Fabian Aulkemeier

Pluggable Services

A Platform Architecture
for E-Commerce

UNIVERSITY ’
CTIT oFnivie 94 TKIDINALOG

PLUGGABLE SERVICES

A PLATFORM ARCHITECTURE FOR E-COMMERCE

Fabian Aulkemeier

Graduation committee

Chairman:
Prof. dr. Th.A.J. Toonen

Supervisors:
Prof.dr. J. van Hillegersberg
Prof.dr. M.-E. lacob

Members:
Prof.dr. W.J.A.M. van den Heuvel
Prof.drir. S.L.J.M. de Leeuw
Prof.dr. C. Legner
Prof.dr.ir. L.J.M. Nieuwenhuis
Prof.dr. R.J. Wieringa

€4 TKIDINALOG

Dutch Institute for Advanced Logistics

(University of Twente, The Netherlands)

(University of Twente, The Netherlands)
(University of Twente, The Netherlands)

(Tilburg University, The Netherlands)
(Nottingham Trent University, England, UK)
(University of Lausanne, Switzerland)
(University of Twente, The Netherlands)
(University of Twente, The Netherlands)

The research was conducted as
part of the CATeLOG project by the
Dutch Institute for Advanced Logistics.

CTIT Ph.D. Thesis Series No. 16-417
CTIT Centre for Telematics and Information Technology

ISSN: 1381-3617
ISBN: 978-90-365-4283-8

DOI: 10.3990/1.9789036542838

PO. Box 217, 7500 AE Enschede, The Netherlands.

https:/ /dx.doi.org/10.3990/1.9789036542838

Cover: Jana Kihl
Print: Ipskamp Printing

Copyright © 2017 Fabian Aulkemeier

No part of this thesis may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording or otherwise

without permission of the author.

https://dx.doi.org/10.3990/1.9789036542838

PLUGGABLE SERVICES

A PLATFORM ARCHITECTURE FOR E-COMMERCE

DISSERTATION

to obtain
the degree of doctor at the University of Twente,
on the authority of the rector magnificus
Prof.dr. TT.M. Palstra,
on account of the decision of the graduation committee,
to be publicly defended
on Wednesday, April 12, 2017 at 14.45

by
Fabian Michael Aulkemeier

born on December 21, 1982
in Werneck, Germany

This dissertation has been approved by:

Prof.dr. J. van Hillegersberg
Prof.dr. M.-E. lacob

Copyright © 2017 Fabian Aulkemeier
ISBN: 978-90-365-4283-8

Table of Contents

1 Introduction
1.1 Critical themes and researchgap
1.2 Design research and research design
1.3 Dissertationoutline

2 The State of the Art in E-Commerce Architectures
2.1 Researchdesign
22 Objectives.
2.3 Systematic literature review
2.4 Referencearchitecture
2.5 Validation.
2.6 Conclusions

3 Measuring the Pluggability of Software
3.1 Qualitymodels
3.2 Pluggabilityof services L.
33 Conclusions L L

4 A Platform-Based Return Registration Process
4.1 Platform architectures
4.2 A reference architecture for e-commerce service platforms
4.3 Thereturnregistrationcase
44 Validation.
45 Conclusions e

5 A Platform-Based Pluggable Trade Compliance Service
5.1 Preliminary considerations
52 A pluggable serviceplatform.
5.3 Thetrade compliancecase,
54 Conclusions L oo

vi

21
23
23
27
34
40
44

47
48
52
55

57
58
61
66
70
75

6 Analytics as a Service: A Pluggable Sales Forecasting Service
6.1 New sales forecastingmodule
6.2 Pluggable architecture
6.3 A pluggable sales forecasting service
64 Conclusions o

7 Using Pluggable Services to Support
IT-Driven Collaboration in Business Networks
7.1 Collaboration architectures
7.2 Service-oriented collaboration,
7.3 Cross-selling architecture
7.4 Productevaluation
75 Conclusion

8 Conclusions
8.1 Anatomy of the proposeddesign
8.2 Limitations and futureresearch

A ArchiMate Metamodel
B E-Commerce Business Model
C Pluggability Instrument

D Platform Prototype
D.1 Model and interface implementation
D.2 Administrationinterface L L L.
D.3 Platformclient

E Trade Compliance Service
Bibliography

Dutch Abstract

vii

111
113
116
118
121
123

125
125
129

133

134

135

136
136
139
142

144

147

162

Chapter 1

Introduction

The recent growth of electronic commerce (e-commerce) has led to opportunities
and challenges for existing and new stakeholders in the retail sector. Traditional
retail distribution supplies brick and mortar stores with a limited and rigorously
planed assortment of goods. E-commerce on the other hand, currently operates out
of central warehouse locations, from where a larger amount and variety of goods
can be offered to a more global customer base (Gunasekaran et al., 2002). As a con-
sequence, customers profit from the greater choice of products, due to the decrease
of geographic boundaries. Thus, stores and products with a niche existence are able
to gain a stronger presence eventually leading to a higher degree of competition in
the retail market (Brynjolfsson et al., 2006).

In order to stay competitive in the e-commerce market, a number of success fac-
tors should be taken into consideration (Feindt et al., 2002). While in many product
domains pricing is a crucial factor (Rao et al., 2011; Wallace et al., 2004), shopping
experience (content and convenience) and supply chain performance (control) play
equally important roles, particularly for e-commerce endeavors in a start-up phase.
A continuous growth of an online retail business depends on a strong partner net-
work and ongoing process improvement. Furthermore, Feindt et al. (2002) stress
the importance of integration with the information technology (IT) systems. In
fact, most success factors depend to some extent on an elaborated and innovative
IT infrastructure which can produce original frontend services and efficient han-
dling of the order-fulfillment processes on the backend side.

Through the introduction of omnichannel retail, traditional retailers can make
use of their existing stores, and gain a competitive advantage over so-called pure
player e-commerce firms. The pure player business model has been a disruptor of
the retail sector during the last years. However, Hudetz et al. (2016) argue that pure
online shops are going to be eliminated entirely by omnichannel retailers within
the next four years. Thus, destroying 90% of existing e-commerce businesses. The
omnichannel model can be considered as a merger of the online and offline sales
channels. A benefit of this integration is its capability to achieve better customer
service, for instance by allowing buyers to order online and pick up goods in a phys-
ical store. Another potential advantage is the increased supply chain performance,
for example by storing and shipping goods directly from a local store. Layo and Sil-
ver (2013) report that shipping out-of-inventory items directly from store increases
revenue by 10-20%. Companies who manage to successfully implement a seamless

Chapter 1

integration of online and offline channels are also thought profit from a higher cus-
tomer loyalty in the highly competitive retail market (Wallace et al., 2004). To date,
offline and online channels are often realized as distinct value chains with differ-
ent underlying processes and static integration between systems. The merger of the
two value chains in the prevailing static fashion will cause problems as soon as fur-
ther sales channels such as mobile devices or kiosk systems will be introduced. A
suitable e-commerce architecture should, therefore, be able to flexibly integrate in-
ternal and external IT systems and allow for plugging in new services, such as cloud
applications, without affecting the overall architecture.

Next to the novel sales channels, competition in retail is growing through sales
across national borders. While previously prevalent only in business-to-business
(B2B) transactions, an increasing number of consumers buy from foreign vendors.
The European Union (EU) advocates cross-border e-commerce and formulated the
target of 20% of all EU citizen buying goods abroad by 2020 (European Commis-
sion, 2015). Global marketplaces such as Alibaba are currently among the most
successful and fastest growing e-commerce firms (Smith, 2014). In order to limit
the risk of cross-border e-commerce endeavors, the collaboration with an increased
number and new types of supply chain participants is often desirable. Third party
warehouses and fulfillment centers, the use of global marketplaces, and collabora-
tion with specialized service providers help to reduce the investments required to
tap new markets. Services for cross-border compliance, for example, help to cope
with the requirements for global trade (Pincvision, 2012). Essentially, one busi-
ness to consumer e-commerce transaction regularly involves a number of down-
stream business to business (B2B) e-commerce transactions. The market for corre-
sponding B2B e-commerce services will grow significantly in the upcoming years
(Soshkin, 2015). However, the current e-commerce architectures are based on
static integration patterns and do not provide the right level of agility to meet the
required level of flexible interoperation with external services (Lankhorst et al.,
2012). Furthermore, the need for improved inter-organizational operation goes be-
yond the IT-related challenges. In fact, organizations need to find suitable business
partners, enter a legal relationship, and maintain the complex agreements between
partners. The concept of quick connect capability (QCC) has been established to
describe the ability of organizations to engage in new partnerships in an efficient
manner (van Heck and Vervest, 2007). The lack of QCC can be considered as a ma-
jor obstacle in the service based business models (Koppius and van de Laak, 2009).

Another competitive factor in e-commerce is created by the amount of informa-
tion that becomes available when selling online. Traditional retailers invest remark-
able resources to collect consumer data, for example by introducing membership
programs. With the online channel this information becomes available implicitly.
The entirety of transactions is available in the system, regardless of whether a prod-
uct gets ordered, sold, returned, or only clicked at in the online store. Retailers must
exploit this information and use it to their advantage if they want to stay competi-
tive. The challenge for retailers is the valorization of the available information, as its
amount and diversity grow faster than the means of interpretation. The shift from

2

Chapter 1

business intelligence based on pre-defined structured transaction data to the anal-
ysis of vast unstructured and scattered data (big data) is a challenge, even for large
organizations with extensive budget (Tallon, 2013). Furthermore, instead of facili-
tating the extraction of critical information, novel e-commerce services introduce
an increasing amount of data repositories. Thus, leading to a growing heterogene-
ity of information and the inability to delegate the complex task of data analytics to
external services (Hashem et al., 2015).

We can conclude that the shift from offline to online retail as well as the re-
cent trends of cross-border and omnichannel e-commerce require much more in-
tegrated IT support than current software packages offer. We can observe that to
date, many successful online retailers consider themselves as IT companies. Thus,
it is not surprising that Amazon, the most successful online retail business world-
wide, also happened to become the largest IT infrastructure service provider (Leong
et al., 2015). In fact, 50% percent of traditional retailers still hesitate to make the
required investments into omnichannel activities (Guy, 2016). Especially smaller
retailers are forced to decide, whether or not to heavily invest in their IT landscapes
and technical expertise, in order to stay competitive (Hinton, 2014). Easily adopt-
able e-commerce solutions that allow for incremental growth would be desirable.
Cloud solutions can help to outsource large amounts of IT development and efforts
to operate the IT landscape. Thanks to their pay-by-use model they can reduce the
investment risk (Armbrust et al., 2010). Despite these benefits, some issues origi-
nating from the stated innovation in e-commerce remain unsolved: 1) the need for
more flexible integration of the services, 2) the requirement to facilitate the interop-
eration with business partners to outsource required services, such as warehousing
and delivery, and 3) the inability to accurately derive the right information from
the inhomogeneous data.

The use cases presented throughout this work are oriented towards the stated
problem areas and will serve as a means to demonstrate the capabilities of a novel
architectural design. In this work we define IT architecture as “the components of an
IT infrastructure, the relation between the components and their environment, and
the principles guiding their design” (Jen and Lee, 2000). All IT architecture serves
a certain business purpose. The design and development of an IT architecture with
the focus on the business strategy as well as the required business information and
processes is considered as enterprise architecture. The enterprise architecture of on-
line retailers is the main matter of this work. More precisely, research goals (RG)
can be described as follows:

RG1 Understand and describe the state of the art in architectures for online retail:
We want to learn what are the current e-commerce and e-business compo-
nents that are in place in online retail. We will investigate state-of-the-art
reference models for online and offline retail. Based on the existing mod-
els and their shortcomings, we come up with a novel architectural reference
model for online retail, including all the required e-commerce and e-business
components.

Chapter 1

RG2 Identify e-commerce issues and opportunities that can be solved through inno-
vative e-commerce services and provide working solutions:
To gain competitive advantage, online retailers want to adopt innovative ser-
vices that attract more customers and make the order fulfillment processes
more efficient. The business cases considered throughout this work are based
on the requirements of the consortium members collaborating in the CATeLOG
project. They reflect the insights into key issues of the practitioners and pro-
pose working solutions for specific business requirements, that are not cov-
ered within state-of-the-art e-commerce offerings. Such services can be di-
vided into three categories 1) services that provide a specific, novel applica-
tion functionality to the retailer (IT services) 2) services that facilitate the
collaboration with partners (collaboration services) 3) services with added
value, such as logistics handling, which are integrate IT wise through the ar-
chitecture (business services).

RG3 Facilitate through design and implementation of a service-oriented IT architec-
ture a) the use of services, to maximize their ease of adoption and b) the collab-
oration among e-commerce partners, through the use of collaborative services:
The key contribution of this work lies in the IT architecture which aims at
transforming state-of-the-art e-commerce platforms and services into a plug-
gable IT landscape. The goal is to allow retailers to adopt innovative services
with fewer resources in terms of time and IT expertise. To ensure the achieve-
ment of this goal we establish the notion of pluggability as a quality charac-
teristic for I'T services and a corresponding instrument to evaluate our design
artifacts.

With these points in mind, we have been investigating the state of the art in
e-commerce but also studied the generic IT architectures and trends, such as cloud
services. Therefore, many of the resulting design artifacts, prototypical implemen-
tations, and evaluations presented in this work may be valid for other business do-
mains. In fact, we argue that many of the architectural principles presented in this
work are of a generic nature and can be transferred easily. However, we stick to the
presentation and evaluation in the context of online retail and invite the readers to
come up with their own projections onto their respective field of interest.

The remainder of the introductory chapter is structured as follows. In Sec-
tion 1.1 we elaborate on the core concepts of this work and point out the current
research gaps regarding the aforementioned architectural goals. Section 1.2 de-
scribes the research design and establishes the methodological framework that was
applied. Section 1.3 provides a preliminary summary and links this chapter to the
remainder of the book.

Chapter 1

1.1 Critical themes and research gap

Service-oriented architectures (SOA) have been conceived as an effective means
to achieve dynamic processes through the composition of loosely coupled services
(Merrifield et al., 2008). The loose coupling of services is a means to reduce de-
pendencies among IT components. Thus, allowing to transform monoliths into
microservice architectures (Lewis and Fowler, 2014). It allows the IT operators
to maintain and evolve IT components independently and to extend the system’s
functionality by gradually adding new services with a bounded context. Software-
as-a-service (SaaS) offerings are a particularly interesting option for such services
as they allow faster adoption and better scalability (Armbrust et al., 2010; Waters,
2005). Eventually, the service-oriented approach bears the potential to give retail-
ers the freedom of choosing the right services independently of their complexity and
the technical capabilities of the organization.

However, a questionable aspect of SOA is the standardized, self-described ser-
vice interface, which is supposed to facilitate service reuse and integration. As it
turns out, the propagated ease of integration through automated service discov-
ery and binding at runtime has been overestimated (Bachlechner et al., 2006). As
we demonstrate in Chapter 4, the connection of the endpoints of various cloud ser-
vices remains a very complex task. It does not approximate the level of simplicity the
ready-to-use cloud service model was made up for. Consequently, replacing mono-
lithic on-premises e-commerce systems with cloud services bears major drawbacks
with regard to interoperability.

As it turns out, SOA middleware is mostly applied within organizations. So-
called service repositories help large organizations to catalog service endpoints across
internal domains. For inter-organizational endpoints, a new breed of middleware,
so called API management products, are gaining in popularity (Clark, 2015). In
fact, such software helps organizations to setup and control public gateways to their
IT systems through developer portals and other components. The consumer of such
programming interfaces requires the tools and skills to make use of the provided
endpoints. Thus, the goal of reducing the technical complexity of adopting novel IT
and business services remains a critical issue, even with the latest developments in
the market.

1.1.1 Service platforms

The architectural pattern to potentially ease the adoption of services is the ser-
vice platform (van Heck and Vervest, 2007). Two-sided platforms support service
providers and service users at the same time. However, in many cases, such plat-
forms are marginally perceived by the users. They act as ‘invisible engines’ enabling
their clients to provide services (Evans et al., 2008). The model in Figure 1.1 il-
lustrates the actors and relations in a two-sided platform ecosystem. The model
makes use of the ArchiMate modeling notation for enterprise architecture (The
Open Group, 2016). We make use of the notation throughout this work as it al-

Chapter 1

lows to illustrate business and IT layer concepts, as well as their relationships (cf.
Appendix A).

R
Service User P~/ (E-Commerce) < Service Provider &0
(Retailer) Service
T Platform Client &0

Platform Service

Platform Provider 0

Figure 1.1: Roles and actors in a two-sided service platform setting

A service provider is a client (or partner) of the platform provider (or plat-
form sponsor) and offers services to the users. In this work, we investigate the
e-commerce services offered to retailers. Hence, we consider the e-commerce ser-
vice provider as the client and the retailer as the user of the e-commerce platform.
The e-commerce service makes use of the platform services which are implemented
by the platform provider. The basic idea of a platform is the separation of stable and
evolving components (Baldwin and Woodard, 2009). The platform provider is re-
sponsible for implementing long-term stable components of the system which will
be used across services. That way, redundancy in functionality and data can be
limited. Eventually, the service implementation and evolution, adoption, as well
as cross-service collaboration gets simplified. Platforms following the described
principles have been widely adopted in many domains such as mobile computing,
geographic information systems, or gaming (Wareham et al., 2014).

1.1.2 Ecosystems of enterprise IT platforms

In the previous section, we highlighted the potential benefits of service platforms
and illustrated them based on an example in mobile computing. In enterprise infor-
mation systems, various examples for platforms exist. In the following, we outline
some of the prevailing platforms and discuss their characteristics to relate them to
the goals of the aspired platform architecture.

o Marketplaces for enterprise SaaS offerings such as the Oracle Cloud Market-
place! provide a means to help organizations during the first phase of service
adoption to find and evaluate cloud services similar to ‘App Stores’ for mobile
devices in the consumer space.

! Available at https://cloud.oracle.com/marketplace

https://cloud.oracle.com/marketplace

Chapter 1

Table 1.1: Comparison of selected enterprise IT platforms

Platform Saa$S marketplace API/Web service PaaS
directory
Platform transaction platform exchange platform software platform
category
Client Saa$ provider reusable service cloud application
provider implementers
Client helps to advertise and helps to advertise the ~ reduction of
benefits sell the services services administrative tasks,
improved scalability,
reduced risk
User business analyst application developer application user
User helps to analyze find appropriate improved user
benefits various Saa$ offerings services at experience at runtime
development time
Visibility both client and user both client and user platform not visible

actively use the
platform

actively use the
platform

to user

o API or web service directories such as ProgrammableWeb”provide a search-
able index of publicly available reusable services. Instead of providing stan-
dalone solutions such services offer singular pieces of functionality such as
geo-coding, currency converters, or routing. They are usually consumed
within another application.

o Platform-as-a-service (PaaS) offerings facilitate development and deployment
of enterprise application (Pivotal, 2015). Popular examples include the Ama-
zon’s Elastic Beanstalk, Heroku, IBM Bluemix, CloudFoundry, or Red Hat’s
OpenShift.

The first type of platform can be categorized as transaction platform according
to (Sriram et al., 2014). Their purpose is to handling transactions between a ser-
vice provider and the user. Accordingly, the second platform is an exchange plat-
form helping service providers and users to find each other. The third example is
a software platform. It acts as a foundation for service implementation. To further
compare the three platforms Table 1.1 summarizes the actors and benefits of the
different platforms.

We can observe that the various platforms support the client and user at discrete
phases of the service implementation and adoption endeavors. Furthermore, we

2 Available at https://www.programmableweb.com

https://www.programmableweb.com

Chapter 1

can see that the platforms are geared towards discrete actors. Exchange and trans-
action platforms support the user and client to engage into a relationship and to
conclude a contract. They do not support the setup and operation of a service. The
software platform, on the other hand, focuses on deployment and operation of the
service components but is somewhat invisible to the user and does not support him
directly. For example, integrating the service into the IT landscape is out of scope
of common Paa$ solutions. Very specialized Paa$S offerings for integration (iPaaS)
start to emerge that facilitate service interoperation exclusively (Pezzini et al., 2014).
In Chapter 4 we take a closer look at this type of platform and into its capabilities
and limitations.

1.1.3 'The missing platform

Pluggability is a software quality characteristic that we introduce in this work. It
puts the needs of the service user into focus and is reflecting the recent trend of
SaaS. Other software quality models such as agility, reusability, or interoperabil-
ity are related but do not reflect the concept of services that abstracts the internal
structure and behavior of a software component. Early quality models already in-
clude characteristics such as reusability or flexibility (Dromey, 1996; McCall et al.,
1977). These characteristics reflect the ability of software implementers to reuse and
change parts of the software but not the ability to reuse the same software product
for a variety of use cases. Interoperability or configurability are quality characteris-
tics that are more oriented towards the software user. Interoperability has become
popular with the rise of web service technologies (Chung et al., 2003). It reflects the
level of semantical standardization across systems and the possibility to engineer
data exchanges between systems (Tolk and Muguira, 2003). Pluggability requires,
but is not limited to, a high degree of interoperability. Service related concepts such
as agility (Lankhorst et al., 2012) focus on the overall architecture and not individ-
ual services. Using pluggable service can eventually lead to a higher agility of the
architecture and the enterprise. Chapter 3 is dedicated to presenting the pluggabil-
ity model in detail.

A pluggable service platform architecture must be geared towards the needs of
the service user and support him throughout the entire cycle of service use. In-
stead of focusing on the entire lifecycle of software use, the existing transactional
and exchange platforms only focus on the early phase of service consumption. The
existing software platforms are a step forward towards supporting the entire lifecy-
cle of service use. However, their functionality is geared towards service allocation
rather than service consumption (cf. Chapter 4). As a consequence, it supports the
service provider (client) rather than the service user. In the following, we summa-
rize the properties of the type of platform that we are missing in the current debate.
Its goal is to facilitate the implementation of easy to adopt e-commerce services
(RG3).

Chapter 1

Platform category The intended solution can be considered as a software plat-
form. In general, it should also bring together e-commerce service providers
and retailers (exchange platform) and handle the contracts between them
(transaction). However, as outlined previously, many of the existing plat-
forms, such as service directories and marketplaces, offer support for service
exchange and transaction. Thus, in this work, we focus on the characteristics
of the platform with regard to service implementation, execution, and use.

Client The client of the intended platform is the e-commerce service provider. In
contrast to existing platforms, the platform is geared towards domain-specific
services. The limitation to a specific domain allows the platform provider to
offer domain specific functionality. The existing platforms are not able to
provide this kind of functionality due to their generic nature. In this work,
we put a strong focus on the benefit of e-commerce specifics of the platform.

Client benefits The intended benefit for the client is the ability to deliver high-
quality services in terms of pluggability. The platform should allow the ser-
vice provider to focus on the implementation of novel e-commerce function-
ality. At the same time, he should be able to provide services that fit seam-
lessly into the remaining service landscape. Furthermore, it should allow the
service provider to deliver services that enhance the collaboration within the
business network.

User The retail company is the user of the intended platform. The user should
be able to consume various domain specific services from different service
providers. He should be able to adopt new services and exchange existing
services with offers from other service providers.

User benefits By consuming multiple services through the platform the retailer’s
IT landscape is built on a core artifact which contains all the long term sta-
ble components. By relying on the platform individual e-commerce func-
tionality can be adopted and exchanged in a pluggable fashion. The time to
adopt novel functionality can be shortened, while the risks and efforts for the
adoption of novel IT services, business services, and collaboration services
decrease.

Visibility Existing software platforms are mostly visible to the client and act as in-
visible engines for the user. The intended platform should follow the same
principle that most of its benefits are provided behind the scenes for the user.
The user only gets in touch with the platform when it comes to adopting new
services and handles contracts with service providers (exchange and transac-
tion capabilities). For the service provider, on the other hand, the platform
becomes a pivotal point for service implementation and delivery.

Chapter 1

1.2 Design research and research design

Previously, we have presented current challenges in online retail and put forward
the need for services that reflect the pluggability criteria of software quality. Fur-
thermore, we discussed some of the issues of current architectural approaches and
motivated the design and implementation of a platform architecture. The outcome
of this work should be a tangible artifact with the intention to present and test a
working solution. Eventually, our research provides novel architectural approaches
and software components that can be reused in practice. Our pursuit of such inten-
tions was based on the design science research paradigm which aims at designing,
implementing, and testing artifacts in a context (Wieringa, 2014). Design science
methods provide a more rigorous approach to building IT solutions compared to
usual industry engineering processes. They require grounded reasoning of the de-
sign decisions and testing of the artifact’s effectiveness based on concrete criteria.
Various design science research methods (DSRM) have evolved over the years. In
the following, we reflect some perspectives on design science and come up with a
methodological framework that fits our research. Subsequently, we present a map-
ping of our contributions to the established framework.

Walls et al. (1992) argues that the goal of design science is the formulation of a
design theory to make a design (prescription through synthesis) scientific (typically
description or prediction through analysis). A design theory consists of 1) a design
goal, 2) existing theories that drive the design, 3) the design artifact, as well as 4) a
testable product that can be used to test the effectiveness of the artifact with regard
to the goal. In the following, we map our research to these four elements.

In the previous section we introduced the theoretical concepts of enterprise ar-
chitecture, service-orientation, platform architectures, and software quality that
guided our design. Further theoretical underpinnings include reference modeling
and model-driven development of prototypes. The goal of our design was outlined
by formulating the research goals. In the subsequent section, we will formulate a
number of design research question which specify the research goal. Finally, a dif-
ferentiation is made between the design artifact which is represented through the
architectural model and the design product which consists of multiple platform and
e-commerce service prototypes that aim at validating the artifact.

1.2.1 Research questions

Previously we outlined the goals of our research. In this section, we specify the
goals through the formulation of design research questions. Research questions
are often considered as a crucial instrument. In fact, Gregor (2006) links the type
of an information system (IS) theory to the attributes of the research questions.
Other researchers stress the relevance of the problem statement in design science
and the importance of the research goal over research questions. Wieringa (2009)
proposes the nesting of the practical problem and the research question. According
to Wieringa (2014) the ‘practical problem solving delivers artifacts’ and ‘design sci-

10

Chapter 1

ence research investigates properties of the artifacts’ and thus provides answers to
research questions. According to Walls et al. (1992) “explanatory theories tell ‘what
is; predictive theories tell ‘what will be, and normative theories tell ‘what should be,
design theories tell ‘how to/because”” According to this categorization and the pre-
viously elaborated goals (G1-G3) of our research, we formulate the main design

research question (MQ) as follows:

MQ: How to improve the state-of-the-art e-commerce architectures in order to fa-
cilitate pluggable services that help members of the e-commerce ecosystem to
respond to current trends in their domain and to improve inter-organizational
collaboration within their business network?

To answer the main question multiple sub-questions are formulated as follows:

SQ1: What is the state of the art in e-commerce architectures? (Analysis)

$Q2: How can the pluggability of services be operationalized? (Analysis and De-
sign)

SQ3: What are the capabilities of existing e-commerce architectures in supporting
pluggable services? (Prediction)

SQ4: How to facilitate service pluggability through a platform architecture? (De-
sign)

S$Q5: How to improve inter-organizational collaboration through pluggable ser-
vices? (Design)

In Figure 1.2 the research questions are mapped onto the research goals that
have been established previously.

1.2.2 Methodological framework

The methodological framework of this work relies on Peffers et al. (2007) and Hevner
et al. (2004). Peffers et al. (2007) provide a nominal process model for conducting
design science research in IS. The model guided us through the different phases of
the design artifact and product construction cycle. Hevner et al. (2004) on the other
hand provides a conceptual framework that helps us to make the contribution of
our work more explicit and name the input and output during each design cycle in
order to ensure a balance between theory and practice. In what follows, we start
with describing the cycles of rigor and relevance and conclude with the description
of the design cycle.

n

Research Questions

Research Goals

Gl

G2

G3

Chapter 1

Figure 1.2: Mapping of research questions and research goals

Rigor and relevance

According to Hevner et al. (2004), design science “creates and evaluates IT artifacts
intended to solve identified organizational problem” The problem has to be un-
solved and important on the one hand (relevance) and the artifact’s utility, quality,
and efficiency have to be rigorously evaluated and its development process drawn
from existing knowledge on the other hand (rigor). The framework in Figure 1.3
illustrates the incorporation of the two principles into our research.

Environment

Parties

- Platform Provider
- Online Retailer

- Service Provider

State-of-the art
- Processes
- IT Landscapes

Market Analysis
Platform Prototype
E-Commerce Services

IS Research

Relevance
Cycle

Design and Build
Architecture

Design
Cycle

Test and Evaluate
Prototyping

Rigor
Cycle

Academia

E-Commerce Models
Platform Models

Model Driven
Development

Quality Models

Service and Component
Architectures

Enterprise Architecture
Frameworks

Figure 1.3: Instantiation of the IS research framework (Hevner et al., 2004)

The relevance of the design artifact is assessed by its contributions to the en-
vironment. The artifacts proposed in this work are based on the requirements of
retailers, e-commerce service providers, and the platform provider. The relevance
cycle indicates that the design evolves around existing processes, IT landscapes,
and technical artifacts (IT systems, frameworks, platforms) of the organizations
involved in the project or available on the market. Concrete contributions made to

12

Chapter 1

practice include a market analysis on integration platforms and a resulting refer-
ence architecture in Chapter 4, a platform architecture and prototype in Chapter 5,
as well as various e-commerce services presented in Chapter 4, Chapter 5, Chap-
ter 6, and Chapter 7.

The second pillar in the IS research framework is the contribution to academia.
The rigor cycle ensures that existing theory is reflected and new theoretical con-
tributions are made explicit. In fact, the starting point of our architecture are the
available state-of-the-art e-commerce process reference models and a novel archi-
tectural reference model, representing the result of a systematic literature review
(Chapter 2). In the same fashion, we reflect current quality models and propose a
novel quality model and instrument for pluggability (Chapter 3). The architectural
models rely on enterprise architecture modeling frameworks and the actual archi-
tecture originates from the service-oriented thinking. Finally, the development of
the design product is following a model-driven approach.

The idea behind the design cycle is to gradually improve the solution, by creat-
ing the new design artifact, based on the evaluation of the previous design product.
Thus, our design starts with a state-of-the-art architecture (artifact) and the evalu-
ation of the state-of-the-art prototype (product) in Chapter 4. The second design
cycle reflects the shortcomings of the state-of-the-art architecture and prototype
(Chapter 5). In the third design cycle (Chapter 7) we extend the objectives of the
architecture and evaluate the product with regard to the collaborative capabilities
of the service. In the following section, we describe the design cycle in more detail.

Design cycle

According to Peffers et al. (2007) and Wieringa (2009) the design cycle starts with
one or two initial phases where the motivation and objectives for the design are de-
fined. Subsequently, the design and development phase produces a design artifact
that is used for the instantiation of the design product during the demonstration
phase. The design product is then used for evaluation. The subsequent design cycle
can either start with the reformulation of the design objectives or directly with the
new design and development phase (Figure 1.4).

Design Cycle
Identify problem || Define |, Designand | Demonstrate || Evaluate | | Communicate
and motivate objectives develop
Design artefact J\ Design product J\
(architecture) (prototype)

Figure 1.4: Six phases of the design science research cycle (Peffers et al., 2007)

13

Chapter 1

The motivation for a design should be specific and the solution should provide
a justified value (Peffers et al., 2007). The architectural design of the platform is
motivated by the research goals and research questions that have been elaborated
previously. Furthermore, in Chapter 2, we review the state of the art in e-commerce
architectures and their capabilities which provides a further understanding of the
limitations current architectures entail. By embedding the architecture in the e-
commerce domain and the study of concrete e-commerce services we provide tan-
gible use cases to underline the practical value of the design.

The objectives of the design are derived from the problems identified during the
motivation phase and provide a means to operationalize the evaluation of the de-
sign. Verschuren and Hartog (2005) suggest a plan evaluation as a means to verify
the consistency throughout the first phases of the design cycle and thus, to ensure
that the objectives (requirements and assumptions) are valid sub-goals. The ob-
jectives for our design are based on the insights on software quality in Chapter 3.
The actual design artifacts, that are put forward in the subsequent sections, should
primarily support the quality criteria for pluggable services. The phase of objective
definition is revisited once in Chapter 7 where the inter-organizational capabilities
of platform-based services will be considered.

The design and development phase results in the construction of the design arti-
fact which potentially meets the criteria defined during the objectives phase (design
hypothesis). The development draws upon the insights from the previous design
cycle. For example, our first design reflects the capabilities of current integration
platforms (cf. Chapter 4). During its evaluation, we found that data management
components could be beneficial to the design. Thus, we added it to the platform
architecture of the subsequent design phase in Chapter 5.

The demonstration phase takes the design artifact as an input for the creation
of a design product. The design product can be considered as the instantiation of
the design artifact that demonstrates the feasibility of the design and facilitates the
verification of the design hypothesis. Furthermore, we establish a business case
during each demonstration phase which allows showing the practical relevance of
the design.

The evaluation uses the design product to test the design hypothesis. Accord-
ing to Verschuren and Hartog (2005), product evaluation involves a measurement
at two different points in time, once before and once after introducing the design
product. For example, we compare the pluggability of services with and without the
use of the platform. The evaluation of the product can be done through the use of
an instrument or through logical reasoning (Peffers et al., 2007). In the first three
cycles, we rely on the instrument of pluggability which we propose in Chapter 3.
In the last design cycle, we discuss a business case to investigate the collaborative
capabilities of the platform.

14

Chapter 1

1.3 Dissertation outline

In the previous sections, we presented the goals for our research and established a
number of research questions. Furthermore, we have put forward a methodological
framework that relies on various design science research contributions. Table 1.2
summarizes the different concepts and maps the remaining chapters of this work to
the established framework. In the following we discuss each chapter individually.

Chapter 2

The development of information systems often follows a model driven approach
(Fettke and Loos, 2003). To understand the capabilities of current e-commerce sys-
tems various reference models in this field can be consulted and reused (Becker and
Schutte, 2007; Frank and Lange, 2007). Reference models help software producers
to implement standard software packages that can be used many organizations. At
the same time the models help the adopters of software packages to analyze the fits
and misfits with their current processes. Particularly small and medium sized com-
panies struggle with the implementation of such comprehensive prepackaged solu-
tions, due to the complexity of the systems and the underlying business model (Soh
etal., 2000). A new paradigm to overcome these shortcomings and to improve sys-
tem agility is “to design many business activities as Lego-like software components
that can be easily put together and taken apart” (Merrifield et al., 2008). A suitable
model to design such architectures, that we are going to use for the architecture
of the platform, is the ArchiMate modeling language for enterprise architectures,
which has been designed with the service-oriented paradigm in mind (Lankhorst
et al,, 2009). Based on a systematic literature review, we present an architectural
reference model for online retail that encompasses all three layers of the ArchiMate
metamodel. The reference architecture is evaluated by means of a case study of the
IT landscape from a fulfillment center.

Chapter 3

Software quality models help organizations to assess the state of their application
systems and have been subject to research for a couple of decades (McCall et al.,
1977; Grady and Caswell, 1987; Dromey, 1996). However, the stakeholder of the
existing quality models is mainly concerned with the internal structure of software
components. With the shift towards cloud offerings, a different conception of qual-
ity arises. Current quality models consider resource owner and provider as a single
entity. Thus, most of the quality characteristics covered in the models reflect the
internal view of a software service (Ortega et al., 2003). To address the deficiency,
Chapter 3 puts forward a new quality characteristic of pluggability that reflects the
priorities of the service user as a distinct party. It implies six different phases of ser-
vice consumption. We introduce the notion of pluggability to illustrate the aspired
user experience of a service and propose a corresponding measurement instrument.

15

Chapter 1

Table 1.2: Mapping of thesis to methodological framework

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7
Method Systematic liter- Literature Market analysis, Prototyping Prototyping Prototyping
ature review review prototyping
Artifact Reference archi- Instrument State-of-the-art Platform archi- Pluggable ser- Collaborative
tecture architecture tecture vice architecture
Evaluation Business Case Interview Instrument Instrument Instrument Business Case
Business case Fullfilment cen- Goods return Cross-border Sales forecasting Cross-selling
ter architecture flow compliance
DSRM cylce Motivation Motivation Objectives Design cycle 1 Design cycle 2 Design cycle 3 Design cycle 4
(Peffers et al.,
2007)
Research goal RG1 RG3 RG1/RG2 RG2/RG3a RG2/RG3a RG2/RG3b
Research SQ1 SQ2 SQ3 SQ4 SQ4 SQ5
question
Relevance cycle In: E-commerce Out: Pluggabil- In: Existing In: E-commerce In: Platform In: Platform
(Hevner et al., consortium ity instrument platforms and canonical data architecture, requirements
2004) requirements services model PaaS$ offerings Out: Collabo-
Out: Return ~ Out: Platform Out: Sales fore- ration platform
flow prototype architecture and casting service architecture,
trade compli- prototype canonical data
ance service model, cross-
prototype selling service
prototype
Rigor cycle In: Research In: E-commerce In: Quality In: Pluggability In: Statistical
(Hevner et al., methods and literature and models and instrument model and R
2004) core concepts reference mod- frameworks Out: State of the module, plugga-
Out: Research els Out: Service art pluggability bility instrument
goals Out: Architec- lifecycle and assessment Out: Forecast-
tural reference pluggability ing analytics
model model service and

evaluation

16

Chapter 1

The pluggability criteria are the major objectives for the design in the subsequent
chapters and the instrument will be used as a means to evaluate the design.

Chapter 4

In the fourth chapter, we investigate the currently available e-commerce solutions
and integration platforms in the market. The review supplements the state-of-the-
art in e-commerce architectures from Chapter 2 with a perspective on available
software products. We combine the findings of both chapters and propose a state-
of-the-art platform architecture model for e-commerce which represents the first
design artifact in the design cycle. The design is instantiated by means of a proto-
type which reflects an e-commerce returns handling scenario. The design product
reveals the capabilities of currently available solutions and is evaluated by domain
experts using the pluggability instrument established in Chapter 3. We conclude
with a documentation of the shortcomings in current solutions and propose an ex-
tended reference architecture model.

Chapter 5

The extended reference architecture from Chapter 4 is taken as a basis for the sec-
ond design cycle outlined in Chapter 5. The collaborative data management com-
ponent of the extended model is reflected in the platform architecture in the form of
a canonical data repository that allows the reuse of resources across services. Fur-
thermore, the platform architecture implements a resource authorization process
which is derived from similar mechanisms in social media. The implementation of
the prototype is making use of existing software libraries available from social media
and applies them in the enterprise information system context. For the evaluation
of the design product a business case is established which reflects the cross-border
e-commerce scenario. An existing global trade compliance service in transformed
into a pluggable service. A comparison between the two services is carried out with
regard to the six criteria of pluggability.

Chapter 6

In this chapter, we continue elaborating on the capabilities of the proposed platform
architecture to support easy adoption of e-commerce services with relevance for
cross-border and omnichannel retail. Business models that include ship-from-store
offerings and globally distributed warehouse locations require a thorough stock al-
location planning. Particularly in the fashion domain with short series lifecycles,
excess stock or out of stock can lead to major losses. Sales prediction models sup-
port the task of stock allocation planning as they provide an approximation to fu-
ture sales figures per channel and stock keeping units. In Chapter 6 we present
a sales forecasting service which dates from the collaboration with our project’s

17

Chapter 1

research partner. Their state-of-the-art sales forecasting module has been trans-
formed into a pluggable cloud service which relies on the platform architecture and
makes use of the existing e-commerce resources. We propose the architecture for
the service and present its implementation. We compare the pluggability of the sales
forecasting module and the cloud-based sales forecasting service. We show that the
previously required tailoring of solutions for data analytic tasks can be overcome
and replaced with ready-to-use pluggable services.

Chapter 7

In the beginning of the final design cycle, we revisit the design objectives phase. We
extend the focus from assessing the technical aspects of service pluggability to the
quick connect capability among business partners. We hypothesize that the com-
plex workings of B2B partnerships can be encapsulated into a collaboration service.
Through the platform architecture, such service can be consumed by collaborating
partners in a pluggable fashion. Thus, leading to increased quick connect capability
of the platform clients and users. We demonstrate the idea based on a cross-selling
service. Cross-selling is a popular means to attract new customers in the highly
competitive market. We propose a service that allows to match products and refer
customers among shops in an ad-hoc manner. The service handles the technical in-
teroperability, the contract, and the settlement of commissions among cross-selling
parties.

Synopsis

Figure 1.5 shows how each chapter is oriented towards the DSRM. In Chapter 2
we define the objectives through the construction of a quality model. In Chap-
ter 5, Chapter 6, and Chapter7 we present the iterations of design artifacts and de-
sign products. The design artifact is always drawn upon the design artifact of the
previous phase (inheritance relationship). Furthermore, each new artifact takes as
an input the findings of design product construction (generalization). The design
product is based on the design artifact (instantiation) and the objectives for con-
struction and evaluation. In Chapter 7 the objective definition phase is revisited
and the design product gets evaluated based on the extended objectives.

18

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Motivation Objectives

Introduction

|_ E-commerce reference

Chapter 1

Demonstration
and Evaluation

Design and
Development

Metamodel

architecture
Pluggability of services
Platform archltecture RMA process —
Resource access Trade compliance
management service
Busnness event streams Forecasting service —
L
Quick connect capability r Domain data and
X . Cross-selling service
in buisness networks meta-mc model _I
T
Inheritance — —
Dinrtift|<|— —— Design artifact
|_esg i (design artifact evolution) |_esia _ac —

|_Design artifact |<—Instantiation—§ Design product (prototype)

i Design product (prototype) '<—

Generalization
of findings

A Base for implementation
Objective p X —
and evaluation

|
|_De5|gn artlﬁct_,

Design product

Figure 1.5: Application of the design cycle

19

Chapter 2

The State of the Art in
E-Commerce Architectures

The coordination of processes is made possible for every e-commerce company
by different software components with specific functionality. A single e-commerce
transaction involves many software components that provide different services such
as searching and browsing products, initiating a transaction, or payment of an or-
der. Often, these components are bundled into a single software application which
makes it challenging to change or add services to the existing landscape. How-
ever, in recent years the lack of flexibility of the monolithic software platforms has
been addressed through a new software development paradigm, namely the service-
oriented architecture approach (Merrifield et al., 2008).

Similar to the growth of the online market, the sheer amount of approaches
and technologies has increased as well. This makes the development of an aligned,
change responsive, and efficient software architecture more difficult. Especially
small retailers, that want to establish an e-commerce channel along with their tra-
ditional business, struggle to oversee the large number of available products and
architectures, from both the functional and technical expertise points of view. The
emergence of technologies, such as cloud computing, and approaches like service-
orientation, complement and compensate traditional applications. Nevertheless,
they still require a profound understanding of many technical and architectural as-
pects.

The change and the variety of the users’ demands is another source of challenge.
We can observe a shift from the established web applications to fully-functioning
mobile application in the last years. With this development, offline and online shop-
ping experience will merge and bring new challenges and opportunities for retail-
ers. According to the European Commission (2015), 20% of the EU citizenship is
expected to buy goods from abroad in 2020. Following the internationalization, ad-
ditional challenges and competition for e-commerce companies arise. These chal-
lenges range from supply, delivery to the payment issues. According to Weinfurtner
et al. (2013), the dropout rate because of the mode of payment varies between 1%
and 88%. Given the fact that the preference for different modes of payment dif-
fers significantly per country (e.g., the Dutch prefer their national solution iDEAL
(Blauw Research and GfK Retail and Technology, 2012) while Germans prefer to
purchase on account (Weinfurtner et al., 2013)), satisfying the customer is an on-

21

Chapter 2

going challenge.
The emerging challenges can be summarized, as lack of:

o flexibility of the existing, monolithic systems.

« insight into all application and technology components due to the lack of
existing reference architectures.

» knowledge regarding the impact of emerging technologies on current archi-
tectures.

« integration between online and offline channels.

The concept of service-orientation should overcome the mentioned challenges
as it makes the previously bundled services explicit. It gives insights into what com-
ponents existing architectures are built upon. It also allows to plan and imple-
ment new technologies and facilitates the integration with other, previously sep-
arated, systems. To come up with a suitable service-oriented reference model for
e-commerce, an overview of the entire architectural building blocks and offerings is
required. It allows making the right choices when designing an e-commerce archi-
tecture and is therefore put forward as research goal of this chapter. In the remain-
der of this chapter, we discuss currently used e-commerce architectures and derive
best architectural practices from them. The main contribution of this chapter is an
exhaustive study of the literature on e-commerce architectures. It is complemented
by an E-Commerce Reference Architecture (ERA) which extends the known mod-
els with a concrete catalog of architectural artifacts and their relationships. The
proposed architecture gives an overview of the functional building blocks which
are required to fully support the execution of an e-commerce transaction and all
other related activities (e.g., fulfillment, customer support, returns, etc.). It should
be noted that, for now, we are not concerned with the exact implementation of the
aforementioned building blocks.

The amount of literature on e-commerce is vast and the relevant information
is scattered. Additionally, the main themes of this study, such as platform, archi-
tecture, or service tend to be overloaded as they are applied distinctively across
the different sub-domains of information system research: architecture can refer
to business or enterprise architecture, to application architecture in the context of
software engineering but also to infrastructure architectures, such as networking or
even hardware. As a consequence, the chosen approach for this study has to be ex-
tensive to the extent that no relevant publications are overseen and strictly selective
to limit the scope to the research questions. Thus, we carried out a systematic lit-
erature review as proposed by Kitchenham (2004). The method encompasses two
distinct phases. First, a search strategy is put forward and subsequently, a study se-
lection is carried out. We applied a double coding strategy to minimize subjectivity
during the selection phase. Our data extraction goes beyond the usual categoriza-
tion of literature and themes. Instead, we are going to derive a reference model to

22

Chapter 2

summarize our findings. For the introduction of such a new reference architecture,
we made use of the design science research methodology from Peffers et al. (2007).

2.1 Research design

This chapter combines a literature study, which aims at identifying the current state
of the art in e-commerce architectures with the development of a reference architec-
ture. For this purpose, a multi-method approach is applied consisting of a systematic
literature review nested into a design science research cycle.

Figure 2.1 visualizes the process we followed. The design science research method-
ology described by Pefters et al. (2007) includes the following phases: 1) problem
identification 2) definition of objectives 3) the development of an artifact and 4) its
validation. The artifact that is proposed in this chapter is an architectural model
that outlines all the building blocks for an e-commerce solution and is based on
the architectures proposed in current academic contributions. The list of relevant
literature and its categorization is presented as an intermediary artifact prior to the
development of the architecture.

To systematically analyze the existing literature, we follow the approach of Kitchen-
ham (2004). This means that the process incorporates three steps: study selection,
study qualification, and data extraction. The study selection is further divided into
the definition of search criteria, the collection of the papers, and the application of
the selection criteria.

The remainder of this chapter is structured according to the described research
process. In the next section, we elaborate on the objectives of the research and the
nature of its contribution. In Section 2.3 we describe the literature review process
in depth and explore the qualitative and quantitative aspects of the literature list.
In Section 2.4 we come up with the reference architecture. In Section 2.5 we are
evaluating the architecture and, at the same time, the state of the art in e-commerce
architectures.

2.2 Objectives

The goal of a reference model is to provide a working solution for a class of common
design problems. To achieve this goal, reference models adhere to three character-
istics, namely covering best practices for solving problems in practice, being univer-
sally valid and thus applicable to a class of problems, as well as being reusable and
customizable or adaptable to different implementation scenarios (Fettke and Loos,
2007). The presented architecture can be used equally by scholars and practitioners
to further investigate the topic or to build solutions based on the aggregated knowl-
edge on e-commerce architectures. As the architecture is derived from the current
e-commerce research, it also gives insights into which aspects are overrepresented
or underrepresented in the current papers in the field of e-commerce. Fettke and
Loos (2007) propose a framework to approach reference modeling by looking at

23

Chapter 2

1) Identify Problem O
and Motivation

2) Define @)
Objectives

First Selection Phase Aooly Select OO
election
Define Search O Y

° Collect Papers O Criteria
Strategie P) ™ (Double Coding)
l generate
Second Selection Phase OO
Apply Selection
EX';?,iiefJCh O Ly Collect Papers Ol Criterria
9 . (Double Coding)
§."N§'dd :'-.,.Ii!t.emt,NN,HNN.NN,“N therature Llst
Qualify O)...sort and filter A
geve [3)Design O) ooqe
M and Develop
Reference
Architecture

A v
i validate 4) EvaluationO

Figure 2.1: Mixed method approach

the context, existing reference models, and the modeling language. In the remainder
of this section, we use this framework to outline the objectives for the e-commerce
reference architecture model.

2.2.1 Context

The context of the reference model covers the technical, organizational, and eco-
nomic scenario in which the modeling process is embedded. According to the mo-
tivation for our research, we focus on an e-commerce scenario in a retail context,
where the business model of the retailer is to buy and store a large quantity of goods
and resell them in smaller quantities (cf. Appendix B). This e-commerce process
generally does not include the production of goods but it can include certain activ-
ities of product finishing or customization. It usually includes additional services
before, during, and after the selling of goods. The process includes business-to-
customer (B2C) as well as business-to-business (B2B) e-commerce transactions,
between the e-commerce company, its suppliers, partners, and customers.

24

Chapter 2

In this work, we are focusing on an enterprise architecture that reflects busi-
ness processes and the required IT resources. The latter should be identified in a
service-oriented manner to allow the users of the model to emancipate themselves
from the application centered thinking when designing their landscape. Neither
the implementation of the services nor how they might be bundled in various ap-
plication systems are important. The system owner should be able to choose and
exchange the IT services according to the business needs and overcome the limita-
tions of monolithic business applications. We are going to cover internal business
services, and more importantly, services that allow communication with business
partners such as suppliers and logistic service providers.

2.2.2 Existing models

Several related reference models can be found in the scientific literature. The mod-
els focus on the business process of an e-commerce enterprise and do not present
a comprehensive architecture for e-commerce. In the following, we present four
prominent models and discuss their limitations with regard to the context of this
study as well as their potential reuse in the architectural model.

The H-Model for retail from Becker and Schutte (2007) provides a domain-
specific reference architecture for retail enterprises. The model describes eleven
tasks within the three major groups of procurement, storage, and distribution (Ta-
ble 2.1). Different views allow the extension or simplification of the model ac-
cording to the business requirements. The model is based on the Architecture of
Integrated Information Systems (ARIS) framework and contains three viewpoints
which are business functions, processes, and static data. The model originates from
a traditional retail business model and omits some functional tasks that are specific
to e-commerce.

Frank and Lange (2004) and Frank (2004) establish a library of 85 business pro-
cess models divided into nine business functions. Table 2.1 contains a mapping of
these business functions to the functional tasks of the H-Model.

Burt and Sparks (2003) investigate the impact of e-commerce on the retail pro-
cess. Their procedural model is used as a framework to compare activities, owner-
ship, costs, and efficiency in an e-commerce setting against traditional retail. Ac-
cording to this model, the retail process comprises five business functions, which
we mapped onto the aforementioned models in Table 2.1. Their view on the retail
process is in line with the 8 business functions identified by Gunasekaran and Ngai
(2004) for a similar purpose.

Some other reference models such as Croxton (2003) exist which provide a spe-
cific focus on parts of the overall business process, such as order fulfillment and sup-
ply chain matters. These reference processes might be relevant on a more detailed
level of an ERA.

In none of the above-mentioned models return handling is considered as a pri-
mary business function. However, in online retail return handling is a critical ac-
tivity, as the volume of returned goods is much higher compared to the traditional

25

Chapter 2

Table 2.1: Business functions in the existing reference models

Becker and Schutte Frank and Lange Burt and Sparks Gunasekaran and
(2007) (2004) (2003) Nagai (2004)
Contracting Procurement Sourcing Supplier
development
Order Procurement Sourcing Purchasing
management
Goods receipt Reception — —
Invoice auditing Payment — —
Accounts payable Payment — —
Warehousing — Stockholding Warehousing
Marketing Pre-sales Marketing Marketing
communication
Marketing Customer relations ~ Branding Design
Selling Initiation and Customer selection ~ Sales
pricing (pick and pay)
Good issue Order processing Distribution Distribution
Billing Order processing Distribution Distribution
Accounts Collection — —
Receivable
Return Handling — — —

(in goods issue)

Customer service

retail (Banjo, 2013). A proper return handling strategy is essential for online retail-
ers in order to limit the expenses caused by the high volumes. Furthermore, in three
of the models, an explicitly defined customer service business function is missing.
The online transaction lacks a personal contact as it is present in a brick and mortar
store. Thus, in case of individual inquiries or exceptions, online customers need to
be provided with a telephone hotline and e-mail help center.

Apart from the minor functional gaps, existing retail models do not cover the
information and technology layers which are essential for an enterprise architec-
ture. Thus, building an information systems based on the available models will
eventually lead to solutions that support either one specific business function or
the end to end process. These are in most cases either a number of horizontally
oriented systems, each supporting singular business functions, or monolithic sys-

26

Chapter 2

tems that are not able to support the integration of specific application services. To
overcome these limitations, a reference architecture model should include all the
required IT services which can be reused across business functions. Such a model
will eventually lead to an open and agiler architecture.

2.2.3 Metamodel

The modeling language of a reference model is crucial because it defines the formal
framework and viewpoints to describe the system. The H-Model and the E-MEMO
model presented previously are using the ARIS framework and the process model-
ing language MEMO-OrgML respectively. To facilitate the shift from these process
centric modeling frameworks to a more comprehensive architectural view of the
information system, the presented ERA is specified using the ArchiMate language
(The Open Group, 2016) which was developed to model all the aspects of com-
plex organizations. A description of the ArchiMate metamodel can be found in
Appendix A.

2.3 Systematic literature review

Lee et al. (2011) provide an overview of e-commerce related literature studies. Ac-
cording to their work, existing literature reviews belong to either of the following
two categories: 1.) generic reviews identifying themes and methods in e-commerce
across disciplines (Clarke, 2000; Lee et al., 2007; Ngai and Wat, 2002; Wareham
et al., 2005) or 2.) studies focusing on one specific aspect of e-commerce, namely
economic theories (Kauffman and Walden, 2001), marketing (Schibrowsky et al.,
2007), customer relation and satisfaction (Chen et al., 2008; Romano Jr. and Fjer-
mestad, 2003), adoption (Chitura et al., 2008), payment (Dahlberg et al., 2008) and
marketplaces (Wang et al., 2008). Considering this categorization, our contribu-
tion falls into the second category of studies aggregating existing knowledge from
literature with regard to a specific theme. More specifically, our focus lies on the
identification of building blocks for e-commerce architectures discussed in recent e-
commerce studies. The aggregated knowledge will allow us to develop a state-of-
the-art e-commerce reference architecture, based on the research of the last decade.
In this section, we describe the strategy and results of the research process.

2.3.1 Data sources and search strategy

I order to capture a maximum number of relevant studies, we carried out two selec-
tion cycles. The search query for the first selection cycle was developed collectively
by three researchers. The search query of the second selection phase reflects syn-
onyms and related search terms that have identified during the first selection phase.
The following search query was defined for the first selection phase:

27

Chapter 2

(E-commerce OR electronic commerce) AND
(architecture OR SOA OR EA OR reference model OR platform)

Due to the generic nature of some of the used search terms and to increase
the ratio of relevant contributions we limited the search to the title and abstract of
the publications. We also limited the search to publications that were published
within the last ten years as we want to investigate the state of the art. The literature
review was carried outin 2013. The year 2003 can be considered as an adequate time
horizon, as the modern web (web 2.0 and web services) were introduced around
that time. To obtain scientific literature matching the search query, we used six
electronic indexing sources. Due to the high number of duplicates during the first
selection cycle, we conclude that adding more indexing sources to the list will not
significantly increase the number of relevant papers. The indexing sources we used
are:

1. Web of Science (http://apps.webofknowledge.com)
2. CiteseerX (http://citeseerx.ist.psu.edu)

3. ScienceDirect (http://www.sciencedirect.com)

4. IEEEXplore (http://iceexplore.ieee.org)

5. ACM Digital Library (http://dl.acm.org)

6. Springer Link (http://link.springer.com)

Some of the above-mentioned indexing services allow the direct entry of the
search query, while some require multiple searches to achieve the same. After omit-
ting the duplicates and scanning the titles 880 documents were taken into the se-
lection phase described in the subsequent section.

After selecting the papers, the search terms have been extended to cover syn-
onyms and related terms that turned out to occur often in the abstract of relevant
publications. In the second selection phase the following query was applied:

(E-commerce or ecommerce or electronic commerce) AND
(component or model or process or
framework or platform or service or cloud)

After pre-selection and removal of duplicates, 3292 additional papers entered
the selection phase.

2.3.2 Study selection and study quality assessment

To select relevant publications from the large list of documents we filtered them
based on their title, abstract and available meta-information by using the following
inclusive criteria:

28

http://apps.webofknowledge.com
http://citeseerx.ist.psu.edu
http://www.sciencedirect.com
http://ieeexplore.ieee.org
http://dl.acm.org
http://link.springer.com

Chapter 2

o The document is published in a journal, conference, workshop, as a technical
report, thesis or book (chapter) to ensure that search results meet certain
academic quality standards and have been peer reviewed.

o The document proposes an architecture for e-commerce scenarios or dis-
cusses design principles or best practices.

All papers have been scanned independently by two researchers to increase the
objectivity of the results. After applying the above filtering criteria a list of 864
papers has been generated. To further limit the amount of papers considered for
this study the papers have been rated with scores from 1-5 by scanning the full
content of the paper:

1 Point: Has no relationship to e-commerce architecture at all
2 Points: Discusses one aspect of e-commerce architecture

3 Points: Discusses several aspects of e-commerce architecture
4 Points: Proposes a partial architecture

5 Points: Proposes a full architecture

The results of the scoring of both researchers have been then merged: papers
where the scores differed by more than one point have been further discussed by
two researchers resulting in an agreed upon adjustment of the score. All papers with
an average score of more than 3.5 are included in the final literature list resulting
in a total of 48 papers (Albrecht et al., 2005; Baghdadi, 2004, 2005; Baida et al.,
2003; Baquero et al., 2012; Basu and Muylle, 2003; Chang and Wang, 2010; Chen
et al., 2007; Chen and Su, 2011; Chou and Lee, 2008; Dorn et al., 2007; El Ayadi,
2011; Esswein et al., 2004; Feipeng and Qibei, 2010; Fragidis and Tarabanis, 2008;
Frank, 2004; Ganguly and Bhattacharyya, 2011; Gao et al., 2009; Hashemi et al,,
2006; Hernandez et al., 2005; Hu et al., 2009; Igbal et al., 2013; Kim et al., 2003;
Jiang and Song, 2010; Jiao and Helander, 2006; Kim and Smari, 2005; Lackermair,
2011; Lan et al., 2008; Li and Dong, 2010; Liu and Hwang, 2004; Liu et al., 2005;
Medjahed et al., 2003; Mohamed et al., 2010; PengLing and Mian, 2010; Sabki et al.,
2004; Sun et al., 2012; Tan, 2011; Tenenbaum and Khare, 2005; Thomas et al., 2008;
Wan et al., 2013; Wan and Huang, 2008; Wen, 2007; Xu et al., 2010; Yang et al., 2007;
Ying and Dayong, 2005; Zhang et al., 2009; Zheng et al., 2009a,b)

The literature review has been carried out based on the papers of this final selec-
tion. A coding technique has been applied in order to extract categories from the
paper (Saldafia, 2012). By using in-vivo codes two researchers extracted the rele-
vant architectural concepts from the papers and later grouped them into semanti-
cally identical categories. This way we maximize objectivity while identifying the
architectural building blocks and minimize the effect of projecting the researchers’
assumptions on e-commerce architectures when applying predefined criteria to the
sample. In the next section, we are going to present the results of the coding.

29

Chapter 2

2.3.3 Results

The purpose of this section is to give an extensive overview of the academic research
on e-commerce architectures since 2003. To do so, a qualitative and a quantitative
analysis have been carried out. We deem both analyses as necessary because the
quantitative analysis helps us to get a general overview of the trends and topics in
academic research on e-commerce architectures, while the qualitative analysis gives
insights into the content of the papers and forms the base for the identification of
artifacts of the reference model. Four different perspectives are reflected to classify
and analyze the literature.

In the first step, the papers were analyzed from a technological point of view.
This dimension describes the underlying software technology or the framework
used to design the solution. Both are included, since not all papers design a tech-
nology oriented architecture, but may take other perspectives such as knowledge,
stakeholders, or process perspectives. By doing this, we provide an overview of
the used technology and extract relevant information for the reference model. Sec-
ondly, different types of artifacts have been proposed by the various authors (e.g.,
an architecture description, model, or a framework). This dimension aims at classi-
fying the selected papers according to the type and nature of the proposed artifact.
The third dimension is concerned with application functionality, i.e. the functional
building blocks (e.g., the application services) of the proposed solutions. Accord-
ing to the ArchiMate metamodel, these could be components, services, application
functions, objects, etc. of the proposed solutions. Extracting them from the se-
lected literature provides us with an overview of the most relevant and most dis-
cussed functional building blocks which will be further used as the basis for the
application layer of the reference model. Similarly, the fourth dimension is con-
cerned with technological building blocks of the proposed solution such as devices,
nodes, system software and infrastructure functions. These form the basis for ERA’s
technology layer.

The analysis of the papers in scope with respect to the used technology (Fig-
ure 2.2) revealed the extensive use of service-oriented technologies in e-commerce.
Out of the 48 papers, 28 are related to service-oriented architecture. The second
most frequently mentioned technology is component-based with six papers. Three
of the analyzed papers discuss agent-based architectures. Two papers have focused
on processes and another two on workflow architectures. It should be noted that pa-
pers which include more than one technology (e.g. Chen et al., 2007) are only rep-
resented once depending on the main technology. Two papers (knowledge-based
and stakeholder-viewpoint) take a unique viewpoint and use approaches which are
normally outside the scope of enterprise architectures. Four papers do not mention
any technology and propose a generic and high-level architecture. In such case, a
mapping to a specific technology was not possible.

In the selected articles, authors referred to technologies in relation to the devel-
opment of different artifacts (Figure 2.3). 22 papers proposed an architecture, in
which they define how services or components interact with each other, and how

30

No. of Articles
= N
[63) o

[y
o

they are layered. Five papers analyzed commonalities of architectures (namely by
proposing reference architectures). In terms of frequency, the architecture papers
are followed by eight model papers and three reference model papers, which pro-
pose specific designs. The five framework papers focus on the role of the services,

Chapter 2

l — | — |
> S S &
& & & % * & @°$
9 S © R Q
@Q X Q€) \QJ&\ S
P O A
¢ $
S &
& e
9_0
Technology

Figure 2.2: Number of articles per technology

components, etc.

No. of Articles

20

15

10

0

Architecture Framework Model Reference Reference Survey
Architecture Model
Artifact

Figure 2.3: Number of articles per artifact

31

Chapter 2

When analyzing the selected articles from a functional perspective, one can see
a great variety of the implemented functions. A total of 85 functional features is
proposed. The 85 features are mentioned in 37 articles (10 articles do not propose
any functionality). Table 2.2 shows the functions mentioned in at least two papers.
These are 19 functions (22.4% of the total amount of functions). Looking at the
most frequently analyzed features (occurring in more than 3 articles) one gets an
overview of the main application layer concepts supported by e-commerce solu-
tions. Especially order (18 articles) and payment (13 articles) functions are popular
and analyzed by many authors. While most of these functional building blocks are
common to traditional shops as well, search and product information are rather
technical and specific to the electronic channel.

Categorizing the articles into functional categories across the supply chain gives
additional insights (Figure 2.4). While only seven of thirty-seven articles cover
the upstream supply-chain activities (procurement), 36 of 37 articles analyze the
downstream activities (distribution). The only paper which discusses functional
aspects but leaves out distributive parts is Chou and Lee (2008), with a focus on
customer service and integration. 16 articles discuss customer service related func-
tions such as customer relationship management. Three articles discuss warehouse
related topics such as stock management. 22 articles analyze functions which do
not fit into this scheme. These functions vary from business related topics, such as
general audits, to technical topics, such as certificates or central processing.

40
35
30
§ 25
S
<20
k]
S
z 15
10
5 l
0 L
Distribution Customer Procurement Warehouse Other None
Service

Functional Category

Figure 2.4: Number of articles per functional category

Besides a main technology, we also identified specific technology related con-
cepts discussed in the selected papers. Those concepts form the basis for the tech-
nology layer of the reference architecture. 15 different concepts have been covered
in the papers, which is significantly less than the functional concepts we discussed

32

Chapter 2

Table 2.2: Publications per application layer concept

E Application Articles
Concept
18 Order Baghdadi (2004, 2005); Chen et al. (2007); Dorn et al. (2007); Gao et al. (2009); Iqbal
et al. (2013); Jiao and Helander (2006); Lackermair (2011); Lan et al. (2008); Li and
Dong (2010); Liu and Hwang (2004); Liu et al. (2005); Sabki et al. (2004); Tan (2011);
Thomas et al. (2008); Wan et al. (2013); Wen (2007); Yang et al. (2007)
12 Payment Basu and Muylle (2003); Feipeng and Qibei (2010); Igbal et al. (2013); Kim et al.

8 Logistics

6 Finance

5 Product
Information
Negotiation

4 Procurement
Search

3 Authentication
Production
Sales
Shipping

2 Bank
Billing
Contract

Customer
service

Fulfillment
Product
Purchase
Sourcing

10 None

(2003); Jiang and Song (2010); Lackermair (2011); Lan et al. (2008); Li and Dong
(2010); Liu and Hwang (2004); Liu et al. (2005); Medjahed et al. (2003); PengLing
and Mian (2010); Zheng et al. (2009b)

Basu and Muylle (2003); Feipeng and Qibei (2010); Jiang and Song (2010); Lacker-
mair (2011); Li and Dong (2010); Tenenbaum and Khare (2005); Ying and Dayong
(2005); Zheng et al. (2009a)

Mohamed etal. (2010); Sabki et al. (2004); Tenenbaum and Khare (2005); Wen (2007);
Xu et al. (2010); Zhang et al. (2009)

Chen et al. (2007); Lackermair (2011); Li and Dong (2010); Liu and Hwang (2004);
Sabki et al. (2004)

Baquero etal. (2012); Kim et al. (2003); Liu and Hwang (2004); Medjahed et al. (2003);
Wan et al. (2013)

Baghdadi (2004); El Ayadi (2011); Mohamed et al. (2010); Tenenbaum and Khare
(2005)

Basu and Muylle (2003); Li and Dong (2010); Liu and Hwang (2004); Tenenbaum
and Khare (2005)

Basu and Muylle (2003); Feipeng and Qibei (2010); Yang et al. (2007)
Frank (2004); Jiao and Helander (2006); Liu et al. (2005)

Frank (2004); Tan (2011); Zheng et al. (2009a)

Lackermair (2011); Liu et al. (2005); Medjahed et al. (2003)

Yang et al. (2007); Zheng et al. (2009a)

Kim et al. (2003); Medjahed et al. (2003)

Baquero et al. (2012); Fragidis and Tarabanis (2008)

Chou and Lee (2008); Tan (2011)

El Ayadi (2011); Mohamed et al. (2010)

Lan et al. (2008); PengLing and Mian (2010)
Baghdadi (2005); Medjahed et al. (2003)
Frank (2004); Tenenbaum and Khare (2005)

Albrecht et al. (2005); Baida et al. (2003); Esswein et al. (2004); Ganguly and Bhat-
tacharyya (2011); Hashemi et al. (2006); Hernandez et al. (2005); Hu et al. (2009);
Kim and Smari (2005); Sun et al. (2012); Wan and Huang (2008)

33

Chapter 2

earlier. Also, the consensus between the different papers is higher in this respect as
only three concepts have been found in less than 2 papers. The results are presented
in Table 2.3.

2.4 Reference architecture

Reference models are a means to facilitate the process of information system de-
sign by providing enterprises with a reusable and adaptable blueprint for a class
of domains. It helps to validate current solutions and supports the development
and selection of new applications (Fettke and Loos, 2007). Especially organizations
with limited resources can profit from such models (Frank, 2004). Their benefits
are lower costs, less expertise needed, and less time to design the architecture. A
model discussed and accepted by the e-commerce community is likely to lead to
less error prone architectures as it reduces the risk of failures or gaps.

In this section, based on the four reference models discussed in Section 2.2.2
and the conclusions of the literature review, we propose a new extended ERA. The
main differences between our model, on one hand and the existing models, on the
other hand, reside in the scope and in comprehensiveness: all existing reference
models are process models, while ours is a reference architecture model that goes
beyond business process specifications. More precisely, in this section, we cover
the concepts belonging to the business, application, and technology layers. This
includes the application services, that enable business processes, and the technol-
ogy services, that are used internally to allow the provisioning of the application
services.

The approach we followed in designing the new reference architecture is based
on the methodological foundation described in Section 2.2.3. The business layer
of the ERA is based on the context and the existing process models presented in
the same section. The application and technology layers are then derived from the
findings of the literature review in Section 2.3.3. Figure 2.5 shows the three layers
of the ERA as well as the relationships within and across the layers. In the following
we are going to elaborate on each layer individually.

2.4.1 External business services

On the business layer, from an external behavior viewpoint and according to the
context of our model, and e-commerce business provides three types of service,
namely pre-trade, trade, and post-trade services (Liu and Hwang, 2004). A more
in-depth investigation of activities and tools for external services in e-commerce is
provided by Singh (2002). In the online retail scenario pre-trade services provide
product information and encompass all activities which allow the end customer to
gather information and consultancy about available products, eventually leading to
a buying decision.

34

Chapter 2

Table 2.3: Publication per technology layer concept

Z Technology Concept

Articles

29

21

Integration and
message based data
exchange

Frontend
Applications/Web
Portal

Database

Workflow/Process
Engine

Backend Applications

Network
Infrastructure

Process and Service
Monitoring and
Analytics

Server Hardware/Vir-
tualization

Security/User
Management

E-Mail

Operating
System/Virtualization

Business Rule Engine
Printing

Legacy Systems
Cloud-Based Systems

None

Albrecht et al. (2005); Baghdadi (2004, 2005); Baquero et al. (2012); Basu and
Muylle (2003); Chen et al. (2007); Chou and Lee (2008); Dorn et al. (2007);
El Ayadi (2011); Feipeng and Qibei (2010); Fragidis and Tarabanis (2008); Gao
et al. (2009); Hernandez et al. (2005); Igbal et al. (2013); Jiao and Helander
(2006); Liu and Hwang (2004); Lackermair (2011); Lan et al. (2008); Liu et al.
(2005); Medjahed et al. (2003); Mohamed et al. (2010); Sabki et al. (2004);
Sun et al. (2012); Tenenbaum and Khare (2005); Thomas et al. (2008); Wan
and Huang (2008); Yang et al. (2007); Ying and Dayong (2005); Zheng et al.
(2009a)

Albrecht et al. (2005); Basu and Muylle (2003); Chang and Wang (2010); Chen
and Su (2011); Chou and Lee (2008); Feipeng and Qibei (2010); Ganguly
and Bhattacharyya (2011); Gao et al. (2009); Igbal et al. (2013); Jiang and
Song (2010); Jiao and Helander (2006); Kim and Smari (2005); Lackermair
(2011); Lan et al. (2008); Li and Dong (2010); Liu and Hwang (2004); Liu et al.
(2005); PengLing and Mian (2010); Wen (2007); Yang et al. (2007); Zheng et al.
(2009b)

Baghdadi (2004); Chang and Wang (2010); Chou and Lee (2008); El Ayadi
(2011); Feipeng and Qibei (2010); Gao et al. (2009); Igbal et al. (2013); Jiang
and Song (2010); Jiao and Helander (2006); Kim and Smari (2005); Lacker-
mair (2011); Lan et al. (2008); Liu and Hwang (2004); Liu et al. (2005); Med-
jahed et al. (2003); PengLing and Mian (2010); Sabki et al. (2004); Tan (2011);
Wen (2007); Yang et al. (2007); Zheng et al. (2009a)

Frank (2004); Kim and Smari (2005); Lan et al. (2008); Liu et al. (2005); Med-
jahed et al. (2003); Mohamed et al. (2010); Sabki et al. (2004); Thomas et al.
(2008); Wan and Huang (2008); Zheng et al. (2009a)

Baghdadi (2004); Chou and Lee (2008); El Ayadi (2011); Ganguly and Bhat-
tacharyya (2011); Gao et al. (2009); Igbal et al. (2013); Lackermair (2011);
Medjahed et al. (2003); PengLing and Mian (2010); Yang et al. (2007)

Baida et al. (2003); Feipeng and Qibei (2010); Kim and Smari (2005); PengLing
and Mian (2010); Sabki et al. (2004); Zheng et al. (2009b)

Hernandez et al. (2005); Lan et al. (2008); Medjahed et al. (2003); Zheng et al.
(2009a)

Baida et al. (2003); PengLing and Mian (2010); Tan (2011)

Feipeng and Qibei (2010); Ganguly and Bhattacharyya (2011); PengLing and
Mian (2010)

Chang and Wang (2010); Igbal et al. (2013)
Lackermair (2011); PengLing and Mian (2010)

Liu et al. (2005); Wen (2007)
Igbal et al. (2013)

Chen et al. (2007)[13]

Sun et al. (2012)

Esswein et al. (2004); Frank (2004); Hashemi et al. (2006); Kim et al. (2003);
Wan et al. (2013); Zhang et al. (2009)

35

Chapter 2

—— Online Retail Process =)
External Services) .
" Product (Marketing/ Q) [Supplier A [Goods Receipt Al
‘\ Information "1 { Branding kﬂ De \ J
— / { Procurement/

Purchasing ‘ Warehousing/ Q\ﬁ‘
)

B Stockholding
/" Product

(Pricing/ A ’6 P
1 i Payment/ N
¢ Purchase Yy, ‘ Selling) ‘ <

Accounts Payables

[Goods Issue/ AL
Order Fulfillment/ ’é‘

e p . (Collection/ Q| __ Distribution)
/" Product N Customer Service/ N Accounts P —

| Service Customer Relation Receivables [Retur Handling Al |
N J \)

services ‘
Front Office Back Office Supply Chain
Services Service

Services

\V/

C Payment) CNegotiation) C Contract) C FuIIfiIIment)
Generic]

I = Components
C Order) C Sourcing) C Purchase)
Authentication([N

Application Components]

Sales &1 Finance £ Logistc 8]

Billing (N
d {I‘ - { Production {I‘
Customer &1 v
Service

Technology Services | I

T
I
Application Business Process .
Yg Services oS . > Data Services

Backend
Appli ion

i | Technology Components ‘

_| Application Server| Workflow Engine — Message Based <>
Integration
Database Business Rule Engine

a2

(K

Master Data &1
Management

i

Network Hardware/Virtualization

Operating System O

Cloud Systems

Legacy Systems

Figure 2.5: Extended e-commerce reference architecture

36

Chapter 2

Product Information Services are services offered by the e-commerce company
prior to the sales transaction, such as:

« searching for products to get specifications of the product and the price.

o getting subjective information on the products, such as reviews from other
customers or the retailer

« generating product recommendation based on customer profile information,
especially on past purchases

Product Purchase Services are the services which allow the customer to pur-
chase the product. Those are:

o order entry allowing the customer to close a buying contract.
« payment allowing the customer to settle purchases.

o fulfillment of the contract concerning the home delivery service of products
to the customer.

Post Trade Services are all the services which take place after the purchase, in-
cluding:

« warranty processing services such as repair or exchange of defect products.

o support services, e.g. troubleshooting problems or software updates.

« return services for damaged products or reverse transaction of purchased
goods.

2.4.2 Online retail process

Besides the high-level external business services, an internal view of the business is
provided which is based on the existing reference models presented in Section 2.2.2.
This is realized by building clusters of identical or closely related tasks such as Ware-
housing identified by Becker and Schutte (2007) and Stockholding proposed by
Burt and Sparks (2003). A complete set of ten business functions has been included
in the ERA.

The model proposed in Becker and Schutte (2007) is categorizing the busi-
ness functions into procurement, warehousing, and distribution related tasks. The
other three models do not propose any categorization of business functions. In
our model, we position on the left side the business functions that are directly con-
tributing to external customer services, including 1) marketing and branding which
includes all tasks to attract and inform customers, 2) pricing and selling which in-
cludes all tasks of the actual sales transactions, and 3) customer services, which
includes the tasks of communicating and responding to the customers inquiries.

37

Chapter 2

On the right side of the model the internal logistic value chain is presented and
includes: 1) the receipt of ordered goods 2) stockholding 3) distribution of stored
goods and 4) handling of return shipments.

Further business functions include back office activities such as financial mat-
ters, for example, payment, collection, and accounting. Finally, supplier develop-
ment, assortment planning and procurement can be considered as the main strate-
gic business functions.

2.4.3 Application services and components

The application layer describes the software artifacts used by the internal business
users, customers, and partners, to achieve their business goals. Active structure
elements of this layer are application components which are self-contained units of
functionality. They include, among others, behavioral elements such as application
functions, and services. Passive structure elements are data objects.

As a result of the literature survey in Section 2.3.3 we have identified 19 dif-
ferent concepts that are mapped onto the different element types of the ArchiMate
language. More precisely, six main application components have been identified,
namely Procurement, Sales, Customer Service, Logistic, Finance, and Production.
The latter has only limited applicability to e-commerce (cf. Section 2.2.1), which is
confirmed by the limited contained functions and services discussed in the litera-
ture. Components such as Sales and Procurement provide a couple of application
services. However, the application functions implementing those services have not
been discussed in the literature. Although in general e-commerce literature pro-
vides an overview of the main application components, we get little insight into the
specific details of these components.

Besides the main application components, other generic components have been
mentioned in the literature, such as Authentication, and Search. These components
are characterized by their universal applicability across the business specific appli-
cations. We argue that the list of such generic components could be extended with
Communication, and Collaboration (including documentation), Policy Automa-
tion, Business Rules, or Data Analysis and Reporting, to name just a few.

Another building block contains the Product Information service based on the
actual product data. We put these components separately as we think they do not
belong to one specific application component but are shared resources across spe-
cific application services and functions. Furthermore, Product Information can be
considered as just one out of several other shared resources in the e-commerce land-
scape. Trading Community data (customers, suppliers, and partners) and Sites are
other examples of master data that are used across application components.

A mapping of business functions to the application components has been car-
ried out to identify gaps between the two layer models, and to find out if there are
any business functions that are not supported by the application layer of the model
or vice versa. Figure 2.6 shows the result of this exercise. As mentioned in Sec-
tion 2.2.1 production is not a critical business activity in the context of this study as

38

Chapter 2

we mainly deal with the retailing of finished goods. Only finishing or customization
steps are considered as production activities in this context. Nevertheless, produc-
tion components have been mentioned in several e-commerce studies and, there-
fore, we consider them relevant during sales and order fulfillment. The procure-
ment component is used on the supply side, i.e. when purchasing, receiving, and
paying goods. The sales component is critical throughout all other business func-
tions that deal with the actual marketing, selling, and distribution activities. We
also consider it for warehousing and receivables, as stock levels and reverse sales
transactions should be reported to the actual sales data. Customer service is rel-
evant in pre-sales or marketing activities, during sales, and to provide after sales
service or returns. The logistic component is used for inbound, outbound, stock-
holding, and returns handling. Finally, the finance component handles accounting
such as receivables and payables. It should also be able to enable monetary aspects
of sales and reverse transactions.

Application
Component

Business
Function

Purchasing/Procurement
Goods Receipt

Payment/ Payables
Warehousing/ Stockholding

Procurement
Production
Sales

Cust. Service
Logistic
Finance

Marketing / Branding
Pricing/ Selling
Goods Issue/Distribution

Collection/ Receivables
Return Handling
Customer Service

Figure 2.6: Mapping of ERA’s business functions and application components

2.4.4 Technology services and components

To complete the architectural model, a mapping of the concepts in Table 2.3 to the
technology layer of the ArchiMate metamodel has been carried out. Despite this
classification, these concepts are connected to each other.

Hardware and network infrastructures act as the fundamental basis for other
concepts. Supported by these infrastructures, technological advances emerge; these
advances started by Legacy Systems, which are a special type of systems that is char-
acterized by its use of outdated technologies and its potential replacement; and con-
tinued by Cloud Systems, which can be considered as an alternative to on-site sys-

39

Chapter 2

tems, and as a special type of virtualized hardware infrastructure. Each has been
discussed only in one study (Chen et al., 2007; Sun et al., 2012).

Furthermore, four main active structure elements in the technology layer are
discussed throughout the reviewed papers, which are Application Server, Database,
Workflow and Business Rule Engine nodes. They provide the Web Frontend and
Backend Application services as well as other services such as Process and Service
Monitoring as well as User Management. Other services, such as Printing and E-
Mail, have been mentioned in the literature without discussing the underlying com-
ponents.

The most popular state-of-the-art method for integration of internal and ex-
ternal systems is message-based Integration, such as Electronic Data Interchange
(EDI), web services, or other more specific message-oriented middleware. More re-
cent approaches (e.g. Representational State Transfer) or traditional technologies
such as file transfers have not been found in the e-commerce literature.

2.5 Validation

To validate the ERA we carried out a single case study as proposed by Wieringa
(2014). The goal of the case study is to map the ERA to a real-world case in or-
der to identify potential gaps in the model. The chosen case originates from the
order-to-delivery practice of a major Dutch online retailer for media and books.
The architecture of the various key processes was gathered during a series of work-
shops in cooperation with the head of the IT organization and the IT architect. In
what follows, we are going to present the high-level architecture, including four key
processes as well as the executing and contributing IT components.

2.5.1 Case study

The case study reflects four core processes in e-commerce and the required IT sys-
tems. The four processes are chosen with the goal of obtaining a comprehensive
view of all IT systems. This means, adding another core process to the architecture
will not lead to any changes in the application layer. Figure 2.7 shows an overview
of processes and systems. It includes pre-sales activities in the form of sales cam-
paigns, the actual sales transaction and the customer credit check, as well as the
picking and packing of the orders. In the following we are referring to the different
layers of the ERA for validation.

2.5.2 Online retail processes

The ERA contains ten different business functions, which contribute to the various
processes. These are three front office business functions responsible for pre-sales,
sales, and post-sales activities, three back office business functions, which can be
further divided into strategic and operational functions, as well as four different
supply chain functions.

40

Chapter 2

Run Campaign = Sell Product = Check Credit = Pick and Pack =>
Sales Campaign@ Transaction @ Credit Check @ Order Fulfillment&®
Data Warehouse & Payment Service Credit Agency Print 8]
EMS €] Webshop £ Warehouse 2]
Control
Customer Service&] Catalog®] Warehouse &
0 Management
ERP]
FICO N Forecastand (N
Stock Control
Sales N
(incl. Series, Services (incl. (N
Loyality, Pricing) Letter and

Commuication)

Customers (N

incl. t:
e Order Processing (N

(incl. Split,
Orders A Combine)

Figure 2.7: Processes and application systems

The four core processes of the case study can be unambiguously mapped onto
these business functions. The goal of the run campaign process is to increase sales
through marketing initiatives which can be special offers or other programs offered
to a specific group of existing customers. The process encompasses the identifica-
tion of the target customer group, selection of the customers, and the communi-
cation with the customer through various online channels. These pre-sales, front
office activities are part of the ERAs marketing and branding business function.
The sell product process allows the customer to place an order providing delivery
and payment information, ending with the order confirmation. In terms of the
ERA, it is a front office sales activity and belongs to the pricing and selling business
function. The purpose of the credit check is to approve the payment method for
the transaction. Based on the past payment behavior of the customer and the in-
formation provided by an external credit agency certain payment methods such as
purchase on account will be granted or not. The process can be considered as a back
office activity and is part of the collection and receivables business function. Finally,
the pick and pack process is part of the order fulfillment business function, which
is one of the four ERA’s supply chain activities. This process encompasses the split
and combine logic for orders with more than one product, box size determination,
picking of products, and printing of invoices.

i

Chapter 2

2.5.3 Application services

Each of the described business processes is supported by a collaboration of appli-
cation components. Within the collaboration one main component manages the
overall process execution while the other components deliver additional logic or
data. For example, the sales transaction is handled by the online shop while the ex-
ternal payment service and the product catalog are providing additional payment
functionality and product information. The provisioning of higher level services
by composition of various services is reflected on the application service layer of
the ERA. However, most of the literature proposes distinct, generic business pro-
cess management services responsible for orchestrating the various business ser-
vices. This approach can be beneficial to support the centralized management of
the business process lifecycle including design, development, execution monitor-
ing, and refinement, but has not been globally adopted in practice.

The application services covered by the ERA include front office, back office,
and supply chain services. However, on a more detailed level, only particular ser-
vices have been covered in the literature. While for example the back office services
for negotiation, contracting, sourcing and purchase are covered, sales and account-
ing related back office services from the case study have not been found. The same
applies for the supply chain services where the warehousing service related topics
are not being discussed in the reviewed e-commerce literature. One can argue that
those topics are not specific to e-commerce as warehouse management is a generic
function. However, split and combine logic, box size calculation, and parcel regis-
tration require specialized functionality for e-commerce compared to other ware-
housing practices.

2.5.4 Application components

The ERA contains eight main components, providing the various application ser-
vices. However, in the case study, nine components are used. In Table 2.4 we map
the application components of the case study to those included in the ERA.

The most dominant application component in the case study is the enterprise
resource planning (ERP) system which covers financial, procurement and sales
functionality. It also is the de facto master data management system. While the
e-commerce literature differentiates between these components, in practice, most
functionality is bundled into one system and provided as modules. However, other
components mentioned in the literature are more complex and are handled by a
number of distinct systems. For example, the logistic component consists of a ware-
house management component, on the one hand, and the warehouse control sys-
tem, on the other hand. In the same way, the sales component consists of an online
shop, a separate product catalog, and the sales module of the ERP system.

42

Chapter 2

Table 2.4: Application components of the case study mapped to the ERA

Case study application ERA application component
components

Online shop Sales

Catalog Sales

ERP Sales

ERP Finance

ERP Procurement

ERP Master Data Management
Warehouse Control Logistic

Warehouse Management Logistic

Email Marketing Software (EMS) Generic Components

Data Warehouse Generic Components
Print Generic Components
— Production
Customer Service Customer Service

2.5.5 Technology services and components

The ERA provides four different technology layer services. The application ser-
vices and data services are consumed by the various business applications of the
case study. As mentioned earlier the organization has not implemented a dedicated
master data management system. Thus, there is no application layer counterpart to
the technical data services. The same applies to the business process services where
the company uses the built-in functionality of the applications to support the pro-
cess lifecycle. Accordingly, the underlying technology components are less differ-
entiated compared to the ERA. The applications rely on various application servers
and database nodes. One exception is the customer service application, which is
entirely cloud-based, and thus, has no footprint on the technical layer, a scenario
which is also reflected in the ERA. However, the company operates advanced print-
ing facilities, which are required for producing invoices, flyers, and leaflets, that are
included in the shipments. This component has not been found in the e-commerce
literature and is not part of the ERA.

43

Chapter 2

2.6 Conclusions

In this chapter, we have shown how traditional, process-oriented e-commerce mod-
els can be extended to get insight into the application and technology layer services
and components. We have studied relevant literature since 2003 and came up with
an enterprise reference architecture, which is specified in the ArchiMate language.
The reference architecture can be used for several purposes:

o It can be implemented in various ways. In particular, the implementation of
a service-oriented e-commerce platform as we will present in the upcoming
chapters.

o It can be used to validate existing solutions with regard to their comprehen-
siveness.

o The architecture also gives an overview of the state of the art in e-commerce
research and points out gaps as mentioned in Section 2.5.

The proposed architecture is drawing exclusively on components exposed in the
academic e-commerce literature and uses a well-established framework to struc-
ture them. The architecture can, thus, be considered as objective, as it excludes
researchers’ or any biased parties’ assumptions on e-commerce architectures such
as platform or software vendors. On the other hand, the architectures proposed
in the literature might focus (due to topical trends or expected research value) on
certain aspects and leave out some components that should belong to a compre-
hensive architecture. In the following, we are discussing each architectural layer in
this respect.

The business layer of the architecture is based on several existing reference mod-
els. The most dominant model in this collection is the Retail-H from Becker and
Schutte (2007). The other models are matching all, a subset, or a specialization of
the business functions identified by the Retail-H. The only exception is the cus-
tomer service function, which is only mentioned explicitly by the model by Frank
(2004). This is due to the origin of the Retail-H model, in a brick and mortar set-
ting, where individual customer communication is an inherent part of the sales
process, which happens face to face. Frank’s model, in contrast, focuses specifically
on e-commerce and considers the fact that the sales process itself is automated, and
individual communication requires a distinct practice, such as a call center.

The application layer of the ERA is based on the literature review and proposes
six main business specific application components. Furthermore, master data and
generic constructs can be found in the model. As mentioned before, the contain-
ing services can only be considered as a placeholder for further master data and
generic services. Some of the main application components contain further ser-
vices, especially sales and procurement applications are discussed in more detail
in the e-commerce literature. Other applications, such as customer service or lo-
gistic, are not very elaborated. This might be due to their extensive applicability

4t

Chapter 2

in broader contexts than just e-commerce settings. Further investigation of these
topics in specific literature for customer service and logistics could be helpful to an-
alyze application components in detail. Nevertheless, from an enterprise architec-
ture perspective, a good overview of the application layer is provided in the existing
e-commerce literature.

The technical layer of the proposed reference architecture contains the most
common middleware nodes, the underlying infrastructure, and the services used
by the different application layer components. The implementation of all the ser-
vices is not described in detail. For example, security and user management are
described in various studies, but we learn very little about how these are imple-
mented in an e-commerce context (for example what encryption techniques are
applied or how users are managed across applications). The e-commerce literature
is not going much into detail hereof, probably the research community assumes
that the implementation of those technical services does not differ from those used
in other domains. Similarly, to the application layer, going into the details about
printing or user management systems could provide further insights.

The comprehensive view of the overall process and data has led to large end-to-
end monolithic software solutions in the past. Nowadays companies are struggling
to maintain and to replace those legacy applications with new systems or cloud of-
ferings. The shift from modeling application functionality as self-contained services
may help companies to build their systems in a way that pluggable components can
be exchanged more easily with new offerings based on the business needs and with-
out architectural constraints.

The surveyed literature helped us identify the most important functional and
technical building blocks facilitating e-commerce operations. These findings helped
us transform existing reference models and identify required services. The evalua-
tion has shown that there is no gap between the systems covered in the case study
and the reference model layers. In Chapter 4 we will revisit the presented reference
architecture by analyzing existing solutions on the market.

45

Measuring the
Pluggability of Software

As mentioned previously, the provisioning of hardware and software resources in
terms of services is becoming increasingly popular. Improved scalability of hard-
ware resources and faster adoption of applications are some of the benefits this IT
sourcing model has to offer (Armbrust et al., 2010). Another advantage of out-
sourcing is the abstraction from technical complexity by shifting the responsibility
for implementation and operation of systems from the user to a service provider.
In the past, the IT user was the owner of an IT resource, but its role is now shifted
to become merely the consumer of services, which lets him outsource all the related
IT tasks. Accordingly, the use of SaaS becomes increasingly popular, as it enables
the user to consume application services from a third party. Thus mitigating risks.
Companies getting into financial difficulties because of exceeding the cost for re-
engineering of large IT systems becomes an outdated issue (Scott, 1999).

While in general, we see promising developments in the domain of cloud com-
puting, some issues can be observed that have not received much attention to date.
The IT landscape of modern industry and service companies usually consist of
dozens of different application systems. Processes span across applications and
resources have to be shared or passed between the systems (Puschmann and Alt,
2001). While the service model allows the user to bypass intra-application com-
plexity, the inter-application complexity remains and along with it the need for the
labor to develop and maintain the various connecting artifacts. This becomes a
critical issue as the task of integrating third party systems is more challenging than
integrating on-premises, due to the limited knowledge and access to the internal
structure and behavior of cloud solutions.

In this chapter, we elaborate on the capabilities of software services with respect
to their pluggability. The outcome is a pluggability quality model and a measure-
ment instrument. The novel concept of pluggability reflects the experience of the
end user of a software service with regard to the complexity of its adoption and
use. An analogy to a pluggable software service is the plug and play hardware in-
troduced in the nineties. Modern hardware components such as USB devices work
in a pluggable way as they allow the user to connect the resource to the existing en-
vironment and make its overall operation effortless. Different information systems
and architectures may lead to different level of pluggability. Instead of focusing on

47

Chapter 3

one specific architecture, we are going to present a quality model that allows eval-
uating service-oriented architectures with regard to the pluggability of the services
and the conceivable platform. Subsequently, pluggability is utilized as the objective
of the design cycles outlined in the following chapters. Thus, this chapter can be
considered as the foundation of the pluggable service platform design.

In Section 3.1 we present existing software quality models and quality model
development methods. In Section 3.2 the concepts of the new quality model for
pluggability is presented, along with its operationalization.

3.1 Quality models

The quality of an IT systems describes the non-functional attributes that should be
considered when implementing or adopting a solution (Lankhorst et al., 2012). In
this section, we are going to present the common methods to define models for the
quality of IT systems as well as popular models in the field. This analysis provides
the base for the development of the pluggability model.

3.1.1 Method

Ortega et al. claim that the notion of quality in general and software quality in par-
ticular is elusive. The perception of quality depends on the stakeholder’s perspec-
tive and needs. Therefore, they propose a five-step approach to building dedicated
quality models, including the determination of high-level concepts, the identifica-
tion of tangible properties that match the concepts, as well as the evaluation of the
model (Ortega et al., 2003). Folmer (2012) uses a similar approach to develop a
quality model in the field of semantic standards, starting with a high-level struc-
ture, measurable concepts are derived which are the base for the actual measures.
We combined both approaches into a process that meets our requirements to de-
velop the quality concept of pluggability. Figure 3.1 outlines the process.

During the conceptual phase, we analyzed existing quality models in order to
identify gaps and outline the novel quality characteristic which reflects the needs
of a service user as the stakeholder. The goal of the subsequent step was to op-
erationalize the model by defining measurable concepts based on the goals of the
quality characteristic and to derive a number of measures for each concept.

3.1.2 State of the art

Scholars have been developing quality models for software since the 60th. McCall
et al. (1977) presented a mapping of software quality factors from 31 studies be-
tween 1968 and 1976 which resulted in a final list of 11 quality factors. Those fac-
tors represent a high-level view which is further detailed by derivation of criteria
that drive the actual quality factor. To date, the most recognized quality model
is the ISO/IEC 25010:2011 standard (formerly known as ISO/IEC 9126). It de-
fines a similar set of factors, called quality characteristics, which are specified by

48

Chapter 3

Analyze Describe gaps Define high
existing —» andgoalsof —¥» level quality
quality models the model characteristic
Define Derive
measurable —
. . measures
quality criteria

i |

————— Test model

Figure 3.1: Approach followed for the quality model construction

sub-characteristics or attributes. Quality criteria and attributes respectively can be
operationalized by defining corresponding measures. Within the described frame-
work, pluggability can be considered as a quality factor or characteristic. Thus, the
goal of this chapter is to define the criteria that drive pluggability and to find the
appropriate measures for each criterion.

Ortega et al. (2003) has mapped the characteristics of various quality mod-
els, including the above mentioned and further popular models by Boehm (1988);
Dromey (1996); Grady and Caswell (1987). Figure 3.2 shows the occurrence of var-
ious quality characteristics in the models. The most popular characteristics men-
tioned are efficiency, reliability, and maintainability followed by portability, testa-
bility, and functionality.

3.1.3 Perspectives on software quality

The existing models are applicable to software components rather than to a holistic
architectural view. Furthermore, they focus on internal properties rather than on
the external attributes of system components. Considering the service model de-
scribed in the introduction and the concomitant shift from software ownership to
service subscription, many of the quality attributes are more relevant to the service
provider than to the service user. Out of the six most frequently mentioned quality
characteristics only reliability and functionality are quality criteria which are signif-
icant for a party consuming the software as-a-service. The other four characteristics
are mostly dealing with tasks related to providing and maintaining the service and
are critical for the service provider in the first place. On the other hand, the char-
acteristics which seem highly relevant for service users are less prominent among
the different quality models. For example, correctness is a vital quality criterion for

49

Chapter 3

N w B (%2} ()]
I

=
I

SIS I O S W N SR N IR

. OO O O ARG NS
& T & & e N O P P S &P O
&° & & o 4 F & Feo F L E &

22 RSP R Q€ . O o &

& < 0@ & A

@ & & ’b(\ &
Ny &S
\2\0

Figure 3.2: Occurrence of characteristics in different quality models (Ortega et al.,
2003)

service consumers who generally do not have the ability to easily correct errors of
a service implementation. However, correctness is only mentioned in one of the
quality models (McCall et al., 1977).

We can summarize, that the practice of no longer developing in-house IT sys-
tems or deploy and customize pre-packaged solutions on-premises, leads to a chang-
ing perception of quality. While some of the common quality criteria become ex-
traneous, new criteria gain in importance. Those criteria reflect the external, non-
functional attributes of software services, which companies should assess prior to
adopting new systems. It is important to note, that the external view does not claim
to replace the existing quality models which are still highly relevant from a service
provider standpoint. Instead, they offer a new perspective on software quality from
the service user point of view. Furthermore, this perspective should also not be con-
fused with the perception of the end user of the software which is mostly concerned
with functionality and does not take into consideration the aspects of provisioning
and integration of services (Erbes et al., 2012).

3.1.4 Related concepts

Beside the mentioned software quality models, new models evolve, which are re-
lated to the concept of pluggability. O’Brien et al. (2007) proposes nine quality
attributes for services in a service-oriented architecture. While some of the criteria
are known from the traditional software quality models, new ideas emerge, espe-
cially the focus on security, reliability, performance, and availability. Those factors
go beyond the design and implementation of software artifacts and consider the
deployment and hosting of the software component, which are characteristics that
more inherent to a cloud product than to an on-premises IT system.

50

Chapter 3

Some more specific quality characteristics evolve that reflect the service model
and stress the architectural perspective on software quality. For example, the con-
cept of agility assesses the quality of the overall system instead of the individual
software components. According to Lankhorst et al. (2012) the following four cri-
teria drive the agility of a system:

o Ease of making changes to the system
o Ease of rapidly deploying changes
o Ease of minimizing and dealing with effects of changes

o Ease of integrating a system with its environment

The benefit of defining the criteria for a certain quality factor such as agility is
twofold. On the one hand, they help to make the concept of agility more tangible
which is beneficial in communication and teaching. On the other hand, the tangible
criterion ‘minimizing and dealing with effects of changes’ can be directly translated
into a measure such as ‘does the servers require restart to reflect changes?’ or ‘does
the restart of a single server causes a downtime?’ Thus, the criteria build a bridge
between the high-level quality characteristic and its operationalization.

In the research field of smart business networks and inter-organizational collab-
oration, the concept of quick-connect capability (QCC) has emerged. The criteria
for QCC are put forward by Koppius and van de Laak (2009) and encompass the
entire lifecycle of inter-organizational communication and transactions including
quick connect, quick complexity, quick disconnect, and low switching costs. As
QCC refers to the task of adopting and integrating information system services it
is related to the concept of pluggability. Koppius and van de Laak (2009) presents a
measurement instrument for the QCC of an organization and claims that the estab-
lishment of process and communication standards within and across organizations
leads to a higher QCC. van Heck and Vervest (2007) claim that besides agility, mod-
ularity of systems is an important factor to achieve a ‘plug and play’ collaboration
among business network partners and refers to the successful adoption of modu-
lar systems in manufacturing. In recent versions of the ISO/IEC 25010:2011 qual-
ity standard modularity is considered as a sub-characteristic for maintainability.
While the QCC considers high-level technical aspects such as the use of open stan-
dards, most of the discussion is about the business practice and challenges within
business networks (Konsynski and Tiwana, 2005). In contrast, the notion of plug-
gability refers to the sourcing of IT services and the enabling architecture while
it does not exclude its application for the integration of IT services within smart
business networks.

To summarize, we can define pluggability as a software quality characteristic that
encompasses the quality criteria concerning a SaaS user and reflecting the need for
technical skills and labor to adopt the software. In the following section, we elaborate
on the quality criteria for pluggability and the operationalization.

51

Chapter 3

3.2 Pluggability of services

As described in the previous section, the development of a new quality model in a
top-down manner usually starts with one or more quality characteristics in mind.
According to the goal of the model and the identified gaps, the quality characteristic
we put forward in this chapter covers the pluggability of a software service. The
notion of pluggability describes the quality of a software component itself but also
the way it is deployed, managed, and provided to the service consumer. The focus of
the quality factor is broader than just the software artifact itself as it reflects the way
the service provider facilitates its use. For example, the same open source software
component can be adopted by two different service providers and offered as SaaS in
adifferent manner. The decisions taken by the service provider impact the use of the
service and lead to a different level of quality perceived by the service consumer. The
focus on quality with respect to the implementation and provisioning is necessary
as the user of a service has less possibility to compensate for adverse decisions in
service design.

The pluggability of a service reflects the experienced ease throughout the life-
cycle of service use in a specific context including faster and cheaper adoption as
well as less required expertise. The context is relevant because the same service can
have a different level of pluggability within an existing architectural landscape. As
van Heck and Vervest (2007) suggest, the use of a shared platform facilitates the
interaction in a business network. The use of a certain platform might, therefore,
have a significant impact on the pluggability of individual services.

3.2.1 Lifecycle of service use

A pluggable service allows the user to reduce the effort in every aspect of service
use, in the same way, plug and play hardware devices abstract technical complexity
and allow the user to choose, deploy, configure, operate, and replace them with-
out insights into their internal behavior and structure. To outline the concept of
pluggability we discuss each step of the service adoption lifecycle.

Similar to the various quality models, most of the service lifecycle models focus
on the service provider rather than on the service user perspective. Common ser-
vice lifecycle models proposed by Igbal et al. (2007) or Alter (2008) mention ser-
vice design, service implementation, service publishing, and service operation as
the main tasks. Sun et al. (2007) reflects the integration of Saa$ solutions but leaves
out other aspects of the service use lifecycle. In Figure 3.3 we present a model for a
service adoption lifecycle that takes into account the phases of service consumption.

3.2.2 Criteria for pluggability

The six criteria for pluggability presented in this chapter are based on the lifecycle of
service use. A pluggable service facilitates every phase of the cycle. Thus, reducing
the required time and skills during each phase which eventually impact the cost of

52

Chapter 3

g V
e e 2 2 2

Service
Exchange

Service
Operation

Service
Integration

Service
Adaptation

Service
Deployment

Service
Provisioning

Figure 3.3: Lifecycle of service use

service adoption. In what follows, we describe the criteria for each phase of service
adoption.

Ease of service provisioning (EOP): The goal of service provisioning is to dis-
cover potential services, compare the various available services, to assess individual
services with regard to the business needs, and to enter into a contract with the ser-
vice provider. The service provider can facilitate these tasks by listing the service in
various service marketplaces, disclose all the relevant information publicly, includ-
ing the terms of use, pricing, service levels, and documentation. Furthermore, the
access to demo environments and self-service subscription can further facilitate the
assessment and comparison of services.

Ease of service deployment (EOD): Individual services should be easy to in-
stall, learn, and test. By default, cloud services do not require technical testing and
installation and thus, have an inherent advantage over traditional software compo-
nents with regard to deployment. In any case, the service should support learning
and functional testing through high quality and accessible documentation.

Ease of service adaptation (EOA): The service should be easy to adapt to the
functional needs of the consumer. This includes the ability to configure and cus-
tomize the service. Customizations have a higher level of technical complexity, as
additional or deviating logic has to be implemented. Configuration, in contrast,
leverages existing logic through setup. A pluggable service maximizes configura-
bility while reducing the need for customizations.

Ease of service integration (EOI): Services should be able to communicate and
share data mutually in order fulfill the overall business process. The construction of
dedicated interfaces between services is labor intensive and should be supported by
the service provider, for example through adapters or service platforms. Services
should be able to share and exchange resources without other service quality criteria
being affected, especially EOD, EOA, and EOE.

Ease of service operation (EOO): Service operation encompasses the long-
term tasks to enable the continuous use of a service, namely maintenance, mon-
itoring and customer support. Service providers can facilitate service operation by
providing service level agreements for availability, bug fixing and change requests,
as well as a suitable infrastructure such as call centers, a bug tracking systems, and
support portals. In order to provide a single point of contact across services, a joint
service infrastructure can further improve the EOO.

Ease of service exchange (EOE): Loose coupling is a fundamental principle of
service-oriented architectures and requires services to act as independent units of
computing. The goal is to facilitate the exchange of individual services. However,

53

Chapter 3

loose coupling of services requires dedicated service orchestration which affects the
EOL

Especially the demand for EOI is somewhat conflicting with the other aspects.
Integrating independent services usually requires major efforts which negatively
impacts the deployment and adoption efforts. Achieving a high level of pluggabil-
ity requires a balanced focus on all criteria. Figure 3.4 shows the final model of
pluggability, including the main quality characteristic and the six quality criteria.

Ease of service provisioning %

Ease of service deployment

Pluggability

Ease of service adaptation %

Ease of service operation %

’ Ease of service integration

Ease of service exchange %

Figure 3.4: Model of the pluggability quality characteristic and its criteria

3.2.3 Operationalization

After the conceptualization presented in the previous section, we carried out the
operationalization of the quality model. The goal was to come up with a measure-
ment instrument that helps to evaluate the pluggability of a service. According to
Bhattacherjee (2012) the operationalization of a construct includes the definition
of indicators as well as attributes which represent the different values. The indica-
tors are the empirical counterpart of the six theoretical constructs (quality criteria)
and together form the variable for the pluggability quality characteristic. In the
following, we present the reflective indicators which match the quality criteria.

Ease of provisioning What is the level of formal and organizational boundaries to
gain insights into the functioning of the service and to assess its usefulness?

Ease of deployment What is the level of required resources to make a service op-
erable including installation, testing, and management?

Ease of adaptation What is the level of required expertise to adapt a service to the
functional needs of the consumer?

Ease of integration What is the level of required resources to integrate the service
into the existing landscape?

54

Chapter 3

Ease of operation What is the level of required resources to guarantee the target
service level including monitoring, maintenance, and customer service?

Ease of exchange What is the level of required resources to exchange the service?

During the construction of the prototype presented in Chapter 4, various types
of IT services and different alternatives for each service have been considered. Dur-
ing the lifecycle of service adoption, the six criteria of pluggability have been re-
flected in order to identify suitable attributes for each pluggability criterion. Ta-
ble C.1 in Appendix C contains the final attributes for each indicator and the repre-
sented values of the instrument after its validation. The levels of measurement form
an ordinary scale from -2 to 2 for quantifying the results. The median or mode is
the central tendency for this type of scale (Bhattacherjee, 2012).

3.2.4 Face validity

The goal of validating the instrument is to ensure that the indicators and attributes
reflect the theoretical constructs. In this work, we aim for validation of the design
on the qualitative rather than on the statistical pane. Face validity is a theoretical
assessment of the instrument which assesses if the indicator is a reasonable measure
for the construct and often carried out by experts in the field. In order to achieve
face validity, a group of experts assesses the instrument with regard to conceptual
and semantic aspects.

A preliminary version of the instrument as well as the prototype outlined in
Chapter 4 were presented consecutively to two scholars and two practitioners in
the field of service-oriented architectures. The participants were asked to assess the
prototype using the instrument and to explain their reasoning. Afterwards, they
were asked to provide a feedback on the instrument with regard to the constructs of
pluggability. The feedback of the interviewees on the prototype and the instrument
was recorded. Semantic ambiguities in the instrument were resolved based on the
input before the subsequent interview. The final result after four iterations is the
pluggability instrument that can be found in Appendix C.

3.3 Conclusions

In this chapter, we introduced the novel quality characteristic of pluggability. The
model complements existing quality models, which have a strong focus on the in-
ternal quality of software artifacts and the service provider as a stakeholder. The
instrument may help companies adopting cloud services to assess the quality of the
services within their landscape. For the service provider, the traditional quality
models are still highly relevant. However, the presented model can also help ser-
vice providers to reflect the service user viewpoint, eventually leading to improved
customer satisfaction. By applying the model, shortcomings in the external quality
of their services can be identified.

55

Chapter 3

Within this work, the construction of the quality model represents the objective
definition in the design cycle. In the upcoming chapters, pluggability is considered
as the goal of the platform architecture and the e-commerce services.

56

Chapter &

A Platform-Based
Return Registration Process

In Chapter 2, we identified the functional building blocks of e-commerce archi-
tectures by studying the state of the art in the academic literature. To provide re-
tailers with the flexibility to achieve a working e-commerce solution by combining
the functionality of various services, a strong service ecosystem is required. Open
platforms are considered as a critical factor for establishing a strong service ecosys-
tem (Benlian et al., 2015). Furthermore, to make the modular approach work, the
increasing number of services have to stay manageable. Current IT services are
mostly based on packaged applications and require significant resources to make
them ready for the business needs of the user (O’Leary, 2000). The required efforts
during each phase of adopting an IT service has been reflected in Chapter 3. The
lack of current e-commerce architectures to support pluggable services is a poten-
tial obstacle for more flexible use of services in e-commerce. Thus, in this chapter,
we want to gain insights into the capabilities of the state of the art in platform ar-
chitectures to support pluggable services.

This chapter performs a synthesis of the ERA presented in Chapter 2 and the
pluggability model in Chapter 3. Figure 4.1 illustrates the integration of the pre-
vious research results into the initial design science cycle. First, we carried out a
review of available platforms in the market. A structured list of functionalities that
are supported by current platform solutions is put forward. We incorporate the list
into an architectural platform model and link it to the ERA. The resulting platform
reference architecture summarizes the literature review and the market research on
service platforms. We consider this architectural model as the first design artifact
that goes into the cycle of demonstration and evaluation. We discuss the first de-
sign cycle in this chapter and conclude with a platform design that hypothetically
enhances the pluggability of the state-of-the-art model. The design forms the basis
for the next cycles of demonstration and evaluation in Chapter 5 and Chapter 6.

The remainder of this chapter is structured as follows. In Section 4.1 we review
current service platforms and identify common features. In Section 4.2 we sum-
marize the findings and come up with an architectural platform model that relates
them to the ERA. In Section 4.3 we present the business case and a prototype for
a platform-based return material authorization process. In Section 4.4 we present
the evaluation of the prototype with regard to the pluggability criteria.

57

Chapter &

Chapter 2
- E-commerce
Literature reference
review architecture (ERA)
Platform
market review Chapter 3
Quality model

construction
E-commerce platform

reference architecture

Design artefact Pluggability

‘f model

Demonstration

Initial pluggable
platform design [«—— Evaluation

Design artefact

Pluggability
E-commerce RMA instrument
process prototype

Design product

Figure 4.1: Synthesis of ERA and pluggability model in this chapter

4.1 Platform architectures

The goal of the platform architecture proposed in this chapter is to complement
the ERA in Chapter 2 in order to reflect recent developments in service-oriented
architectures. By taking the state of the art in service platforms as a starting point
we were able to assess the current practice and point out shortcomings. In the fol-
lowing, we discuss the objectives and benefits of the service-oriented approach and
outline the state of the art in service platforms.

4.1.1 Objectives and benefits

Existing reference models in the domain of e-commerce and retailing are generally
business layer models (Frank, 2004; Becker and Schutte, 2007). They describe the
entirety of functions and processes of the business model. Systems that are built
based on these reference models tend to encompass all the primary business ac-
tivities, often resulting in monolithic solutions. As mentioned earlier companies
increasingly focus on single activities within the value chain. Providing end-to-
end systems in the highly disaggregated business environment, with individual or-
ganizations that only cover parts of the value chain, leads to inefficient use of IT
resources. Furthermore, monolithic systems are not built for collaboration with
external systems, making the exchange of individual IT functionality and external
business partners cumbersome.

The main objective of a service-oriented, modular architecture is therefore to
support the construction of systems that go beyond what current, monolithic sys-

58

Chapter &

tems achieve with regard to flexibility in IT and business service adoption. It enables
companies to integrate innovative I'T services faster and helps them to connect with
business partners with fewer efforts. The so-called quick connect capability (QCC)
has been proposed by a number of authors (van Heck and Vervest, 2007; Koppius
and van de Laak, 2009) and describes the capability of network partners to set up
business collaboration with fewer efforts in less time. The authors claim that the
decomposition of the system and modularity are required to achieve versatility. As
van Heck and Vervest (2007) suggest, digital platforms improve interoperability
and the QCC. The platform approach differentiates between the stable component
in a system and the remaining components which evolve around it (Baldwin and
Woodard, 2009). A major goal in constructing the platform architecture can, there-
fore, be achieved by identifying the stable components of the system to maximize
pluggability of the remaining components.

The expected benefits of the increased pluggability through the service platform
can be summarized as the ability of the platform user to source external and inno-
vative IT services as well as to collaborate with external business partners more
easily.

4.1.2 State of the art

To analyze the state of the art in service platforms we started by investigating the
available e-commerce specific products and cloud services in the market. Based
on our findings we extended the market research by looking at cloud integration
platforms, which complement the functional components with the aspects of con-
nectivity. Even vendors which are in favor of a lightweight, pluggable e-commerce
service platform differentiate between core business functionality and connectiv-
ity components. Spreecommerce, one of the major cloud service providers for e-
commerce, for example, differentiates between their core storefront product and
their dedicated integration hub called wombat.

Similar to other enterprise application systems the e-commerce platform solu-
tion landscape has evolved from custom-made components to pre-packaged solu-
tions. Pre-packaged e-commerce solutions provide the e-commerce specific func-
tionality such as shopping cart, product catalog management, marketing tools, and
payment (Humeau and Jung, 2013). By implementing a pre-packaged solution, it
becomes easier for business owners to set up and launch their online store, result-
ing in a faster time to market. Despite the ease and functionality that e-commerce
solutions offer, some challenges remain, that need to be solved by specialized pieces
of functionality.

In Chapter 2, a systematic literature review was carried out, investigating on
processes and architectures for online retailing. The results were validated with the
online retail practice. According to the findings, the online retail process is com-
parable to existing reference processes in retailing. Furthermore, the IT landscape
of online retailers is characterized by five major components, namely procurement,
sales, service, logistic, and finance. In practice, most of these components are not

59

Chapter &

covered by the e-commerce system. As a result, additional components such as an
ERP system and a warehouse management system (WMS) are in use.

We conclude that the state-of-the-art e-commerce platform is modular to some
extent. However, the granularity of the services is limited to a small number large
application systems that cover an extensive set of functionality. Furthermore, the
interoperability of the functional components relies on middleware components
which are supposed to increase the pluggability.

The most widely adopted solution by the e-commerce platforms under study
for solving the enterprise integration issue is to rely on hard-wired web service in-
tegration. In this approach, each external service is connected to each online shop
platform through the so-called “connectors” or “adapters” If a connector is not
available, some platforms also provide toolkits for users to develop their own ap-
plication connectors. While this approach seems to work just fine, it will produce
an inefficient point-to-point integration topology in the end. When the number
of systems to integrate increases, the entire integration scheme will become highly
complex, with a negative impact on scalability.

Besides, in near future, it is expected that cloud computing will gain more pop-
ularity with companies and organizations migrating their existing local systems to
the cloud. Because of this situation, new integration scenarios emerge that involve
both on-premises and cloud applications. It might become cumbersome to inte-
grate systems of different nature like Saa$S systems and legacy systems. Connections
between Saa$ applications are also challenging due to the diversity of data mod-
els and lack of standardization (Poto¢nik and Juric, 2012). The increasing adop-
tion of cloud computing brings novel ways to solve integration challenges. Tradi-
tional middleware and integration platforms could benefit from cloud computing
technology by leveraging themselves as cloud integration platform (Kleeberg et al.,
2014), commonly referred to as ‘Integration Platform as a Service’ (iPaa$), a term
coined by Gartner. Their recent study evaluated and compared iPaaS providers
(Pezzini et al., 2014). Another research by Ried (2014) assesses 14 vendors provid-
ing hybrid integration solutions, which in their description, comprise of four in-
tegration scenarios: on-premises integration, cloud-based integration, iPaa$, and
API Management.

4.1.3 Common platform services

According to the previously mentioned objectives, we extracted the common fea-
tures that iPaa$S vendors typically offer in their platform. In the recent times, ven-
dors started to incorporate API Management capabilities into their platform in ad-
dition to SOA Governance to deliver a complete solution to take care of both REST
and web services. Both SOA Governance and API Management functionality can
be considered as essential to enable pluggability of services. SOA Governance and
API Management share the same underlying architectural design principle, which
is service-oriented design. Both aim at governing and managing the service life-
cycle including design, implementation, publication, operation, maintenance, and

60

Chapter &

retirement of services and APIs (Malinverno et al., 2013). SOA governance tech-
nologies, however, have been around for several years and almost reached matu-
rity. SOA governance covers a wide range of functions including but not limited to
policy enforcement, security, service contract, compliance, service level agreement
(SLA), lifecycle management, service registry and repository (Schepers et al., 2008).
On the other hand, although API Management comprises similar building blocks
as SOA Governance, it incorporates some distinct functionality (Maler and Ham-
mond, 2013). It can be said that the fundamental difference of API and SOA lies in
their orientation of service consumption. In general terms, SOA is geared towards
service consumption within an organization while APIs, due to their openness, can
be used both internally and externally. As a consequence, some additional com-
ponents, such as enterprise gateway, security, developer portal, and service billing
need to be available in API Management. The study outlined in (Paramartha, 2014)
was part of the CATeLOG research project and presents a market analysis of cloud
integration platforms. It groups the services offered by these platforms in two cate-
gories. Meta-services on the one hand facilitate the access and use of provided ser-
vices. Process services on the other hand offer additional features to enable process
execution across the integrated services. The service framework meta-services are
presented in Table 4.1 and process framework services are presented in Table 4.2.

4.2 A reference architecture for e-commerce service platforms

As mentioned in the previous sections, a popular way to source functionality in
modern enterprise architectures are outsourced cloud applications, offered by third-
party service providers. Retailers that want to add or replace such services have to be
able to integrate them into their current system landscape. The idea behind the ser-
vice platform architectures is to give users the possibility to integrate e-commerce
services into the existing environment with a minimal amount of resources in terms
of time and expertise. The platform should allow supply-chain partners to share
their services, execute inter-organizational processes and work on resources collab-
oratively, eventually resulting in an open and agile e-commerce business network.
Such inter-organizational integration platforms have some distinct requirements
compared to systems internally deployed and used within one organization or only
available to a closed business consortium (van Hillegersberg et al., 2012), especially
if the platform aims to act as a one-stop shop to source IT services. In this sec-
tion, we are going to present a reference architecture for a service platform, which
incorporates the findings on state of the art in e-commerce and cloud integration
platforms from the previous section. This initial state of the art service platform
acts as a base for gradual enhancement of the service pluggability in the subsequent
design cycles.

61

Chapter &

Table 4.1: Service framework meta-services

Service framework Features
metaservice
Developer portal In the developer portal, companies should provide relevant and

Enterprise gateway

Policy enforcement and
management

Security

Service analytic and
reporting

Service level agreement

Service lifecycle
management

Service metering and
billing

Service registry and
repository

comprehensive aspects of their APIs such as API documentation,
policy, terms and agreement, testing environment (sandbox or real), or
API versioning.

Management of the interaction between the API and external API
consumers.

Management of both, design time and runtime policies of services.
Design time policies are concerned with aspects such as design
guidelines or security mechanism while run-time policies are
concerned with operational environment and requirements that must
be met by the service at runtime.

The difference between security in SOA Governance and API
Management is that in SOA Governance, the organization administers
internal and known users while API Management handles external and
unknown users. API Security manages additional aspects like
authorization and authentication, API Key management, as well as
Identity and Credential Management.

Exploration of insightful traffic analytics and reports of API activities
with respect to developers account, application, or services as well as
observation of the overall API usage and trends.

Management of service levels as stated in SLA contract, service
evaluation as well as fees for consuming the service and fines in case of
contract violation.

Managing the design, development, and delivery of individual services
in a SOA. The tasks include change management procedure, service
registration and even deciding on service granularity.

Monitor and measure service usage as the basis for billing and
calculation for the service consumers. Also, the service performance
can be monitored regularly.

The catalog of services and management of their publication.
Definition of taxonomies of the published services allowing consumers
to find suitable services to their needs. While the Service Registry only
contains service references, the Service Repository is the actual holder
of documentation, policies and, metadata about the versioning of the
service.

62

Chapter &

Table 4.2: Process framework services

Process framework service Features

Development and lifecycle Manages service integration process flows throughout their
management platform lifecycle including modeling, development, configuration, testing,
services and deployment.

Integration platform Consists of aspects that ensure seamless integration flow both at
services design time (service orchestration) and runtime (process

execution). These aspects include but are not limited to: Message
transformation and routing, an Integrated Development
Environment (IDE), adapters, flow management, protocol
conversion, service virtualization, and security federation.

Monitoring, management, Takes care of deployment and administration of integration flows,
and administration monitor their execution and manage their behavior. Covers
platform services several aspects such as technical and business activity monitoring,

logging and tracking. as well error resolution.

4.2.1 Framework

According to Baldwin and Woodard (2009) a platform can be considered as “a set of
stable components that supports variety and evolvability in a system by constrain-
ing the linkages among the other components”. In our case, the components are
e-commerce services that, in combination with the platform, compose a working
information system for e-commerce businesses. The goal of such a platform is to
improve the pluggability of the services to support variety and evolvability of the
used services and the overall system.

The service platform has three stakeholders, namely the service provider, the
platform provider, and the service consumer, which is the company running an
e-commerce business. To illustrate our architecture, the ArchiMate modeling lan-
guage has been used (Lankhorst et al., 2009). It provides concepts on business, ap-
plication and technology layer to model enterprise architectures (cf. Appendix A).
As we are dealing with an inter-organizational architecture we choose a viewpoint
with the three business actors as high-level concepts. All further concepts are as-
signed to either of these actors. We focus on the application layer components that
support the e-commerce process at hand. Figure 4.2 illustrates the view of the ar-
chitecture, including a metamodel of the relevant concepts. The details of each
business actor are discussed in the following.

4.2.2 E-commerce company

The e-commerce company is the actor selling goods partially or exclusively over
the online channel. On the business layer, the online retail process consists of pre-
trade, trade, and post-trade activities (Liu and Hwang, 2004). Internally the actor
implements eight different business functions which have been identified by difter-
ent authors in (Gunasekaran et al., 2002; Burt and Sparks, 2003; Becker and Schutte,

63

Chapter &

E-Commerce Company 2 Platform Provider R |Legend / Metamodel

Online Retail Process. = Collaborative Service and Process Framework al
Business Actor %

Supplier A Marketing/ N Service Framework] Process Framework £
Development/ Branding
Procurement/ Developer Portal Service Lifecycle Development and Business Process ™
Purchasing I Management Lifecycle Management
Mo Platform Services
Paymenty A Enterprise Gateway Business Function A
sl Paratia Policy Enforcement and
Management IR &
ntegration Platform Application
SLA M t
Warehousing’ A Return Handling ‘anagement Services Component
Stockholding Service Metering and
Security Biling
2 Collection/ A o) Al he)
Customer Service/ Accounts Management, and ntertace
Customer Relation Receivables Service Analytic & Service Registry and Administration Platform
1\ Reporting Repository Services rEmED

Business Applications €]
Procurement =1 Sales & Service Provider 2

Data Files O P Other Web Service / Web APl (O
DB Link il (RPC, EDI, SMTP) (SOAP WSDL / REST JSON)

Customer Service™ Logistic

Finance Production
(Big) Data Analytic
ervices

Communication Services (Mail) /Genereic Standalone Services

SaaSiAppiications: Chat, Social Media, etc.) (Payment, Print, etc.)

Figure 4.2: ArchiMate model of a common service platform

2007; Frank and Lange, 2007) and consolidated Chapter 2. In that chapter, we also
presented the six application layer components implemented by most online re-
tailers. Depending on the details of the company’s background, different legacy
components will be implemented on the application layer. A retailer coming from
an offline channel business, with a number of brick and mortar stores, will likely
have an ERP system to manage its operations. In that case, a variety of components
will be bundled into the ERP system. When introducing an online channel, the re-
tailer will add an online shop component to the landscape which allows customers
to browse and order goods online. The order fulfillment and other back office ac-
tivities will be carried out by the ERP system. Thus, in this case, the e-commerce
platform consists of a lightweight online shop and the ERP system. A pure online
retailer, on the other hand, might implement a more comprehensive e-commerce
platform as covered in Section 4.1.2. These platforms not only provide an online
shop but also a rich set of back office functionality. Depending on the complexity
and size of the business, an ERP component might not be present at all. All these
application components can be either operated on-premises or as Saa$S solutions
provided in form of web applications.

The presented architecture for the retailer business actor can be considered as
the current state of the art and does not introduce any new concepts. In that sense,
it is a starting point for the use of a pluggable service platform. The architecture
should allow for a gradual transition from the current, monolithic landscape to a
cloud service architecture. It should be possible to add services to that landscape
and successively shift new and existing functionality from internal systems to the
cloud.

64

Chapter &

4.2.3 Service provider

The service provider can either offer pure IT services or be a supply chain partner
that allocates business services. Both service types must be integrated on the in-
formation system level for seamless process execution. The actual service provided
can contain either additional components that internal systems or business func-
tions do not cover or functions that should be outsourced for strategic reasons. The
actual services, as well as their granularity, are too diverse to provide a compre-
hensive list of potential services. Essentially, it should be possible to integrate any
kind of services through the architecture. However, a more important aspect is to
obtain a comprehensive picture of potential service interfaces the platform needs
to support. Four different services interfaces have been identified.

o Message-based integration can be realized through modern web services or
web APIs that communicate over HT'TP and can be consumed with state-of-
the-art integration tools and techniques. This kind of interface is suitable for
standalone services such as payment services, address verifications, customer
or credit inquiries but also to access or populate resources of Saa$S applica-
tions and social media services in a programmable manner.

o Another interface type is based on more specialized protocols that can be
considered as an older technique to integrate services. Despite their higher
complexity and technical dependencies, these protocols are still widely used
to integrate legacy systems or communication services such as mail and chat
but will not be implemented by modern SaaS$ applications.

o Web applications are generally used as user interfaces in Saa$S or social media
services as well as in analytical services and reporting in form of dashboards.

o On the backend analytical services will be integrated using an interface type
that allows the exchange of large amounts of data. Message-based integra-
tion would produce too much overhead and is therefore not suitable for such
scenarios which involve large to big data sets. Instead, the integration will
be based on data extraction, transfer, and loading (ETL) or through database
links.

4.2.4 Platform provider

The service platform acts as an intermediary between the retailer and the service
provider. The goal of the platform is twofold: it should allow retailers to source IT
services and to collaborate with supply chain partners. It provides a service frame-
work that allows provisioning and consumption of services and a process frame-
work to implement service-oriented process flows. Both the meta-services of the
service framework and the services of the process framework are based on the find-
ings in Section 4.1.3.

65

Chapter &

4.3 The return registration case

Based on the proposed reference architecture in the previous section, we demon-
strate the implementation of a service-oriented process through realization of a pro-
totype for a specific e-commerce case. The goal of the prototypical implementation
was to assess the state of the art in e-commerce services and integration platforms.
The prototype development gave insights into the feasibility of a process, based on
a loose set of e-commerce related services and integration platforms. In the sub-
sequent phase, the level of pluggability of the services in the resulting system was
determined.

4.3.1 Business case and solution design

As the existing reference models for retail do not cover return handling processes
(cf. Chapter 2), it can be assumed that retail systems based on such models are
not designed to handle return shipments efficiently. This might cause problems for
multi-channel retailers that are facing high volumes of returns, especially in the
fashion sector (Banjo, 2013). In the following, we first describe a business case
which covers a part of the overall return handling process. We then discuss the
services used to implement the process and present the architecture of the solution.

In the scenario, an end customer should be able to register a return online.
Through a web page referenced by the online shop, the user can select his order and
retrieve information on the items contained in that order. The customer chooses
the items and the amount he would like to return, specifies the reason for the return,
and optionally adds a comment. The return request is transferred to the retailer who
authorizes the return of the material (RMA). Subsequently, the return is planned
by registering the expected goods and assigned to the appropriate return center.
Finally, the shipper is contacted by e-mail to inform him about the approval, pro-
viding the link to a return label for print and possible drop off points based on the
customer address. With that information, the end customer can prepare the goods
for shipment and transfer it to the drop-off point.

Four application components are required in the scenario, each provided by in-
dividual service providers. They include 1) a SaaS solution, that allows customers
to register their return shipments (such as provided by 12return.nl) 2) a generic
standalone web service from a logistic service provider (LSP) that allows to register
and pay shipments and to obtain the required documents (such as intraship.de) 3)
a workflow task list that allows back office staff to approve and reject requests and
4) an e-mail service provider (ESP) that delivers high volume customer communi-
cation services (such as tripolis.com). A description of the services is provided in
Table 4.3.

Figure 4.3 shows the overall architecture of the solution. The service platform
executes the collaborative flows that make use of the various services to provide
the business functions with the required functionality. The model shows that each
service relies on the collaborative data resources required to fulfill the service. The

66

Chapter &

Table 4.3: Services used in the business case

Service Description

Return registration A web application that handles return shipments. It allows end
customers to request a return of goods through the web inter-
face. The user has the possibility to look up recent orders and
select individual goods for return

Parcel registration The parcel delivery registration service allows to register parcel
shipments, print parcel badges and schedule parcel pick up. In
the case study scenario, it is used to issue parcel label to the end
customer

Task list A task list application assigns a list of tasks to each user which
they have to act upon. This can be approvals, responses or other
action items. Such task lists are often integrated into workflow
systems and have advanced features such as task forwarding, task
escalation or holiday calendar integration. In this case, the task
list is used to assign approval notifications for the requested re-
turns

E-mail transmission ~ The e-mail service is used to send outgoing e-mails to the cus-
tomer including the approval and parcel label for the return
shipment

return registration Saa$S solution requires information about the orders made by
the customer in the past. The same applies for the LSP and the ESP that require
information on the customer. We can observe that having these resources available
as part of the platform would allow the allocation and exchange of services to the
overall process in a more flexible way.

4.3.2 Prototype

The services in our example are implemented using diverse technologies, are dis-
tributed among different environments, and use various protocols to communicate
with other systems. In the following, we provide an overview over the different
services and platforms that have been used for prototype construction.

For parcel delivery registration, many carriers offer web services to register
shipments and generate parcel labels. Among these, DHL is among the leaders
regarding easy adoption of their web services, offering a developer portal and well-
documented services. However, the interface to register parcels seems very large
with 225 required data fields and another 173 optional data fields, exposing a lot of
internals of the system which the user has to comprehend before getting the service
to work. Other services such as shipcloud.io or postmaster.io evolve and facilitate
the integration of various logistic service providers. Their REST APIs only have 16

67

Chapter &

Returns Registration =

Return =3/ Return =13 Return =>__3/ Parcel Service =3/ Customer =

Entry Apprroval Plannlng Comissioning Instruction
] y
Collaborative Service and g]
E-Commerce R eSS FEmees L Platform Provider ¥
Company, Process Framework %]2

End Customer Service Providers[*]R

....... > Service Framework @%

Web Application O Web Service - SMTP -O
Return Registration Frontend. Tasklist Parcel Registration Mail
((({

Figure 4.3: Architecture of the returns registration process

data fields to achieve the same shipment label generation. The time to integrate and
exchange parcel services could be reduced from 2 days to half an hour by using the
interfaces of these broker services. Also, switching between different carriers dur-
ing runtime by requesting quotes and selecting the cheapest offer is becoming easier
as the brokers cover a wide range of parcel services through the same interface.

The web application frontend for return registration is a custom-made light-
weight single page application (SPA) realized with common web application tech-
nologies, namely HTML, JS and CSS. Figure 4.4 shows the browser fronted of the
application. It allows the user to enter his order number and to choose the returns
from the contained items. He can further specify the return reason and type of
processing. All resources including orders, customers, and metadata are retrieved
from the cloud database service running on a remote backend.

As e-mail service, the prototype uses Gmail which has an SMTP interface. In the
domain of marketing communication, more specialized B2B e-mail service providers
exist, such as mailchimp.com or tripolis.com which offer business-specific services
like e-mail templates, analytics, and different integration endpoints. However, these
advanced features were not relevant for the business case and we did not find the
pluggability changing significantly by using a different interface.

The prototype uses the Questetra BPM Suite for the task list as it is one of the few
BPM suites, that provides a cloud environment for the development of the processes
and offers an API to integrate with other services. The screenshot in Figure 4.5
shows the task list of a user, listing the assigned tasks that are awaiting action, in-
cluding the pending returns, waiting for approval.

The key component of the solution is the integration platform containing a ser-
vice framework to plug the different services together and a process framework to
execute the business processes. According to Pezzini et al. (2014), three of these

68

Chapter &

g Return Registration App - Chromium —ox
/ W Retum Registration App x \
« = o | [} retumapp.catelog.mb.utwente.nl/ =
Enter your Order ID and choose your retums
2 Go! Items

Customer: Tom Sawyer
Please chose below the amount of items you wish to return.

Gustomer Number: 2 Product ID Product Quantity Return

Order Number: 2 2 XBOX 1 1

Order Date: 06 Nov 2014 h
Please chose below the reason for the return and how you want the retumn to be
processed.

Your return has been registered with no 3 Reason for Return

Damaged v

Desired Processing

Replace it v

The product has a defect. Please send a replacement.

Figure 4.4: Return registration app frontend

i Task List Workflow - Questetra BPM Suite - Chromium - ox

j [Task List Workflow - Q. % |, |

<« & O | hitps/shichijo-horiki 319. net/PEMorkitem/list

D worktow

O i by Frocess D or Tie [——

My Tasks(84) @ crange Time Ofges (8] Refresn (12:48:44) @ Advanced Search
¥ | - Process Model Step Name Title Offer Time Deadiine
Hello, Angg E) D Apication: Absence from Work Mé: Confirmation Absence for holiday 0604
sialEanraiha) [3 Catelog Order Ling Retum Approval Return Approval 0724
Pt ()| [Catelog Order Line Return Approval Return Approval 0724
Start
)) [3 Catelog Order Line Return Approval Return Appreval o724
()| [catelog Order Line Return Approval Return Approval o724
Tesk Operate
I T My Tasks (84) E) @ catelog Order Line Retumn Approval Return Approval 07-23
o ()| (3 catelog Order Line Retum Approval Retum Approval 0723
i Eror)| @ catelog Order Line Retum Approval Retumn Approval o717
)/ [catelog Order Line Retum Approval Retum Approval 08.04
ProcessTask Status Chack
e)| (3 Catslog Order Line Retum Approval Retum Approval 0804
e c—)| (3 Catelog Order Line Retum Approval Retum Approval 0304
Al Processes)| @ Catelog Order Line Retum Approval Return Approval 0301
)/ [catelog Order Line Retum Approval Retum Approval 0725
Others -

Figure 4.5: Task list application with pending approvals

services stand out in the market with regard to their completeness. For the proto-
type, we choose the Mulesoft CloudHub platform as it is was the most accessible in
terms of documentation and subscription, which is one criterion for pluggability
(cf. ‘ease of service provisioning’ in Chapter 3). Figure 4.6 shows how messages
are routed and transformed between endpoints using the example of parcel label
generation response and outgoing e-mail.

69

Chapter &

g @©&Ob @ B .3 9B G

Postmaster_Label JSON to Object Email Content Accepted Obiject to String Message Properties Email Accepted

Figure 4.6: Service composition using the example of the integration of parcel and
e-mail services

During prototype development, we had to introduce another component that
contains data about order, customer and product information in a cloud database.
These resources must be available throughout the different services used in the
process. In a real world scenario, this information will be scattered across order
management, customer relationship, and product catalogs or, in case of a more do-
main data-driven architecture, be stored in appropriate master data management
(MDM) systems. The cloud integration platform could access the database through
the built-in adapters. However, we decided to introduce a layer of business logic,
built into the component, which exposes the data through a REST interface. For
the database and business logic we choose the cloud application platform heroku
and the lightweight web application framework flask, however, the same could be
achieved with any other platform and web framework on the market. Suitable, e-
commerce MDM cloud services were not found.

4.4 Validation

The goal of the prototyped process is to test the feasibility of implementing solu-
tions, based on a set of distinct IT services, using the reference architecture and
state-of-the-art cloud integration platforms. Furthermore, the main purpose of the
prototype is to evaluate the pluggability of the resulting solution. In this section,
we are going to validate the practicability and utility of the architecture based on
the prototypic implementation as well as the support of available cloud integration
platforms towards the goal of a pluggable system.

4.4.1 Observations

In order to measure the pluggability of the five services, the instrument was applied
individually by the developer of the prototype, two scholars, and two practitioners
from a Dutch iPaa$S provider. The prototype was presented to the participants as
well as evaluated against the predefined levels for pluggability. The graph in Fig-
ure 4.7 shows the mode score for each pluggability criterion for each of the five
services.

The service with the lowest overall pluggability is the return registration fron-
tend. It is a custom-built service which is hosted on-premises. The cloud database
is a custom-built solution but deployed to a Paa$S environment, which seems to be
beneficial for the overall pluggability. In the mid-level of the overall pluggability
is the task list solution, which is a Paa$ that follows a model driven approach to

70

Chapter &

EOE EOD

EOO EOA

----- Retrun registration
—Task list

— =Parcel registration
— =E-Mail transmission
----- Cloud database

Figure 4.7: Score per pluggability criterion

process implementation. Its non-coding approach seems to be beneficial for the
overall pluggability. Finally, the e-mail transmission and parcel registration can be
considered as Saa$ solutions and exhibit the highest level of pluggability.

The EOD is high for the parcel delivery service and the e-mail service as these
services are installed and maintained entirely by the service providers. The EOD is
low in contrast for the return registration frontend and the cloud database as the
deployment and management are carried out by the retailer. The workflow solution
is operated by the service provider but the actual processes running on the platform
have to be developed, tested, and monitored by the service user.

For the workflow task list application, the EOA is high, because the used BPM
service provides a model-driven approach to implementing business logic. The user
has a very high flexibility to adopt the service to his needs without having to cus-
tomize the system. The return registration frontend and the cloud database are
adaptable but need technical expertise to implement customizations. The parcel
registration service also has a low level for EOA because it delivers specialized ser-
vices which are not adaptable. The e-mail service is flexible to the extent that the
content of the e-mail is concerned.

All four services of the prototype which are based on cloud platforms have a
high EOP. This indicates that cloud service providers, in general, are doing a good

71

Chapter &

job in documenting and providing potential users with resources for assessing their
services. The low EOP for the custom developed return registration service, how-
ever, is difficult to explain. We think that the concept of provisioning might not be
applicable to custom developments as the task of a fit gap analysis does not have
to be carried out in that case. The provisioning is then happening on the technical
level which might explain the low EOP.

The EOO is low for the return registration fronted because it requires moni-
toring of the application and the underlying infrastructure as well as support and
maintenance of the application. The use of PaaS$ for the cloud database and work-
flow increases the EOO as basic infrastructure is handled by the service provider.
However, application maintenance and support is still the responsibility of the ser-
vice user. The other two services have a high EOO as the entire service operation
is outsourced.

The e-mail service has a high EOE as the protocol used by the e-mail service
provider is highly standardized and used by any other service provider. Therefore,
the migration to another service has minimal impact. The exchange of the par-
cel delivery service with another service can be achieved relatively easy. We have
carried out this exercise by changing the postmaster.io service with shipcloud.io
which is only a matter of changing a couple of fields and the service endpoint. Ex-
changing the cloud database or the workflow system impacts the entire architecture
which leads to a medium EOE. The return registration frontend can be exchanged
without impact on any other service in the architecture. However, it is relying on
other services such as the cloud database to retrieve order and customer informa-
tion. Introducing another service for this purpose requires it to be adapted to the
interface of these services or the service bus respectively.

The EOL is the criterion with the lowest score across all services. The return reg-
istration service, the parcel registration, as well as the cloud database have a very
low EOI due to the complexity of their interfaces. Each of the services requires thor-
ough design, build, and maintenance of custom interfaces to connect to the other
services. While the task list and e-mail service require the same, their interfaces are
considered more simplistic so that the EOI is higher.

4.4.2 Improvements on the state of the art cloud in integration
platforms

In the previous section, we investigated to what extend the services and the archi-
tecture of the prototype adhere to the criteria of pluggability. We discovered, that
the ease of integration is the criterion current services and integration platforms
lack the most. We see the reason for this shortcoming in the complexity of the task
of developing and maintaining the interfaces between the various software services.

Service implementers can easily gain a good understanding of the reference
processes, data models, and use cases required to implement a certain application
component. It allows them to deliver services that can be used in a wide variety of
organizations. However, service providers have no insights into the environments

72

Chapter &

in which the services eventually operate, which may be the explanation of the lack
in delivering the appropriate integration artifacts. Furthermore, these system land-
scapes vary across the different potential service users which poses another obstacle
to delivering such artifacts.

To address this issue, we propose to adjust the architecture of the current inte-
gration platforms to facilitate the task of delivering pre-integrated services. As with
cloud software services that release the user from struggling with the underlying
technology, a suitable integration platform allows the users to reduce their work-
load in service integration from customization to configuration. Figure 4.8 shows
the different milestones of an on-premises solution compared to a Saa$S offering.
The deployment of the artifact happens prior to the subscription of the service by
the user. Thus, the deployment becomes part of the implementation carried out
by the provider. As we have shown in this chapter the tedious task of integration
happens after the subscription to a common Saa$ offering. Pre-integrated SaaS$ of-
ferings consider the integration as a duty of the service provider and release the user
of that task as well.

Provider-user

boundary
‘ Implementation ‘ [‘ Subscription ‘ Pre-integrated SaaS
g
‘a% ‘ Implementation ‘ ‘ Subscription ‘ ‘ Integration ‘ SaaS
=
‘ Implementation ‘ L ‘ Delivery ‘ ‘ Deployment ‘ ‘ Integration On-Premise

l Time

Figure 4.8: Pre-integration of Saa$S offerings

We argue, that in an application landscape with evolving functionality the most
crucial stable component is the domain data used across the system. This data is
the same throughout the different services (integration can be seen as the task of
transferring data from one system to another) and different generations of services
(migration can be seen as the task of transferring data from one system generation
to its successor). However, this aspect is ignored by existing integration platforms.

As a result, to the lack of current platforms and the indicated integration chal-
lenges, we claim that the business data should be part of the platform rather than the
individual services. The integration platform becomes a domain specific artifact,
including a canonical data model (Hohpe and Woolf, 2003) and the required ser-
vices to help service providers to ship pre-integrated services. Giessmann and Leg-
ner (2016) describe application-centric platforms as a distinct type of PaaS. Services

73

Chapter &

evolve as add-ons to a core application component and can be considered as pre-
integrated. Such application-centric platforms that deliver the core e-commerce
functionality and allow for pluggable add-ons are not available to date. In Figure 4.9
we show and extended version of the state-of-the-art model that follows a similar
approach and adds an e-commerce specific collaborative data management com-
ponent to the platform. By introducing this concept, we shift the component that
is most critical for the integration of systems from the service to the platform. This
component handles the canonical data that is used and provides an interface to
the resources. In the context of this work, individual e-commerce services evolve
around the platform. They can operate by default on the data service and thus, allow
their users to avoid the implementation of integration artifacts. Furthermore, it is
possible for the processes to access the canonical data through the same interface,
which allows for integrating legacy services that are not participating in the use of
the data service.

Platform Provider %
Collaborative Service and Process Framework g] Collaborative Data &
Management
Service Framework &] Process Framework]
Developer Portal Customer (N

Enterprise Gateway

Security

Policy Enforcement and
Management

Service Analytic &
Reporting

Data Files -
DB Link

(Big) Data Analytic
Services

SaaS Applications

Development and
Lifecycle Management
Platform Services

SLA Management

Service Lifecycle

W Integration Platform

Services
Service Metering and
Billing

Monitoring,
Management, and
Administration Platform
Services

Service Registry and
Repository

Service Provider

Other
(RPC, EDI, SMTP)

Applications <O

Data

Product Data (3

Order Data (N

Master/Transaction
Data Services

Yo

Web Service / Web APl -0
(SOAP WSDL / REST JSON)

ommunication Services (Mail,

enereic Standalone Services

Chat, Social Media, etc.) (Payment, Print, etc.)

Figure 4.9: Extension of the common service platform model

74

Chapter &

4.5 Conclusions

In this chapter, we have shown how the IT service industry currently approaches
the issue of plugging software services into existing environments. The presented
reference model was implemented based on a simplified real-world scenario. Using
the pluggability assessment model we found the ease of integration one of the main
challenges service users face today. The derived assessment instrument can help to
investigate on the pluggability of services in practice and research.

Furthermore, we proposed an extended reference model that can improve the
pluggability and is in line with the platform concept. The extension consists of a
canonical data management component containing the data that has to be shared
among the various services. However, the introduction of such a component will
have consequences with regard to the handling of the shared data. At this point, var-
ious scenarios are possible how existing and new services deal with the centralized
data repository. While new services can interact directly with the data services, the
link leads to a strong dependency between service and platform. Furthermore, the
availability of platform compatible e-commerce services will be limited unless the
platform is gaining strong support from service providers. Finally, the adoption of
the platform requires integration of existing services and thus a strong commitment
and initial investment from the e-commerce company.

The construction of the collaborative data management component itself should
be the subject of the subsequent chapters. First, the canonical data model will be
further specified based on the various existing reference models in the field. Second,
the data access level must be defined to allow the various partners to work collab-
oratively and assure protection of sensitive information at the same time. The goal
is to design these components that will undergo prototypical implementation and
evaluation.

75

Chapter 5

A Platform-Based
Pluggable Trade Compliance Service

With specialized IT services that go beyond the features standard e-commerce pack-
ages provide, retailers can improve service quality and information quality, two of
the main drivers for trust and customer loyalty (Yoon and Kim, 2009). As men-
tioned previously, cloud services are a promising approach to adopt specific func-
tionality and to build an IT landscape with increased interoperability capabilities
(Lewis and Fowler, 2014).

Despite the potential benefits of the service based approach, the adoption of
new services can be cumbersome. In the previous chapter, we have shown that
existing e-commerce services do not support their own adoption sufficiently. As
Kephart and Chess (2003) state, the complexity of a system is higher than the com-
plexity of the entirety of services. Thus, system complexity depends on the ability
of the services to manage their own operation within the system and to reduce the
requirements for system integrators to handle the complexity originating from a
growing amount of services. Today’s cloud services are a step forward to the easy
adoption of individual pieces of functionality. However, as Martens et al. (2012)
point out, the required resources for adopting cloud services are often underesti-
mated, as the need for evaluation, implementation, configuration, and integration
gets neglected.

Platforms have been propagated as a means to increase the quick connect capa-
bility within a network (van Heck and Vervest, 2007). The provisioning of services
through a platform means to bundle the reoccurring resources and features across
application components and to make them accessible for reuse. Using that pattern,
the platform contains the stable components and supports the variety and evolv-
ability of the other services by constraining their linkages (Baldwin and Woodard,
2009). Eventually, it can help retailers to decrease the efforts related to service adop-
tion and allow service providers to offer services that are easier to consume. How-
ever, the available cloud platforms do not reflect all stable components within ser-
vice systems. As we pointed out, domain specific data is often replicated across
e-commerce services with a negative impact on pluggability. Thus, we proposed an
extension of the existing integration platform model that reflects domain informa-
tion and makes it available across services.

The goal of this chapter is to investigate whether the proposed model helps to

77

Chapter 5

increase the pluggability of e-commerce services. The main contribution of the
chapter lies in the elaboration of the collaborative data management component
(cf. Section 4.4.2). The design and demonstration put forward represent the sec-
ond design cycle of the DSRM framing this thesis. To this end, we come up with
an ArchiMate model of the platform. The architectural model can be considered
as a design artifact to solve the problem of low pluggability provided by current
e-commerce services and platforms. The technical design draws upon recent tech-
nologies and protocols, originating from the social media and mobile service in-
dustry, and applies them in an enterprise information system context.

To evaluate the design artifact, we propose the business case of an e-commerce
company that plans to get involved in cross-border selling to increase its customer
base. A key hindrance for cross-border e-commerce endeavors lies in the diversity
of legal trade regulations across countries (Accenture, 2011). Based on a prototyp-
ical implementation of the platform, we present a pluggable service for tax compli-
ance in cross-border retail. The service helps retailers to calculate the correct for-
eign tax and can be adopted in a pluggable manner. The evaluation is carried out
through qualitative comparison of the pluggability of prevalent application com-
ponents in e-commerce with the platform-based service.

The chapter is further structured as follows. Section 5.1 contains an assessment
of current e-commerce systems and their pluggability. In Section 5.2 we present
the platform architecture and describe how it contributes to improved pluggability
in the context of social media services. The prototypical implementation of the
architecture is presented and evaluated in Section 5.3. In Section 5.4 we conclude
with additional benefits and potential improvements of the platform.

5.1 Preliminary considerations

The adoption of IT services is often following the same pattern. The six phases of the
service adoption lifecycle introduced in Chapter 3 occur in fairly every change pro-
cess treating the introduction, update, or replacement of IT services. The adoption
life cycle is used as a framework to assess the pluggability of a software component.
In the following, we are going to discuss the current practice in IT service adop-
tion with regard to the six phases. Subsequently, we are going to discuss the short-
comings in pluggability of current IT services, which emerges from the required
resources during each phase of service adoption. The goal of the discussion is to
pave the way for a new design that embraces these factors and reflects the proposed
collaborative data component proposed in Chapter 4.

Current e-commerce architectures consist of a small set of large systems. More
precisely, in most cases, they contain a shop frontend, an ERP system for back of-
fice tasks, and a WMS system for fulfillment logistics (Paramartha, 2014). Each
of these application systems covers a large amount of functionality. Such mono-
lithic systems are closely tied to the operational processes of the companies owning
them, which makes it hard to detach them (Mandal and Gunasekaran, 2003). Fur-

78

Chapter 5

thermore, these systems operate as one entity, thus consisting of tightly coupled
modules, which are difficult to replace with atomic pieces of functionality, encap-
sulated in other services (Gattiker and Goodhue, 2004). In the following we dis-
cuss the six phases of the service adoption lifecycle, using the example of the shop
frontend system. The front-office solutions for e-commerce contain a large set of
functionality related to the selling of goods through the online channel. This en-
compasses product information management (PIM), storefront management, cus-
tomer account management, marketing and promotions, analytics and reporting,
and sometimes many more (Humeau and Jung, 2013).

Service provisioning

During the service provisioning phase, potential services are being evaluated and
compared. Instruments exist to analyze the fits and misfits of the software pack-
age (Wu et al, 2007). Accordingly, the assessment of software packages can be
divided into multiple sub-phases and can take a year or more. In general, the more
complex the system and the higher its impact on the business, the higher the risk,
and the more critical service provisioning becomes. Finer grained software com-
ponents have less impact and thus entail less risk, which makes the provisioning
more straight forward. Furthermore, the amount of available information on the
software component can be considered as an important factor during service provi-
sioning. Out of the six largest store frontend solutions mentioned by Humeau and
Jung (2013), four prohibit the access to the product documentation. In most of the
cases, only marketing brochures are available and detailed information about the
software and can only be received through a sales or partner contact, making an
unbiased assessment of the software particularly difficult. Furthermore, the pric-
ing of the product licenses is, in many cases, not transparent. The availability of
structured product information and pricing would increase the comparability of
the software. The existing open source shop frontends have the advantage, that
their documentation is openly available.

Service deployment

The prevailing shop frontend solutions are pre-packaged applications. However, a
number of Saa$ offerings started to emerge in the field. Packaged applications are
usually deployed on-premises or on a cloud infrastructure by the service user. They
require the installation and setup of a database and an application server, or web-
server. Furthermore, security mechanisms must be in place such as firewalls and
encryption of traffic for sales transactions. Depending on the amount of traffic and
service level, failover and load balancing solutions might be required to maximize
the availability of the system. Cloud systems, on the other hand, increase the ease
of service deployment significantly as most of these tasks are handled by the service
provider (Waters, 2005).

79

Chapter 5

Service adaptation

In the adaptation of an application service, we can distinguish between configura-
tion and customization. While the configuration allows a user to set up the sys-
tem according to his needs, a customization requires changes in the source code or
scripting. In general, the ability of the system to cover a maximum number of busi-
ness scenarios through configuration decreases the need for customization, which
in turn increases the ease of adaptation. A SaaS solution should aim for a high de-
gree of configurability because customizations are difficult to realize by the user of
an external service.

Service integration

The shop frontend has to share various resources with other application systems.
For example, customer and product data must be shared with the ERP system and
orders must be persisted into the order management module. Product stock and
availability have to be shared in real time with the warehousing system, which is
challenging for many e-commerce companies. Erroneous stock information in the
shop will eventually result in a poor order fulfillment performance, which has a
negative impact on customer satisfaction and loyalty (Rao et al., 2011). However,
the current approach to enterprise application integration is a mix of messaging and
scheduled batch processing techniques (Igbal et al., 2007). For both, packaged and
cloud shop frontends engineering of integration artifacts is required. Thus, the ease
of integration can be considered as low in both cases.

Service operation

The service operation phase encompasses all the long term activities the application
system requires. These can be a major cost factor, as they require permanent human
resources in a traditional, non-cloud setting. These activities include a multi-level
support, a service desk, and the maintenance of a knowledge base. Furthermore, the
maintenance of the system is required to enhance the service and to apply patches,
especially concerning security issues. If no support agreement with the vendor is
in place, which might be the case for open source solutions, the maintenance might
also encompass bug fixing. Also, major release updates might be necessary at the
end of the software’s support cycle. Such updates can have a high impact and require
regression testing, re-engineering of customizations and integration artifacts, and
re-import of the setup. In case of a SaaS front-office solutions, most of this tasks are
outsourced to the service provider. However, the first level support might remain on
site to establish a single point of contact for all IT related incidents. Furthermore,
as discussed above, the integration of the shop is most of the times a custom IT
artifact. Its maintenance and monitoring must be handled by the user, regardless
of the fact that the shop might be a Saa$ solution.

80

Chapter 5

Service exchange

The exchange of the e-commerce frontend might impact the overall architecture,
depending on what data is stored within the system and accessed by other appli-
cations. The replacement of the service requires and impact analysis: integrations
will have to be reengineered and changes might be necessary on other systems. For
example, changes in the sales process will need to be reflected in the backend sys-
tems.

From the investigation of the IT service lifecycle, using the example of the shop
frontend, we can conclude that the adoption of application services for e-commerce
is a resource-intensive endeavor in terms of time, expertise, and cost, resulting in a
low pluggability. Online retailers that want to adopt new features to keep up with
competitors have to accept high investments or wait until their software vendor in-
troduces a similar feature in the next release. In the previous chapter, we found that
SaaS$ solutions, in general, can improve the pluggability of a service. However, es-
pecially the issues in service integration, operation, and exchange cannot be solved
by merely switching from an on-premises solution to a cloud equivalent. We argue
that, to improve the pluggability of services, it is not enough to optimize the service
itself. In fact, it is required that the platform allows service providers to build ser-
vices that can be consumed in a more pluggable way. van Heck and Vervest (2007)
claim that a superordinate platform helps to improve the capability of systems to
quickly connect and act as a unit.

5.2 A pluggable service platform

In the previous section, we described the different phases of service adoption and

pointed out the low pluggability of IT services for e-commerce in current approaches.
In this section, we propose a platform architecture to increase the pluggability of

individual services and the overall flexibility of the IT landscape.

5.2.1 Service platforms

The prevailing architecture for e-commerce is the information silo where the appli-
cation system consists of a database, an application backend and an application
frontend (Figure 5.1). The object-oriented domain model is mapped to a rela-
tional data model and the data of the application system is persisted to a dedicated
database (Fowler et al., 2002). Eventually, the e-commerce company applies a num-
ber of self-contained systems. The need for collaboration between applications is
ignored during their implementation and has to be solved by the user.

In other domains, IT services rely on a shared backend which encapsulates the
common components across all services. The mobile industry applies this platform
approach extensively. As a consequence, developers of mobile applications can rely
on a number of platforms for marketplaces, gaming backends, user profiles, ad-
vertising, and geo-services. These platforms help service providers to reduce im-

81

Chapter 5

Client @)
(Web/Desktop/Mobile)

Application -O
Frontend

Application Server [O

Application Backend 1 ——— API O

Web Services
Business Rules & [>

RDBMS o

Application Scope Data

Figure 5.1: Common application architecture

plementation efforts, increase the collaboration between services, and enhance the
end-user experience. As the platforms allow access to shared resources, the replica-
tion of data is often superfluous, thus decreasing data redundancy and increasing
data quality. Furthermore, the platform design allows service providers to reuse
common components and concentrate on the core functionality allowing them to
offer finer-grained services.

In the previous chapter, we motivated the introduction of a collaborative data
component where the canonical business data gets aggregated by the platform and
shared across services. The e-commerce platform we propose in Figure 5.2 encap-
sulates the canonical data model (CDM) and the business rules for e-commerce
(Hohpe and Woolf, 2003). Furthermore, the platform facilitates the definition of
access rules which allows the e-commerce companies to grant access to their re-
sources to the various services on an entity level. Finally, the application model
extensions allow individual services to extend the data model. This helps to keep
the CDM simple but versatile.

5.2.2 Platform architecture

In order to outline the platform architecture, we present an ArchiMate model which
specifies IT and business concepts as well as their relationships (cf. Appendix A).
The ArchiMate notation allows the visualization of components and actors involved
and the description of the mechanism of interaction with the platform.

Figure 5.3 shows the ArchiMate model including the roles, platform compo-
nents, and processes. The architecture includes three roles, namely the platform
provider, the platform user, and the client who offers a service through the plat-
form. There is no preference as to which actors should take which role. It is thus
possible, that an e-commerce service provider is also running the platform. The
platform itself contains four components and has two different interfaces.

82

Business Applications

Client @)
(Web/Desktop/Mobile)
Application O
Frontend

Application Serverl/ @)
Application Backend@ |

API

Chapter 5

Service Platform

Application Server O

Business Rules €]

8]

Access Rules

RDBMS @)

O

Web Services

RDBMS

e

Application Scope Data

Canonical Data Model

Application Model
Extensions

Figure 5.2: Segregation of service specific and shared resources

The multiple application components of the platform rely on two different data
object types. On the one hand, a resource set data object is assigned to each user
of the platform. It contains the core business data for e-commerce such as orders,
customer data, and product information. On the other hand, the metadata contains
extensions to the core data as well as the permission which grants access to the

various clients.

[
User e r——> Authorise client E>—> Use service =
Platform Provider Authqn§ Elife —> E-Commerce Service
provisioning A
Platform 8] i
Client 0
Resource set[*] || 777 Provisioning
Order Customer Data object €]
) definition and apl O
g management
Product component
v
Metadata Billing component 4\
—
—— webuO
Permissions Extension Service €]

Marketplace

Figure 5.3: E-commerce platform architecture

83

Chapter 5

The platform components accommodate functionality to look up services in a
marketplace and to handle the payment of services. Furthermore, the client is able
to look up and manipulate the business data as well as the setup of the metadata
required for its service. Finally, the provisioning component handles the resource
access authorization which is described in detail in Section 5.3.1.

Canonical data model

The resource set is one of the core components of the platform and is based on a
CDM of the business domain. According to Saltor et al. (1991), expressiveness is
a critical success factor for CDMs: ‘A CDM must have an expressiveness equal or
greater than any of the native models of the component DBs that are going to inter-
operate, in order to capture the semantics already expressed with the native models.
Moreover, it should support additional semantics made explicit thru a semantic en-
richment process’

To adapt the cycle proposed by Saltor et al. (1991), we started from a native
model of one service component and extend the model by successively adding more
services. We stopped the enrichment cycle after the implementation of the platform-
based end-to-end material return process covered in Chapter 4.

Figure 5.4 shows the result of the data model after four iterations of enrich-
ment. The process was started with the service to register return shipments which
requires access to orders, order lines, and customer information. The second ser-
vice is the backend service for return merchandise authorization (RMA) processing
and extends the data model with product information and returns (including return
types, status types, and return reason types). The last two iterations for reverse lo-
gistic and customer communication rely on the same data and do not require any
additional information. The enrichment of the data can be continued in the same
way by adding more services of other e-commerce processes.

Metadata model

The heterogeneity of components relying on the CDM can be addressed through
meta information (Busse et al., 1999). Therefore, we introduced two types of meta-
data in the architecture, client related metadata and infrastructure related metadata.
Figure 5.5 shows the metadata model.

The main purpose for the client related metadata are custom data model ex-
tensions. It allows the client components to define additional attributes for each
resource on the platform. The definition of new resource attributes is carried out
declaratively, at design time, through the web UL For example, a client application
for temperature controlled transport planning can enrich the product entity with
information on ambient thresholds. This information would be too specific for the
CDM. The described approach dissolves the rigid structure of the data model and
it can be adjusted to any use case within the context of the platform. Furthermore,

84

—

T product_category

P

| product_category_id

category_name

0

parent_category_id
resource_id

0

Chapter 5

1 price
§ll price_id
¢—— §ll product_id
price_date
price

1 product
§7l product_id
product_nr
§7] product_category._id
f order_line product_name
§7l order_line_id description
1 orders_id dimension_length
§7 product_id dimension_width
amount dimension_height
unit_price weight
size
color
1 brand_id
!l resource_id
" address
7 orders §7l address_id
§7l orders_id §7 customer_id
#1l customer_id street
§1] store_id city
§7 address_id postcode
order_date state
country
¥ customer
7. customer _id
customer _firstname
customer_lastname <

sex
email
date_of_birth
¢!l resource_id

Figure 5.4: Platform architecture - canonical data model

the client can determine whether the scope of the additional attributes should be
private or shared with other clients.

The infrastructure related metadata resolves various requirements related to
data ownership and mutual data access. It allows configuring visibility and access
of data among business partners. Through the use of access tokens, as in state of
the art in social media platforms, users can grant platform clients the access to their
resources (Hardt, 2012).

Interfaces

The platform provides two interfaces. A web user interface (web UI), which is used
to access the marketplace and billing component. The core data can be exposed

85

client_attribute_type

-

Iclient_attribute_type_id

0

resource_type_id

0,

client_id
scope
attribute_type_name

1 resource_type
#llresource_type_id
resource_type_name

[i¥ access_token

Flid

. client_id

1 user_id
token_type
token
refresh_token
expires
_realms

client

0

L client_id

=

D a—

=

client_attribute

| client_attribute_id
client_attrubute_type_id
resource_id
value

resource

i resource._id
1l resource_type_id
1 owner_user_id

=

user_id
application_name
description_short
description_long
url

L client_secret
is_confidential
_redirect_uris
_realms

T user

Luser_id
user_name
password

A

3 1}

)

-

product

-

Iproduct_id
product_nr
product_category_id
product_name
description
dimension_length
dimension_width

-

dimension_height
weight

size

color

brand_id
resource_id

0 o

request_token
id
user_id

I client_id
L code

redirect_uri
_realms

expires

Chapter 5

Figure 5.5: Platform architecture - metadata model

through the web UI to facilitate administration tasks on the core data. The com-
puting interface, which is a REST API, consists of two endpoints for client autho-
rization and access, as well as for a number of endpoints to access the business
resources. Table 5.1 contains the description of the endpoints and the supported
methods. The resource endpoints are available for every resource of the CDM and
allow access to single resources or entire collections with the specification of filters.

The web Ul of the platform prototype is shown in Appendix D.2 and has the four
following main functions which allow the platform users to maintain resources,
clients, and services.

« The documentation offers access to the user documentation and the docu-
mentation for service providers, including API documentation.

o The service administration allows the user to edit service subscriptions, search
and subscribe to new services, as well as to retrieve billing and payment in-
formation for services.

o Asthe user can be service consumer and provider at the same time, the client
administration allows the user to set up new clients which can be subscribed

86

Chapter 5

Table 5.1: Platform API endpoints

Endpoint Method Description

/authorize PUT Redirect a user to the web page for authorizing the
GET access to his resources.

/token GET Exchange and refresh tokens which give access to the

resources.

/resource GET Access and modify resources. Single resources can be
PUT accessed by their ID. Collections of resources can be
POST filtered through parameters. Every request requires an
DELETE access token. Additional attributes which are defined in

the metamodel by the client are seamlessly integrated
into the response.

by other users. It includes the setup of custom attributes and retrieval of
subscriber information including invoicing.

o The business resource administration allows users to access their resource
set. Users can view, update, and delete resources as well as metadata such as
additional attributes created by clients.

5.3 The trade compliance case

In this section, we describe the design and implementation of a prototype, based
on the described platform architecture. The purpose of the prototype was to gain
insights into the feasibility of an e-commerce service, based on the platform, and
to assess its pluggability. First, we describe the business case, the state of the art, as
well as the platform-based solution. Subsequently, we present an evaluation of the
solution using the pluggability model.

5.3.1 Business case

For the prototype, the business case of a cross-border trade compliance service was
chosen. The capability of the service goes beyond what current e-commerce solu-
tions provide in terms of supporting tax and customs compliance for cross-border
e-commerce. The architectural limitations of the current landscapes do not allow
online shops to manage legal regulation for cross-border selling in straightforward
fashion. By addressing this challenge through a pluggable service, we can demon-
strate not only the advantages of the architecture for the adoption of services but
also its benefits in embracing novel business opportunities.

The goal of the service is to provide real-time updates of orders with interna-
tional shipment, customs, and value added taxes (VAT) cost. That way, the buyer

87

Chapter 5

gets accurate information on total costs of their online purchases from foreign re-
tailers. The customer is able to receive information about all the costs related to
the cross-border transaction. Furthermore, from a retailer perspective, the correct
application of tax regulations often depends not only on a single transaction but
on the total value of goods sold to a specific country within the fiscal period (Eu-
ropean Commission, 2016). Thus, the service has to keep track of all cross-border
transactions per country and apply the correct regulations.

Electronic Mall Best prices and service. Q 2 ftems

Verify your order
Product Quantity Price Total

15 inch laptop 1 1,439.90 € 1,439.90 €
by HP
Status: In Stock

by HP
Status: In Stock

Q Laptop charger 1 59.50 € 59.50 €

Name John Smith Subtotal 1499.40 €
Street Random Street 15
Shipping 6.05¢
Postcode 12345
City San Francisco VAT 31488¢€
Country United States
Customs 36.29€
Total 1856.62 €

'™ Continue Shopping Place order P

Figure 5.6: Checkout with tax information

5.3.2 Current situation

The prototype is based on a working web service that was made available through
the cooperation with a global trade service provider. The web service encapsulates
the logic required for calculating foreign VAT that needs to be declared if selling
abroad. In order to get a tax request, the corresponding product needs to be pop-
ulated to the service beforehand. Listing E.1 in Appendix E shows the operations
available from the WSDL interface of the service. The addProduct operation allows
populating product master data to the trade compliance service which is required
to derive the appropriate tax from the product category. The service also provides

88

Chapter 5

a web application that allows maintaining the product information manually. The
getRequest operation allows to request the actual VAT, customs, and shipping cost
for an order containing one or more products.

The reference architecture proposed by the service provider is shown in Fig-
ure 5.7. The model illustrates the generic use of the service within a common e-
commerce architecture. The core component of a state-of-the-art e-commerce ar-
chitecture is a packaged e-commerce solution that encompasses product informa-
tion management, customer management, and a storefront that allows customers
to order products. To integrate the tax compliance solution into the architecture,
a custom tax calculation component is proposed which is implemented as a cus-
tomization of the e-commerce package. The customization handles the population
of new products to the tax calculation service and carries out the tax calculation in
real time during the order process through invocation of the remote web service.

Consumer X

!

Fill cart Q—b Start checkout Q———b Request tax Q—b Pay A

|

Order product =

Shop fontend
P A Merchant S
E-commerce component £]
Publish product =
Product €] i
Information L 5 Create productm_’ Approve product A
Management

Trade compliance@

populates

Web service -O Admin Ul -O

Wi

Trade compliance

Figure 5.7: Original reference architecture for the tax compliance service

The provided web service takes as an input a message as shown in listing E.2
in Appendix E. The example contains two invoice lines for an order shipped to the
united states. The payload includes the product number which has to be published
to the service beforehand, the current price of the product, the amount for each

89

Chapter 5

order line, currency, shipping cost, as well as the shipping address. Listing E.3 in
Appendix E contains the corresponding response of the same message exchange.
It provides detailed VAT information per order line, including the applicable VAT
rates based on the product master data and the shipping destination. Furthermore,
it contains the overall VAT, customs, and shipping cost for the order. The web ser-
vice interface will be reused in the platform-based solution which is described in
the following.

This approach has a couple of limitations, resulting in a limited pluggability of
the service. The ease of deployment and ease of adaptation are limited by the re-
quirement for a custom tax compliance component. In order to make the solution
work, additional logic has to be implemented and deployed inside the e-commerce
component. The adaptation requires technical knowledge of the components and
also requires cycles of technical and functional testing. Furthermore, the ease of
operation is affected as the custom component might not be supported by the e-
commerce component provider. Finally, the exchange of the e-commerce compo-
nent requires re-engineering of the custom tax compliance component.

5.3.3 Platform-based solution

Figure 5.8 shows the architectural model of the platform-based solution for the
pluggable tax compliance service. The proposed solution dissolves the monolithic
reference architecture and distributes the business logic across different pluggable
microservices. It contains a service for the online shop that handles the sales trans-
action. A product information management (PIM) service allows the administra-
tion of products. Finally, the tax service handles the automatic population of new
products to the tax calculation service and triggers the computation of foreign VAT
and customs in real time.

In order to adopt the various microservices as pluggable services, the architec-
ture earmarks them as clients of the platform. More precisely, domain data such
as product information is present within the resource set of the platform user and
shared across the services. There is no requirement for using a specific service for
PIM or the online store provided that they rely on the platform.

The solution supports two process flows which rely on the two web service op-
erations of the trade compliance service:

« The publish product flow handles the maintenance of product master data.
The user utilizes the PIM client application to maintain product data. The
trade compliance service subscribes to consequent changes in the product
data on the resource set. In order to do so, the platform provides a streaming
API as an addition to the usual request API. The difference between the two
interfaces lies in the integration pattern between the platform and the client.
While the request APl implements the request and reply pattern, the steaming
API reflects a publish and subscribe pattern (Hohpe and Woolf, 2003). Using
the streaming API allows clients to act upon business events in real time. In

90

Chapter 5

Consumer S

Order product =
Fill cart N—»{ Start checkout N-—-»! Re?:xest N[pay A

|

Shop frontend

JAN
: Platform 2]

Online store client{] >_ S provides tax information
....... Request API N
PIM client &1 4]

Streaming APl (N——| Trade compliance &

client
A"
Orders Products
populates
Publish product =>
Create product N~ Approve productN < Admin Ul {D\ / Web service —O
Merchant Trade compliance

Figure 5.8: Proposed architecture

this case, a new product in the platform causes the trade compliance client to
pick up the product information and publish changes to the trade compliance
service through its web interface.

o The order products flow makes use of the same streaming API. The goal is to
allow foreign customers to place orders which get updated in real time with
the cross-border transaction cost. The crucial part of the implementation is
that the additional costs need to get injected into the order during the check-
out procedure. The trade compliance component picks up the initial order
creation event and publishes the additional costs (cf. Figure 5.6). As a conse-
quence, the online store client has to reflect changes that have been done after
order creation. In order to do so, the platform has to support service hooks
on public resource transactions. Such hooks allow services to block and re-
lease resources after subscribed events have been triggered. The diagram in
Figure 5.9 shows the sequence of actions among the platform and the clients.
As a general rule, it is necessary that clients have to consider the user hooks
during implementation and re-query resources after public operations.

91

Chapter 5

online_store order order_event order_hook trade_compliance

T T

create() } }
|

I

|

T
|
I
|
trigger() }
|

T
|
|
|
|
|
|
|
|
!

nqtify()

block() T ‘

|
|
} update()
]
I
|

B et

getOrder()

reqdest()

]
T
} release()
|

permisison
S dommmmmm oo
I I
e I I
| |
I I

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|

Figure 5.9: Order creation sequence

For the purpose of resource authorization, the platform implements the OAuth
protocol (Hardt, 2012), which is commonly used in social media services in order
to authenticate a user towards a third-party service and to share the user’s resources
with the service. After the user visits the home page of the service, and chooses to
subscribe, he is redirected to a page on the platform, providing the client informa-
tion and the required scope of resource access. The user is then presented with a
screen, as shown in Figure 5.10, where he can authorize the delegated resource ac-
cess to the trade compliance service. After confirmation, the user is redirected to
the service, together with an access token which allows the service from now on
to access the user resources, according to the scope of the grant. Details about the
platform implementation can be found in Appendix D.1I.

CATeLOG Platform My Resources Service Subscriptions Hosted Client Applications Documentation Logout FashicnMall

Do you want to authorize cross-border compliance service to get access to access the following
resources:

e orders

* product

Confirm || Cancel

Figure 5.10: Resource authorization for trade compliance client

While the OAuth was originally designed for cross-site authentication and uni-

92

Chapter 5

fied user accounts, it turns out that it is compatible with the mechanisms in enter-
prise application service collaboration. The only difference consists in the amount
and granularity of access scopes. While in social media a limited number of re-
sources, such as username and e-mail, are shared with the third-party service, the
e-commerce platform has a large amount of resources (such as order, products,
categories, customers, and returns) that can be shared. Furthermore, a distinction
between read and write access of these entities has to be made when defining the
scopes. However, it is possible to reuse the existing OAuth provider libraries. For
the prototype, OAuthLib has been used (Gazit, 2012).

The second challenge, in addition to the delegation of resource access, is the im-
plementation of services based on the platform API instead of a dedicated database.
For the case of the prototype, all three clients rely on the data from the platform.
While current architectures would aim for a local replication of the data, the goal of
the platform architecture is to facilitate the online access to the business resources.
Accordingly, the data access layer of the service has to be able to act as a web API
client to request and send the resources directly from and to the platform. As cur-
rent full stack web application frameworks expect the use of a dedicated database,
the implementation of a platform-based service cannot be achieved with most of the
available solutions. Some dedicated frameworks exist that facilitate the consump-
tion of web services and REST APIs, which can be used to reduce the implementa-
tion efforts. For the prototype, we rely on RestTemplate to consume the platform
API (Lui et al., 2011). However, the shortcoming of supporting technologies for
the platform architecture makes the development of the service more cumbersome.
Detail on the implementation of the platform client can be found in Appendix D.3

Another drawback of the platform architecture is the client performance. More
precisely, the centralized, remote data repository increases the delay on the client
side as the information must be transferred over multiple nodes. While current en-
terprise application architectures consist of a frontend and a backend, the commu-
nication with the platform has to be considered as another source of latency. Nev-
ertheless, the latest innovations in the field stress the importance of rich clients, in-
cluding client side caching and execution in combination with asynchronous com-
munication with the backend. These mechanisms supersede the delays on the server
and the platform, such that the extended backend will have minimal impact on the
user experience. In the prototype, we do not address these technologies, however,
we think it is important to consider this issue in the future.

As we can see from the architectural models in Figure 5.7 and Figure 5.8, from
a user perspective, both architectures share the same business layer. However, the
benefit of the platform solution relies in the adoption of the individual services.
The use of the platform and platform-based services by the retailer offers potential
benefits in terms of pluggability, and thus a shorter time to market. In the following
section, we are going to elaborate on those benefits by evaluating the platform with
regard to the pluggability criteria.

93

Chapter 5

5.3.4 Evaluation

In this section, we present the evaluation of the cross-border compliance service
with regard to its pluggability. We rely on the framework presented in Chapter 3,
which is based on the lifecycle of service adoption and use. Figure 5.11 shows the
results of the application of the instrument. Each phase of the cycle is being dis-
cussed individually, referring to the corresponding service lifecycle phase.

EOP
2
1
EOE 0 EOD
-1
N
S ~N
2
P I~ ~N
P ~N
N,
EOO EOA
— =Reference architecture
—Platform architecture
EOI

Figure 5.11: Pluggability of reference architecture and platform-based solution

Ease of service provisioning

The ease of service provisioning depends on how much the service provider sup-
ports the goal of making the capabilities of the solution transparent, and allows the
user to assess the fit of the solution to the business needs. The existing tax com-
pliance offering is only available upon request and requires individual contact with
the sales department of the service provider. It is not possible to discover or learn
anything about the service unless a business relationship with the service provider
is established. Detailed information on the service capabilities is not available. The
EOP of the current tax compliance solution is therefore on the low end. The advan-
tage of the cloud solution is that it allows the service provider to relatively easy issue
a demonstration environment for the customers to get hands-on experience, and
assess the service. The trade compliance service does not require a high investment
in the beginning for licensing and deployment. As the cost for the service arises

94

Chapter 5

only from the subscription fee, the investment is distributed evenly over the time
of use. Furthermore, the price of a cloud service is better predictable as it will not
generate unexpected costs for product implementation and deployment.

The platform architecture aims to facilitate the provisioning of finer-grained
services compared to the current service offerings. The trade compliance service
adds a very specific functionality to the landscape which has a very limited impact
on the overall system. Thus, there is no need for a long cycle of product assessment,
a more comprehensive service would require. The user can try out the service in
order to investigate fits and misfits. Compared to the reference architecture of the
original trade compliance service (Figure 5.7), this does not require laborious cus-
tomization of the online store. Furthermore, the marketplace component of the
platform provides structured information on the service and its pricing, making
it easier for the potential user to evaluate its adoption. We can conclude that the
platform-based solution has major advantages for the user during the provisioning
phase and thus a higher EOP.

Ease of service deployment

As mentioned in Section 5.1, the ease of deployment is a distinctive feature of cloud
services in general. The trade compliance service can be used without the need for
additional hardware or software artifacts. The platform facilitates the subscription
to the service by implementing the OAuth protocol. The client has specified the
required resource access in advance, during the service implementation. As a con-
sequence, the deployment of the service happens in three steps, the subscription
to the service, the authentication with the platform, and the authorization of the
resource access. The next task of the user is to configure the service according to
his needs which can be already considered as service adaptation. The EOD can,
therefore, be considered as high. In comparison, the original reference architecture
requires the user to implement the required tax compliance component, including
its technical testing which leads to a low EOD.

Ease of service adaptation

Functional setup of the service and functional testing are the main tasks during
service adaptation. The support of the platform-based solution does not go beyond
what the original reference architecture has to offer. The administration interface
of the tax compliance service allows the user to configure the service to his needs.
However, the service shares a common drawback with other cloud services. The
user will not be able to customize the system beyond the functionality anticipated
by the service implementer. Therefore, both solutions have a medium EOA. If the
service provider fails or denies to implement certain features, the user will not be
able to customize the service beyond the provided functionality, even if he had the
technical expertise to do so. However, to satisfy the customer needs, the cloud ser-
vice providers are getting forced to improve configurability. The platform can be

95

Chapter 5

a means of collecting change request from the various users. Furthermore, the ad-
vantage of the platform architecture in contrast to self-contained Saa$ solutions is
that multiple services of the same type can be used. For example, a user has the pos-
sibility to maintain the product data with different services because the underlying
data is the same. Instead of adapting one service, the user always has the possibility
to choose the right service according to the current needs.

Ease of service integration

The most significant difference between the original and the proposed architecture
is the way in which the services interoperate from a user perspective. While both
solutions rely on the same web service interface, the reference architecture delegates
the task of integration to the service user, resulting in a very low EOI. The platform-
based approach aims at a pre-built integration. With the unified data model of the
platform, the integration of the services is embedded in the architecture. More pre-
cisely, we have a separation of data and functionality, through the federated infor-
mation system (Busse et al., 1999), which solves the integration problem and leads
to a high EOL

Ease of service operation

As mentioned in Section 5.1, there are two types of service operation related tasks,
namely, user support and service maintenance. The maintenance of the trade com-
pliance service, including bug fixing and release updates, is managed by the service
provider, in both the reference and the platform-based architecture. However, the
required customization of the e-commerce component must be maintained by the
service user, resulting in a lower EOO. The user support is also provided by the
trade compliance service in both cases. However, if the user relies on the platform-
based microservices for the PIM and online store, he will have to communicate
with each service provider individually, which is not a good practice, as IT service
management (ITSM) should aim for a single point of contact (Igbal et al., 2007).
In fact, we argue that the platform service provider is the suitable role to fulfill the
first level support, coordinating tickets between users and clients. Hence, the plat-
form model should be extended, and go beyond the provisioning of the technical
infrastructure, and should include ITSM-related tasks.

Ease of service exchange

In terms of service exchange, ending the service subscription to the trade compli-
ance service has no impact when using the platform-based solution. In the refer-
ence architecture, the ending of service subscription requires the re-engineering of
the customization in order to avoid unwanted errors during the checkout. As a
result, we obtain a higher EOE with the platform-based architecture.

96

Chapter 5

5.4 Conclusions

In this chapter, we proposed a platform architecture to improve the pluggability
of e-commerce services. We found that cloud services have an advantage over tra-
ditional application components with regard to pluggability, particularly during
service deployment and operation. Furthermore, we found that the platform ap-
proach brings additional benefits with regard to service pluggability, which are not
addressed by the prevailing cloud computing offerings. More precisely, service in-
tegration and exchange can be facilitated through the platform. The marketplace
feature may provide additional advantages during service provisioning for users
that require a structured overview of comparable services (Agrawal et al., 2013).

During prototype evaluation, we identified a couple of potential topics for fur-
ther research around the platform architecture and service implementation. Namely,
the impact on service performance and latency due to the additional node, and the
potential of client side caching to overcome delays. Furthermore, the integration
on the client side, i.e., the support of portlets and widgets through the platform,
is another potential feature of the platform which will be elaborated in Chapter 7.
Other non-technical extensions of the platform include the first level support of
the various services as well as bug tracking and change request management by the
platform provider.

97

Analytics as a Service:
A Pluggable Sales Forecasting Service

The expertise of data analytics specialists or data scientists has become a critical
success factor for organizations to understand and react to their environment. The
shortage of skilled professionals and the resulting high cost causes a deficit of such
experts in many domains (Davenport and Patil, 2012). As a consequence, notably
small and medium enterprises (SME) often miss the potential that lies in unex-
ploited information. In e-commerce, sales forecasting is one example of such crit-
ical analyses. Online retailers, that are able to compute reliable forecasts, based on
existing sales transactions, can reduce losses caused by out of stock or non-selling
items. Especially in short series product lifecycle fields such as fashion, it is crucial
to have accurate figures on upcoming sales even before production.

Cloud computing in general and SaaS$ in particular are popular solutions among
SMEs to share the costs for IT service development and operation (Danaiata and
Hurbean, 2010). Therefore, the task of data analytics for product sales forecasting
is a promising application for the new cloud service model.

As figured out in Chapter 2 and Chapter 3, in the current system landscape
of most online retailers, transactional data is scattered across various application
system components and has to be preprocessed before it may be used. Data pre-
processing consists of data cleaning, record selection, summarization, denormal-
ization, variable creation, and coding. It is considered as the most time-consuming
task in data analytics projects (Ordonez, 2011). However, with the prevailing archi-
tectures, collecting and cleansing data from various sources is a very system specific
task and therefore difficult to implement as a reusable cloud service.

In this chapter, we build upon the platform architecture that has been estab-
lished in the previous two chapters. After focusing on transactional services in the
previous chapters, the forecasting service presented in this chapter is a means of
demonstrating the utility of the platform for business analytics. To come up with
a pluggable solution for sales predictions, we have combined the work on platform
architectures with the joint research project on sales forecasting. Relying on state-
of-the-art sales forecasting techniques, we present a new pluggable sales forecasting
service as client of the platform architecture. The research goal was to design and
develop a sales forecasting cloud service to allow SMEs to make use of advances in
data analytics techniques.

99

Chapter 6

In Section 6.1 we present the current research in sales forecasting and present
a forecasting module which is the core component of the solution. In Section 6.2
we discuss the forecasting module with regard to the criteria of service pluggability
and present the architecture for its transformation into a pluggable service. In Sec-
tion 6.3 we present the prototype of a sales forecasting cloud service and evaluate
its pluggability.

6.1 New sales forecasting module

New product sales forecasts are valuable for managers in supporting important de-
cisions in operations planning (Cohen et al., 2000). For example, managers need to
know how sales will evolve in the future in order to determine purchasing quanti-
ties and inventory. The number of new product introductions has been increasing
over the past decade. As a consequence, managers need to perform new product
sales forecasting tasks more frequently than in the past.

Despite the importance and prevalence of new product forecasts, these fore-
casts are seldom accurate. Kahn (2002) found that new product forecast accuracy
was 58%, based on interviews with managers. Moreover, there are numerous ap-
proaches to forecasting new product sales, and these approaches may perform dif-
ferently under different circumstances. Hence, managers would benefit from a tool
that can incorporate multiple approaches to forecast new product sales and pick the
most accurate approach.

In what follows, we briefly discuss new product forecasting approaches and de-
scribe the development and implementation of the new product sales forecasting
module.

6.1.1 New product sales forecasting approaches

Goodwin et al. (2014) distinguish three categories of new product forecasting ap-
proaches: managerial judgement, judgement by potential customers and formal
models. Managerial judgement relies on managers providing estimates of sales
expected, typically using experience. Judgement by potential customers may in-
volve for example expert panels. Formal models make quantitative projections us-
ing mathematical formulations of relationships between relevant variables. Since
our goal is to provide a forecasting tool that is modular and can be used by multiple
clients, we focus on formal models.

There are numerous formal models that can be used to forecast new product
sales. These formal models come from both Statistics and Machine Learning areas.
Some models have roots in marketing or economic theory, while others are purely
data-driven. We will use a commonly used statistical model based on Marketing
theory (the Bass model), and one more data-driven model (latent-class regression).

Originally proposed by Bass (2004), the Bass model and its derivatives are widely
used in Marketing to characterize the lifecycle of a product. In order to forecast new

100

Chapter 6

product sales before launch, the parameters of the Bass curve for the new product
can be estimated using analogy by considering ‘similar’ products introduced in the
past.

We furthermore consider a latent-class Poisson regression model (Wedel et al.,
1993) in combination with concomitant variables (Griin and Leisch, 2008). The ad-
vantage of this model is that it estimates the two models simultaneously: one model
for clustering product lifecycles and one model for assigning cluster probabilities
to each instance based on concomitant variables.

6.1.2 Algorithms and implementation

We build our forecasting module using the R software (R Development Core Team,
2014). It has a few advantages, including the fact that it is free, open source, and
contains a large number of statistical packages that facilitate rapid model develop-
ment.

Before the sales forecasting module can be utilized, it is very important to supply
clean data to the module in the format that it requires. In our application (cf. 6.1.4),
data had to be aggregated, cleaned, and new features had to be derived. Some of
these procedures require domain-specific knowledge. It can therefore be expected
that data preprocessing may encompass different procedures for different clients. R
data management libraries, such as plyr (Wickham, 2011) or caret (Kuhn and John-
son, 2013), may greatly facilitate the development of client specific data handling
procedures.

There are three key functions in the sales forecasting module: 1) model tuning
2) best model selection and 3) forecasting. Model tuning refers to finding the best
model-specific setting. For example, in the case of latent-class regression, model
tuning implies selecting the number of clusters that minimizes cross-validation er-
ror. Selecting among models is done based on cross-validation errors - we select
the model with the least error. This model is used to perform the forecasting task.
For more details on model tuning and selection, we refer the reader to Kuhn and
Johnson (2013).

Both forecasting models described in Section 6.1.1 were implemented in R us-
ing the stats (R Development Core Team, 2014) and the flexmix (Griin and Leisch,
2008) packages.

6.1.3 Case description

We demonstrate the functionality and performance of our forecasting module by
using sales data of a large Dutch apparel retailer. In apparel retailing, assortments
are renewed at least two times per year, and new item introductions are common.
Our data includes monthly sales of 43 brands in the period between 05-02-2009
and 21-02-2013. A brand can have multiple collections, styles, colors and sizes.
We aggregate across these variables to arrive at brand sales data. We observe aver-
age prices, discounts, inventory levels and number of unique stock-keeping units

101

Chapter 6

within each brand. Each brand is characterized by its functionality (an internal
company classification variable) and average non-discounted price. Sales series of
four selected brands are shown in Figure 6.1

o
o
= — Brand 1
— = Brand 2
-~ Brand 3
-—- Brand 4

60 80

Number of Items Sold
40

20

0 5 10 15 20
Month Since Introduction

Figure 6.1: Sales series of selected brands

We can see that brands exhibit different lifecycle patterns and that sales peak at
different moments.

6.1.4 Capabilities and output of the new product forecasting module

Our objective is to forecast sales of new brands in a given category prior to their
launch. We split the data into a training set and a test set, where training set data
include observations until 01-01-2011, and the test set includes sales data on new
products that are launched after this date. The splitting procedure resulted in 22
brands in the training set and 21 brands in the test set. We tune the models and
select the best-performing model on the training set, and evaluate forecasting per-
formance on the test set. Therefore, we imitate a real-life scenario of a pre-launch
forecast.

Training set results

We used leave-one-out cross-validation to tune and evaluate the Bass model and
the latent class regression. For the Bass model, we first fit the Bass curve to each
brand separately and obtain the parameters. Next, to predict the sales curve of
a new brand, we use its attributes to compute the “distance” between the current
brand and all brands in the training set. We use n closest brands and computed the
average p, ¢ and m values. Next, based on these average values, we predict the sales
of the new brand. Hence, n, the number of closest brands to consider, is our tuning
parameter. For the latent-class regression, we used leave-one-out cross-validation
to fit the model with £ different clusters. Hence, k is the tuning parameter for the

102

Chapter 6

Table 6.1: Performance on test set

Months since MAPE Bass MAPE latent

introduction model class
regression

1 1119 158
2 1036 115
3 3886 156
4 2037 99

5 1005 78

6 2405 100
7 4751 261
8 900 157
9 2122 103
10 1695 131
11 360 153
12 449 217

latent-class regression model. The optimal configuration, giving the lowest mean
absolute percentage error (MAPE) turned outtoben = 2and k = 3.

We compare the MAPEs of both models with the best configurations using the
t-test. We reject the null hypothesis that the mean performance of the Bass model
is better than that of latent-class model with p-value of 0.01. Thus, we expect the
latent-class model to perform better on the test set.

Forecasting performance

We use both models to predict the sales of new products in the test set. Table 6.1
provides MAPEs, aggregated across brands, for each month since new brand in-
troduction. It is important to note that the results described in this section are
preliminary and should be interpreted with care.

We can see that the latent class regression performs better than the Bass model.
This is due to the fact that it incorporates decision variables (pricing, discounts, and
stock levels). The forecast errors are rather high for both models. This is possibly
due to the fact that we do not have data on many brand attributes, and it is difficult
to establish similarity between brands based on current attributes alone. Figure 6.2
provides several plots with actual and forecast sales for several brands.

6.2 Pluggable architecture

In Section 6.1 we have shown how past sales transactions can help retailers to pre-
dict future sales. However, to obtain a complete, ready to use sales forecasting cloud
service, architectural questions arise and will be discussed in the following. We rely

103

Chapter 6

Brand 1 Brand 7

800 1000 1200

Quantiy
800

400

200

3 8 10
Month since introduction

Brand 13

400

Quantity
3

200

100

10
Month since introduction Month since introduction

Figure 6.2: Forecast vs. actual sales for selected items

on the concept of pluggability, which will help us to understand the issues of the
forecasting module and later on, to evaluate the solution proposed in this chapter.
We demonstrate the use of the platform architecture which forms the base of the
implemented prototype in Section 6.3.

6.2.1 Pluggability

In Chapter 3 we introduced the six criteria for pluggability. In order to transform
the core forecasting module into a pluggable cloud service, all the criteria have to be
addressed. In the following, we are discussing the forecasting module with regard
to the criteria.

Ease of Provisioning (EOP) is the ability of the service to support the user in
selecting a suitable service and to anticipate the costs, efforts, and benefits of its
use. In case of the forecasting module, it is not possible to oversee the capabilities
of the module from a business user perspective. Thus, it is difficult to predict the
costs, associated with the transformation of the core module into a ready to use
business application.

Ease of Deployment (EOD) means to minimize the efforts for installing the ser-
vice, including the allocation of hardware and system software resources. If the
forecasting module would be distributed as is, the user would have to deploy suit-

104

Chapter 6

able hardware and software as well as to provide suitable application components
in order to support the end user.

Ease of Adaptation (EOA) has two different aspects. The adaptation through
configuration by a business user as well as the adaptation of the service by technical
experts. The forecasting service offers a maximum flexibility for software develop-
ers to reuse the forecasting functionality. However, it does not support a configu-
ration by a non-technical business user.

Ease of Integration (EOI) describes the capability of a service to interact with
other IT components. The data gathering and preprocessing tasks mentioned ear-
lier can be considered as aspects of integration. The forecasting module requires
the preprocessed data as input and does not support the user with gathering and
cleansing the data from other services.

Ease of Operation (EOQO) encompasses all continuous tasks after setting up the
service. Maintenance of services includes, for example, bug fixing, functional en-
hancements, security updates, and end user support. While bug fixes and enhance-
ments could be distributed in an automatic fashion, the maintenance of potential
additional application components and end user support needs to be carried out by
the consumer.

Ease of Exchange (EOE) of a service often relates to the dependencies with other
components. If services depend on each other, the process of exchange is getting
more complex. Services, such as the forecasting module, that only serve reporting
purposes can usually be removed without affecting the rest of the landscape.

It is apparent that the forecasting module does not cover all quality criteria of
a pluggable service. Thus, in the following section, we present an architecture for a
pluggable forecasting service with the module at its core.

6.2.2 Architecture

To support retailers with the adoption of innovative e-commerce services, we in-
troduced the pluggable service platform in the previous chapters. At its core, the
platform contains a canonical data model (CDM) to share e-commerce related in-
formation across services. Furthermore, it provides an application programming
interface (API) to give service providers access to the shared resources. It allows the
platform clients to implement e-commerce services in a federated fashion (Busse
etal., 1999). The CDM and the federated nature of the platform help to reduce the
efforts in data gathering and preprocessing required for the forecasting service.
The architecture of the forecasting service and the interaction with the platform
is shown in Figure 6.3. The forecasting service component has four application
functions. It interacts with the platform through the same API as transactional ser-
vices such as order management, online store, product information management.
It provides a wrapper around the core forecasting module, which transforms the
data from the platform into the suitable format, triggers the prediction module gen-
eration, and requests individual forecasts. The subscription mechanism uses the
standard authentication flow provided by the platform. It allows potential users to

105

Chapter 6

subscribe to the service by entering its platform credentials and granting the service
access to the shared resources. The web application allows the user to configure the
service and displays the output of the forecasts. Finally, the scheduler is available
for long running jobs. As the generation of the prediction models usually takes a
longer time, it has to be referred to the background. Users can schedule the model
generation periodically or on demand.

JE— Order Management

E-Commerce 0

................. Online Store
Company

................. Product Management
CATeLOG Platform&_]

Forecasting Service 2]
Product APl -O Component
Subscription
Order 2

.............. Forecasting

...................... Web Application Q Dashboard

Customer
Scheduler (N

Wrapper (N

\LRRuntime g]

Forecasting (N

Figure 6.3: Forecasting service architecture

6.3 A pluggable sales forecasting service

In order to evaluate the architecture, we created a prototype of the forecasting ser-
vice based on the platform. In the following we provide a description of the proto-
type and evaluate the pluggability of the implemented forecasting service.

6.3.1 Prototype

The prototype has been developed using standard web application technologies, an
SQL database for storing data within and outside the scope of the platform, as well
as various common libraries for web APIs, OAuth authentication flow between the
platform and the service, interfacing the R module, and job scheduling.

Figure 6.4 shows the web application user interface. The user has the option to
choose between various forecasts and to schedule the prediction model and forecast
generation jobs.

106

Chapter 6

ECAF SaaS - FashionMall Pricing References Features

Reporting ltem Forecasting

Stock Keeping Unit

ltem Forecasting
98490238492 - Women Shirt @

Category Forecasting
Brand Forecasting
Option 4

Jobs o]

Prediction Models

Pasmber of ams Sold

Forecasting <7

[

Figure 6.4: “E-Commerce analytics and forecasting (ECAF) SaaS” web application.

6.3.2 Evaluation

The goal of the architectural design and prototype was to transform the state-of-
the-art forecasting module into a pluggable cloud service. According to prevailing
design science research methodologies (Pefters et al., 2007), the design and demon-
stration of a design artifact should be evaluated by observing if the artifact that pro-
vides a solution to the design goals. In Figure 6.5 the outcome of the applied the
pluggability instrument is shown. We compare the pluggability of the implemented
service with the pluggability of the forecasting module in Section 6.2.1. The results
are discussed in the following.

EOP The forecasting module has an average EOP. The information on the module
functionality can be hosted publicly and assessed by the service user. There
is no possibility to get hands on a working solution unless a custom forecast-
ing application is getting implemented based on the module. By introducing
the service with the forecasting module at its core, we can achieve a higher
abstraction of service. While the forecasting module is providing function-
ality, the service is providing business value (Haesen et al., 2008). Thus, it
gets easier for the potential user to map the service features to the business
requirements, eventually improving the EOP. Furthermore, if the service is
offered as a platform-based artifact, it is possible to discover and compare the

107

EOD

EOA

Chapter 6

EOE EOD

EOO EOA

- =Forecasting module

—Forecasting service

EOI

Figure 6.5: Pluggability of forecasting module and forecasting service

services in a marketplace fashion. This could further improve the EOP of the
service over the plain module.

As the forecasting service is cloud-based, the user does not need to deploy
any software or hardware resulting in a high EOD. The service offers a sub-
scription by using the platform credentials. After subscribing to the service,
the user can go over to the adaptation phase. The forecasting module, on the
other hand, has to be deployed by the user on-premises or by using a cloud
platform. The requirements for the platform are relatively low compared to
other artifacts (with the R runtime as a minimum requirement) resulting in
a low to medium EOD.

Similar to the aspects of the provisioning phase, the service also supports the
user in terms of service adaptation. The configuration and setup can be done
within the web interface, resulting in a higher EOA. However, the possibil-
ities of service customization through developers are very limited, resulting
in less flexibility in adaptation. This is a common disadvantage of cloud ser-
vices compared to tailored or packaged on-premises solutions. Due to the
inflexibility of the configuration, the EOA for the forecasting service could
be negatively impacted. The forecasting module, on the other hand, has a
high flexibility in adaptation but requires the technical expertise, which also
limits the EOA.

108

Chapter 6

EOI The EOI depends on the work that is necessary to connect the service with
other components. In order to operate accurately, the forecasting module re-
quires a preprocessed data set that contains the right data fields and records.
In current e-commerce architectures, sales transactions and product infor-
mation are stored across different systems such as product information man-
agement, order management, or online shop frontend. Making the forecast-
ing module work in such heterogeneous environments is a major obstacle
and is the most time-consuming task in its adoption. As a consequence, the
EOI for the forecasting module is very low. By relying on the platform archi-
tecture, the provider of the forecasting service can pre-integrate the service
with the CDM. Thus, the service user does not have any additional tasks with
regard to service integration and the EOI could be improved significantly by
using the platform.

EOO By making the service cloud-based, the service operation is shifted from the
user to the service provider. The user requires practically no additional re-
sources to maintain service operation, resulting in a high EOO. The forecast-
ing module requires a custom solution on top of the core functionality which
leaves problem resolution, manual updates, and user support to the user.

EOE As mentioned previously the EOE has limited relevance for reporting ser-
vices. The EOE is slightly easier with the cloud solution if it is replaced with
a comparable service. The impact on the remaining IT landscape is relatively
low in both cases.

6.4 Conclusions

In this chapter, we have shown how a sales forecasting cloud service can be designed
and implemented based on a state-of-the-art forecasting module. Furthermore, we
verified the pluggability of the prototype with regard to the six criteria. It was shown
that the pluggability of the service exceeds the pluggability of the plain forecasting
module, and offers the user a solution that is easy to adopt. We can conclude that
the capability of the platform presented in the previous chapters go beyond trans-
actional services and provide the same benefits for business analytics. The solution
can be particularly interesting for SMEs that do not have the resources for a com-
parable on-premises solution. However, it is required that the platform is in place
and an ecosystem of services and service providers has been established.

109

Using Pluggable Services to Support
IT-Driven Collaboration in
Business Networks

Organizations are getting increasingly specialized in their contribution within value
chains. Tasks that were previously handled within a company are forwarded to ser-
vice providers and are nowadays often spread across a number of different parties,
forming a business service network (Tenenbaum and Khare, 2005). To achieve agile
business processes in this setting the network and its participants have to improve
their capability to quickly connect (and disconnect) with each other(van Heck and
Vervest, 2007). The time and cost required to engage with new business partners
are core aspects of the emerging concept of quick connect capability (QCC) (Kop-
pius and van de Laak, 2009; Merrifield et al., 2008). From an IT perspective, the
QCC depends on the capability of applications and of the IT architecture to reduce
the effort to adopt new services. The limitation of the current IT systems is often
considered as a reason for the limited agility in business networks (van Hillegers-
berg et al., 2012). More specifically, the application components involved in the
collaborative processes are not constructed with interoperability in mind.

Various authors propose a platform-based approach to facilitate inter-organi-
zational collaboration (van Heck and Vervest, 2007; van Hillegersberg et al., 2012).
The existing platforms facilitate the task of linking the endpoints of systems within
and across organizational boundaries. However, as outlined in Chapter 4, the cur-
rent practice still requires the implementation of dedicated integration artifacts that
contain the business logic and model transformations required for system interac-
tion. Such artifacts link two or more systems and get deployed onto one of the sys-
tems or the integration platform, which then acts as a mediator between systems.
The approach entails a number of limitations:

o A dedicated collaboration artifact needs to be built for each and every system
involved in the collaboration.

o One integration artifact usually focuses only on one specific business process
or use case.

 Changes in the business processes or integrated systems usually require re-
engineering of integration artifacts.

m

Chapter 7

o Design decisions and its required changes of the integrated system can lead
to conflicts between the business partners.

o The responsibility for the integration artifact and the resources required for
its operation can lead to conflicts between the business partners.

The overhead of building dedicated integration artifacts can lead to delays in es-
tablishing working business collaboration. Furthermore, the requirement for build-
ing integration artifacts can stress the relationship between partners. We can con-
clude that the practice of building integration artifacts on top of the existing infor-
mation systems leads to inflexible collaboration, despite the use of existing integra-
tion platforms.

To achieve a higher level of interoperability among the systems involved in a
business to business transaction, we propose the use of collaborative services based
on the platform we outlined in the previous chapters. The difference between an
integration artifact and a collaborative service is the higher level of pluggability. In
other words, the collaborative service can be consumed out of the box while an inte-
gration artifact requires tailoring to a specific combination of existing information
systems. The benefit is the ability of the network partners to engage into a business
collaboration in an ad-hoc manner. Thus, leading to an increased quick connect
capability within the network.

To the same extent as the electronic channel enables improved collaboration
with partners, it bears the risks of decreased customer loyalty. On the one hand,
new technologies allow faster engagement in relationships. On the other hand, cus-
tomers that previously stick to a single vendor can switch between suppliers with
more ease. As a consequence, in the e-commerce market, the acquisition of new
customers plays an increasingly important role (Srinivasan et al., 2002). A popular
instrument for customer acquisition relies on a collaboration among e-commerce
firms in which one firm refers customers during a sales transaction to a product
of its partner. The mechanism is known as cross-selling. Vendors that manage
to establish cross-selling partnerships with other firms can profit from their cus-
tomer base and get incentives for referring their own customers. To demonstrate
the collaborative capability of the platform architecture, we provide the example of
a platform-based collaborative cross-selling service that allows e-commerce firms
to establish such partnerships in an ad-hoc fashion. It allows not only a media-
tion between two online retailers but provides a ready-to-use solution for the en-
tire cross-selling lifecycle, including product matching, referral, and settlement of
commission fees.

In this chapter, we revisit the object definition phase of the design science re-
search cycle. We shift the focus from the previous goal to provide a platform that
supports pluggability of e-commerce services to a platform that supports the quick
connect capability of partners in the e-commerce network. Figure 7.1 shows the
five steps of the DSRM and maps them to the generic stages of DS proposed by Ver-
schuren and Hartog (2005). The structural specification of this work is represented

12

Chapter 7

by an architectural model and the implementation is represented by a prototype.
While the evaluation of these two artifacts is a vital step in the method, the gained
knowledge, as pointed out by Cross (2006), essentially resides in the two artifacts
which are the product of a design process. This differs from the paradigm in empir-
ical research where the collection of data and its formal evaluation is the key factor
to gain insights into certain phenomena.

In the next section, we are going to outline the state of the art in collaboration
architectures and set the goals for an architecture that addresses the mentioned lim-
itations. Afterward, we discuss the requirements for the architecture which will also
be used to evaluate the final prototype. The functional specifications and the imple-
mentation are the subjects of the subsequent two sections. In the final sections, we
evaluate the proposed artifacts and provide the conclusions and pointers to future
research.

Architectural

Model Prototype
Design Artefacts (Verschuren and Hartog) v v
Goals Reqmremeqts ang Fun_c_nonlal Implementation | | Evaluation
Assumptions Specifications
A A A

A A
DSRM Methodology (Peffers et al.)

Identify Problem and Motivate —» Define Objectives —» Design and Develop . Demonstrate —» Evaluate

Section: Section: Section: Section: Section:
Collaboration architectures Service based collaboration Platform architecture Prototype Evaluation

Figure 7.1: Research design

7.1 Collaboration architectures

To assess the prevailing inter-organizational IT architectures, we present a review
of the state of the art in collaboration architectures. Based on the identified lim-
itations imposed by the prevailing IT architectures in the literature new ways in
collaboration can be developed. According to Verschuren and Hartog (2005) the
problem identification and motivation in DS should result in the formulation of a
small set of goals, which we outline in the second part of this section.

Since the early days of electronic, inter-organizational collaboration and trad-
ing, the heterogeneity of information systems has been identified as a major chal-
lenge. Particularly the incompatible representation of the relevant information and
semantic differences in the systems of trading partners are major obstacles and re-
duce the expected benefits of IT-driven collaboration (Lincke and Schmid, 1998).
To overcome these issues various approaches based on the core concepts of media-
tion (Wiederhold, 1992) and federation (Busse et al., 1999) of information systems

13

Chapter 7

have been proposed. The common goal of these approaches lies in the introduction
of standards that help to cope with the issue of heterogeneity.

7.1.1 State of the art

The goal of mediation is to transform data from various sources and to make them
accessible in a unified structure. Handschuh et al. (1997) and Lincke and Schmid
(1998) for example, propose various models for mediating product catalogs to help
business partners to obtain a standardized view on product information and thus,
facilitate transactions. A discussion whether the mediation should be handled by
an intermediary or not has been raised by Sen and King (2003). The benefits of in-
termediaries according to Palmer and Johnston (1996) are additional security and
virtual marketplaces that help to initiate new partnerships. Mediation handled by
so called brokers is particularly interesting for markets with a large number of par-
ticipants as they can add trust and reduce the transaction costs (Bichler et al., 1998).

The implementation of mediating technologies such as electronic data inter-
change (EDI), requires a stable and long-term relationship between partners. Reimers
(2001) claims, that Extensible Markup Language (XML) technologies, due to their
self-descriptive nature, are more suitable for ad-hoc connection of services. Stan-
dardize message formats are available, such as EDIFACT or more recent XML-
based formats. However, such data standards are limited to the exchange of trans-
action information and not suitable to support an integrated architecture for agile
collaboration (Vujasinovic et al., 2010).

Web services have been propagated more recently to solve the problem of static
communication patterns between dedicated systems (Papazoglou, 2003). The use
of common internet protocols provides some advantages over the use of propri-
etary business-to-business (B2B) networks. However, the most promising mecha-
nisms of SOA, such as automatic service discovery and consumption through Uni-
versal Description, Discovery and Integration (UDDI), have not found their way
into practice to date. The use of web services by default does not change the in-
flexibility of the prevailing communication pattern: Integration artifacts have to
be built including mapping of data, serialization and deserialization of messages,
interface testing, monitoring, and maintenance. Another more sophisticated ap-
proach to reducing the required engineering efforts to connect web service end-
points are semantic web services. Their goal is to make machines understand the
ontology of the data and let them act in a more autonomous fashion. However, to
date, semantic web services do not find a wide adoption beyond academic studies
or prototypical implementation and have not yet solved the problems of agility in
inter-organizational collaboration.

A term that has also evolved more recently in the domain of enterprise appli-
cation integration is the canonical data model (CDM) (Hohpe and Woolf, 2003).
Originating from a messaging paradigm, it supports the idea of increased interop-
erability by applying unified data models across collaboration partners. However,
the use of CDMs has not been widely reflected in research to date. In particular,

114

Chapter 7

a validated CDM development method is lacking. Other domains provide con-
crete construction methods for unified data models such as for data analytics in the
research field of data warehousing (Prat et al., 2006) or ontologies in the field of se-
mantic systems (Aussenac-Gilles et al., 2000). However, no concrete methods exist
that describe how to build a unified data model for transactional systems.

To date, the concept of the unified data model can be found in many ERP sys-
tems, as they rely on a centralized database that is used across business domains.
Instead of providing distinct applications per business function, a monolithic solu-
tion is provided around one central database (Kumar and van Hillegersberg, 2000).
The modules provided for various business functions across an enterprise share
the same underlying database, thus avoiding the need for integration mechanisms
across autonomous applications. As the ERP systems are set to cover the value
chain within enterprises, they are not suitable to overcome the heterogeneity in
inter-organizational settings. ERP systems that are shared across organizational
boundaries usually use a multi-tenancy architecture which isolates the resources of
potential business partners (Bezemer et al., 2010).

7.1.2 Goals

We can summarize that modern inter-organizational collaboration within business
networks is mostly realized through dedicated intermediated or point-to-point in-
tegration artifacts. It allows organizations to exchange the required information for
a specific business transaction. The concept of mediating CDMs can only be found
in ERP systems within organizations and has been neglected in the recent debate
on inter-organizational interoperability.

In order to propose the requirements for a new design, Verschuren and Hartog
(2005) claim that a number of goals have to be formulated as a means to evaluate
the approach. In our case, we aim at an improvement of the QCC of organization
within a business network. Koppius and van de Laak (2009) state that the QCC
consists of the three factors quick connect, quick complexity, and quick disconnect.
A suitable solution to support a pluggable inter-organizational collaboration should
therefore contribute to the following goals:

G1: Individual services can be adopted quickly (quick connect).

G2: Complex inter-organizational functionality can be handled using appropriate
collaboration services (quick complexity).

G3: Disconnection of individual services or partners will not affect any remaining
services or collaborations (quick disconnect).

As mentioned earlier, in this chapter we want to reflect the business case of two
online retailers with a complementing assortment who want to establish a cross-
selling collaboration. An online shop selling garden tools, for example, can col-
laborate with an online florist to attract its customers. The florist is then getting a

115

Chapter 7

commission from the tool shop for a referred customer and vice versa. The trans-
action of the commissions, as well as the matching of products, are handled by an
intermediary, the cross-selling service provider.

From an IT perspective, the two retailers should be able to connect their prod-
uct offerings by the adoption of a collaborative cross-selling service. The service
should integrate the systems in an ad-hoc manner with the existing product cata-
log of the two business partners. Furthermore, changes of other services that both
partners use (for example the introduction of a new product information manage-
ment (PIM) system) should not affect the cross-selling activities handled by the
cross-selling service.

7.2 Service-oriented collaboration

While Peffers et al. (2007) propose to define the objectives of a solution that ratio-
nally infer from the goals, the more rigorous DS process of Verschuren and Hartog
(2005) propose a two-step approach. The first step aims at defining a set of require-
ments. The second step is to carry out a plan evaluation. In the following, we come
up with a set of requirements for an architecture that meets the goals described in
the previous section. Subsequently, we carry out a plan evaluation which provides
grounded reasoning for the contribution of each requirement to the different goals.

7.2.1 Requirements

In the previous sections, we motivated the use of a mediating CDM to achieve the
goal of an improved QCC. However, the goal of connecting various services using
a common information system has become unpopular as it bears the risk to create
a tight coupling between services, which in turn impedes the agility and evolution
of individual services (Evans, 2004). To address this issue, we aim at a separation
of the evolving components in the system from the constant components. A sepa-
ration of what evolves from what stays unchanged is usually addressed through the
introduction of a platform. By applying the platform design pattern, it should be
possible to introduce a common information system across services without affect-
ing their evolvability. In the following, we are elaborating on the requirements of a
platform embracing a mediating CDM.

The initial design task for the platform is to find a domain model which is suit-
able as a CDM. In the context of data warehousing, Prat et al. (2006) differentiate
between two approaches for unified data model construction: 1) the data model
results from combining the source systems and 2) the model is based on the re-
quirements for its use. Due to the unpredictability of the systems collaborating in
the network as well as their data needs, the first method seems less viable. In the
case of analytical systems, the goal of using the model is to meet the reporting needs
of the decision support system. The equivalent goal in a transactional system is to
facilitate the execution of processes that will be supported by the platform and the

116

Chapter 7

collaboration services. Thus, the completeness of the data model with regard to a
reference process model of the domain is crucial. However, the goal to support a
maximum number of use cases bears the risk to result in a system which becomes
too complex to adopt. The previously mentioned EDIFACT standard, for example,
can be considered as a system that is difficult to comply to due to its high complex-
ity. Therefore, we consider a good balance between completeness and simplicity as
an important factor for model construction.

A means to overcome the conflicting goals of completeness and simplicity is
extensibility. In a paper on configurability of cloud solutions Nitu (2009) notes
that ‘there will be some unique features in the database of each tenant’ and pro-
poses a data model which ‘meets the most common requirements of the tenants
with an option to add the tenant’s specific data requirements like adding addition
fields to a table’ This is in line with a general trend towards less rigorously struc-
tured data repositories. NoSQL databases, for example, make use of the flexible
structures instead of a static relational database scheme. The possibility to define
ad-hoc structures in addition to the given data model is a means to increase the
usability and acceptance of the CDM. Concretely, we propose to stick to the core
entities and a limited number of attributes in the definition of the data model and
leave the possibility to define additional attributes on each entity to the user of the
system.

We can summarize the requirements for the architecture as follows:

RI: Guaranteeing agility by separating stable from evolving components.
R2: Define a core domain model suitable for data federation among services.

R3: Find a balance of completeness and simplicity through extensibility in the
domain model.

R4: Allow intermediaries to offer collaborative services.
R5: Allow business partners to discover new services and business partners.

R6: Provide a means of granting intermediaries access to shared resources.

7.2.2 Plan evaluation

According to Verschuren and Hartog (2005) a plan evaluation should be carried
out in order to ensure that the requirements are valid sub-goals and contribute to
achieving the overall goal of the design. In the following, we describe how the de-
sign requirements contribute to each of the design goals. An overview of the map-
ping is shown in Figure 7.2.

The use of shared resources (R1, R2) has various benefits which contribute to
the goal of improved collaboration (G1, G2). First, the reduced efforts in mapping
data models of distributed data repositories. Furthermore, data quality increases
due to the limited redundancy of data across systems. Finally, a unified resource

17

Chapter 7

repository gives the opportunity for advanced business monitoring and exception
handling by defining business rules on the enterprise or network-wide data. Certain
events can then raise an exception which can be handled by a service or control
tower. Additionally, normal business events can be handled on a more global scale
and enable real-time processing instead of scheduled events. This is in line with the
current trends in social media where the pattern changes from request and reply
to real-time data streaming APIs (Mason, 2011). The separation of agile and stable
components (R1) is also required to limit the effects on the overall system when
replacing outdated components (G3).

A robust data model is required (R3) in order to guarantee a long-term use
for future services (G3) and to support a maximum number of business scenarios
(Saltor et al., 1991) such as inter-organizational collaboration services (G2). Ac-
cording to Palmer and Johnston (1996), these collaborations should be handled by
intermediaries (R4). The adoption of new services (G1) can be further improved by
the provisioning of discovery services (R5) as pointed out by Bichler et al. (1998).
Finally, the intermediary needs to get the possibility to gain access to the resources
of the business partners (R6) to allow for inter-organizational services with QCC
(G1, G2).

Requirements Goals

Figure 7.2: Mapping of the design requirements and design goals

7.3 Cross-selling architecture

In design science, the specification of the design artifact is based on the require-
ments and forms the basis for its implementation (Verschuren and Hartog, 2005).
In our case, the functional specification is the architecture that fulfills the require-
ments to achieve the goal of improved QCC among business partners. As our ar-
chitecture contains domain specific elements, and to make the architecture more

118

Chapter 7

tangible, we use the e-commerce cross-selling case within the architectural descrip-
tion. Again, the ArchiMate notation was used to present an architectural model (cf.
Appendix A).

7.3.1 Ecosystem

A couple of approaches and architectures exist that incorporate a similar mech-
anism of collaboration. Kleeberg et al. (2014) present various cloud integration
scenarios. Among the more visionary solutions, the authors mention ‘EAI-in-the-
cloud’” which ‘leads to a situation, where more enterprise resources are being ex-
posed to off-premises access or moved to the cloud. This situation opens novel
opportunities for supporting B2B-transactions. [...] A straightforward example is
cross-enterprise data sharing by means of a common cloud-based data store’ Wlo-
darczyk et al. (2009) propagate the idea of an industrial cloud which ‘should be
controlled by an organization in form of e.g. special interest group. However, no
architecture or solution is presented which goes beyond the high-level vision of
such a solution.

In Figure 7.3 the high-level ecosystem of the architecture contains the three
main roles, namely a platform provider, a (platform) client which implements and
offers platform-based business services, and finally a (service) user. An example of
a business service would be the cross-selling service we discussed earlier. In that
case, the two actors of tool shop and flower store represent the users. The platform
provider role can either be taken by an independent party or one of the service
providers. It is thinkable that one of the dominant marketplace service providers
such as Amazon or eBay offer such a platform and allow other service providers to
plug in their services. A strong dominance and trust in the e-commerce market may
attract more service providers and will probably have a higher chance to achieve a
critical mass of services and users (Evans and Schmalensee, 2010). In the model,
we can further see that, according to the mediated approach discussed earlier, the
platform contains the CDM containing, for example, product information. Follow-
ing the reference model for federated systems (Sheth and Larson, 1990; Busse et al.,
1999), the business service makes use of the platform’s CDM and only controls the
component data itself. In our case, the matchmaking data required for cross-selling
is an example for component data.

7.3.2 Services and components

Figure 7.4 shows the components and services of the cross-selling service architec-
ture. In this case, the platform has three users, the two online shops, and a cross-
selling service provider. The cross-selling service implements a platform client that
facilitates cross-selling transactions. For that purpose, both shops grant the client
access to their product resources. Furthermore, the cross-selling service is imple-
mented as a web application which is based on the platform and allows both shops
to match their own products with the products of their partners. A flower shop

119

Flower Store 2

I

o

Tool Shop R

I

User

Chapter 7

|

Business Service

|

Component Data

Platform

Platform Provider 0

Client &0

I

Cross Selling
Service

%

Figure 7.3: Architecture ecosystem

can, for example, match rose trees with pruners and mowers with grass seeds. If
the shop for garden tools integrates an UI widget provided by the cross-selling ser-
vice into the online shop, it will automatically show a reference to the grass seeds

when a customer picks the mower.

O<—— S

User
Flower Shop % —J

Tool Shop 2

Mapping

Platform g1

Resource Set <

Product

=

Cross-Selling
Service Provider

—

Client °

I R

Online Shop
Service Provider

Cross Selling 8]

Product Mappings

ubscription

A

i

Widget

A

Online Shop E%’

Store Frontend

Figure 7.4: Cross-selling components and services

120

Chapter 7

7.4 Product evaluation

The instantiation of the design allows to evaluating the feasibility and the effective-
ness of the structural specifications. The instantiation can be a realization (imma-
terial artifact) or a materialization, can meet all or only parts of the specifications,
or be a mere mock-up (Verschuren and Hartog, 2005). In our case, we aim at a
complete realization of the platform in order to be able to evaluate its ability to sup-
port the implementation of services that help to achieve QCC goal. In the previous
sections, we have outlined the requirements, structural specification, and the im-
plementation of a collaborative platform. During plan evaluation, we have already
discussed how the requirements of the platform match the overall goals related to
improved quick connect capability among business network partners. The DSRM
by Peffers et al. (2007) uses the instantiation of the artifact to observe to what ex-
tent it supports the objectives. Similarly, Verschuren and Hartog (2005) ask for a
product evaluation in order to assess the goal achievement. To evaluate the plat-
form’s capability to allow QCC among business partners, we used the cross-selling
business case and implemented the cross-selling service and verify if it allows the
retailers to enter into a dedicated business relationship without prior agreement. In
the remainder of this section, we first present the prototype of the platform-based
cross-selling service and then assess its effectiveness towards the three goals G1-G3.

The cross-selling service implements a platform client that facilitates cross-selling
transactions. For that purpose, both shops grant the client access to their product,
orders, and customer resources. The cross-selling service further offers a web appli-
cation which is based on the shared data platform and allows both shops to match
their own products with the products of their partners. The flower shop can, for
example, match rose trees with pruners and mowers with grass seeds (Figure 7.5).
Furthermore, an UI widget is provided by the cross-selling service which both users
can integrate into their online shop (Figure 7.6). The widget will automatically show
a reference to the grass seeds when a customer picks the mower. If the customer
selects the product from the widgets, a cross-selling transaction is automatically
created by the service.

The cross-selling service is used to evaluate the platform with regard to the three
goals G1-G3. If both online shops rely on the platform to handle their resources,
such as products and orders, the service provider for cross-selling does not need to
map the data models as they share the same database schema. The same applies for
the reduced efforts in engineering the integration. As both online shops not only
share the same schema but also the physical database, no further implementation
work is required to access the data of both organizations within the same functional
component (e.g. the product referral UI widget).

The prototype was constructed by reflecting four different services of an e-
commerce process. All the data model entities required for the cross-selling use
case, namely products, orders, and customers are reflected in the CDM. This indi-
cates, that the construction of a complete unified data model was successful with
reasonable effort. The simplicity of the data model was achieved by limiting the

121

Chapter 7

Logout Options
SETUP Mappings
Partners Product Description Mapping
Products Water vt
Water Lily puangf ly far your Tool Sho- LilyGro Fertilizer for Water Plants-Keeps yaur water lily nourist
LilyGro Fertilizer for Water Plants-Keeps your water iy nourished
ACCOUTING [Nutri Rose-Gives your roses valuable nutrients
Tulip 10 Blue Tulips (el at for all sort of grounds
Payables p your hands clean
Receivables Red Ped Rose Tool Sho- Nutri Rase-Gives your roses valuable nutrients -
Roses
Orchid Exotic Orchid Flower Tool Sho- Shavel-Great for all sort of grounds -
Narclssus Spring Narclssus Tool Sho- Gloves-Keep your hands clean -

Figure 7.5: Platform client service

= localhost:8080/cross-selling-widget?prodid=2 - Chromium —ax

o localhost:8080/cross- x

- # | [} localhost:8080/cross-s

1.99EUR

ly for your pond.

Figure 7.6: Platform client widget

attributes of the entities. Through the mechanism of extension, the cross-selling,
the client is able to extend the product entity with cross-selling commission rates.
The adoption of the service through the service users can be achieved with limited
efforts (G1) due to the canonical data. However, other than in earlier federated
architectures, the functionality of the cross-selling service can be remote from the
CDM and thus, offered for example as a cloud service. It is thus easier to adopt
then, for example, an additional module or plug-in for an existing system.

The benefit of business monitoring and exception handling relies on the unified

122

Chapter 7

data model and the possibility to analyze real-time data and deliver reports in case
of particular events. The cross-selling service can make use of this situation. For
example, the cross-selling service can give the retailers insights into currently top-
selling goods of their partners. During setup of matching products, the flower shop
can see which mower is selling best in the last hours and match a special offer of
grass seeds to that particular product. Such complex inter-organizational function-
ality (G2) can be built on the fly as all required data is available from the canonical
data component. Another potential benefit of the CDM is the increased data qual-
ity. In solutions that rely on data from multiple repositories, the replication and
synchronization of those sources are often a cause for poor data quality that grows
over time when single updates are not populated properly into all the systems. As
the cross-selling service relies on a single data source which also happens to be the
base for other operational systems of the two shops, no data replication is required.
Thus, there is no risk of decreasing data quality inside the cross-selling component.

Finally, the functionality of mission critical services and added value services,
such as the cross-selling service, are kept separated in the architecture. Thus, it is
possible to disconnect the cross-selling service without side effects on other func-
tionality (G3). The tight coupling between services, that is often linked to shared
databases, cannot be confirmed in this case as none of the services is owning the
core data model. The fact of having to rely on the given core data model might,
however, affect the flexibility of the service provider, due to the constraints implied
by the platform.

7.5 Conclusion

In this chapter, we investigated on state of the art in collaboration architectures and
pointed out the shortcomings in the current approaches. We argued that our plat-
form with its federated architecture embracing a CDM can significantly improve
the collaboration among systems and proposed an architecture for such a platform.
The development of a platform-based service has shown that the expected goals
can be achieved. In the era of web APIs and cloud computing, it is worth revisiting
the debate on federated information system as it might have even more favorable
outcomes. While this development is happening in other domains, such in con-
tent management systems through so-called content APIs hosted separately from
websites, we don’t see similar approaches in enterprise architectures.

According to Verschuren and Hartog (2005) we outline some of the ‘favorable
outcomes that have nothing to do with the design goal’ One benefit of the platform
architecture is the facilitation of a business event which reports data updates in real
time as shown in Chapter 5. The business event system can significantly change the
way how individual services communicate which each other. Usually, a service has
to be triggered in order to execute its behavior. If the cross-selling service wants to
calculate the commissions that shops owe each other it needs to reflect all the orders
since the previous billing. In the current architectures, the service will schedule the

123

Chapter 7

request of this information and recalculate the figures once or twice per day. The
platform architecture, however, can provide a business event system which allows
services to subscribe to specific events. Every time a new order is created through
cross-selling, an event will get triggered. The cross-selling service will reflect the
update and recalculate the commissions in real-time. In many other cases, this
mechanism can improve the accuracy of information regarding recent changes.

Like every IT solution the proposed architecture has some limitations and can
only solve the challenges of system development to a certain extent (Brooks, 1987).
Specifically, the service platform is putting a strong focus on system interoperabil-
ity, which comes at the cost of major constraints for service development. In current
systems, the ownership of the database schema is with the application component
which offers high flexibility when designing and implementing functionality. Giv-
ing up this ownership to the platform will lead to more restrictions when building
new services. Furthermore, the proposed approach requires the business network
partners’ strong commitment towards a particular platform although it might lead
to higher risks.

The focus of this work lies in the platform architecture and its benefits. Future
research has to focus on the services which have to be built with respect to the plat-
form in order to achieve the benefits. This includes technical considerations, such
as the support of application frameworks, the additional complexity of building dis-
tributed solutions, as well as side effects of the architecture, such as the impact on
application performance. Furthermore, organizational factors of platform adop-
tion have to be discussed. Besides the general skepticism of organizations to move
business resources to cloud platforms, the willingness to share resources within a
business network has to be investigated.

124

Chapter 8

Conclusions

In the previous chapters, we have motivated and carried out the design and im-
plementation of a platform for pluggable e-commerce services. To come up with a
scientifically sound design that meets the practical needs, we made use of the DSRM
proposed by (Pefters et al., 2007). Gregor and Jones (2007) provides a framework to
express the outcome of design science research in IS and comes up with eight com-
ponents a design contains. In the following section, we make use of this framework
to recapitulate and discuss the design presented in this work and follow up on the
research goals and research questions we established in Chapter 1. Subsequently,
in Section 8.2 we outline the limitations of this work and motivate further research
on the topic.

8.1 Anatomy of the proposed design

The framework of Gregor and Jones (2007) consists of eight components for ex-
pressing a design. In this section, we reflect our work with regard to these com-
ponents. The goal is not to reformulate the entire design and to establish a design
theory as Gregor (2006) propose. The purpose is rather to provide the reader with
a structured overview of the contribution of this work and to show that it contains
all the required components of a scientifically sound design. The constructs and
principles of form and function components have been summarized in one section
for narrative purposes. The principles of implementation component has been dis-
regarded in this work. The component refers to the design process as one of the two
pillars of a design theory proposed by Walls et al. (1992). However, we follow the
argumentation of Gregor (2006) that the instantiation of the design as a proof-of-
concept does not require the specification of a method. In this work, we followed
this thinking and did not come up with a method to implement the platform archi-
tecture.

Purpose and scope

The purpose of our design is to provide an architecture of a pluggable service plat-
form which facilitates the adoption of e-commerce functionality. The concrete re-
quirements for a facilitated adoption have been presented in Chapter 3 in the form
of a quality model.

125

Chapter 8

The motivation for presenting the design was to allow small and medium size
retailers to adopt novel functionality with limited technical knowledge (cf. RG3a
Chapter 1). The second motivation is to leverage the potential of pluggable service
for the use of collaboration among e-commerce partners in a quick-connect fashion
(cf. research goal RG3b Chapter 1).

Justificatory knowledge

To come up with a design that meets its purpose and scope we rely on a variety
of existing theories and approaches. Beside the instantiation of the design for the
purpose of its evaluation, justificatory knowledge provides the reasoning that the
design contributes towards the goals.

From theory in service-oriented computing, we know that, in general, IT func-
tionality is easier to consume if it is provided as a service (Papazoglou, 2003). Thus,
we followed a service-oriented approach in this work which relies on the principles
of service-oriented design (Erl, 2008).

Furthermore, we took a model driven approach to developing the design and
made use of the ArchiMate language (The Open Group, 2016). It allows to ex-
press, compare, and assess the consequences of design decisions. The practice of
enterprise architecture modeling enables the analysis of effects within and across
the three layers of the information system. A reference model (Fettke and Loos,
2007) was used as a base for the e-commerce architecture which is based on state-
of-the-art process models in the field (Becker and Schutte, 2007; Frank and Lange,
2004; Burt and Sparks, 2003). We applied the method of systematic literature study
(Kitchenham, 2004) to enrich the business layer with application and technology
layer artifacts that have been discussed in the academic literature.

The objective for the design is the pluggability model which has been con-
structed with reference to existing quality models (McCall et al., 1977; Boehm,
1988; Dromey, 1996) and quality model construction methods (Ortega et al., 2003).
The model borrows aspects of the agility notion as covered in (Lankhorst et al.,
2012). The platform model was chosen as it bears the potential to enhance the
agility of a system (Sriram et al., 2014; van Heck and Vervest, 2007).

Beside the theoretical underpinnings, we rely on working solutions from prac-
tice. The notion of pluggability refers to the popular concept of plug and play hard-
ware and plugins for software components. The platform has been enhanced in an
iterative fashion to reflect current trends in social media such as the OAuth protocol
(Hardt, 2012) which inspired the use of shared resource access and authorization
across services.

Constructs and principles of form and function

The description of constructs and principles of form and function are reflected in
the architectural models. The structural concepts of the models (services, com-
ponents, functions, etc.) can be considered as the constructs of the design. The

126

Chapter 8

principles of form and functions are primarily represented by the relationships be-
tween the structural concepts. We provide a short summary of the most important
structural concepts and relationships.

The core concepts of the design are the e-commerce services, the platform com-
ponent, as well as the three main actors (service provider, client, and user) and their
relationships which have been established in Chapter 1. In Chapter 2 we focused on
the user (retailer) and outlined its ten required business functions, the application
components, and technical artifacts in the reference model. Chapter 4 focuses on
the service provider and the common functionality of cloud service platforms. The
combination of both the retailer’s and the platform provider’s architecture form the
initial pluggable e-commerce service platform. It was extended iteratively in the
subsequent four chapters. The first extension is the need to manage the resource
access and authorization for services. Next, we added web-based business event
streams to the platform API and introduced the principle of user hooks for public
resource updates. In Chapter 5, we provided more details on the required domain
model and the metamodel that reflects the needs for access policies, scopes, and
data model extensions.

Testable propositions

In Chapter 1 several research goals and related research question have been estab-
lished. Various research artifacts and design decisions have been presented through-
out this work to address the issue. They can be reformulated as testable design
proposition (Gregor, 2006). In the following, we present the design proposition
and relate them to the initial research questions.

In order to respond to SQ1 we carried out a systematic literature review (cf.
Chapter 2). The findings indicate that the state of the art in e-commerce reference
models does not reflect architectural aspects. Thus, a novel architectural reference
model contributes to the decomposition of e-commerce systems into modular IT ser-
vices.

Regarding SQ2 we presented a quality model in Chapter 3. Based on the qual-
ity model a pluggability instrument has been outlined which has been evaluated
together with experts in the field. Based on our findings we confirm that the pre-
sented quality criteria of pluggability provide a sound framework for evaluating the
ease of adoption of a service.

In Chapter 4 we investigated current e-commerce platforms to respond to SQ3.
Findings indicate that existing e-commerce architectures do not reflect the needs for
pluggable services. As a consequence, existing platforms do not provide the best pos-
sible support for pluggable services.

Various iterations of the platform design have been outlined to respond to the
design research question SQ4. In Chapter 4 we proposed that a domain specific
service platform including a common e-commerce model allows to pre-integrate e-
commerce services. Thus, facilitating the provisioning of services with improved plug-
gability. Furthermore, we argued that the extendibility of the platform model im-

127

Chapter 8

proves the flexibility for service providers. Thus, allowing to improve the versatility of
pre-integrated, pluggable services and designed and tested the extensibility features
built into the metamodel. In Chapter 5 we showed how (web-based) streaming of
business events facilitates the decoupling of cloud services, operating on a common
data model. In addition, we introduced user hooks on public resource updates to
facilitate the interoperation among such decoupled services.

In response to SQ5 we presented the cross-selling service in Chapter 7 and
showed that collaborative features can be provided as pluggable collaboration services
in the same fashion as IT services, using the proposed platform architecture. The case
has furthermore shown that such pluggable collaboration service can help to improve
the quick connect capability between network partners.

Artifact mutability

Gregor (2006) proposes that design artifacts are often mutable by nature and un-
derlie a constant change to adapt to the needs. We argue that the design presented
in this work has three aspects of mutability which we outline in the following.

1. In Chapter 4 we presented a platform reference architecture with the ser-
vice framework, process framework, and the data management component
at its core. We have stated that the service framework and process framework
components are present in many available platform products today. Asa con-
sequence, we have focused on the domain specific data management across
services and came up with specific needs for such a component during the
design iterations. However, additional changes in the service framework and
the process framework might be beneficial to support the new data manage-
ment capabilities better. Furthermore, it is thinkable to evolve the platform
beyond the three mentioned components.

2. In this work, we proposed a variety of e-commerce services to demonstrate
and evaluate the application of the platform design. More precisely, the types
of services we implemented include transactional, analytical, and collabora-
tion services. It should be mentioned that the platform is not limited to the
specific services and types of services that have been presented. The platform
should be usable for other e-commerce services such as real world services
for logistics which integrate I'T wise with the platform.

3. As indicated in Chapter 1 many of the presented concepts, such as the data
management component and the contained functionality, can be applica-
ble for utterly different domains. A pluggable service platform for finance
or health care is thinkable, following the same architectural building blocks.
While some aspects of the platform architecture may require adjustment to
the individual requirements of such domains, the core concepts, such as shared
resource access and resource access authorization, can be reused.

128

Chapter 8

Expository instantiation

The design artifact has been implemented in order to demonstrate its application
which we call the design product. We have seen various alterations and additions
to the design throughout the various design cycles presented in this work. The
platform prototype has furthermore been used as a means to demonstrate the work
to the research consortium partners. Precisely, the implementation of the design
product contains the following building blocks:

o The state-of-the-art platform part is based on the mulesoft cloud hub (https://
www.mulesoft.com/). It uses the service framework and process framework
features. It was implemented in order to evaluate the pluggability of a service-
oriented return authorization process (Chapter 4).

o The collaborative data component is implemented on top of a PaaS offer-
ing from heroku (https://www.heroku.com/). At its core, it contains a post-
gres SQL database, a python-based application layer, and a git-based de-
ployment component. The data model and metamodel have been imple-
mented in python using the SQLAlchemy object-relational mapping frame-
work (http://www.sqlalchemy.org/).

o The platform web interfaces are based the flask web framework using flask-
restless for the API part (http://flask.pocoo.org/). The administration inter-
face of the platform has been built on Jinja2 and Angular]S for server and
client web templating and ink (http://ink.sapo.pt) for the layout.

« The resource authorization is based on the OAuth protocol and has been built
using the flask-oauthlib library. A comprehensive list of all used libraries for
the platform can be found in Appendix D.1.

In addition to the platform prototype, it was necessary to design and implement
various of business scenarios for supported e-commerce services. The services have
been implemented to demonstrate the consequences for service providers and ser-
vice users when using the platform and to assess the pluggability of the services.
Some of the services have been implemented using the same technology stack as
the platform itself. Other services such as the tax compliance service have been
implemented using a Java stack to make use of the extensible features of the spring
framework with regard to building REST clients. Another benefit of the service
implementation was the ability to come up with working solutions in the course of
collaboration with the consortium members of the research project.

8.2 Limitations and future research

Despite the insights and findings in this work, there are a few limitations that we
were not able to overcome. In the following, we provide an overview of the short-
comings and point out opportunities for future research.

129

https://www.mulesoft.com/
https://www.mulesoft.com/
https://www.heroku.com/
http://www.sqlalchemy.org/
http://flask.pocoo.org/
http://ink.sapo.pt

Chapter 8

In the beginning of the research project, there was no plan to elaborate on the
service adoption lifecycle and the pluggability model. However, as we did not en-
counter existing models and instruments that reflect the principles of pluggability,
we had to come up with a dedicated model that helps us to formulate the objectives
for the design and to evaluate the architecture. The development of a novel qual-
ity model is a considerable undertaking. Our goal was to progress this task to the
extent that it allows us to compare the pluggability with and without the platform.
Thus, the current state of the quality model is merely a byproduct and additional
work could be carried out to make it stronger. Especially the lifecycle model would
tolerate more grounding in the academic literature and could be subject to a sys-
tematic study of related lifecycle models.

The architectural model focuses on the features of the platform which are most
relevant for achieving the goal of improved pluggability. Other components are
already available in existing platforms and have not been discussed in detail. Ac-
cordingly, the implementation of the platform prototype is focusing on the parts
that are not present in existing platforms. Furthermore, during prototyping, we
focused on the aspects that are critical to proving the feasibility of the novel con-
cepts. Completing the prototype to a working product would be necessary to test
the design in practice. However, the completion of the prototype would consume
considerable resources in terms of software engineering and is outside the scope of
the study.

As a consequence, the prototype has not been tested in a real-world scenario.
The application of the action design science paradigm by Sein et al. (2011) would
be a beneficial addition to what has been achieved so far. The testing of the de-
sign in a real-world setting could reveal additional shortcomings of the design. Be-
sides the completion of the entire platform, it requires a retailer that commits to
the platform as well as a sufficient number of provided services. The presented de-
sign goes beyond the implementation of e-commerce functionality but aims for a
higher pluggability of the services, which requires a strong commitment to the plat-
form architecture from the involved actors. Furthermore, the current design is not
open enough to cope with legacy applications and is therefore not suitable for test-
ing single platform-based services. A concept for a migration path from existing
e-commerce landscapes to the platform would be beneficial. The proposition of
services that help to integrate existing e-commerce components with the platform
is thinkable.

The services that have been presented in this work consist of a small set of ex-
amples that have been compiled in collaboration with the consortium members
of the research project. It covers services that are critical to overcoming issues in
cross-border retailing and omnichannel retailing and are lacking in the current e-
commerce platforms. They do not cover the most basic services which are part of
the reference architecture presented in Chapter 2. However, the goal of the plat-
form is not only to provide innovative services but to allow small and medium size
retailers profit from a holistic set of services that enable them to operate their entire
business. It should allow them to keep pace with offering state-of-the-art services

130

Chapter 8

that major retailers can only stem with extensive IT budgets. As a consequence, ba-
sic transactional services have to become part of the platform-based service offering
as well.

To stay competitive in the e-commerce market, retailers have to bind customers
across different channels, predict their shopping habits, and adopt services to the
daily life of the consumer. Creative solutions and new services are also required
for order fulfillment, to meet the evolving expectation of buyers. Appropriate e-
commerce architectures constantly evolve and adopt new services to collaborate
with partners and to handle the diverse needs in the increasingly global market-
places. If the modular approach presented in this work will not be adopted in some
way only large players with extensive budgets to deliver innovative end-to-end solu-
tion will be able to survive. Amazon, for example, recently came up with a bunch of
new services to make their offering stronger. Their own delivery fleet allows strong
integration and better order fulfillment performance. Their own offline stores ex-
tend their portfolio to get a stronger presence in the market. Their own hardware
solutions like e-book readers and order buttons on household items enable ubiqui-
tous commerce that transforms day-to-day shopping routines. Other retailers can
only respond to such offerings in a collaborative effort, relying on shared services.
Despite the fundamental paradigm shift of the e-commerce architecture presented
in this work and the initial effort and commitment it takes to migrate to the new
model, we argue that there are no future-proof alternatives at the moment.

131

Appendix A

ArchiMate Metamodel

The ArchMate language is used throughout the work in order to visualize differ-
ent architectural aspects of the platform design. The purpose of the ArchiMate
language is to provide an instrument for analyzing and describing enterprise archi-
tectures. Figure A.1 shows a simplified version of the ArchiMate core metamodel.
The language distinguishes between three layers: the business layer, the application
layer, and the technology layer. Within each layer, ArchiMate considers structural,
behavioral, and informational aspects. It also identifies relationships between and
within the layers. Each layer is a means to provide services to the next higher level,
while the highest level provides business services to the customer. For a full de-

scription of the language, we refer to The Open Group (2016).

Passive Structure

Behaviour

Active Structure

Business actor

!

Location

. . 0 Business
§ Representation Business service <+—e interface
£ .
2 : A O —
] \V i
B i .
usiness ;
Business object <7 process gy EEESEE
A 1 | 0
e O
N . Application
Application service +—e interface
=
i)
a TA ‘
) i
H H
2 ; L. Application Application
Data object < function “T® component
A 1 A%
i it -
Infrastrgcture Inffastructure
- service interface
j=2}
o
g AN ‘
[T
£ H
3
= . Infrastructure
Artifact < function Node

Figure A.1: Simplified ArchiMate metamodel

133

Appendix B

E-Commerce Business Model

Throughout this book, we discuss the requirements of innovative and easy to adopt
e-commerce services. E-commerce is a broad term that refers to commercial trans-
actions, supported by information technology. We apply the term e-commerce in a
narrower sense, from an online retail perspective. To provide a better understand-
ing of an e-commerce company from that perspective, a business model canvas is
presented in Figure B.1. It is based on the work from Osterwalder and Pigneur
(2010) which provides a framework for describing business models.

Key Partners Key Activities Value Propositi CL Relationshi C
Manufacturer and Sales and marketing Price Self service Niche market
suppliers Supply chain Variety Helpdesk

Warehouse and logistic | management

. X Convenience
service providers

) Inventory management Speed
Internet service

providers

Information system

Personalized Channels
management

services or goods

Platform service Brick and mortar stores

providers

Online stores in web and

Key Resources mobile application

Software service

providers Supply chain network

Cost Structure Revenue Streams
Cost of goods Sales of goods
Payroll

Rent and utilities
Logistics and warehousing

Service subscription

Adverstiment

Figure B.1: Business model canvas for online retail

134

Appendix C

Pluggability Instrument

The quality characteristic of pluggability, conceptualized in Chapter 3, consists of
six quality criteria. For each of these theoretical constructs, an indicator that allows
to assess the criteria is defined. In Table C.1 the attributes that provide an anchor
for the different values (low to high) of each indicator are shown. Face validity of
the instrument was realized with a group of experts in the field of service platforms,

consisting of both scholars and practitioners.

Table C.1: Attributes of the indicators for pluggability

Low

Medium

High

EOP

EOD

EOA

EOI

EOO

EOE

Detailed information on
the service is only available
through individual contact
with the service provider.

Technical expertise such as
development or scripting is
needed to make the service
operable.

The service can hardly be
adapted for use cases that
have not been specified by
the service provider.

The integration of the ser-
vice into the landscape re-
quires coding or scripting.

Monitoring, maintenance,
and customer service have
to be carried out by the ser-
vice user.

Exchanging the service
impacts other services and
requires development or
scripting.

Documentation and infor-
mation about the service
can be requested and is
made available according to
a transparent process.

The deployment does not
require any technical exper-
tise but complex setup and
configuration.

The service can be adapted
to any use case scenario but
needs technical expertise to
do so.

The integration of the
service into the landscape
requires configuration or
setup.

Monitoring, maintenance,
and customer service are
partly handled by the ser-
vice provider.

Exchanging the service im-
pacts other services but can
be handled through recon-
figuration or setup.

All required information
including documentation,
pricing and demos are
openly available.

The service can be used
straight away through sub-
scription.

The service can be adapted
to any possible use case
through configuration or
setup.

The service is automatically
integrated into the land-
scape and requires no fur-
ther action after deploy-
ment.

Monitoring. maintenance,
and customer service are
entirely handled by the ser-
vice provider.

Exchanging the service does
not impact any other ser-
vice.

135

Appendix D

Platform Prototype

D.1 Model and interface implementation

The platform prototype has been implemented using the Python programming lan-
guage and a variety of open source frameworks and libraries. The python require-
ments file in Listing D.1 contains the python packages that are retrieved during the
deployment using pip (https://pip.pypa.io).

Listing D.2 contains an example for an entity of the platform model (product)
and three entities of the metamodel (user, client, resource). The model layer has
been implemented using the SQLAlchemy ORM framework. User is the basic en-
tity for any actor, i.e. a client actor is also a user. The client class has additional
OAuth related attributes such as the redirect URIs or accessible resources (realms).
Resource is the basic metamodel entity for any entity of the model, e.g. for every
product, a resource of the type product will be instantiated.

Listing D.1: Platform prototype libraries

Flask==0.10.1
Flask-Admin==1.0.8
Flask-Login==0.2.11
Flask-OAuthlib==0.9.2
Flask-Restless==0.17.0
Flask-SQLAlchemy==1.0
Jinja2==2.8
MarkupSafe==0.23
SQLAlchemy==0.9.6
WTForms==2.0.1
Werkzeug==0.11.10
argparse==1.2.1
gunicorn==19.0.0
itsdangerous==0.24
mimerender==0.5.4
oauthlib==1.1.2
psycopg2==2.5.3
python-dateutil==2.2
python-mimeparse==0.1.4
requests==2.10.0
requests-oauthlib==0.6.1
six==1.7.3
wsgiref==0.1.2

136

https://pip.pypa.io

Appendix D

Model extensions and access privileges are handled on resource level.

Listing D.2: User, client, and resource entities (SQLAlechmy)

class User(db.Model):
user _id = db.Column(db.Integer, primary key=True)
user _name = db.Column(db.String(40), unique=True)
password = db.Column(db.String(20))

class Client(db.Model):
user_id = db.Column(db.Integer, db.ForeignKey('user.user id'))
user = db.relationship('User")
application name = db.Column(db.String(40))
description_short = db.Column(db.String(100))
description long = db.Column(db.String(500))
url = db.Column(db.String(40))
client id = db.Column(db.String(40), primary key=True)
client secret = db.Column(db.String(55), unique=True, index=True

’

nullable=False)

public or confidential

is confidential = db.Column(db.Boolean)
_redirect uris = db.Column(db.Text)
_realms = db.Column(db.Text)

@property
def client type(self):
if self.is confidential:
return 'confidential’
return 'public'

@property
def redirect uris(self):
if self. redirect uris:
return self. redirect uris.split()
return []

@property
def default redirect uri(self):
return self.redirect uris[0]

@property
def default scopes(self):
if self._realms:
return self. realms.split()
return []

def init (self, user, application name, description_short,
_redirect uris, realms, client id=None, client secret=None
):
self.user = user
self.application name = application name
if client id:
self.client id = client id

137

Appendix D

else:
self.client id = generate random token(20)

if client secret:
self.client_secret = client_secret
else:
self.client_secret = _generate_random_token(20)
self.description short = description short
self. redirect uris = redirect uris
self. realms = realms

class Resource(db.Model):

resource_id = db.Column(db.Integer, primary key=True)

resource type id = db.Column(db.Integer, db.ForeignKey ("
resource type.resource type id'))

resource type = db.relationship("ResourceType")

owner _user_id = db.Column(db.Integer, db.ForeignKey('user.
user _id'))

owner = db.relationship('User"')

def _ init (self, resource type name, owner):

rt = db.session.query(ResourceType).filter by(
resource type name=resource type name).first()

if rt is not None:
self.resource type

else:
self.resource type = ResourceType(resource type name)

self.owner = owner

rt

class Product(db.Model):
product id = db.Column(db.Integer, primary key=True)
product nr = db.Column(db.String)
product category id = db.Column(db.Integer, db.ForeignKey('
product category.product category id'))
product category = db.relationship('ProductCategory')
product name = db.Column(db.Unicode)
description = db.Column(db.Unicode)
dimension length = db.Column(db.Float)
dimension width = db.Column(db.Float)
dimension height = db.Column(db.Float)
weight = db.Column(db.Float)
size = db.Column(db.Float)
color = db.Column(db.String)

brand id = db.Column(db.Integer, db.ForeignKey('brand.brand id"')
)

brand = db.relationship('Brand')

resource_id = db.Column(db.Integer, db.ForeignKey('resource.
resource _id'))

resource = db.relationship('Resource')

Platform access is mostly occurring by clients through the API. Listing D.3
shows the use of Flask-Restless to implement the product request API. Preproces-
sors are realized that verify access and results based on the configured permissions.

138

Appendix D

Listing D.3: Authorization and filtering of resources for product API using Flask-

Restless and OAuthlib

def filter products(search params=None, **kw):

token verification

valid, req = oauth.verify request(['product'])

if not valid:

raise ProcessingException(description='Unauthorized', code

=401)
resources filter

uid = req.access token.user.user id

if search_params is None:
return

if 'filters' not in search_params:
search params['filters'] = []
filt = dict(name='resource owner user id', op='has', val=uid)

search params['filters'].append(filt)

prodcut blueprint = manager.create api(Product,
methods=["'GET'],
preprocessors=dict(GET MANY=[

manager.create api(Price, methods=['GET'])

_filter products]))

D.2 Administration interface

CATeLOG Platform My Resources Service Subscriptions Hosted Client Applications

Topics Endpoints

Endpoints

Authentication

Documentation Logout FashionMall

Endpoints are available per reosource. The general syntax for resources is GET
/resource_name for collections and GET /resource_name/resource_id for

individual resources. Results are generally rendered as json. For high volume data in other

Scopes

Data Streaming Endpoint

/user

/authorize

/access_token

/product
Hproduct_id)

formats refer to the Data Streaming section.

Description

Retreive the user related to
the access token. Use this
endpoint after
authorization to handle the
login to your service and
obtain user information

Endpoint to initiate the
OAuth handshake.
Requires you to implement
a callback endpiont and to
provide your client key and
secret.

Subsequent endpoint in
the OAuth handshake to
pass the access token. It
also provides a refiesh
token. Use the same
endpoint to obtain a new
token upon expiry.

Retreives the products of
the user assigned to the
access token. Provide any
of the p to filter

Properties

product_id, product_nr,
product_category_id,
product_category, product_name,
description, dimension_length,

the results.

_width, _height,
weight, size, color, brand_id, brand,
resource_id, resource

Figure D.1: Platform API documentation

139

Appendix D

TeLOG Platform

Service Subscriptions

These are the services you subscribed to. You can see the service client and the resource access that was
granted. Click on Manage to see the details of a subscription, change the subscription, or unsubscribe.

Name Description Client Scopes

CATeLOG Store A pluggable store for short time to market ventures. Cross orders product -

Available Services

This is a list of services that might be interesting for you. Click on Details to get more information about the
service, service provider, pricing and more.

Name Description Client Scopes
Awesome A shop frontend to get you into the E-Commerce e
N . Customers, Def
Shop business. Services Inc.
Products
B . . . Orders,
i Still using Awesome Shop? Time fora Next Generation
Bettershop changel Shops Inc Customers, D
g€ P) Products
Bookkeeping AoEsEii ey blegy l.laCk e Bookkeepers Inc. Orders, Products
cash flow and to be compliant.
?
Malkelplace No one comes to your shop? Sellyour ~ Market Checkers Orders, Products
invader stuff Amazon and eBay! Inc.
X Border Want to sell abroad? Not sure about incvision Orders, Def
Compliance regulations? We are! P Customers =
Uber-PIM Most advanced PIM service E—Commel ce Products
Service Hackers
. Adidas sport shoe database. Allows
RS S you to select and import from the Adidas AG Products -
DB . N
adidas shoe collection.
Cross-Selling Colaborate with palltnels land make XBuis. Inc. Products -
your store take off in no time.

Probably the most pluggable
ECAF SaaS e-commerce analytics and forecasting VU Amsterdam Products, Orders
service out there.

Figure D.2: Platform service subscription

CATeLOG Platform

Hosted Services
Here you can find the services you are offering as client. Click on Manage to see
details for each service, to get information about your customers and change the

setup of the service.

Service Name Scopes Subscriptions

GoB Annual Statements (German Orders, 3 -
Legislation) Products

Figure D.3: Platform hosted service administration

140

CATeLOG Platform

Appendix D

Resources
Below you find an overview about the different resource type. How
many resources for of each type are available and how many clients
have access to the resources of that type. Click on details to get more
information on each resource type.

Resource Amount Clients

Customer 1 0

Product 3 1

ProductCategory 3 0

Brand 0 0

Store 0 0

Order 0 0

Order Line 0 0

Invoice 0 0

Return 0 0

CATeLOG Platform

Resource Overview
Name Customer
Instances 1 (Show)
Attributes 10 (6 Default / 4
Custom)
Default Attributes
Name Description Data Type
Product Name Name of the product String
Description Detailed product description String
Dimension Length Product length in cm Float
Dimension Width Product width in cm Float
Dimension Height Product height in cm Float
Weight Product weight in gramms Float
Custom Attributes
" - Data
Client Name Description Type Scope
CIO.Ssr CS_Enabled Enabled for cros selling Boolean Private
selling
Cross- CS_Comission Comission for cross- Integer Private
selling selling in percent
Shop . .
SF_Brand Product Brand String Public
Frontend
Shop ; y P .
SF_AvailableDate First date of availability Date Public
Frontend

Figure D.5: Platform customer resource administration

141

Appendix D

D.3 Platform client

The e-commerce services (platform clients) can be implemented on any technol-
ogy that support access to the web API. Listing D.4 shows the product model of a
client that is instantiated during the unmarshalling of the API message. It is a plain
old Java object (POJO) as part of a Spring application (https://spring.io/). The Gra-
dle configuration for the client application with the libraries used is presented in
Listing D.5. A simple example of accessing the platform API using Spring’s Rest-
Template is shown in Listing D.6.

Listing D.4: Product model of a platform client using Spring POJO

package app.model;

public class Product {
private String product id;
private String product category id;
private ProductCategory product category;
private String product name;
private String description;
private String dimension_length;
private String dimension width;
private String dimension height;
private String weight;
private String resource id;
private Resource resource;
private Price[] prices;
/]

Listing D.5: Build file for platform client using Gradle

buildscript {
repositories {
mavenCentral()
}

dependencies {
classpath("org.springframework.boot:spring-boot-gradle-
plugin:1.2.3.RELEASE")

}

apply plugin: 'java'
apply plugin: 'idea'
apply plugin: 'spring-boot'

jar {
baseName = 'gs-serving-web-content'
version = '0.1.0'

}

repositories {

142

https://spring.io/

Appendix D

mavenCentral()

}
sourceCompatibility = 1.7
targetCompatibility = 1.7

dependencies {

}

compile("org.springframework.boot:spring-boot-starter-thymeleaf"

)

compile("org.springframework.boot:spring-boot-starter")
compile
compile
compile("org.springframework.boot:spring-boot-starter-security")
compile('org.springframework.security.oauth:spring-security-

"com.fasterxml.jackson.core:jackson-databind")
"org.springframework.boot:spring-boot-devtools")

(
(
(
(

oauth2')

compile("org.springframework:spring-jdbc")
compile("org.springframework:spring-web")
compile("com.h2database:h2")
testCompile("junit:junit")

task wrapper(type: Wrapper) {

}

gradleVersion = '2.3'

Listing D.6: Example product lookup of platform client using RestTemplate

@RequestMapping(value="/cross-selling-widget")
public String crossSellingWidget(@RequestParam(value="prodId",

required=false)String prodId,
Model model){

Map<String, String> vars = new HashMap<String, String>();
vars.put("prodId", crossProdId);

HttpHeaders httpHeaders = new HttpHeaders();
httpHeaders.add("Authorization", "Bearer," + token);

RestTemplate restTemplate = new RestTemplate();

HttpEntity<String> request = new HttpEntity<String>(
httpHeaders);

ResponseEntity<Product> response = restTemplate.exchange(uri
, HttpMethod.GET, request, Product.class, vars) ;

Product product = response.getBody();
model.addAttribute("product", product);

return "cross selling widget";

143

Appendix E

Trade Compliance Service

The provided tax compliance service contains two operations for creating new prod-
ucts and for requesting taxes and customs in real time. Listing E.1 shows the seg-
ment of the Web Service’s WSDL. An example for a tax and customs request is
shown in Listing E.2 and the corresponding response is shown in Listing E.3.

Listing E.1: Tax compliance web service operations

<portType name="merchant wsdlPortType">
<operation name="getRequest">
<documentation>
Returns translated shoppingcart or Fault
</documentation>
<input message="tns:getRequestRequest"/>
<output message="tns:getRequestResponse"/>
</operation>
<operation name="addProduct">
<documentation>Returns fault or true</documentation>
<input message="tns:addProductRequest"/>
<output message="tns:addProductResponse"/>
</operation>
</portType>

Listing E.2: Tax compliance web service request

<soapenv:Body>
<mer:getRequest soapenv:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">
<merchantid xsi:type="xsd:string">CTM01l</merchantid>
<invoicelines xsi:type="urn:InvoicelLines"
soapenc:arrayType="urn:InvoicelLine[]"
xmlns:urn="urn:merchant_wdsl">
<invoiceline>
<line_currency>EUR</line_currency>
<line product>2</1line product>
<line category>02</line category>
<amount>59.5</amount>
</invoiceline>
<invoiceline>
<line currency>EUR</line currency>
<line product>3</line product>
<line category>02</line_category>
<amount>1439.9</amount>
</invoiceline>

144

Appendix E

</invoicelines>

<shipping>5.00</shipping>

<shipping_ currency>EUR</shipping_currency>

<ship to>us</ship to>

<shippingaddress xsi:type="urn:ShippingAddress"

xmlns:urn="urn:merchant wdsl">

<name>John Smith</name>
<street>Random Street 15</street>
<city>San Francisco</city>
<postcode>12345</postcode>

</shippingaddress>

</mer:getRequest>

</soapenv:Body>

Listing E.3: Tax compliance web service response

<SOAP-ENV:Body>
<nsl:getRequestResponse xmlns:nsl="merchant wsdl">

<return>
<total amount payable xsi:type="xsd:string">
1820.3300

</total amount payable>
<payable currency xsi:type="xsd:string">EUR</payable currency>
<lines xsi:type="SOAP-ENC:Array"
SOAP-ENC:arrayType="unnamed struct use soapval[2]">
<item>
<line total xsi:type="xsd:float">72</line total>
<line base xsi:type="xsd:string">59.50</line base>
<line vat xsi:type="xsd:string">12.50</line vat>
<line currency xsi:type="xsd:string">EUR</line currency>
<line product xsi:type="xsd:string">2</1line product>
<vat tarif xsi:type="xsd:string">21%</vat tarif>
</item>
<item>
<line_total xsi:type="xsd:float">1742.28</line_total>
<line base xsi:type="xsd:string">1439.90</line base>
<line vat xsi:type="xsd:string">302.38</line vat>
<line currency xsi:type="xsd:string">EUR</line currency>
<line product xsi:type="xsd:string">3</line product>
<vat tarif xsi:type="xsd:string">21%</vat tarif>
</item>
</lines>
<exchange rate xsi:type="xsd:int">1l</exchange rate>
<total base_amount xsi:type="xsd:float">1499.4</
total base amount>
<total vat amount xsi:type="xsd:float">314.88</
total vat amount>
<shipping xsi:type="xsd:float">6.05</shipping>
<total customs_amount xsi:type="xsd:float">
36.29
</total customs amount>
</return>
</nsl:getRequestResponse>
</SOAP-ENV:Body>

145

Bibliography

Accenture (2011). European Cross-border E-commerce: The Challenge of Achiev-
ing Profitable Growth. Technical report.

Agrawal, M., Hariharan, G., Rao, H. R,, and Kishore, R. (2013). Competition In
Mediation Services: Modeling the Role of Expertise, Satisfaction, and Switch-
ing Costs. Journal of Organizational Computing and Electronic Commerce,
23(3):169-199.

Albrecht, C. C., Dean, D. L., and Hansen, J. V. (2005). Marketplace and technology
standards for B2B e-commerce: Progress, challenges, and the state of the art.
Information & Management, 42(6):865-875.

Alter, S. (2008). Service system fundamentals: Work system, value chain, and life
cycle. IBM Systems Journal, 47(1):71-85.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. (2010). A View of Cloud
Computing. Communications of the ACM, 53(4):50-58.

Aussenac-Gilles, N., Biebow, B., and Szulman, S. (2000). Revisiting ontology de-
sign: A method based on corpus analysis. In International Conference on Knowl-
edge Engineering and Knowledge Management, pages 172-188. Springer.

Bachlechner, D., Siorpaes, K., Fensel, D., and Toma, I. (2006). Web service
discovery-a reality check. In 3rd European Semantic Web Conference, volume
308.

Baghdadi, Y. (2004). ABBA: An architecture for deploying business-to-business
electronic commerce applications. Electronic Commerce Research and Applica-
tions, 3(2):190-212.

Baghdadi, Y. (2005). A web services-based business interactions manager to sup-
port electronic commerce applications. In Proceedings of the 7th International
Conference on Electronic Commerce, pages 435-445. ACM.

Baida, Z., de Bruin, H., and Gordijn, J. (2003). E-Business Cases Assessment: From
Business Value to System Feasibility. International Journal of Web Engineering
and Technology, 1(1):127-144.

147

Baldwin, C. Y. and Woodard, C. J. (2009). The architecture of platforms: A uni-
fied view. In Gawer, A., editor, Platforms, Markets and Innovation, pages 19-44.
Edward Elgar.

Banjo, S. (2013). Rampant Returns Plague E-Retailers. Wall Street Journal.

Baquero, A, Taylor, R. N., Baquero, A., and Taylor, R. (2012). A Multidimensional
Evaluation of Integrative E-commerce Architectures. Technical report, Institute
for Software Research, University of California, Irvine.

Bass, E. M. (2004). Comments on “A New Product Growth for Model Consumer
Durables The Bass Model”. Management Science, 50(12_supplement):1833-1840.

Basu, A. and Muylle, S. (2003). Online support for commerce processes by web
retailers. Decision Support Systems, 34(4):379-395.

Becker, J. and Schutte, R. (2007). A reference model for retail enterprises. In Fettke,
P. and Loos, P, editors, Reference Modeling for Business Systems Analysis, pages
182-205. IGI Global.

Benlian, A., Hilkert, D., and Hess, T. (2015). How open is this platform? The
meaning and measurement of platform openness from the complementors’ per-
spective. Journal of Information Technology, 30(3):209-228.

Bezemer, C. P,, Zaidman, A., Platzbeecker, B., Hurkmans, T., and Hart, A. . (2010).
Enabling multi-tenancy: An industrial experience report. In IEEE International
Conference on Software Maintenance.

Bhattacherjee, A. (2012). Social science research: Principles, methods, and prac-
tices. USF Tampa Library Open Access Collections, Textbook 3.

Bichler, M., Beam, C., and Segev, A. (1998). Services of a broker in electronic com-
merce transactions. Electronic Markets, 8(1):27-31.

Blauw Research and GfK Retail and Technology (2012). Online betalen. Mar-
ket analysis. Retrieved from https://www.thuiswinkel.org/kennis/publicatie/27/
online-betalen.

Boehm, B. (1988). A spiral model of software development and enhancement. Com-
puter, 21(5):61-72.

Brooks, E P. (1987). No Silver Bullet: Essence and Accidents of Software Engineer-
ing. Computer, 20(4):10-19.

Brynjolfsson, E., Hu, Y. ., and Smith, M. D. (2006). From niches to riches: Anatomy
of the long tail. Sloan Management Review, 47(4):67-71.

Burt, S. and Sparks, L. (2003). E-commerce and the retail process: A review. Journal
of Retailing and Consumer Services, 10(5):275-286.

148

https://www.thuiswinkel.org/kennis/publicatie/27/online-betalen
https://www.thuiswinkel.org/kennis/publicatie/27/online-betalen

Busse, S., Kutsche, R.-D., Leser, U., and Weber, H. (1999). Federated Information
Systems: Concepts, Terminology and Architectures. Number 99-9 in Forschungs-
berichte des Fachbereichs Informatik. Technische Universitat Berlin.

Chang, S. and Wang, C.-W. (2010). Effectively Generating and Delivering Person-
alized Product Information: Adopting the Web 2.0 Approach. In IEEE Interna-
tional Conference on Advanced Information Networking and Applications Work-
shops, pages 401-406.

Chen, M., Zhang, D., and Zhou, L. (2007). Empowering collaborative commerce
with Web services enabled business process management systems. Decision Sup-
port Systems, 43(2):530-546.

Chen, P-K. and Su, C.-H. (2011). The e-business strategies fit on different sup-
ply chain integration structures. African Journal of Business Management,
5(16):7130-7141.

Chen, Q., Rodgers, S., and He, Y. (2008). A Critical Review of the E-Satisfaction
Literature. American Behavioral Scientist, 52(1):38-59.

Chitura, T., Mupembi, S., Dube, T., and Bolongkikit, J. (2008). Barriers to elec-
tronic commerce adoption in small and medium enterprises: A critical literature
review. Journal of Internet Banking and Commerce, 13(2):1-13.

Chou, T.-H. and Lee, Y.-M. (2008). Integrating E-services with a Telecommunica-
tion E-commerce Using EAI/SOA Technology. In International Conference on
Information Management, Innovation Management and Industrial Engineering,
volume 2, pages 385-388.

Chung, J.-Y,, Lin, K.-J., and Mathieu, R. (2003). Web services computing: advancing
software interoperability. Computer, 36(10):35-37.

Clark, K. J. (2015). Integration architecture: Comparing web APIs with service-
oriented architecture and enterprise application integration. Technical report,
IBM.

Clarke, R. (2000). Appropriate research methods for electronic commerce. Xamax
Consultancy. Retrieved from http://www.rogerclarke.com/EC/ResMeth.html.

Cohen, M. A., Ho, T. H., and Matsuo, H. (2000). Operations Planning in the Pres-
ence of Innovation-Diffusion Dynamics. In Mahajan, V., Muller, E., and Wind,
Y., editors, New-Product Diffusion Models, pages 237-262. Springer.

Cross, N. (2006). Designerly Ways of Knowing. Springer.

Croxton, K. L. (2003). The Order Fulfillment Process. International Journal of
Logistics Management, 14(1):19-32.

149

http://www.rogerclarke.com/EC/ResMeth.html

Dahlberg, T., Mallat, N., Ondrus, J., and Zmijewska, A. (2008). Past, present and
future of mobile payments research: A literature review. Electronic Commerce
Research and Applications, 7(2):165-181.

Danaiata, D. and Hurbean, C. (2010). SaaS-Better solution for small and medium-
sized enterprises. In Applied Economics, Business and Development. WSEAS.

Davenport, T. H. and Patil, D. J. (2012). Data Scientist: The Sexiest Job of the 21st
Century. Harvard Business Review, (October 2012):70-76.

Dorn, J., Griin, C., Werthner, H., and Zapletal, M. (2007). A Survey of B2B Method-
ologies and Technologies: From Business Models towards Deployment Artifacts.
In Hawaii International Conference on System Sciences, pages 143a—143a.

Dromey, R. G. (1996). Cornering the Chimera. IEEE Software, 13(1):33-43.

El Ayadi, A. (2011). Einsatz von SOA in E-Commerce Systemen. Master thesis, HAW
Hamburg.

Erbes, J., Reza, H., Nezhad, M., and Graupner, S. (2012). From IT Providers to IT
Service Brokers: The Future of Enterprise IT in the Cloud World. Computer,
99(2).

Erl, T. (2008). Soa: Principles of Service Design. Prentice Hall.

Esswein, W., Zumpe, D.-K. S., and Sunke, N. (2004). Identifying the quality of
e-commerce reference models. In International Conference on Electronic Com-
merce, pages 288-295. ACM.

European Commission (2015). Digital Agenda Scoreboard 2015. Digital Agenda
Targets - Progress report. Retrieved from http://ec.europa.eu/newsroom/dae/
document.cfm?action=display&doc_id=9969.

European Commission (2016). VAT Thresholds applied by Member States.
Retrieved from http://ec.europa.eu/taxation_customs/sites/taxation/files/
resources/documents/taxation/vat/traders/vat_community/vat_in_ec_annexi.

pdf.
Evans, D. S., Hagiu, A., and Schmalensee, R. (2008). Invisible Engines. MIT Press.

Evans, D. S. and Schmalensee, R. (2010). Failure to Launch: Critical Mass in Plat-
form Businesses. Review of Network Economics, 9(4).

Evans, E. (2004). Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware. Addison-Wesley Professional.

Feindt, S., Jeffcoate, J., and Chappell, C. (2002). Identifying Success Factors for
Rapid Growth in SME E-commerce. Small Business Economics, 19(1):51-62.

150

http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_id=9969
http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_id=9969
http://ec.europa.eu/taxation_customs/sites/taxation/files/resources/documents/taxation/vat/traders/vat_community/vat_in_ec_annexi.pdf
http://ec.europa.eu/taxation_customs/sites/taxation/files/resources/documents/taxation/vat/traders/vat_community/vat_in_ec_annexi.pdf
http://ec.europa.eu/taxation_customs/sites/taxation/files/resources/documents/taxation/vat/traders/vat_community/vat_in_ec_annexi.pdf

Feipeng, G. and Qibei, L. (2010). The Research and Implementation of Supply
Chain Resource Integration Platform on Textile Industry. In International Fo-
rum on Information Technology and Applications, volume 2, pages 16-19.

Fettke, D.-W.-I. P. and Loos, P. D. P. (2003). Model Driven Architecture (MDA).
Wirtschaftsinformatik, 45(5):555-559.

Fettke, P. and Loos, P. (2007). Perspectives on Reference Modeling. In Fettke, P.
and Loos, P, editors, Reference Modeling for Business Systems Analysis, pages 1-
21.IGI Global.

Folmer, E. J. A. (2012). Quality of Semantic Standards. PhD thesis, University of
Twente.

Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., and Stafford, R. (2002). Map-
ping to Relational Databases. In Patterns of Enterprise Application Architecture,
pages 35-50. Addison Wesley.

Fragidis, G. and Tarabanis, K. (2008). An Extended SOA Model for Customer-
Centric E-Commerce. In IEEE International Conference on E-Business Engineer-
ing, pages 771-775.

Frank, U. (2004). E-MEMO: Referenzmodelle zur 6konomischen Realisierung leis-
tungsfahiger Infrastrukturen fiir Electronic Commerce. Wirtschaftsinformatik,
46(5):373-381.

Frank, U. and Lange, C. (2004). ECOMOD - Reference Business Processes and
Strategies for E-Commerce. Online library, Research Group Enterprise Mod-
elling - University Duisburg-Essen.

Frank, U. and Lange, C. (2007). E-MEMO: A method to support the development
of customized electronic commerce systems. Information Systems and e-Business
Management, 5(2):93-116.

Ganguly, D. and Bhattacharyya, S. (2011). Winning the Industrial Competitive-
ness with E-Commerce Adopting Component-Based Software Architecture. In
Jin, D. and Lin, S., editors, Advances in Computer Science, Intelligent System and
Environment, number 105 in Advances in Intelligent and Soft Computing, pages
69-75. Springer.

Gao, H., Zhang, J., Povalej, R., and Stucky, W. (2009). Service-Oriented Model-
ing Method for the Development of an E-Commerce Platform. In International
Conference on E-Business and Information System Security.

Gattiker, T. F. and Goodhue, D. L. (2004). Understanding the local-level costs and
benefits of ERP through organizational information processing theory. Informa-
tion & Management, 41(4):431-443.

151

Gazit, 1. (2012). OAuthLib 0.7.2 documentation. Retrieved from https://oauthlib.
readthedocs.org/en/latest/index.html.

Giessmann, A. and Legner, C. (2016). Designing business models for cloud plat-
forms. Information Systems Journal, 26(5):551-579.

Goodwin, P,, Meeran, S., and Dyussekeneva, K. (2014). The challenges of pre-
launch forecasting of adoption time series for new durable products. Interna-
tional Journal of Forecasting, 30(4):1082-1097.

Grady, R. B. and Caswell, D. L. (1987). Software Metrics: Establishing a Company-
Wide Program. Prentice-Hall.

Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly,
30(3):611-642.

Gregor, S. and Jones, D. (2007). The Anatomy of a Design Theory. Journal of the
Association for Information Systems, 8(5):1.

Griin, B. and Leisch, F. (2008). FlexMix version 2: Finite mixtures with concomitant
variables and varying and constant parameters. Journal of Statistical Software,
28(4):1-35.

Gunasekaran, A., Marri, H. B., McGaughey, R. E., and Nebhwani, M. D. (2002).
E-commerce and its impact on operations management. International Journal of
Production Economics, 75(1-2):185-197.

Gunasekaran, A. and Ngai, E. (2004). Information systems in supply chain integra-
tion and management. European Journal of Operational Research, 159(2):269-
295.

Guy, S. (2016). Retailers are divided about big investments in tech
spending. Retrieved from https://www.internetretailer.com/2016/02/19/
retailers-are-divided-about-big-investments-tech-spending.

Haesen, R., Snoeck, M., Lemahieu, W., and Poelmans, S. (2008). On the Definition
of Service Granularity and Its Architectural Impact. In Conference on Advanced
Information Systems Engineering, Lecture Notes in Computer Science, pages 375-
389. Springer.

Handschuh, S., Schmid, B. E, and Stanoevska-Slabeva, K. (1997). The Concept of
a Mediating Electronic Product Catalog. Electronic Markets, 7(3):33-35.

Hardt, D. (2012). The OAuth 2.0 Authorization Framework. Technical Standard.
Retrieved from https://tools.ietf.org/html/rfc6749.

Hashem, I. A. T, Yaqoob, L., Anuar, N. B., Mokhtar, S., Gani, A., and Ullah Khan,
S. (2015). The rise of “big data” on cloud computing: Review and open research
issues. Information Systems, 47:98-115.

152

https://oauthlib.readthedocs.org/en/latest/index.html
https://oauthlib.readthedocs.org/en/latest/index.html
https://www.internetretailer.com/2016/02/19/retailers-are-divided-about-big-investments-tech-spending
https://www.internetretailer.com/2016/02/19/retailers-are-divided-about-big-investments-tech-spending
https://tools.ietf.org/html/rfc6749

Hashemi, S., Razzazi, M., and Bahrami, A. (2006). ISRUP E-Service Framework for
agile Enterprise Architecting. In International Conference on Information Tech-
nology: New Generations, pages 701-706.

Hernandez, G., Hernandez, C., and Aguirre, J. (2005). BPIMS-WS: Brokering Ar-
chitecture for Business Processes Integration in B2B E-Commerce. In Interna-
tional Conference on Electronics, Communications and Computers, pages 160-
165.

Hevner, A. R, March, S. T., Park, J., and Ram, S. (2004). Design science in infor-
mation systems research. MIS Quarterly, 28(1):75-105.

Hinton, J. (2014). Small Dbusinesses must commit time, re-
sources for e-commerce to pay off. Retrieved from https:
//mibiz.com/item/21961-small-businesses- must-commit-time,
-resources-for-e-commerce-to-pay-off.

Hohpe, G. and Woolf, B. (2003). Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley Professional.

Hu, X., Wang, X., Sun, L., and Xu, Z. (2009). A Real-Time Intelligent System for
Order Processing in B2C E-Commerce. International Journal of Innovative Com-
puting Information and Control, 5(11A):3691-3706.

Hudetz, K., Mohr, N., Mertens, S., and Himmelreich, A. (2016). Ero-
sion im Handel: Dramatische Verinderungen durch Digitalisierung
bis 2020. Industry report. Institut for Handelsforschung Koln.
Retrieved from http://www.ithkoeln.de/pressemitteilungen/details/
der-handel-muss-sich-neu-erfinden- 5-thesen-zur-zukunft-des-handels/.

Humeau, P. and Jung, M. (2013). Benchmark of e-Commerce solutions. Industry
report. NBS Lab. Retrieved fromhttps://www.nbs-system.co.uk/nbs-lab.

Igbal, M., Nieves, M., and Taylor, S. (2007). Service Strategy. ITIL. TSO.

Igbal, R., Shah, N., James, A., and Cichowicz, T. (2013). Integration, optimiza-
tion and usability of enterprise applications. Journal of Network and Computer
Applications, 36(6):1480-1488.

Jen, L. and Lee, Y. (2000). Recommended Practice for Architectural Description of
Software-Intensive Systems. Standard, IEEE.

Jiang, C. and Song, W. (2010). An Online Third Party Payment Framework in E-
commerce. In International Conference on Advanced Computer Control. IEEE.

Jiao, J. R. and Helander, M. G. (2006). Development of an electronic configure-
to-order platform for customized product development. Computers in Industry,
57(3):231-244.

153

https://mibiz.com/item/21961-small-businesses-must-commit-time,-resources-for-e-commerce-to-pay-off
https://mibiz.com/item/21961-small-businesses-must-commit-time,-resources-for-e-commerce-to-pay-off
https://mibiz.com/item/21961-small-businesses-must-commit-time,-resources-for-e-commerce-to-pay-off
http://www.ifhkoeln.de/pressemitteilungen/details/der-handel-muss-sich-neu-erfinden-5-thesen-zur-zukunft-des-handels/
http://www.ifhkoeln.de/pressemitteilungen/details/der-handel-muss-sich-neu-erfinden-5-thesen-zur-zukunft-des-handels/
https://www.nbs-system.co.uk/nbs-lab

Kahn, K. B. (2002). An exploratory Investigation of new product forecasting prac-
tices. Journal of Product Innovation Management, 19(2):133-143.

Kauffman, R. J. and Walden, E. A. (2001). Economics and Electronic Commerce:
Survey and Directions for Research. International Journal of Electronic Com-
merce, 5(4):5-116.

Kephart, J. O. and Chess, D. M. (2003). The vision of autonomic computing. Com-
puter, 36(1):41-50.

Kim, D. J., Agrawal, M., Jayaraman, B., and Rao, H. R. (2003). A comparison of
B2B e-service solutions. Communications of the ACM, 46(12):317-324.

Kim, S.-y. and Smari, W. (2005). On a collaborative commerce framework and ar-
chitecture for next generation commerce. In Proceedings of the 2005 International
Symposium on Collaborative Technologies and Systems, pages 282-289.

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Techni-
cal Report TR/SE-0401, Software Engineering Group Department of Computer
Science Keele University.

Kleeberg, M., Zirpins, C., and Kirchner, H. (2014). Information Systems Integration
in the Cloud: Scenarios, Challenges and Technology Trends. In Brunetti, G.,
Feld, T., Heuser, L., Schnitter, J., and Webel, C., editors, Future Business Software,
Progress in IS, pages 39-54. Springer.

Konsynski, B. and Tiwana, A. (2005). Spontaneous Collaborative Networks. In
Vervest, P. P, van Heck, P.E, Pau, P. L.-E,, and Preiss, P. K., editors, Smart Business
Networks, pages 75-89. Springer.

Koppius, O. R. and van de Laak, A. J. (2009). The Quick-Connect Capability and
Its Antecedents. In Vervest, P. H. M., van Liere, D. W,, and Zheng, L., editors,
The Network Experience, pages 267-284. Springer.

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. Springer.

Kumar, K. and van Hillegersberg, J. (2000). Enterprise Resource Planning: Intro-
duction. Communications of the ACM, 43(4):22-26.

Lackermair, G. (2011). Hybrid cloud architectures for the online commerce. Pro-
cedia Computer Science, 3(2011):550-555.

Lan, J,, Liu, Y., and Chai, Y. (2008). A solution model for Service-oriented architec-
ture. In World Congress on Intelligent Control and Automation, pages 4184-4189.

Lankhorst, M. M., Proper, H. A., and Jonkers, H. (2009). The Architecture of the
ArchiMate Language. In Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt,
R., Soffer, P, and Ukor, R, editors, Enterprise, Business-Process and Information
Systems Modeling, number 29 in Lecture Notes in Business Information Process-
ing, pages 367-380. Springer.

154

Lankhorst, M. M., Zoet, M. M., Janssen, W. P. M., and Molnar, W. A. (2012). Agility.
In Lankhorst, M., editor, Agile Service Development, The Enterprise Engineering
Series, pages 17-40. Springer.

Layo, E and Silver, N. (2013). Ship-from-Store: If You Havent Started Yet,
You're Dangerously Behind. Industry report. Kurt Salmon Consulting. Retrieved
from http://www.kurtsalmon.com/uploads/Why%2BShip%2Bfrom%2BStore%
2B130509VESP.pdf.

Lee, S. M., Hwang, T., and Kim, J. (FAL 2007). An analysis of diversity in electronic
commerce research. International Journal of Electronic Commerce, 12(1):31-67.

Lee, S. M., Hwang, T., and Lee, D. H. (2011). Evolution of Research Areas, Themes,
and Methods in Electronic Commerce. Journal of Organizational Computing &
Electronic Commerce, 21(3):177-201.

Leong, L., Toombs, D., and Gill, B. (2015). Magic Quadrant for Cloud Infrastructure
as a Service, Worldwide. Market analysis G00265139, Gartner.

Lewis, J. and Fowler, M. (2014). Microservices. Retrieved from http://martinfowler.
com/articles/microservices.html.

Li, M. and Dong, M. (2010). A Case Study: Liquor Enterprise E-Commerce Plat-
form Construction. In International Conference on E-Business and Information
System Security.

Lincke, D.-M. and Schmid, B. (1998). Mediating Electronic Product Catalogs. Com-
munications of the ACM, 41(7):86-88.

Liu, D.-R. and Hwang, T.-E. (2004). An agent-based approach to flexible commerce
in intermediary-centric electronic markets. Journal of Network and Computer
Applications, 27(1):33-48.

Liu, J., Zhang, S., and Hu, J. (2005). A case study of an inter-enterprise workflow-
supported supply chain management system. Information & Management,
42(3):441-454.

Lui, D. M., Gray, M., Chan, A., and Long, J. (2011). Spring Integration and Your
Web Application. In Pro Spring Integration, pages 591-614. Apress.

Maler, E. and Hammond, J. S. (2013). API Management Platforms, Q1 2013. Market
analysis, Forrester.

Malinverno, P.,, Plummer, D. C., and Van Huizen, G. (2013). Magic Quadrant for
Application Services Governance. Market analysis G00247339, Gartner.

Mandal, P. and Gunasekaran, A. (2003). Issues in implementing ERP: A case study.
European Journal of Operational Research, 146(2):274-283.

155

http://www.kurtsalmon.com/uploads/Why%2BShip%2Bfrom%2BStore%2B130509VFSP.pdf
http://www.kurtsalmon.com/uploads/Why%2BShip%2Bfrom%2BStore%2B130509VFSP.pdf
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

Martens, B., Walterbusch, M., and Teuteberg, F. (2012). Costing of Cloud Com-
puting Services: A Total Cost of Ownership Approach. In Hawaii International
Conference on System Sciences, pages 1563-1572.

Mason, R. (2011). Real-time Web and Streaming APIs. Retrieved from http://blogs.
mulesoft.org/real-time-web-and-streaming-apis.

McCall, J. A., Richards, P. K., and Walters, G. F. (1977). Factors in software qual-
ity. Volume I. Concepts and Definitions of Software Quality. Technical report,
General Eletctric Company.

Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A. H. H., and Elmagarmid,
A. K. (2003). Business-to-business interactions: Issues and enabling technolo-
gies. International Journal on Very Large Data Bases, 12(1):59-85.

Merrifield, R., Calhoun, J., and Stevens, D. (2008). The next revolution in produc-
tivity. Harvard Business Review, 86(6):72.

Mohamed, U., Galal-Edeen, G., and El-Zoghbi, A. (2010). Building Integrated Oil
and Gas B2B E-commerce Hub Architecture Based on SOA. In International
Conference on E-Education, E-Business, E-Management, and E-Learning, pages
599-608.

Ngai, E. and Wat, E (2002). A literature review and classification of electronic com-
merce research. Information & Management, 39(5):415-429.

Nitu (2009). Configurability in SaaS (Software As a Service) Applications. In Pro-
ceedings of the 2nd India Software Engineering Conference, pages 19-26.

O’Brien, L., Merson, P, and Bass, L. (2007). Quality Attributes for Service-Oriented
Architectures. In International Workshop on Systems Development in SOA Envi-
ronments.

O’Leary, D. E. (2000). Enterprise Resource Planning Systems: Systems, Life Cycle,
Electronic Commerce, and Risk. Cambridge University Press.

Ordonez, C. (2011). Data Set Preprocessing and Transformation in a Database
System. Intelligent Data Analysis, 15(4):613-631.

Ortega, M., Perez, M., and Rojas, T. (2003). Construction of a Systemic Quality
Model for Evaluating a Software Product. Software Quality Journal, 11(3):219-
242.

Osterwalder, A. and Pigneur, Y. (2010). Business model generation: a handbook for
visionaries, game changers, and challengers. John Wiley & Sons.

Palmer, J. W. and Johnston, J. S. (1996). Business-to-business connectivity on the
internet: EDI, intermediaries, and interorganizational dimensions. Electronic
Markets, 6(2):3-6.

156

http://blogs.mulesoft.org/real-time-web-and-streaming-apis
http://blogs.mulesoft.org/real-time-web-and-streaming-apis

Papazoglou, M. (2003). Service-oriented computing: Concepts, characteristics and
directions. In International Conference on Web Information Systems Engineering,
pages 3-12.

Paramartha, M. A. (2014). Design and Instantiation of Reference Architecture of
Pluggable Service Platform in E-Commerce. Master thesis, University of Twente.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2007). A Design
Science Research Methodology for Information Systems Research. Journal of
Management Information Systems, 24(3):45-77.

PengLing and Mian, Z. (2010). Outsourcing E-Commerce Model and Platform
System Structure. In International Conference on Management of E-Commerce
and E-Government, pages 122-127.

Pezzini, M., Natis, Y. V., Malinverno, P,, Iijima, K., Thompson, J., and Thoo, E.
(2014). Magic Quadrant for Enterprise Integration Platform as a Service.

Pincvision (2012). Are you completely compliant? Industry report. Retrieved from
http://www.pincvision.com/brochure/?page=trade-compliance-scan.

Pivotal (2015). The Essential Elements of Enterprise PaaS. Indus-
try report. Retrieved from http://pivotal.io/platform/white-paper/
enterprise- paas-essential-elements.

Poto¢nik, M. and Juric, M. B. (2012). Integration of SaaS using IPaaS. In Proceedings
of the Ist International Conference on Cloud Assisted Services, pages 35-41.

Prat, N., Akoka, J., and Comyn-Wattiau, I. (2006). A UML-based data warehouse
design method. Decision Support Systems, 42(3):1449-1473.

Puschmann, T. and Alt, R. (2001). Enterprise application integration-the case of
the Robert Bosch Group. In Hawaii International Conference on System Sciences.

R Development Core Team (2014). R: A Language and Environment for Statistical
Computing. The R Foundation for Statistical Computing.

Rao, S., Griffis, S. E., and Goldsby, T. J. (2011). Failure to deliver? Linking online
order fulfillment glitches with future purchase behavior. Journal of Operations
Management, 29(7-8):692-703.

Reimers, K. (2001). Standardizing the new e-business platform: Learning from the
EDI experience. Electronic Markets, 11(4):231-237.

Ried, S. (2014). Hybrid Integration, Q1 2014. Market analysis, Forrester.

Romano Jr., N. C. R. and Fjermestad, J. (2003). Electronic Commerce Customer
Relationship Management: A Research Agenda. Information Technology and
Management, 4(2-3):233-258.

157

http://www.pincvision.com/brochure/?page=trade-compliance-scan
http://pivotal.io/platform/white-paper/enterprise-paas-essential-elements
http://pivotal.io/platform/white-paper/enterprise-paas-essential-elements

Sabki, A., Ahmed, P. K., and Hardaker, G. (2004). Developing an e-commerce so-
lution: A case study of TimeXtra. Journal of Enterprise Information Management,
17(5):388-401.

Saldana, J. (2012). The Coding Manual for Qualitative Researchers. Sage.

Saltor, E, Castellanos, M., and Garcia-Solaco, M. (1991). Suitability of Datamodels
As Canonical Models for Federated Databases. ACM SIGMOD Record, 20(4):44—
48.

Schepers, T. G.J., Iacob, M. E., and Van Eck, P. A. T. (2008). A Lifecycle Approach to
SOA Governance. In ACM Symposium on Applied Computing, pages 1055-1061.

Schibrowsky, J. A., Peltier,]. W., and Nill, A. (2007). The state of internet marketing
research: A review of the literature and future research directions. European
Journal of Marketing, 41(7/8):722-733.

Scott, J. (1999). The FoxMeyer Drugs’ Bankruptcy: Was it a Failure of ERP? In
Americas Conference on Information Systems, pages 223-225.

Sein, M., Henfridsson, O., Purao, S., Rossi, M., and Lindgren, R. (2011). Action
Design Research. MIS Quarterly, 35(1):37-56.

Sen, R. and King, R. C. (2003). Revisit the Debate on Intermediation, Disintermedi-
ation and Reintermediation due to E-commerce. Electronic Markets, 13(2):153—
162.

Sheth, A. P. and Larson, J. A. (1990). Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases. ACM Computing Sur-
veys, 22(3):183-236.

Singh, M. (2002). E-services and their role in B2C e-commerce. Managing Service
Quality, 12(6):434-446.

Smith, C. (2014). These Charts Show How Alibaba Became The World’s Largest
E-Commerce Company. Retrieved from http://www.businessinsider.de/
these-charts-show-how-alibaba-became-the-worlds-largest-e-commerce-company-2014-5.

Soh, C., Kien, S. S., and Tay-Yap, J. (2000). Enterprise Resource Planning: Cultural
Fits and Misfits: Is ERP a Universal Solution? Communications of the ACM,
43(4):47-51.

Soshkin, M. (2015). Order Fulfillment Services in the US. Market analysis.
Retrieved from http://www.ibisworld.com/industry/order-fulfillment-services.
html.

Srinivasan, S. S., Anderson, R., and Ponnavolu, K. (2002). Customer loyalty in
e-commerce: An exploration of its antecedents and consequences. Journal of
Retailing, 78(1):41-50.

158

http://www.businessinsider.de/these-charts-show-how-alibaba-became-the-worlds-largest-e-commerce-company-2014-5
http://www.businessinsider.de/these-charts-show-how-alibaba-became-the-worlds-largest-e-commerce-company-2014-5
http://www.ibisworld.com/industry/order-fulfillment-services.html
http://www.ibisworld.com/industry/order-fulfillment-services.html

Sriram, S., Manchanda, P,, Bravo, M. E., Chu, J., Ma, L., Song, M., Shriver, S., and
Subramanian, U. (2014). Platforms: A multiplicity of research opportunities.
Marketing Letters, 26(2):141-152.

Sun, H., Liu, Y., Chai, Y., and Sun, X. (2012). A novel architecture towards trusted E-
commerce cloud. In International Conference on E-Learning and E-Technologies
in Education, pages 223-229.

Sun, W,, Zhang, K., Chen, S.-K., Zhang, X., and Liang, H. (2007). Software as a Ser-
vice: An Integration Perspective. In International Conference on Service-Oriented
Computing, Lecture Notes in Computer Science, pages 558-569. Springer.

Tallon, P. P. (2013). Corporate governance of big data: Perspectives on value, risk,
and cost. Computer, 46(6):32-38.

Tan, H. (2011). Design of E-Commerce Platform Based on Supply Chain Manage-
ment. In Qi, L., editor, Information and Automation, number 86 in Communi-
cations in Computer and Information Science, pages 494-500. Springer.

Tenenbaum, J. M. and Khare, R. (2005). Business Services Networks: Delivering
the promises of B2B. In International Workshop on Business Services Networks.

The Open Group (2016). ArchiMate 3.0 Specification. Retrieved from http://pubs.
opengroup.org/architecture/archimate3-doc/.

Thomas, O., Leyking, K., and Dreifus, F. (2008). Using Process Models for the
Design of Service-Oriented Architectures: Methodology and E-Commerce Case
Study. In Hawaii International Conference on System Sciences.

Tolk, A. and Muguira, J. A. (2003). The levels of conceptual interoperability model.
In Simulation Interoperability Workshop.

van Heck, E. and Vervest, P. (2007). Smart Business Networks: How the Network
Wins. Communications of the ACM, 50(6):28-37.

van Hillegersberg, J., Moonen, H., and Dalmolen, S. (2012). Coordination as a Ser-
vice to Enable Agile Business Networks. In Kotlarsky, J., Oshri, I., and Willcocks,
L. P, editors, The Dynamics of Global Sourcing. Perspectives and Practices, num-
ber 130 in Lecture Notes in Business Information Processing, pages 164-174.
Springer.

Verschuren, P. and Hartog, R. (2005). Evaluation in Design-Oriented Research.
Quality and Quantity, 39(6):733-762.

Vujasinovic, M., Barkmeyer, E., Ivezic, N., and Marjanovic, Z. (2010). Interopera-
ble Supply-Chain Applications: Message Metamodel-Based Semantic Reconcili-
ation of B2B Messages. International Journal of Cooperative Information Systems,
19(01n02):31-69.

159

http://pubs.opengroup.org/architecture/archimate3-doc/
http://pubs.opengroup.org/architecture/archimate3-doc/

Wallace, D. W,, Giese, J. L., and Johnson, J. L. (2004). Customer retailer loyalty in
the context of multiple channel strategies. Journal of Retailing, 80(4):249-263.

Walls, J. G., Widmeyer, G. R., and El Sawy, O. A. (1992). Building an information
system design theory for vigilant EIS. Information Systems Research, 3(1):36-59.

Wan, K., Alagar, V., and Ibrahim, N. (2013). An Extended Service-Oriented Ar-
chitecture for Consumer-Centric E-Commerce. International Journal of Infor-
mation and Communication Technology Research, 3(1):74-101.

Wan, X. and Huang, L. (2008). Research on e-Commerce Application Architec-
ture Based on the Integration of Workflow and Agile Service. In International
Symposium on Electronic Commerce and Security, pages 843-849.

Wang, S., Zheng, S., Xu, L., Li, D., and Meng, H. (2008). A literature review of
electronic marketplace research: Themes, theories and an integrative framework.
Information Systems Frontiers, 10(5):555-571.

Wareham, J., Fox, P. B., and Cano Giner, J. L. (2014). Technology Ecosystem Gov-
ernance. Organization Science, 25(4):1195-1215.

Wareham, J., Zheng, J. G., and Straub, D. (2005). Critical themes in electronic com-
merce research: A meta-analysis. Journal of Information Technology, 20(1):1-19.

Waters, B. (2005). Software as a service: A look at the customer benefits. Journal of
Digital Asset Management, 1(1):32-39.

Wedel, M., Desarbo, W. S., Bult, J. R., and Ramaswamy, V. (1993). A latent class
poisson regression model for heterogeneous count data. Journal of Applied Eco-
nomics, 8(4):397-411.

Weinfurtner, S., Wittmann, G., Stahl, E., Wittmann, M., and Pur, S.
(2013). Erfolgsfaktor Payment. — Market analysis. ibi research. Retrieved
from https://ecommerce-leitfaden.de/download/studien/Studie_Erfolgsfaktor_
Payment_2013.pdf.

Wen, W. (2007). A knowledge-based intelligent electronic commerce system for
selling agricultural products. Computers and Electronics in Agriculture, 57(1):33-
46.

Wickham, H. (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal
of Statistical Software, 40(1):1-29.

Wiederhold, G. (1992). Mediators in the architecture of future information systems.
Computer, 25(3):38-49.

Wieringa, R. (2009). Design Science As Nested Problem Solving. In International
Conference on Design Science Research in Information Systems and Technology.

160

https://ecommerce-leitfaden.de/download/studien/Studie_Erfolgsfaktor_Payment_2013.pdf
https://ecommerce-leitfaden.de/download/studien/Studie_Erfolgsfaktor_Payment_2013.pdf

Wieringa, R. J. (2014). Design Science Methodology for Information Systems and
Software Engineering. Springer.

Wlodarczyk, T. W,, Rong, C., and Thorsen, K. A. H. (2009). Industrial Cloud: To-
ward Inter-enterprise Integration. In International Conference on Cloud Com-
puting, number 5931 in Lecture Notes in Computer Science, pages 460-471.
Springer.

Wu, J.-H., Shin, S.-S., and Heng, M. S. H. (2007). A methodology for ERP misfit
analysis. Information & Management, 44(8):666-680.

Xu, J., Benbasat, I., and Cenfetelli, R. (2010). Does Live Help Service Matter? An
Empirical Test of the DeLone and McLean’s Extended Model in the E-Service
Context. In Hawaii International Conference on System Sciences.

Yang, X., Qiang, Z., Zhao, X., and Ling, Z. (2007). Research on Distributed E-
Commerce System Architecture. In ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-
ing, volume 2, pages 821-825.

Ying, W. and Dayong, S. (2005). Multi-agent framework for third party logistics in
E-commerce. Expert Systems with Applications, 29(2):431-436.

Yoon, C. and Kim, S. (2009). Developing the Causal Model of Online Store Success.
Journal of Organizational Computing and Electronic Commerce, 19(4):265-284.

Zhang, Q., Yang, J., Song, C., and Yu, Y. (2009). Research on the Architecture of
Iron and Steel Logistics E-Commerce System. In International Conference on
Management and Service Science.

Zheng, H,, Liu, L., and Li, Y. (2009a). An Information Fusion-Enabled Third Party
E-Commerce Platform Based on SOA. Journal of Software, 4(1):50-57.

Zheng, Q., Han, Y., Li, S, Dong, J., Yan, L., and Qin, J. (2009b). E-commerce Ar-
chitecture and System Design. In Zheng, Q., editor, Introduction to E-Commerce,
pages 271-303. Springer.

161

Dutch Abstract

Pluggable services
Een platformarchitectuur voor e-commerce

De huidige architecturen voor e-commerce voorzien niet in de juiste mate van flexi-
biliteit bij het toepassen van nieuwe services om een continue klanttevredenheid te
bereiken en de prestaties van e-commerce te optimaliseren. De detailhandel die ver-
trouwt op kant-en-klare of op maat gemaakte software heeft moeite om het tempo
bij te houden van nieuwe trends zoals grensoverschrijdende en omnichannel han-
del.

Een veelbelovende aanpak voor het overwinnen van veel obstakels bij de adoptie en
integratie van software en voor het verbeteren van pluggability in servicegeorién-
teerde architecturen zijn cloud-gebaseerde diensten. Dit proefschrift introduceert
een nieuw kwaliteitsmodel dat binnen platformarchitecturen voor e-commerce het
meten van de aansluitbaarheid van deze diensten mogelijk maakt. De voorgestelde
platformarchitectuur is ontworpen volgens een design-science onderzoeksmethode
en is geinstantieerd door middel van een platformprototype. Hierop is het kwali-
teitsmodel toegepast om de pluggability van de diensten uit het prototype te meten
en geleidelijk het architectuurmodel te verbeteren.

Er wordt een aantal pluggable diensten voor cross-selling, verkoopprognoses en
trade-compliance gepresenteerd die de recente trends in e-commerce weerspiege-
len. Deze diensten illustreren de functionaliteit van het platformprototype en de-
monstreren hoe de architectuur de pluggability van diensten kan verhogen.

162

Current architectures for online retail

do not provide the right level of flexibility
in adopting new services to achieve
continuous customer satisfaction and to
optimize e-commerce performance.
Retailers who rely on pre-packaged or
custom-built software are struggling

to keep the pace with new trends like
cross-border or omni-channel commerce.
A promising approach to overcome

many software adoption obstacles and

to improve pluggability in service-
oriented architectures are cloud services.

This thesis introduces a novel quality
model that allows to assess the pluggabili-
ty of those services in common platform
architectures for e-commerce. Following

a design science methodology, a

state of the art architectural model is
instantiated by means of a platform
prototype to which the quality model

is applied in order to measure the
prototype’s service pluggability and

gradually enhance the architectural model.

A number of pluggable services for
cross-selling, sales forecasting, and trade
compliance are presented that reflect

the recent trends in online retail. The
covered services permit to demonstrate
the functionality of the platform prototype
and to evaluate the architecture’s
capability to improve service pluggability.

ISBN 978-90-365-4283-8

97789036 " 542838 ">

	1 Introduction
	1.1 Critical themes and research gap
	1.2 Design research and research design
	1.3 Dissertation outline

	2 The State of the Art in E-Commerce Architectures
	2.1 Research design
	2.2 Objectives
	2.3 Systematic literature review
	2.4 Reference architecture
	2.5 Validation
	2.6 Conclusions

	3 Measuring the Pluggability of Software
	3.1 Quality models
	3.2 Pluggability of services
	3.3 Conclusions

	4 A Platform-Based Return Registration Process
	4.1 Platform architectures
	4.2 A reference architecture for e-commerce service platforms
	4.3 The return registration case
	4.4 Validation
	4.5 Conclusions

	5 A Platform-Based Pluggable Trade Compliance Service
	5.1 Preliminary considerations
	5.2 A pluggable service platform
	5.3 The trade compliance case
	5.4 Conclusions

	6 Analytics as a Service: A Pluggable Sales Forecasting Service
	6.1 New sales forecasting module
	6.2 Pluggable architecture
	6.3 A pluggable sales forecasting service
	6.4 Conclusions

	7 Using Pluggable Services to Support IT-Driven Collaboration in Business Networks
	7.1 Collaboration architectures
	7.2 Service-oriented collaboration
	7.3 Cross-selling architecture
	7.4 Product evaluation
	7.5 Conclusion

	8 Conclusions
	8.1 Anatomy of the proposed design
	8.2 Limitations and future research

	A ArchiMate Metamodel
	B E-Commerce Business Model
	C Pluggability Instrument
	D Platform Prototype
	D.1 Model and interface implementation
	D.2 Administration interface
	D.3 Platform client

	E Trade Compliance Service
	Bibliography
	Dutch Abstract

