] uses a completely
different acquisition principle, a similar approach can be used to
describe the signal theoretic background of this scanner. First,
some principles of MRI will be explained.
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Figure 6.11 Noise in CT reconstruction: poisson noise in the profiles
(upper left), FFT of the profile noise (upper right), noise
after filtered backprojection (lower left) and FFT of the
noise after backprojection (lower right)

The magnetic resonance imaging acquisition method is based on
the magnetic field that is caused by spinning nuclei like 'H, 13¢,
19F and 31P. The hydrogen nuclei (*H) are commonly used because
most tissues in the human body contain high concentrations of
these nuclei. When the nuclear spins are directed in a random
direction, the magnetic fields of the nuclei will cancel each other
out. When a patient is placed in a magnetic field, the nuclear spins

will become orientated parallel or anti-parallel to the magnetic
field.

A small majority of nuclear spins will be aligned in the low energy
parallel direction. This results in a net magnetization in this
direction. When energy in the form of radio waves is added to the
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patient, the direction of the nuclear spins can change from the low
energy parallel direction to the high-energy anti-parallel direction.
A radio frequency (RF) pulse that displaces the net magnetic field
90 degrees is called a 90-degree pulse. The frequency of this pulse
depends on the gyromagnetic ratio of the nucleus and the strength
of the magnetic field. For hydrogen nuclei, the gyromagnetic ratio
1s 42.6 MHz/Tesla. In a 1 Tesla field, the frequency of the RF pulse
should hence be 42.6 MHz.

By adding a gradient field to the main magnetic field, the strength
of the magnetic field becomes place dependent. As a result, only the
nuclei in a single slice will respond to a certain RF pulse.

Besides the spin around their own axis, the nuclei also turn around
the axis of the main magnetic field. Due to a 90 degree pulse, the
net magnetization vector rotates in a plane perpendicular to the
main magnetic field (transverse magnetization), which can be
measured by an antenna. When the RF pulse is turned off, the net
magnetic field will realign in the direction of the main magnetic
field. This is called T1 or spin-lattice relaxation. T2 or spin-spin
relaxation occurs when spins in the high and low energy state
exchange energy, which results in a loss of transverse
magnetization. Finally, T2* relaxation is caused by dephasing of
individual magnetizations. This dephasing is caused by magnetic
field inhomogeneity and results in a loss of transverse
magnetization at a rate higher than T2 relaxation.

Because the rotation speed also depends on the strength of the
magnetic field, a second gradient field can be applied such that the
rotation speed depends on the location in the slice. When this
gradient field is applied in a short time interval, the difference in
rotation speed will cause a place dependent phase shift. In this
way, different lines in the slice are phase encoded.

Figure 6.12 shows a multi-echo spin-echo sequence. The 180
degrees RF pulses used to generate the echo are rephasing the
spins that have undergone T2* decay. The decline in signal from
subsequent echoes reflects T2 decay. The time between the 90
degrees pulse and the moment when the spins are completely
rephased is called the echo time (TE). This time is equal to two
times the time between the 90 degrees pulse and the first 180
degrees pulse.
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90 180 180

Figure 6.12 Multi-echo spin-echo sequence

The frequency of the signal emitted by a nucleus also depends on
the strength of the magnetic field. A third magnetic field is applied
to frequency encode the position of a nucleus on a line. In this way,
the position of a nucleus in a slice is encoded in the phase and
frequency of the signal emitted. Because the first gradient field
selects a slice, the second (phase) selects a row and the third
(frequency) selects a point on a row, these gradient fields are also
referred to as the z, y, and x gradient fields respectively.

In general, different materials have different T1 and T2 relaxation
times. Hence, the value of the transverse magnetization at TE
depends on the material. Furthermore, the magnetization of a
certain material depends on TE. Besides the echo time, the
repetition time (TR) also has an influence on the magnetization.
The combination of TR and TE determines the contrast and the
signal to noise ratio (SNR).

6.2.1 Modulation transfer function

In MRI, the measurements are done in the frequency domain (also
known as k-space). This frequency domain data can be transformed
to place domain data using a Fourier transform (FT). The grey-
value data is obtained by taking the modulus of the resulting
complex data.

Consequently, the MTF is flat, up to the Nyquist frequency. To
reduce the measuring time, the number of measurements can be
reduced, which means that the number of measurements can be
smaller than the number of voxels in the grey-value data. In this
case, zeros are added to the measured data. Hence, the MTF has
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the same shape, although the highest frequency is lower than the
Nyquist frequency.

6.2.2 The point-spread function

As the measurements are done in frequency domain, a MR image is
obtained by taking the FFT of the measured data. Because the
MTF can be described by a square function, the ideal space domain
PSF will be a sinc-like function described by:

PSF(x) = W 6.7)

In this equation, ps is the pixel size, which is defined as half the
distance between the first two zeros of the PSF. The width w of the
PSF is 1.2 times the pixel size. However, because the pixel size is a
commonly used measure for spatial resolution in MRI, it will be
used as acquisition parameter for MRI systems.

When the data is acquired in slices, the PSF will have a sinc form
in the two directions within the slices, while the PSF in the slice
direction can be completely different. In case the data is acquired
in 3D, the point-spread function will have a sinc form in all three
dimensions. The latter method seems to be favorable for volume
rendering.

6.2.3 Noise

The noise in the measured data of MR scanners has a Gaussian
distribution. The complex parts, resulting from the two-
dimensional fourier transform, also contain (independent)
Gaussian distributed noise. Due to the modulus operator, the
distribution of the MR image noise depends on the signal value.
The background noise for instance, will have a Rayleigh
distribution, while the noise for higher signal values tends towards
a Gaussian distribution. For lower signal values, the noise
distribution is a mixture of Rayleigh and Gaussian distributions.

Because the complex parts after the fourier transform contain
noise with a flat frequency spectrum, the frequency spectrum of the
MR image noise is also flat. Although the distribution of the noise
is signal dependent, the noise is still uncorrelated, and therefore,
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the noise spectrum is independent of the signal value and the noise
distribution.

Consequently, it is possible to see structure in the MR image noise
due to the different distribution properties. This however does not
imply that this noise is correlated. In CT, the noise distribution is
independent of the signal value, and therefore the same in the
whole image. However, the data is correlated due to the filtered
back-projection. In this case, it is also possible to see structure in
the image. However, this structure is the result of the correlation
between the pixels.

As mentioned previously, the signal to noise ratio (SNR) can be
influenced by the TR and TE parameters. A larger contrast (signal)
means a higher SNR. In this way, the TR and TE times can be
chosen to give an optimum SNR for a certain tissue.
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ACCURACY

The main objective of volume rendering and voxel
based surface rendering methods is the two-
dimensional (2-D) visualization of the shape of
three-dimensional (3-D) objects in volumetric
datasets. When volume visualization methods are
used for medical applications, it is highly
desirable that the visualized shape is an accurate
reconstruction of the object under study. First the
accuracy of estimating the shape with an iso-
surface will be investigated. This makes it possible
to investigate the spatial errors of different
visualization algorithms separately.
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7.1 Edge reconstruction

The grey-value dataset is the result of convolution of the point-
spread function of the acquisition device with an object at discrete
(voxel) locations. Due to this convolution, the exact location of the
surface of objects larger than the psf width is 'encoded' in the grey-
values at voxel locations, while very small objects may be lost.
When the data was not sampled in the acquisition process, the
location of a step edge can be exactly found using the iso-value
method described in section 2.5. When the data is sampled
however, an error will be made which will be shown to depend on
the location of the samples relative to the edge. In [SMI96], this
sample location dependent error was examined for a square point-
spread function.

Because in this chapter only the response of a step edge is
investigated, the results are not directly applicable to other types
of transitions between two tissues. The transition between two soft
tissues for instance may also be spreaded over multiple voxels,
regardless of the psf. In these cases it is not possible to define a
surface that separates the two tissues. Using the same edge
detection algorithm on this type of transitions will however give an
approximation of a surface in the middle of the transition. This
surface may still be useful to analyze the transition. In soft tissues,
also the measured values might change within an object. This will
also affect the shape of the surface. In this section, the accuracy of
the estimated location of an edge in one dimension will be
investigated for point-spread functions typically found in practical
(medical) scanners.

7.1.1 Edge location estimation accuracy

In Figure 7.1, the edge response of three re-sampling functions on
sampled data acquired with a Gaussian psf is plotted for a fixed
acquisition sample distance. The acquired samples are marked
with an ‘o’

From this edge response, it is possible to calculate the error made
by subtraction of the re-sampled data from the original Gaussian
function. This is comparable with the evaluation of interpolation

functions by interpolating sampled 2D grey-value images and
subtract the result from the original image [BEN95], [MAC96],
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Figure 7.1 Step edge response of the data acquisition
and re-sampling chain for a Gaussian point-
spread function

[GRE97]. This approach will lead to the conclusion that cubic-
spline interpolation is the best and quadratic is the worst image re-
sampling technique. However, it is not our goal to make the best
reconstruction of the grey-values. Instead, we are interested in the
accuracy of the estimated location of the step edge. When the edge
location is estimated by the location at which the re-sampled grey-
value equals the mean of the values at both sides of the step, as
shown in the Figure 7.1 where the mean is 0.5, the largest edge
location error is made when cubic-spline interpolation is used,
while the edge is best estimated by the quadratic re-sampling
function. Linear interpolation performs better than cubic-spline
but worse than quadratic.

The previous example showed the results for acquisition with a
fixed sample location and a fixed sample distance. When the
sample locations are chosen differently, the results will be
different. When for instance one of the samples is taken at x=0, the
error will be zero for all re-sampling functions. Figure 7.2 shows
the edge location error as a function of the sample location for a
sample distance equal to the width of the point-spread function.
The error is a percentage of the width of the psf. Again, the largest
error is made when cubic-spline interpolation is used.

Besides the sample position, the error also depends on the sample
distance. To investigate this dependency, only the amplitude of the
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Figure 7.2 Error of the estimated location of
the step edge as a function of the
sampling location for a fixed
sample distance

error will be discussed. Figure 7.3 shows the amplitude of the error
as a function of the ratio sample-distance/psf-width.
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Figure 7.3 Amplitude of the edge location
error for different sample
distances

It is obvious that the error approaches zero for very small sample
distances. The error grows approximately with the third power of
the sample distance. In the CT acquisition process, the sample
distance can be chosen very small within slices. In the scan
direction however, the sample distance is often rather large.
Consequently, the amplitude of the edge location error is much
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larger in the scan direction than within the slices. This amplitude
will become visible in the renderings as ripples on oblique surfaces,
as shown in Figure 7.4.

Figure 7.4 Ripple artefacts due to
too large sample
distance

As discussed in section 6.1.2, the sample distance should be at most
0.43 times the width of the point-spread function to meet the
Nyquist criterion. At this sample distance, the systematic edge
location error is about one percent of the width, which corresponds
to 2.5 percent of the sample distance.

A similar approach can also be used to evaluate the accuracy of the
edge reconstruction in MR images. As described in section 6.2.2,
the psf in MR acquisition has a sinc shape, while the sample
distance is commonly fixed to the pixel size. Figure 7.5 shows the
step response of acquisition with a sinc point-spread function and
three different re-sampling filters.

Figure 7.6 shows the sample location dependent error for a sample
distance equal to the pixel size.

As can be seen in these images, the results for a sinc point-spread
function are quite similar to the results for a Gaussian psf. The
difference between the re-sampling functions is however slightly
larger. Although the sample distance is commonly equal to the
pixel size, it is possible to investigate the effect of using a smaller
sample distance. The amplitude of the step edge location error as a
function of the sample distance is shown in Figure 7.7.
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Although the Nyquist criterion is always met in the case of data
acquisition in the frequency domain, the step edge location error is
four to six percent of the pixel-size when the sample distance
equals the sample size. This error is hence about five times larger
than in CT when the Nyquist criterion is met. The Nyquist
criterion can hence not be used as a criterion for the determination
of the step edge location error.
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When the sample distance is reduced by a factor two, the error will
be reduced by a factor 8 to 10 of the pixel-size, which corresponds to
a factor 4 to 5 of the sample distance. This can be achieved in MR
imaging by zero padding the frequency domain data. When the
frequency domain data is zero-padded, not only the ripple in the
surface due to the systematic error becomes smaller, but also the
frequency response of the total acquisition and re-sampling chain
will improve, resulting in much more detail. This is mainly caused
by the low-pass filtering of the re-sampling function. Due to the
zero-padding, the sampling frequency and hence the Nyquist
frequency will become higher and less high frequency data will be
filtered out.

Figure 7.8 shows two iso-surfaces of an MR phantom. The left
image shows the iso-surface in the original data, while the right
image shows the result after zero-padding the frequency domain
data. The severe ripples in the left image due to the systematic
surface estimation error are clearly visible. In the right image, this
error is almost zero and hence hardly visible. The small ripples in
the surface that are visible in the right image are caused by the
sinc-shaped point-spread function. This same ripple is also present
in the left image, but is hardly visible here due to the much larger
surface estimation error ripple. Furthermore, the higher
frequencies are much more attenuated in this image resulting in a
slightly smaller ripple due to the point-spread function. Small,
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high frequency, details are however also filtered out which is very
well visible at the loss of detail at the screw holes.

Figure 7.8 Iso-surface before (left) and after zero-padding

It is not possible to use an ideal low-pass filter to re-sample the
place domain data. This is caused by the complex modulus operator
in the reconstruction process. In this process, the phase
information is lost, which means that the original frequency
domain data can not be reconstructed. Figure 7.9 shows the
response of a step edge before and after zero-padding. The black
circles indicate the locations at which the samples are taken. Even
when sinc-interpolation is used, the original data cannot be
recovered. The grey circles indicate the extra samples that are
available when zero-padding with a factor of two is applied. In this
case, even a strong low-pass filtering re-sampling filter might yield
better high-frequency results than any re-sampling filter without
zero-padding.

In this example, a step is shown from zero to one. Due to the
overshoot, negative values are possible, as shown in Figure 7.5 and
Figure 7.9. This is however not possible in MR data. The results
shown are hence only usable for step edges at which the acquired
value can not be negative. The influence of the modulus operator
on the estimated step edge location is shown in Figure 7.10.
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Figure 7.9 Step response of data acquisition and re-sampling
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distance (left) and amplitude of the error for different
sample distances (right)

Besides the smaller error, the quadratic re-sampling function also
has the advantage of being less sensitive to noise in the data
compared to the linear and cubic-spline functions.

7.1.2 Gradient accuracy

In the previous section, only the accuracy of the estimated location
of a one dimensional step edge was considered. When these edge
detection algorithms are applied to surfaces in 3D, the sample
location dependent error will result in visible artefacts. In many
volume rendering algorithms however, not the estimated surface,
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but the shading of this surface using the volume gradient is
visualized. The desired value of the gradient is the derivative of the
step response at the actual step edge location. This derivative is
equal to the maximum value of the point-spread function that
occurs at x=0. When the surface gradient is estimated using one of
the gradient calculation methods described in section 2.4, the
estimated gradient will in general not equal the desired gradient.
Similar to the estimated edge location, the estimated gradient will
depend on the sampling distance, the sample location and the
chosen function.

Figure 7.11 shows the desired and estimated gradients using three
different gradient estimation algorithms for a Gaussian point-
spread function. The sampling distance chosen is equal to the
standard deviation.
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Figure 7.11 Estimated gradients at different
sample locations

As mentioned, the desired gradient is equal to the value of the
point-spread function at x=0, in this case 1/./2m. This value is
depicted in Figure 7.11 as a red line. The three gradient estimation
methods that are shown in this figure are the central difference
method, the intermediate difference method, and the cubic-spline
gradient method. In case of the central and intermediate difference
methods, the gradient at an arbitrary location is found by linearly
interpolating the calculated gradient at (or between) the samples.

Because the central difference and the intermediate difference
gradient methods give the same results at the sampling locations,
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the estimated gradient at the edge location is identical when a
sample is taken at the edge location. The value of the gradient
found in this case is however not the correct derivative of the
(continuous) step response. The cubic-spline based gradient
algorithm results in a very inaccurate approximation of the
derivative.

When the edge location lies exactly between two samples (sample
location = 0.5), the gradient estimated by the intermediate
difference methods is a much more accurate approximation of the
derivative, while the central difference method results in a
gradient estimation that is a worse approximation of the
derivative. The cubic-spline gradient algorithm also gives much
better results. Due to the overshoot of this function, the estimated
gradient can become larger than the desired derivative.

Because in applications the exact edge location is unknown, the
gradient will be calculated at the (wrong) estimated edge location.
Figure 7.11 also shows the result of calculating the intermediate
difference at the estimated edge location using linear interpolation.
It can be seen that the results are identical when the edge location
coincides with a sample or lies between two samples. In these cases
the estimated edge location is identical to the exact edge location.
At other sample locations, the error in the estimated edge location
results in a better approximation of the derivative of the step
response.

Because the estimated gradient also depends heavily on the sample
location, visualization using the estimated volume gradient will
also result in severe ripple artefacts when the sample distance is
large.

When a fixed volume gradient is used for shading, the choice of the
re-sampling function to find the surface location hardly influences
the visual appearance. Only the shape of the surface will differ
noticeably, while the shading of the surface will be almost
identical.
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7.2 Spatial error bounds for the
visualization of iso-surfaces

To be able to evaluate the accuracy of the many different rendering
algorithms, an error bound has to be defined. As mentioned in the
previous section, several error criteria introduced in the past are
based on the reconstruction of the grey-values at sub-voxel
locations [BEN95], [MAC96], [GRE97]. The common approach is to
sub-sample a given two-dimensional image and re-sample this
sampled image to recover the original image size. Hereafter, the
grey-values of the original image are compared with the grey-
values of the re-sampled image for instance by calculating the
mean square error. This is a valid approach to compare the
accuracy of re-sampling functions in applications where the grey-
values have to be displayed at a higher resolution than the image
size, details of the image are blown up or the image is subjected to
a transformation.

Another approach to compare the re-sampling functions used in
different visualization methods 1is based on frequency domain
criteria [BEN95]. In this approach, the ideal low-pass filter is used
as the point of reference. The re-sampling functions considered are
transformed into the frequency domain and compared with the
ideal low-pass filter.

However, these error criteria do not take into account the way the
re-sampling functions are embedded in different volume
visualization algorithms. This aspect has much more impact on the
visual appearance than the choice of the re-sampling function.
Hence, these error criteria are not generally usable to evaluate the
accuracy of the visualized shape.

As shown in the previous section, the amplitude of the sample
location dependent error and hence the size of the ripple in the
surface is smaller for the quadratic B-spline re-sampling method
than for linear interpolation, while cubic-spline interpolation has
an even larger error. Because grey-value and frequency domain
based error criteria normally predict the opposite, it is clear that
these error criteria can not be used in the case of finding the
location of a step edge.

An alternative approach is to compare the final two-dimensional
rendered image with a reference image [COH98]. This is a good
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approach to evaluate the perceived image quality when a lossy
simplification is used, when a reference lossless image is available.
In this case, the best method is the method that has the least
impact on the rendered image. In the case of volume visualization
however, there exist many visualization algorithms and a reference
1s not (yet) available.

Therefore, a new spatial error bound will be used that uses the
maximum distance between the location where the surface is
calculated and a reference surface as a measure for spatial
accuracy. This allows an evaluation of the error bound,
independent of the observation angle. The errors in traditional
volume rendering algorithms are mainly caused by calculating the
gradient at the wrong location. This gradient should be calculated
on the reference surface. By using the definition of the spatial error
bound, the maximum distance between the location where the
gradient is calculated and the reference surface can be determined.

Because these error bounds are defined in relation to the voxel
distance, perspective projection does not influence the spatial error
bounds. Although voxels near the viewpoint can be enlarged
extremely in perspective projection, a visualization method with a
negligible spatial error is able to visualize an iso-surface in these
voxels without visible artefacts.

The errors made in the different volume visualization methods
described in the previous section have a different effect on the
visualization of a given object. This will be illustrated with the
rendering of the isometric 32x32x32-voxel data set of a cone with
slits of %, 1 and 2 grid units that was shown in Figure 4.2. When
such a small dataset is rendered at high resolution, errors as small
as the voxel distance can be easily visualized. To be able to see the
effect of a spatial error much smaller than the voxel size, a dataset
containing a single voxel will be used for the visualization of this
error.

Because the location where the re-sampled data is equal to a fixed
(iso-) value is a good estimation of the location of a step edge, the
extension of this definition to the three-dimensional case, which is
known as an iso-surface (see section 5.1), will be taken as a point of
reference for the shape of the object.

Figure 7.12 shows a two-dimensional example of the acquisition
and reconstruction process. Although the shape of the test object
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int his figure looks like the cone in Figure 4.2, these are not
identical. Figure 7.12 is merely used to illustrate the whole traject
of data acquisition and reconstruction. The renderings in this
chapter are all based on the dataset in Figure 4.2.

-1
-

Figure 7.12 Test object before acquisition, after filtering with a Gaussian
psf, after thresholding without sampling, after sampling,
after re-sampling, and after iso-surface reconstruction

In the upper left image of Figure 7.12, the original test object is
shown. In the upper middle image, the same object after filtering
with a Gaussian point-spread function is shown. The upper right
image shows the result of thresholding this filtered object. The
difference between the upper left and the upper right image is
entirely caused by the low-pass character of the point-spread
function. As a result, sharp edges are rounded. When the data is
sampled, a discrete data field, as shown in the bottom left image,
will be the result. This data is the input for the various
visualization algorithms. By re-sampling and thresholding the
data to find the edges of the object, as described in the previous
section, a good estimation of the thresholded object before sampling
can be made. The lower middle image shows the data after re-
sampling, while the lower right image shows the final
approximation of the object. Any difference between the upper
right and the lower right image is caused by the sampling/re-
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sampling process. It was shown in the previous section that these
errors can be made sufficiently small by increasing the sampling
frequency in the acquisition process. Because these errors have
been investigated separately, it is now possible to take the
resulting iso-surface after re-sampling as a reference object. The
differences between the original object and the reference object are
caused by the acquisition process. The goal of the spatial error
bound in this section is to determine the maximum distance
between the boundary of the reference object (the iso-surface) and
the boundary of the wvisualized object for all visualization
algorithms described in Chapter 4.

Due to the sampling in the acquisition process, sampling artefacts
may be introduced. Small details in two adjacent acquired slices
may for instance be unconnected in reality, while in the
visualization process these details may be connected due to non
optimal sampling and interpolation. Oversampling the data will
therefore not help in reducing these sampling artefacts. These
artefacts are caused by the acquisition process and can hence be
reduced by adjusting the sampling parameters during acquisition.
Besides the sampling artefacts caused by the scanner, the re-
sampling used in many visualization algorithms introduces
additional re-sampling artefacts. Some of these artefacts are
directly related to the spatial error bound described in this chapter.

As not all volume visualization methods are able to visualize a
sharp surface, the spatial error bound has to be extended to handle
these cases as well. In this case, the location where the non-linear
opacity function is applied can be considered the location of the
surface. This definition is easily handled and characteristic for the
spatial error found in all the rendering methods described.
Provided that the iso-surface defined in section 5.1 is accepted as
the golden reference, the errors produced by the basic volume
rendering methods are all related to the fact that the opacity and
the gradient were calculated at locations close to the iso-surface,
but not exactly on the iso-surface.

7.2.1 Voxel space volume rendering

Due to the interpolation of the opacity in the ray casting algorithm
described in section 4.2, sharp transitions will be visualized as a
vague transition from opaque to transparent within a unit cell. In
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the rendering, this will become visible as small vague cubes with a
size equal to the voxel size. Figure 7.13 shows a rendering of the
cone dataset with the voxel space volume rendering method using a
very small re-sampling distance of 1/10th of the voxel distance.

Figure 7.13 Voxel space volume rendering of the
32x32x32 voxel dataset of a cone
with small slits

It can be seen clearly that even with this very small & distance this
method 1is not able to accurately render surfaces. Because
decreasing the re-sampling distance both on the rays as well as
between rays has little effect on the perceived image quality, a re-
sampling distance that is equal to or slightly smaller than the
voxel size is commonly used. This means that a 32x32x32-voxel
dataset is generally rendered as a 32xX32 image. Higher resolution
images can be obtained by interpolating this low resolution two-
dimensional image. Because splatting based methods project
voxels on the screen, this is also applicable to these methods. For
this reason, the rendering times reported for the voxel space
volume rendering algorithms heavily depends on the number of
voxels in the dataset.

The opacity and color in the voxel space volume rendering methods
are calculated at the voxel locations. As in our definition of the
spatial error bound these locations are considered as being the
location of the estimated surface, the spatial error in voxel space
volume rendering is maximal for a point of the iso-surface located
in the centre of a unit cell. When for instance a single voxel is
rendered opaque while the surrounding voxels are fully
transparent, the surface would be visualized as a vague cube. This
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visualization will not change when the shape of the iso-surface is
changed, for instance by changing the iso-value.

The spatial error bound is hence equal to the distance between the
centre of the voxel and the edges and hence of the order

E prer = (Jdx2+ dy2 + dz2)/2 (7.1)

In this equation, dx, dy and dz are the voxel-distances in the x, y
and z directions. It is assumed that the distance between re-
sampling locations is equal to or smaller than the voxel distances.
In that case, the error bound is not severely influenced by the re-
sampling process. If the re-sampling distances grow larger, this
distance will influence the error bound and eventually even
determine the error bound.

When the shear-warp algorithm is used to speed up the ray casting
method, the re-sampling distance is fixed for a given viewing angle.
When the rays are aligned with the voxel grid, the re-sampling
distance is equal to the voxel size. When the data is rotated under
the worst case angle of 45 degrees, as shown in Figure 7.14, the re-
sampling distance on the rays are increased to ./dx?+ dy2+ dz2.
When the voxel dimensions are equal in the three directions, this
distance is 1.73 voxels large. This large distance will lead to clearly
visible artefacts at this worst case angle.

Figure 7.14 The shear-warp algorithm introduces additional
artefacts due to a viewing angle dependent re-
sampling distance, that can be 1.73 voxels large at
an angle of 45 degrees

To reduce sampling artefacts in the ray casting algorithm and
especially in the shear-warp algorithm, the corresponding authors
propose using a smooth opacity function. This will result in even



88 7. Accuracy

larger fuzzy areas and hence in an increase of the error bound. The
visibility of these re-sampling artefacts can however be effectively
reduced by this blurring approach.

In accordance with earlier findings, the spatial error does not
decrease when the opacity field is oversampled in the % direction. It
can be seen that the spatial error can only approach zero when the
voxel distances go to zero. This implies that the data field should be
oversampled to improve the accuracy, which was also described by
Levoy [LEV88] as a method to improve image quality. The re-
sampling distance should however always be smaller than the
(oversampled) voxel size, and should hence also go to zero. To
improve the error bound by a factor of two, this approach will lead
to increased dataset sizes by a factor of eight, and hence the
memory requirements and the rendering time will also increase
with a factor of eight. To reduce the error bound by a factor of ten,
the dataset will increase by a factor of 1000. It is clear that while
this approach can be used on very small datasets of 20x20x20
voxels, it will lead to a giant explosion of data when typical medical
datasets are to be rendered with such a small error bound.

7.2.2 Super resolution volume rendering

The perceived quality of the images produced by the voxel space
volume rendering algorithms just described is rather low. In the
ray casting algorithm, this is mainly caused by the classification at
voxel locations. In the super resolution volume rendering
algorithm, this classification is done at the re-sampling locations
on the ray, which significantly influences the visual appearance.

Figure 7.15 shows two renderings of the cone dataset using the
super resolution volume rendering method. The left image was
rendered with a re-sampling distance equal to the voxel distance,
while the right image was generated using a re-sampling distance
ten times smaller. Note that at this resolution, the cone rendered
with the super resolution volume rendering technique using a re-
sampling distance equal to the voxel distance appears as a stack of
2-D slices. This is caused by the volume gradient calculation at
discrete depth locations, which leads to discontinuity of the
gradient when for two neighboring rays (pixels) the surface is
found at different depth locations.
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Figure 7.15 Visualizations of the cone dataset using the super
resolution volume rendering method with a sampling
distance equal to the voxel distance (left) and with a
sampling distance ten times smaller

To reduce these re-sampling artefacts, an opacity transfer function
can be used that makes the slices semi-transparent depending on
the grey-value. This has the same effect as blending the edges of
adjacent slices, as shown in Figure 7.16. This approach, often
referred to as anti-aliasing, will blur the edges of objects as well.
Consequently, the visualization of a sharp surface will not be
possible. Furthermore, because more gradient calculations per ray
are necessary, the gradient calculations will significantly influence
the rendering time or even become the main contribution to the
rendering time.

=]

Figure 7.16 Anti-aliasing to reduce visibility of artefacts

The spatial error in super resolution volume rendering is maximal
when the ray intersects the iso-surface just behind an integral &
value. In this case, the surface is found at the next sample location.
The spatial error bound is hence of the order:

Byyper = A+ dyF + d2f (7.2)
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In this equation, dxy, dyj, and dz;, are the increments in the x, y and
z directions corresponding with a unit step in the k direction. This
spatial error bound can be clearly seen in the left image of Figure
7.15 as the distance between two adjacent slices.

The spatial error approaches zero when the re-sampling distance
on the rays goes to zero. For the super resolution method, a high
over-sampling rate in the % direction is hence sufficient to approach
a negligible spatial error, as can be seen in the right image of
Figure 7.15. In this image, the spatial error bound is decreased by
a factor of ten at the cost of increasing the number of samples and
therefore the rendering time by a factor of ten. The size of the
dataset and hence the memory requirements are however not
influenced with this approach. The spatial error bound is therefore
mainly bounded by the desired rendering speed. The need to
decrease the re-sampling distance to obtain a high spatial
resolution can make the algorithm costly when high resolution/
quality images are required.

7.2.3 Voxel based surface rendering algorithms

Figure 7.17 shows the exact iso-surface in a dataset that consists of
a single voxel using a tri-linear interpolation for a fixed iso-value.
The left image in Figure 7.17 shows one cross section of this
dataset. In this image, the iso-surfaces for nine different iso-values
using tri-linear interpolation are visible as nine iso-contours. The
right image shows how one of these iso-contours (contour 1) would
be estimated by two different voxel based surface rendering
algorithms. The marching cubes based approaches find the
intersection of the iso-surface with the voxel grid. The surface
description is made by connecting these intersection points to
create polygons. This is shown in the cross section in Figure 7.17 as
contour 2. An alternative approach also finds the intersection of
the iso-surface on diagonals. When this calculation is just based on
the value of the two points connecting the diagonal, the
intersection found is not the actual intersection with the iso-
surface, shown as contour 3 in Figure 7.17.

It may be clear from this figure that the approximation of the iso-
surface with a polygon that interconnects the iso-values at the
voxel grid gives a considerable spatial error. Furthermore, the
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04 8 x

Figure 7.17 Iso-contours of the single voxel dataset (left) and the
straight line approximation of one of the contours using
two different iso-contour extraction methods

direction of the surface gradient is hardly useful for the estimation
of the shape of small objects.

The spatial error in voxel-based surface rendering methods, that
approximate the iso-surface as a set of polygons, is maximal for iso-
surfaces with a high curvature, like the single voxel iso-surface. We
assume a sphere with a radius of one voxel is the worst case
surface. This surface will be estimated as a diamond by marching
cubes based algorithms. For an isometric dataset, the distance
between the sphere and the diamond will be 1-./3/3 times the
voxel size. This suggests that, for an almost isometric dataset, the
spatial error is of the order:

E .= (Jdx?2+dy2+dz?)/2.4 (7.3)

The spatial error of the marching cubes algorithm is hence smaller
than the error made with voxel based volume rendering methods.
The observed error can be significantly smaller when the
congruent gradient is calculated at the vertices of the triangles and
Phong normal interpolation is used.

The spatial error bound can be reduced by super-sampling the
dataset. This will reduce the size and increase the number of
triangles generated. As a result, surfaces with a high curvature can
be better approximated. The same is true for methods that find a
triangulated surface in a continuous field, which can be applied to
the continuous re-sampled data field. Instead of super-sampling
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the whole dataset, it is also possible to re-sample the dataset
locally, using an error criterion to control the number of triangles
generated. When the desired spatial error is very small, these
approaches can however generate a large number of triangles for
cells with a high curvature surface.

Methods that reduce the number of polygons generated with the
marching cubes method may further increase the spatial error
bound, depending on the reduction algorithm used.

7.2.4 Splatting

The splatting footprint, used in the splatting algorithm, should be
capable of mapping a single voxel on the screen, eventually taking
the local opacity into account. A possible footprint measuring 6x6
pixels was shown in Figure 4.4.

The opacity and the gradient, that determine the opacity and the
color to be used for the splatting footprint, are computed from the
opacity and the gradient at the center of the elementary grid-cell
surrounding the voxel or at the voxel location. The spatial error
equals hence the spatial error of the direct volume rendering
method:

Esplat = ('\/dxz + dy2 + de)/Z (74)

7.2.51so-surface volume rendering

The goal of iso-surface volume rendering is to visualize an iso-
surface with negligible error bound, without significant loss in
rendering speed. Figure 7.18 shows a rendering of an iso-surface in
the cone dataset generated using the iso-surface volume rendering
method with the quadratic re-sampling function.

The spatial error made in iso-surface volume rendering fully
depends on the selection of proper initial (sample-) locations, the
iteration algorithm chosen and the convergence criterion used.
Figure 7.19 shows in a cross section how one of the iso-surfaces of
Figure 7.17 is estimated using the iso-surface volume rendering
method at a viewing angle of 45 degrees.

In this figure, some of the viewing rays are depicted as dotted lines.
The implementation shown uses n bi-section steps followed by one
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Figure 7.18 Rendering of the cone dataset generated
with the iso-surface volume rendering
algorithm using quadratic interpolation
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Figure 7.19 Using bi-section, a very accurate estimation of
the iso-surface can be made using only a few
iteration steps

regula-falsi step. Without bi-section (n=0), the exact iso-surface,
shown as the curve labelled 'iso', is estimated using the regula-falsi
step on the samples at the intersection points of the rays with the
voxel grid. This results in the curve labelled '0'. At the first bi-
section step, the grey-values are also calculated on the dash-dotted
bi-section line. When only one bi-section step is used, the
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estimation error is zero at the intersection points of this bi-section
line with the actual iso-surface. On both sides of these intersection
points, the regula-falsi step in the surface location estimation is
based on different re-sampling points. On one side, the estimation
1s based on the re-sampled values at the intersection points of a ray
with the bi-section line and the voxel grid in front of the surface,
while at the other side the estimation is based on the re-sampled
values at the intersection points of a ray with the bi-section line
and the voxel grid behind the surface. The surface estimated when
only one bi-section step is used is shown in Figure 7.19 as the
contour labelled '1'. At a second bi-section step the grey-values are
also calculated on either one of the dashed lines, depending on the
grey-value on the first bi-section line. The iso-surface location can
now be estimated from four different combination of intersection
points. The estimated iso-surface after two bi-section steps and one
regula-falsi step is shown in Figure 7.19 as the contour labelled '2'.

It is clear that a very small spatial error can be reached using just
a few iteration steps within one cell of the data field. In every step
of the bi-section process, the spatial error is decreased by a factor of
two. The regula-falsi step further decreases the spatial error bound
with a factor that is generally much larger than two.

The spatial error bound is hence of the order:

Eiso = (’\/d'x2 + dyZ + dzz)/2n+ ' = Sresidual (75)

In this equation, n is the number of bi-sections. It is possible to
supply a spatial error bound €, after which the iso-surface volume
rendering algorithm stops the bi-section process when the distance
between two samples is smaller than this error bound. The actual
error will however be much smaller due to the regula-falsi iteration
step.

Figure 7.20 shows the iso-surface of a single voxel after one, two,
three, and six bi-sections followed by the regula-falsi step. To be
able to see the errors in the estimated surface location, the shading
is based entirely on this estimated surface and not on volume
gradients. In this figure, the intersection of the bi-section planes
with the iso-surface are clearly visible as contours on the surface.
At these contours, the spatial error is zero. While the generated
surface i1s continuous, the direction of the surface normal is not.
This is caused by switching the pair of base points at the
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intersection contours. It can also be seen in this figure that every
bi-section step adds a contour with zero error between two zero
error contours.

Ab
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Figure 7.20 Iso-surfaces of the single voxel dataset after 1,
2, 3, and 6 bi-sections

Although the spatial error is very small after four bi-sections, the
shading of the estimated surface can give undesirable artefacts due
to the discontinuity of the surface normal. However, measurements
have shown that the rendered image does not significantly change
when the number of bi-sections is increased from two to eight when
the shading is based on the volume gradient at the estimated iso-
surface. Hence, only two to three bi-sections are necessary to avoid
viewpoint dependent artefacts.

Furthermore, the intermediate difference volume gradient is also
continuous at the boundaries of a unit cell. Because the surface
gradient, and hence the congruent volume gradient, 1is
discontinuous at these boundaries, intermediate difference volume
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gradients can be used to generate a smoother surface when tri-
linear interpolation is used.

Shading true surface gradients or congruent volume gradients can
however be very helpful to analyze the true shape of the estimated
iso-surface as shown in Figure 7.21. While the intermediate
difference volume gradient generally can be used to improve the
perceived image quality of an iso-surface in a tri-linearly
interpolated data field, it is obvious that a non-congruent volume
gradient is not an accurate estimate of the surface normal of the
iso-surface in this figure.

Figure 7.21 Rendering of a single voxel dataset shows
that the intermediate difference volume
gradient (left) is not an accurate
approximation of the congruent gradient
of tri-linear interpolation

7.2.6 Survey

The inherent spatial error of several volume rendering algorithms
has been computed. Table 7.1 includes an extra column for the
isometric case with Ax = Ay = Az. Designers of volume rendering
software and hardware can use these results to find algorithms
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with improved spatial accuracy and/or to apply the theory to
existing implementations to evaluate their spatial accuracy.

Table 7.1 Survey of methods with their associated spatial
error and the action to be taken to improve the method

Algorithm Error Isometric | Super-sample

Voxel space VR | % Av 0.87 Ax Dataset

Shear warp Av 1.73 Ax Dataset
Splatting Y% Av 0.87 Ax Dataset
Super res. VR As As Rays

Marching cubes | 0.42Av | 0.73 Ax Dataset

Iso-surface VR €residual | €residual

In this table, Av is the voxel size, which is ./dx? + dy?+ dz? and As
is the sample distance, which equals ,/dx? + dy? + dz?. The €,05iqual
for the i1so-surface volume rendering method is an error bound that
can be chosen freely. With all methods, an error bound that
approaches zero can be achieved. By using a super-sampling factor
N in the first five methods, the error bound is reduced to 1/N. In
the super resolution algorithm, this is obtained by super-sampling
the rays, which will increase the complexity of the algorithm with a
factor N. In the four other methods, the dataset should be super-
sampled, which increases both the amount of data as well as the
complexity with a factor N°. When the desired accuracy is for
instance 1/10-th of the voxel distance, the complexity of the shear
warp algorithm will increase with a factor 1000, the complexity of
direct volume rendering and splatting will increase with a factor
125 and the complexity of marching cubes will increase with a
factor 74 compared to straightforward implementation without
super-sampling the data. To reduce the error bound from one voxel
distance to 1/10-th of the voxel distance, the complexity of the
super resolution algorithm will increase with a factor 10. With the
iso-surface volume rendering algorithm, the same result can be
obtained without significantly increasing the complexity.

The iso-surface volume rendering algorithm is hence the most
accurate algorithm to visualize iso-surfaces in 3D datasets.
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Especially when high accuracy is needed, for instance for medical
applications, this algorithm can be much more efficient than the
other algorithms that can only achieve the same high accuracy at
an extremely high cost.

Dedicated implementations of the algorithms analyzed may
produce better results, when additional (error) criteria are taken
into account. One important feature of spatial error criteria and
spatial error bounds is that the conditions under which these
errors can be diminished are now better understood.

The medical applications described in Chapter 9 all use the iso-
surface volume-rendering algorithm on raw output data of a CT or
MRI scanner. Neither pre-filtering [SAK95] nor upsampling of the
data was needed to obtain images free of sampling artifacts.

It is good practice to switch from one re-sampling function to
another to get a better understanding of the scene at hand. The
linear interpolation function, with its discontinuities in the
gradient, can be used to visualize the boundaries of the voxel-grid.
This gives an understanding of the resolution of the data. The cubic
spline interpolation function on the other hand, can be used to
verify that the high frequency content in the data is sufficiently
preserved. Note that this results in different iso-surfaces of choice
and that it has not been the subject of this chapter to find criteria,
which of those is preferred. The identification and subsequent
elimination of spatial errors, made in various volume rendering
applications, has been the main objective.



IMPLEMENTATION AND
OPTIMIZATIONS

The previous chapters gave a description of
various volume rendering algorithms. Most of
these algorithms have been implemented and
much of the current research is focussed on
optimizing the algorithms to obtain higher
rendering speeds. Many of these optimizations will
however result in visible artefacts, which is
undesirable especially in medical applications.
Iso-surface volume rendering is a new algorithm
with high accuracy and free of re-sampling
artefacts. To be able to use this algorithm in
medical applications, the rendering speed should
be high, while the visual appearance should not be
affected by optimizations. This chapter will
describe some techniques to improve the speed of
various parts of the algorithm without affecting
the image quality.
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8.1 Binary shell

One of the most important optimizations that does not influence
the final image is minimization of the number of calculations.
When rays are cast through the whole volume, many sub-volumes
will not contribute to the rendering. When an iso-surface is
visualized, only the basic volumes that are intersected by the iso-
surface have to be processed, while all other volumes can be
skipped.

A cell is intersected by an iso-surface when it contains both voxels
with a value higher than the iso-value and voxels with a value
lower than the iso-value. When only these cells are processes, not
only the empty (transparent) space around an object to be
visualized can be skipped, but also the opaque volume within this
object. Consequently, only the shell of an object has to be processed
to find the iso-surface.

A fast and easy way to find and store the information about the
presence of an iso-surface is based on binary volumes. Using one
bit it is possible to distinguish between empty and non-empty cells.
By simply thresholding the data, a binary volume indicating what
voxels have a value higher than the iso-value can be created.
Simple logic operations on the resulting binary volume makes it
possible to calculate the presence of an iso-surface for many sub-
volumes simultaneously. Since only the sub-volumes lying in the
shell of an object are selected to be processed, the resulting binary
volume will be referred to as the binary shell. Figure 8.1 shows a
two-dimensional equivalent example of the computation of the
binary shell.
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Figure 8.1 Two-dimensional equivalent example showing the grey-value
data (left), the binary volume (middle) and the binary shell
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First, the grey-value data shown in the left image is thresholded.
The voxels with a value below this threshold are depicted as black
squares in the middle image of Figure 8.1, while voxels with a
value above the threshold are depicted as white squares in this
image. The object to be visualized is shown as a grey disk. The
corresponding iso-surface is also shown as a black circle. It is
obvious that voxels with a value higher than the iso-value lie
within this circle while the other voxels lie outside the circle. The
dark-grey squares in the right image of Figure 8.1 indicate the cells
that lie completely outside the object and can hence be skipped.
The other cells all contain a part of the desired object. To find the
1so-surface, only the cells that are intersected by this iso-surface
have to be processed. The light-grey squares in the right image,
that lie completely inside the object, can hence also be skipped. The
remaining cells that contain a part of the iso-surface are depicted
as (larger) white squares. It can be seen in this image that the iso-
surface indeed intersects all selected cells and that each cell
selected for processing contains both a voxel with a grey-value
higher as well as a voxel with a grey-value lower than the iso-
value. The resulting binary shell is the smallest set of cells that
have to be processed in the iso-surface volume rendering
algorithm.

For visualization of the iso-surface, only the binary shell has to be
processed. A similar approach can also be used to minimize the
number of computations when for instance a maximum intensity
projection is calculated and a volume of interest is selected using a
lower threshold or some other kind of segmentation. In this case
however, all cells that contain a part of the object should be
processed. In the two-dimensional example in Figure 8.1, this
means that also the light-grey cells in the right image have to be
processed. For objects with a large volume, this will increase the
number of computations drastically.

8.2 Rendering speed

Using the iso-surface volume rendering algorithm in combination
with the binary-shell, high rendering speeds can be obtained
without any other pre-computation. To be able to compare this
algorithm with other visualization methods, the speed of iso-
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surface rendering on some freely available medical and non-
medical datasets will be discussed.

The datasets used for the speed measurements are available from
the University of North Carolina at Chapel Hill.

This set of datasets contains an MR dataset of a human head
consisting of 256x256x109 voxels, a CT dataset of a human head
containing 256%x256%x113 voxels and a CT dataset of an engine
block containing 256Xx256x110 voxels.

The measurements are carried out on a 500 MHz Intel Pentium III
computer with 128 MB RAM memory. The resolution of the images
has a higher impact on the rendering speed than the resolution of
the dataset. Therefore, measurements are done at two different
image resolutions: 256x256 and 512X512. As the resolution of the
datasets is 256%x256 for each slice, many visualization algorithms
will use a corresponding 256x256 pixel output image because
oversampling does not or hardly increase the image quality. With
the iso-surface volume rendering algorithm, it is possible to
generate very sharp surface edges. A higher image resolution is
hence also desirable. It is possible to use a lower image resolution
of 256x256 pixels during interaction and a higher resolution of
512x512 pixels images when interaction is stopped. This approach
ensures a faster response during interaction, while the image
resolution is still very useful for orientation.

Figure 8.2, Figure 8.3 and Figure 8.4 show renderings of the
different tissues that are visualized to measure the speed of the
1so-surface volume rendering algorithm.

Table 8.1 shows the results of rendering these tissues in full color
using tri-linear interpolation and the intermediate difference
volume gradient. The rendering times were measured at the angles
shown in Figure 8.2, Figure 8.3 and Figure 8.4. For the objects
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Figure 8.3 Engine block and steel parts from CT engine dataset
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Figure 8.4 MR brain dataset

shown, the rendering speed depends only marginally on the
viewing direction.

Table 8.1 Timing of rendering speed

Dataset 256x256 512%512
CThead skin | 0.20s - 5.0 fps | 0.60s - 1.7 fps
CThead bone | 0.18s - 5.5 fps | 0.49s - 2.0 fps

MRbrain 0.14s - 7.1 fps | 0.38s - 2.6 fps

Engine 0.17s - 5.9 fps | 0.39s - 2.6 fps
Engine steel | 0.08s-12.5fps | 0.16s - 6.1 fps

It can be seen that all tissues can be rendered at multiple frames
per second even at 512x512 image resolution. At a lower 256X256
image resolution all tissues can be rendered at more than 5 frames
per second, while tissues with a small surface, such as the steel
parts of the engine block, can be rendered at well over 10 frames
per second.

The only pre-computation that has to be done is the determination
of the binary shell. This computation has to be done every time the
1so-value changes. The time-critical part of this pre-computation is
the thresholding of the grey-value data. Changing the iso-value in
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the CThead dataset for instance takes less than 0.2 seconds.
Changing the iso-value and visualization of the skin or bone can
hence be done at 2.5 frames per second at 256X256 image
resolution. This makes it possible to interactively adapt the iso-
value. Voxel based surface rendering algorithms have to calculate a
new triangulated iso-surface when the iso-value is changed. This
requires much more computation time, especially when the
number of generated triangles is that high that an algorithm has to
be used to reduce the number of triangles to be able to visualize the
surface fast enough.

In the following chapter about medical applications, also higher
resolution datasets are used. It will be shown there that the speed
of iso-surface volume rendering remains high when the resolution
of the dataset grows significantly.

8.3 Multiple iso-surfaces

In the previous chapters, only the visualization of a single iso-
surface, that is defined by a single iso-value, is described. This iso-
surface splits the volume in two parts: one in which all
(reconstructed) grey-values are lower than the iso-value, and one in
which all grey-values are higher than the iso-value. It is also
possible to define multiple iso-values. When for instance two iso-
values are given, the volume is split in three parts: one in which all
grey-values are lower than the lowest iso-value, one in which all
grey-values are higher than the highest iso-value, and one in which
all grey-values lie between the lowest iso-value and the highest iso-
value. In the extreme case that both iso-values are equal, only the
iso-surface itself is visualized.

To be able to efficiently visualize such a multiple iso-surface, the
calculation of the binary shell has to be adapted. Only the cells that
are intersected by one (or more) of the iso-surfaces have to be
processed. This means that the sub-volumes in which all grey-
values are lower than the lowest iso-value and the sub-volumes in
which all grey-values are higher than the highest iso-value can be
skipped. Furthermore, all sub-volumes in which all grey-values lie
between two consecutive iso-values can be skipped. The remaining
set of sub-volumes will be intersected by one or more iso-surface
and should hence be processed.
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Figure 8.5 shows an example of two iso-surfaces within a single
sub-volume. This figure is only used to demonstrate how accurate
and free of sampling artefacts two iso-surfaces can be rendered
simultaneously. In this figure, the part of the volume with grey-
values between the two iso-values is rendered opaque while the
remaining part of the volume is transparent. This figure also
shows what kind of complex surfaces can be rendered using the iso-
surface volume rendering method. The visualized cube contains
voxels with the values (and locations): 3 (0,0,0), 6 (0,0,1), 4 (0,1,0),
10 (0,1,1), 5 (1,0,0), 7 (1,0,1), 7 (1,1,0), and 2 (1,1,1). With an iso-
value between 3.0 and about 5.35 the volume will contain two
separate surfaces. With values of 5.4 to 5.55 a double iso-surface
similar to the surface shown in Figure 8.5 is visualized. An iso-
value above 5.7, again yields two separate surfaces. The cases at
which two separate surfaces are visualized can also be
approximated using the marching cubes algorithm. The main
difference is that the estimated surfaces are flat. Using the
marching cubes algorithm however, also the closed surfaces shown
in Figure 8.5 would be rendered as two opaque planes.

Figure 8.5 Multiple iso-surfaces within a
single voxel cube

The described method for rendering multiple iso-surfaces is
however only useful when it is possible to see both the outside as
well as the inside of an object. This is possible by segmentation of
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the volume or by cutting the object in pieces. In Figure 8.5, the
volume is segmented so that only one voxel cube is visible.

8.4 Shading

By using the iso-surface volume rendering method to visualize iso-
surfaces in volumetric data, it has become possible to perform
manipulations of the rendered image with interactive to real-time
speed. Some of these manipulations are: combining several tissues,
changing the position of the light source, changing tissue colors,
depicting cut-planes etc.

To increase the speed of the shading, several table look-up based
approaches have been proposed [TER95]. Given the light position,
it 1s possible to pre-compute the intensity for all possible surface
normal vector orientations, and store this intensity in a lookup
table. When the shading table calculation and the lookup table
based shading can be done fast enough, the position of the light
source can be changed in real-time within a rendered scene.

The complete rendering pipeline based on this approach is depicted
in Figure 8.6.

3D Data
Iso-Surface
Vqume+Rendering Light direction
Depth- Gradient- Shading
buffer »  buffer > iable » 2D Image (—
k(i) Gradient N(i,j) )
Calculation Shading (table look-up)

Figure 8.6 Rendering pipeline

From the 3D dataset, a 2D floating-point depth-buffer can be
created using the iso-surface volume rendering algorithm. Using
this depth-buffer, a gradient buffer that contains the surface
normal or the volume gradient for each pixel can be calculated.
This surface normal is used as an index to find the correct shading
in a pre-computed 2D shading-table. This shading will result in a
2D grey-value image. Besides calculating the gradient buffer from
the depth buffer, it can also be generated in the iso-surface volume
rendering algorithm directly.
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The calculation of the shading-table can be simplified by
considering the fixed direction of the observer. When the gradient
vectors are calculated in viewing coordinates, the observer vector
always equals [0,0,-1]. Consequently, the inner product of the
observer vector [0;,0;,0p] and the reflected light vector [R;, R;, Ry]
is always equal to —Rj,. Hence, only the £ component of the reflected
light vector has to be calculated. Furthermore, the shading table
can be kept small because the £ component of the gradient should
always be negative.

Because of this approach, a shading table with 128x128 entries can
be computed in less than 0.01 seconds on a SPARCstation 5. It is
clear that the goal of real-time shading is not prohibited by the
calculation of the shading table. By using a gradient buffer, the
shading of medium sized images (2562 - 5122) can be done
interactively (>10 frames per second). On UltraSparc workstations
and modern Pentium III pc’s the shading can be performed in real-
time (>25 fps), even for large images. In this case, also the size of
the shading table can be enlarged, for instance to 256X256.

8.5 Coloring

The shading approach described in the previous section results in a
2D image that consists of grey-values. To give a better
Interpretation, especially when multiple tissues will be rendered in
the same image, the shading has to be extended to support colors.
This extension can be done in several ways. An obvious approach is
to extent the shading model to support full color. This approach
will however significantly increase the calculation time. A simple
and fast approach is to use a color model to translate the grey-
values into (RGB) colors. In this chapter, two color models will be
discussed: the HSV and the HL'S model [FOL90], [WAT93].

8.5.1 The HSV color model

A frequently used approach to convert grey-values to colors is
based on the hue, saturation and value (HSV) color model. This
model can be used in our algorithm by choosing fixed hue and
saturation values for a tissue. When the value is chosen to be equal
to the grey-value, each grey-value will correspond to one color.
When the saturation is zero, the output image will be equal to the
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grey-value image. The colors will be fully saturated when the
saturation is chosen to be one. Choosing a hue value of zero (red)
and a saturation of one will lead to an image which has zero G and
B values, while the R value is equal to the grey-value. Because the
specular highlights, which are white in the grey-value image, will
become red, the HSV color model is unsuitable for coloring.
Because in nature the specular highlights of a white light source
are white, the highlights will seem to disappear. The color white
can be made in the HSV model by making the saturation zero when
the value equals one. A possible solution to this problem is to let
the saturation depend on the grey-value. Another solution is to use
another light model.

8.5.2 The HLS color model

The hue, lightness and saturation model (HLS) is a slightly
moderated version of the HSV model. In this model, the color white
can be made by setting the lightness parameter to 1.0, regardless
of the saturation and hue. Completely saturated colors are made by
setting the saturation to 1.0 and the lightness to 0.5. Therefore, the
HLS model can be used to directly map a grey-value to a certain
color. The hue and saturation can again be chosen freely, while the
lightness is set equal to the grey-value. In this way, the grey-value
white will always be mapped to the color white. This approach
gives a more natural color mapping than when the HSV model was
used in a similar way.

However, this approach results in piece-wise linear R, G and B
values, which is clearly visible, especially when an object with a
smooth surface, like a sphere, is rendered. Figure 8.7 shows the
resulting R, G and B values when for instance the hue is set to zero
and the saturation to one.

As can be seen in this figure, the red component is fully saturated
at a grey-value of 0.5, while the green and blue components are
zero. As mentioned, this gives unacceptable results.

This problem can be solved by making the saturation smaller at a
grey-level of 0.5. When the saturation is chosen to be 0.5 at the
grey-level 0.5 and one at the grey-levels zero and one, the color
mapping will look most natural. At this setting, the functions that
map a grey-value to the three color components will have a
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Figure 8.7 Direct grey-level to color
mapping using the HLS model

quadratic form. In this case, both these functions and their
derivatives are continuous. Consequently, the color images will
have smooth continuous color transitions. The saturation value can
still be chosen freely as a multiplication factor. For grey-values
lower than 0.5, the resulting saturation will be (1-g)*s, while for
higher values the resulting saturation will be (g)*s. When for
instance the saturation is chosen to be 0.5, the real saturation is
0.5 at the grey-levels zero and one and 0.25 at the grey-level 0.5.

The result of this adaptation of the saturation can be seen in
Figure 8.8. In this figure, two spheres are rendered, one with a
constant saturation of one, and one with an adapted saturation. It
can be seen clearly that the constant saturation value leads to an
undesirable saturated red color band in the output image.
Adjusting the saturation value based on the grey-value using the
above mentioned method leads in the contrary to a smooth
transition from black to white. Although this approach limits the
maximum obtainable saturation, the mapping of grey-values to full
color looks far more natural.

The transformation of the grey-valued images to color images can
be done very quickly using a lookup table. This table contains the
R, G and B values corresponding to a certain grey-value given the
hue and saturation. This means that the grey-value to color
calculation has to be done once for each grey-value, resulting in a
256 entry lookup table of three bytes per entry.
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Figure 8.8 Result of grey-value to color mapping using the HLS
model without (left) and with adapting saturation

8.6 Combining multiple tissues

Based on the floating-point depth buffer that can be generated with
the iso-surface volume rendering method, it is possible to combine
the renderings of different tissues very accurately. For each ray,
the location of the intersection of the ray with the iso-surface of
each tissue is known. When the iso-surfaces are rendered fully
opaque, it is hence easy to select the iso-surface and tissue that is
first intersected by the ray. A fast and easy way to implement this
combination of tissues is by pre-computing a new shading buffer
that contains for each pixel an index in the shading table and a
tissue number. This can be easily done by storing the depth of the
first intersection point in a new depth buffer and use the shading
index and tissue number of the corresponding iso-surface in a new
combined shading buffer. Adding another (already rendered) tissue
only requires to compare the value of all pixels in the
corresponding depth buffer with the pixel values of the combined
depth buffer. The corresponding pixel value in the combined
shading buffer has to be replaced only when the depth of the new
tissue i1s smaller. Because this is a two-dimensional operation,
combining several tissues in this way can be done very fast, even
for high resolution images.

When each tissue, and hence each pixel, is allowed to have its own
color and shading parameters, the approach of the shading table
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and coloring has to be changed a little. It is not possible to have one
shading/coloring table for all tissues. It is however not practical to
calculate a separate shading/coloring table for each tissue.
Especially when the number of tissues is large, this would require
a lot of memory and calculation time. A possible solution is to store
only parts of the shading in the two-dimensional shading table,
while the final shading and coloring can be done by a simple
calculation and a one-dimensional table lookup, as shown in Figure
8.9.

:Tissue¢ *
n
. _[Phong |A*+S-cos(B) Coloring |
Gradient- Shading 7 |_table table | RGB
buffer > table
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Figure 8.9 Full-color shading pipeline for multiple tissues

In the shading table, only the parts of the Phong shading model are
stored that are independent of the shading and coloring
parameters. In the diffuse part of the shading model, the
calculation of the inner product of the light and the normal vector
N*L is independent of the tissue parameters. This inner product
will hence be stored in the shading table. In the specular part of
the shading model, the inner product of the reflected light vector
and the observer vector R*O is independent of the tissue
parameters. This inner product will be used as an index in a second
table to calculate the n-th power of this inner product. This
approach will however give unsatisfactory results when the
parameter n has a high value. For instance, when n has a value of
100, and eight bits are used for the index, all points where the
inner product has a value of 255 will give an output value of 255,
which corresponds to one. The neighboring points, where the inner
product has a value of 254, will have an output value of 255%(254/
255)" = 172. This huge step in the output value will become clearly
visible in the output image, where a highlight with a high exponent
will consequently be visualized as areas with only a few possible
grey values, as shown in Figure 8.10.

Much better results can be obtained when not the inner product,
but the angle B between the reflected light vector and the observer
vector is used as an index in the second table. When again an eight
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Figure 8.10 Discretization of the specular
shading component
bit index is used, the value of cos(B)" can be determined for angles
that are a multiple of 90/255 = 0.35 degrees. This approach will
hence give a much more continuous highlight than is obtained with
the previous method, as shown in Figure 8.11.
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Figure 8.11 Improvement of the angular
resolution of the specular shading
component
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In this way, only one shading table has to be calculated that is
tissue independent. Using a second, one dimensional table, the
ambient and specular component can be calculated by a single
table look-up. This table has to be calculated for each tissue. This
table is very small and only has to be re-calculated when one of the
parameters A, S or n changes. The calculation of the diffuse part
only requires a multiplication with the diffuse parameter D.
Finally, the ambient, specular and diffuse components have to be
added, which requires only one addition. When the tissues are
rendered in color, a color look-up table can be calculated for each
tissue.

When eight bit numbers are used for all indices in the tables, a
256%x256 shading table containing 16 bit numbers, a 256 entry
Phong table containing eight bit numbers and a 256 entry coloring
table containing 24 or 32 bit numbers have to be used. This results
in a 128 KB shading table, a 256 byte Phong table and a 768 byte to
1024 byte coloring table. Although the last two tables have to be
calculated for each tissue separately, the total size of these tables
per tissue is more than 100 times smaller than the shading table.
As a result of this approach, many tissues can be rendered
simultaneously with all independent shading and coloring
parameters, while the memory requirements are hardly
influenced.

Figure 8.12 shows a rendering of different materials inside an
engine block. The aluminum outer surface of the engine block is
depicted as the blue iso-surface. Using the iso-surface volume
rendering method, it is possible to render iso-surfaces with an
arbitrary small thickness. It is therefore possible to render the
inside and the outside of a very thin shell simultaneously. In
Figure 8.12, the inner side of the aluminum surface is rendered
with a green color. The aluminum itself is invisible. The steel parts
inside the engine block are rendered using a beige color. The
aluminum to air surface is only partly rendered, so it is possible to
look inside the engine block.

Figure 8.13 shows two material transitions inside the engine block
with more detail. The left image shows the aluminum to air
transition, while the right image shows the aluminum to steel
transition.
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Figure 8.12 Rendering of different materials inside an engine block

ol

Figure 8.13 Details of material transitions inside the engine block



116 8. Implementation and optimizations

In the left image, the aluminum to air surface has been given a
small thickness. The outer surface is rendered blue, while the
inner surface and the volume between the two surfaces are
rendered green. Because it is possible to look at the inner side of
the aluminum to air transition, it is possible to depict a screw hole
in this way.

In the right image, the aluminum is not only rendered partly, but
also semi transparent. This makes it possible to see the steel screw
through the ’aluminum’ surface. It should be noticed that this
image shows in fact also the transition from steel to air. Because
the aluminum has a lower grey-value than the steel parts, the iso
value of an iso surface between aluminum and air also lies between
steel and air. As a result, a steel to air transition will be depicted as
both a steel to air and a aluminum to air transition, with the
’aluminum’ to air surface positioned at the air side. This problem
can be partly solved using segmentation. In this way, steel parts
inside aluminum or fully surrounded by air can be segmented out
and rendered separately. The example in the right image of Figure
8.13 1s however more difficult, because this area contains the
aluminum to air, the aluminum to steel and the steel to air
transitions. To remove the ’aluminum’ layer on the steel screw, not
only the screw needs to be segmented out, but also the transition
area from steel to air. By making the aluminum slightly
transparent, it is possible to see through the ’alimunum’ layer
between air and steel. In Figure 8.12, where the aluminum was
rendered fully opaque, this was not possible.

The renderings in Figure 8.13 also show how much detail can be
obtained using the iso-surface volume rendering method. In the left
image, the depth of the thread tapped inside the screw hole can be
observed. While the thread itself is much smaller than the point-
spread function and therefore too small to be observed, the hole
looks wider at the part where the thread is tapped. In the right
image the thread of the screw is much larger and is clearly visible.

8.7 Cut planes

Figure 8.12 and Figure 8.13 show renderings in which only a part
of the aluminum was rendered. Although it is possible to select the
part to render before the actual rendering, it may be advantageous
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to render the hole volume and select the visible part in a post-
processing step. In this way, the volume does not have to be
rendered again when the selection changes.

By using the floating-point depth buffer it is easy to select points
that lie inside the selected area. The cut plane between the selected
an not selected parts of a tissue can be shaded as shown in Figure
8.13. In this way, parts that are hidden by an iso-surface can be
made visible. Because this is again a two-dimensional operation, it
can be done very fast even for high resolution images.

Besides revealing hidden parts, cut planes can also be used to give
information about the inside of a tissue. This can be achieved by
mapping for instance grey-value information on the cut plane. The
iso-surface shows a surface with a constant grey value. The grey
value inside the tissue is not necessarily constant and may contain
much information. In an MRI dataset of a head for instance, the
iso-surface of the cortex gives information about the shape of the
brain. Inside the brain, the grey-value is however not constant. To
be able to see this information in a 3D rendering, the grey-values
may be mapped onto a cut plane directly. To be able to distinguish
the grey-values from different tissues, it is also possible to
translate the grey-values to colors using the same approach as
described in section 8.5. Using the same hue for a tissue and a cut
plane may however be confusing because it is difficult to see
whether a certain color is caused by shading the surface or by
mapping a grey value. It is therefore more sensible to choose a hue
for each cut plane separately. In this way it is also possible to
distinguish between two or more cut planes inside a single tissue.
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APPLICATION TO MEDICAL
DATA

As mentioned previously, the medical application
of volume visualization algorithms requires both
high quality as well as high speed. It has been
shown that rendering iso-surfaces using the iso-
surface volume rendering method can be fast
without sacrificing the image quality. This chapter
will show some of the possible applications in
which the iso-surface volume rendering method
can be used.
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9.1 Parallel projection

Figure 9.1 shows one slice of the raw data of a CTA dataset in
which the aorta and a stent at the wall of the aorta are clearly
visible. This CTA dataset contains 512x512x123 12-bits voxels,
stored in 16-bits per voxel, which corresponds to a total amount of
61.5 MB of data. This is currently a very common size for a CT
dataset.

Figure 9.1 Slice of a 512x512%x123 voxel CTA dataset

Figure 9.2 shows a detail of this slice. In the left image the
resolution of the dataset is clearly visible. The radius of the aorta is
about 25 voxels. The smallest parts of the stent have a radius of
less than two voxels. The right image shows the effect of the iso-
surface visualization on this data. Because the stent has a higher
grey-value than the aorta (actually the contrast agent in the blood),
the iso-value to visualize the stent has to be between the grey-
values of these two tissues. To visualize the blood in the aorta, an
iso-value should be used that is lower than the grey-value of the
blood. Using these two iso-values, two iso-surfaces are generated:
one for the aorta and one for the stent. In the right image of Figure
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9.2, the 1so-surface of the stent is visible as the edges between the
grey and the white areas, while the iso-surface of the aorta is
visible as the edge between the grey and the black area.

Figure 9.2 Detail of the slice in Figure 9.1 showing the aorta with the
stent inside (left), and the surface that is estimated using the
iso-surface volume rendering algorithm

As can be seen in this image, the iso-surface of the stent lies within
the iso-surface of the aorta, which means that the stent will be
invisible when both tissues are observed from outside. By using
alpha blending based on the two generated depth-buffers, the aorta
can be made slightly transparent to be able to see the stent just
below the surface. Using this approach the stent was made visible
in Figure 9.3.

The good quality of iso-surface rendered volumetric data can be
seen from the rendering of a raw MRA dataset of a cortex with very
thin blood vessels.

This MRA dataset consists of two 256X256x151 12-bits per voxel
datasets, stored in 16-bits per voxel: one for the cortex and one for
the blood vessels, resulting in a total amount of 37.75 MB of data.
One slice out of each of these datasets was shown in Figure 3.2.
The tissues were rendered separately and combined after
rendering based on the two floating-point depth buffers generated.
The cut-plane shown in Figure 9.4 shows the original grey-values
in one of the slices. This cut-plane was also generated after
rendering based on information from the floating-point depth
buffer using the approach described in the previous chapter. It can
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Figure 9.3 Iso-surface volume rendering of the spine,
the aorta and the stent in the CTA dataset

be seen in Figure 9.4 that the iso-surface volume rendering method
is capable of visualizing very small details in a medium resolution
dataset.

Figure 9.4 also shows the advantages of full color images.

9.2 Virtual endoscopy

Figure 9.3 and Figure 9.4 show renderings of a CT and an MRI
dataset using parallel projection. These images can also be
generated with a perspective component. In these examples,
perspective projection would however hardly add any information.
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Figure 9.4 Rendering of a raw 256x256x151 voxel MRA dataset of a
brain with blood vessels

Figure 9.5 Parallel (left) and virtual endoscopic view inside the trachea



124 9. Application to medical data

There are however cases in which the use of perspective projection
is inevitable. The parallel projection of an iso-surface of the trachea
in the left image of Figure 9.5 shows that it is difficult to observe
the inside without perspective projection. Furthermore, a parallel
light source, that was used to shade the iso-surfaces in previous
examples, can only light one side.

In medical examinations, a special camera with attached light
source called an endoscope is often used to observe the inner side of
the human body. This is a wide angle camera with extreme
perspective. The light source can be considered to be a point light-
source that is positioned near the lens.

In (iso-surface) volume rendering, similar projections can be made.
By using extreme perspective projection with the viewpoint inside
the object under study and a light source positioned at the
viewpoint, so called virtual endoscopic images can be created. The
right image in Figure 9.5 shows such an virtual endoscopic view
inside the same part of the trachea as was shown in the parallel
projection in the left image of Figure 9.5. It can be seen in this
image that the extreme perspective projection makes it possible to
observe the wall of trachea in all directions simultaneously.
Furthermore, the shading based on a point light-source at the
viewpoint results in an equally shaded surface for all viewing
directions.

As mentioned in section 7.2, voxels near the viewpoint are enlarged
extremely when perspective projection is used. Conventional
volume rendering methods would produce a severely distorted
image due to re-sampling artefacts. Even when the spatial error
would be about half a voxel size, these artefacts would become
visible. Super resolution techniques can be used to improve the
image quality at the expense of a considerable increase in the time
needed to generate images with ‘acceptable’ re-sampling errors.
Due to the angular dependency of the sampling process in the
conventional volume rendering methods, a very small step size is
needed when diverging rays are used, especially in a virtual
endoscopic view. The iso-surface volume rendering approach is
however able to make endoscopic views without re-sampling
artefacts and without the need to decrease the sampling distance.
This makes the iso-surface volume rendering algorithm very
suitable for virtual endoscopic applications.



9.2. Virtual endoscopy 125

Virtual endoscopy can be used to generate images that are
comparable to ordinary endoscopic images. The main advantage is
that virtual endoscopy is less invasive. Another disadvantage of
the traditional endoscopy is the restriction of the viewing direction.
With an endoscope it is only possible to look forward in the
direction in which the endoscope is inserted. Using virtual
endoscopy it is possible to look in all directions. This is illustrated
in the rendering of the inner wall of a colon shown in Figure 9.6.

Endoscopic examination of the colon is commonly referred to as
colonoscopy, so the virtual rendering of the colon can be referred to
as virtual colonoscopy. In Figure 9.6, the viewpoint is positioned at
a bend in the colon, looking both forward and backward
simultaneously. It is clear that such a view is impossible with
traditional colonoscopy. Furthermore, it is obvious from this view
that manoeuvring with an endoscope through this part of the colon
without damaging the wall can be very difficult.

A further complication with traditional endoscopy is the opacity of
the material. Figure 9.7 shows a virtual endoscopic view inside the
aorta of the CTA dataset previously shown in Figure 9.3. With
normal endoscopy, the opacity of the blood inside the aorta makes
it difficult or even impossible to see the wall and the stent. The
clear view of both the stent as well as the wall of the aorta is
impossible with traditional endoscopy.

As mentioned before, the radius of some parts of the stent is less
than two voxels. As shown with the renderings of the single voxel
dataset, even for these small objects the iso-surface volume
rendering method is capable of rendering a well defined iso-surface
without visible sampling artefacts.

Some medical applications of volume rendering extract shape
information from the iso-surfaces in the data field. For instance,
the typical round nature of a polyp can be color coded on the iso-
surface found. This has been done by [SUM98] using a polygonal
approximation extracted from a data field using the marching
cubes algorithm. It may be clear that the extraction of shape
parameters is quite simple when the depth information is present
for each ray within a bundle, reaching a smoothly curved surface.
The accurate calculation of the local curvature is, due to the
discontinuity in the direction of the surface normal, by far less
trivial when a polygonal approximation is given.
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F 4

Figure 9.6 Virtual colonoscopy

Figure 9.7 Endoscopic view inside the aorta



9.2. Virtual endoscopy 127

The rendering time of the iso-surface volume rendering method
mainly depends on the projected size of the tissue on the screen.
Complex tissues with a large surface, such as the cortex and the
spine in Figure 9.4 and Figure 9.3, can be rendered well below one
second on a Pentium III pc running at 500 MHz using high
resolution output images of 512x512 pixels. The spine for instance
can be rendered in 0.77 s.

Simpler tissues, such as the aorta, can be rendered in less than 0.3
seconds at the same high resolution, while the stent can be
rendered with more than 10 frames per second. At a low resolution
of 256x256 pixels, interactive rendering speed (multiple frames per
second) can be obtained for all tissues. At this resolution, the spine
can be rendered at more than 3 frames per second, the aorta can be
rendered at over 10 frames per second, while the stent can be
rendered at about 25 frames per second. It is clear that the size of
the dataset is not the main factor in the rendering time. The size of
the CTA dataset is about 4.5 times the resolution of the test
datasets that were used for benchmarking in the previous chapter.
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CONCLUSIONS

In this thesis, a method to evaluate the spatial error bounds for the
rendering of an iso-surface in a volumetric dataset is presented.
This spatial error bound is estimated for four different categories of
visualization algorithms. Using the derived equations for the
spatial error bound, it is possible to find a way to reduce the spatial
error for each visualization method.

In the voxel space volume rendering algorithms, the spatial error
bound grows linearly with the voxel size. A valid way to reduce the
spatial error is hence the reduction of the voxel size, for instance by
oversampling the dataset. Unfortunately, the computation time of
these algorithms grows linearly with the number of voxels, which
means that this approach will have a much larger impact on the
rendering time than on the spatial error.

The marching cubes algorithm has a spatial error bound that
grows linearly with the voxel size as well. In this case, the spatial
error can also be reduced by reducing the voxel size. However, this
will dramatically increase the time needed to extract the iso-
surface as well as the number of polygons generated. Alternative
surface extraction methods are able to generate a triangle mesh
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with a smaller spatial error bound. These methods will however
suffer from the same performance problems.

In the super resolution algorithm, the error bound grows linearly
with the re-sampling distance on a ray. Because the rendering time
grows linearly with the number of samples on a ray, the rendering
time will increase linearly with the spatial accuracy. When a small
detail in a dataset is enlarged, well over ten samples per unit cell
are necessary to avoid re-sampling artefacts.

In the iso-surface volume rendering method, the spatial error
bound can be decreased by increasing the number of iteration steps
in the surface finding algorithm. Each additional re-sampling
operation per ray decreases the spatial error bound by a factor of
two. In this way, the spatial error can be made very small without
a noticeable degradation of the rendering speed. Therefore, the iso-
surface volume rendering technique makes it possible to visualize
the iso-surface of a discrete data field, re-sampled with an
interpolation filter of choice, without the introduction of a
noticeable spatial error.

The search for an efficient method with a negligible spatial error
bound has made it possible to make endoscopic views of arbitrary
shaped iso-surfaces from raw (medical) data without re-sampling
artefacts. The rendering speed is just marginally influenced by the
size of the dataset. Hence, interactive rendering speeds can be
obtained for very high resolution datasets.

When compared to other methods, it can hence be concluded that
the iso-surface volume rendering method has an excellent
performance both in terms of the spatial error bound as well as
rendering speed, even when virtual endoscopic applications are
considered. For these reasons, iso-surface volume rendering is a
very good alternative to surface and volume rendering algorithms
for the visualization of iso-surfaces in volumetric data.

It has been shown that the iso-surface volume rendering method
performs also very well for high resolution datasets. Due to
improvements in the scanners, the size of medical datasets will
even increase. While this has only a minor impact on the rendering
speed in the iso-surface volume rendering method, the rendering
speed of many other visualization algorithms will be decreased
drastically.
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To further increase the speed of iso-surface volume rendering,
current research is targeted toward implementation on multi-
processor engines. Our goal is to achieve real-time (~25 fps), high
resolution rendering with low-cost general purpose processors.

In section 7.1, the accuracy of the determination of a step edge was
investigated. It was shown that reconstruction filters that perform
worse in typical 2D image re-sampling applications may be better
suitable for the detection of the location of the step edge. This
conclusion is only applicable to a 1D step edge. In 3D data it is
possible to have large surfaces that act like a 1D step edge. Further
research is however necessary for other 3D objects.

Using the knowledge of the systematic error, it is possible to
correct the estimated location. In 1D this would be possible when
the values on both sides of the step edge and the point-spread
function are known. Experiments have shown that the systematic
error can be reduced to almost zero. This correction is however
extremely noise sensitive. When the point-spread function in 3D is
point symmetrical, and the values on both sides of a surface are
known, a similar method can be used that translates the grey-
values into a distance to the surface. It has been shown however
that in current medical scanners, the point-spread function is
usually not point symmetrical. When future scanners have a fully
point symmetrical point-spread function, it may be worthwhile to
further explore the possibilities.
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