


Green Computing: Efficient Energy

Management of Multiprocessor Streaming

Applications via Model Checking

Waheed Ahmad



Graduation committee:

Chairman: Prof. dr. P.M.G. Apers
Promotor: Prof. dr. J.C. van de Pol
Co-promotor: Dr. M.I.A. Stoelinga

Members:
Prof. dr. ir. B.R.H.M. Haverkort University of Twente
Dr. ir. J.F. Broenink University of Twente
Prof. dr. K.G.W. Goossens Eindhoven University of Technology
Prof. dr. W. Yi Uppsala University
Dr. ir. P.K.F. Hölzenspies Facebook, London

CTIT Ph.D. Thesis Series No. 16-418

Centre for Telematics and Information Technology

University of Twente, The Netherlands

P.O. Box 217 – 7500 AE Enschede

IPA Dissertation Series No. 2017-02

The work in this thesis has been carried out under the aus-

pices of the research school IPA (Institute for Programming

research and Algorithmics).

The work in this thesis is conducted within Self Energy-

Supporting Autonomous Computation (SENSATION) pro-

ject (318490) supported by European Commission.

ISBN 978-90-365-4290-6

ISSN 1381-3617 (CTIT Ph.D. Thesis Series No. 16-418)

Available online at https://doi.org/10.3990/1.9789036542906

Typeset with LATEX

Printed by Ipskamp Drukkers

Cover design c© by Annelien Dam

Copyright c© 2017 Waheed Ahmad, Enschede, The Netherlands

https://doi.org/10.3990/1.9789036542906


GREEN COMPUTING: EFFICIENT ENERGY

MANAGEMENT OF MULTIPROCESSOR

STREAMING APPLICATIONS VIA

MODEL CHECKING

DISSERTATION

to obtain

the degree of doctor at the University of Twente,

on the authority of the rector magnificus,

Prof. dr. T.T.M. Palstra,

on account of the decision of the graduation committee,

to be publicly defended

on Thursday, April 13th, 2017 at 12:45 hrs.

by

Waheed Ahmad

born on 4 July 1987

in Lahore, Pakistan



This dissertation has been approved by:

Prof. dr. J.C. van de Pol (promotor)

Dr. M.I.A. Stoelinga (co-promotor)



To Prof. dr. Abdus Salam (in memoriam)

Nobel Laureate in Physics 1979





Acknowledgements

I
still remember when I came to Enschede for the PhD position interview,
four and half years ago. With a background in electronics engineering and
knowing little of the field of formal methods, I was a bit nervous. At the

end of the interview, after some discussion between Jaco and Mariëlle, I was
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Abstract

Consumer electronics such as televisions, telephones, and computers have
become an essential part of a human life. An important subclass of
consumer electronics termed embedded multimedia systems deal with

applications from the multimedia and Digital Signal Processing (DSP) domain
executing on multiprocessors. Such applications repetitively process an input
stream of indefinite length, for example a video decoder that decodes a video
stream. These applications are often referred to as streaming applications in
literature. Examples of embedded multimedia systems are mobile phones, virtual
reality gaming consoles, 3D-enabled televisions, and car navigation systems.
The Synchronous Dataflow (SDF) model of computation naturally captures
the characteristics of streaming applications and allows design-time analysis of
timing and resource utilisation.

Embedded multimedia systems have evolved significantly in recent decades,
and are becoming ubiquitous in our daily lives. This trend is also giving rise to
challenges such as (1) increasing energy demand leading to global warming, (2)
requirement of seamless and robust performance, and (3) growing complexity of
embedded multimedia systems resulting in higher development cost and longer
time-to-market.

To address these challenges, we introduce several methods that combine
resource and power management with scheduling decisions. As an analysis
environment, we consider model checking because of its ability to generate
optimal traces (schedules).

The first approach is throughput-optimal scheduling of SDF graphs on a given
number of processors via the proven formalism of timed automata. In this work,
SDF graphs along with hardware platforms are translated compositionally to
timed automata. The problem of throughput optimisation is encoded as a query
over timed automata. The model checker uppaal extracts a trace representing
a throughput-optimal schedule. In this way, we can efficiently determine a
trade-off between number of processors and throughput for a certain streaming
application.

The second approach generates energy-optimal schedules of SDF graphs. The
hardware architecture is decorated with novel energy management techniques like
dynamic power management (DPM, switching to low power state) and dynamic
voltage and frequency scaling (DVFS, throttling processor frequency). To balance
flexibility and design complexity, the concept of Voltage and Frequency Islands
(VFIs) is considered. It achieves fine-grained system-level power management,
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by operating all processors in the same VFI at a common frequency/voltage.
In this work, we utilise priced timed automata, a model checking formalism

that extends timed automata with costs, which are used to model the power
consumption of processors. After SDF graphs and hardware platforms are
translated to priced timed automata, the model checker uppaal cora generates
a trace representing an energy-optimal schedule. We demonstrate that the
combination of DPM and DVFS provides an energy reduction beyond considering
DVFS or DPM separately. Moreover, we show that by clustering processors in
VFIs, DPM can be combined with any granularity of DVFS.

The third approach derives the Quality of Service of SDF graphs mapped
on hardware platforms powered by multiple batteries. In this approach, we use
hybrid automata which are an extension of timed automata with continuous
variables. Furthermore, using the model checker uppaal smc, we evaluate (1)
system lifetime, and (2) minimum required initial battery capacities to achieve
the desired application performance.

In today’s agile world, there is a fierce competition that requires low de-
velopment cost and short time-to-market. To achieve this purpose, an efficient
modelling approach is needed which can provide modularity, extensibility and
interoperability. We have developed a Model-Driven Engineering (MDE) based
framework which fulfils these requirements. In this framework, we introduce
the so-called metamodels for SDF graphs and hardware platforms. The SDF
graphs and hardware platforms are translated to the model-checking domain
automatically using model transformations.

Finally, we evaluate the performance of our approach of throughput analysis
by applying it in an industrial case study of face recognition systems provided
by Recore Systems, Netherlands. With this case study, the performance of our
approach is validated in realistic scenarios and, thus, the problem is shown to be
solvable with acceptable concessions.
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CHAPTER 1

Introduction

O
once, the access to consumer electronics devices such as televisions,
telephones, and computers was a luxury shared by few. Nowadays,
courtesy to the inventions in the field of electronics in the past half-

century, consumer electronics devices have become ubiquitous in our daily lives.
We are getting more dependent on computers to carry out our daily tasks, such
as with-drawing money, scheduling an appointment, reading the news on a tablet,
listening to music on a MP3 player, and watching a favourite film on DVD.
According to MarketresearchReports.Biz, the Consumer Electronics market is
going to witness a value of US $1.6 trillion by 2018 [MAR13].

Most of consumer electronics devices contain one or more processors to per-
form the required functionalities of the device. Such devices are termed embedded
systems. An important subclass of embedded systems is known as embedded
multimedia systems, which deal with processing multimedia information such
as, data, voice, graphics, animations etc., in real-time. Examples of embedded
multimedia systems are mobile phones, tablets, virtual reality (VR) enabled
gaming consoles, music players, and car navigation systems. As multimedia ap-
plications inherently include continuous streams (e.g., streaming videos or audio
clips), we can say that many embedded multimedia systems contain streaming
applications [TKA02].

Embedded multimedia systems are on the rise to make their way in our
everyday lives. This trend is also leading to the new challenges of getting a trade-
off between performance, cost (number of processing or memory elements etc.),
and energy consumption for these systems. In sections 1.1-1.3, we will investigate
the societal, consumer and industrial challenges that led to this research on
efficient performance and energy optimisation of streaming applications.

1.1 Challenges: A Societal Perspective

The demand for energy in both commercial and domestic environments is in-
creasing. While our primary sources of energy are running out, the side effects
of energy usage have adverse environmental effects. For example, climatologists
are associating emission of greenhouse gases such as CO2 to global warming.
Figure 1.1 shows the worldwide energy consumption (TWh) from 1990-2015
[ENE16], where we can see that the energy usage per year has increased dramat-
ically. In fact, in this century so far, the rate of rise in energy consumption is
56%, and this trend is expected to grow at a similar rate. Former U.S. Secretary
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Figure 1.1: Worldwide energy consumption (y-axis) over years (x-axis) [ENE16].
The worldwide energy consumption rose at the rate was 56% from 2000-15.

of Energy and Nobel prize winner, Steven Chu placed this issue in the following
context [CHU08].

‘A dual strategy is needed to solve the energy problem: (1) Maximise energy
efficiency and decrease energy use. This part of the solution will remain the
lowest hanging fruit for the next few decades; (2) Develop new sources of clean
energy.’

Consumer electronics are no different in contributing to high energy con-
sumption. For example, according to Fraunhofer USA, consumer electronics
devices in USA consumed 169 TWh of electricity in 2013, which amounts to
12% of residential electricity consumption [FRA14].

To avoid harmful effects of this trend, such as depletion of energy sources,
higher emission of CO2, and global warming, utilisation of green computing
methods and practices must be observed at an individual level. By green com-
puting, we refer to using energy-efficient and environmentally friendly electronic
devices, refurbishing and recycling existing old electronic devices, and buying
green electricity supplied from renewable energy sources.

1.2 Challenges: A Consumer Perspective

1.2.1 Longer System Lifetime

Modern embedded multimedia systems are equipped with ever increasing func-
tionalities. If we consider the evolution of mobile phones, we can see that the
a device whose sole purpose was to provide convenient communication, has
become a true multimedia system. Apart from video streaming, current mobile
phones are equipped with high quality cameras, and are able to browse the
Internet, provide navigation and gaming interfaces etc. Cisco predicts that by
2020, 75% of the world’s mobile data traffic will consist of multimedia content,
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Figure 1.2: Battery energy density (y-axis) over years (x-axis) [ECO05], showing
that the mobile device power consumption outgrows the amount of energy a
battery can store, at a rate of more than three.

up from 55% in 2015 [CIS16]. Multimedia applications are considered as the
most energy-hungry applications. Hence, a key challenge in modern embedded
systems is the ever increasing energy consumption.

However, the battery energy densities of embedded multimedia systems have
not grown at the same rate over the years [Cha07]. Figure 1.2 shows the growth
of battery energy density versus power demand, according to a study by the
Boston Consulting Group in 2005 [ECO05]. According to this study, the amount
of energy that a battery can store (its energy density) is growing by 8% a year.
Mobile-device power consumption, meanwhile, is growing at more than three
times this rate. As a consequence, everyone owning a mobile phone is aware
of the issue to monitor the battery charge and recharge it frequently. Not only
mobile phones, every battery-powered system faces the same challenge. For
example, Tesla’s Model S electric car with a 60 kWh battery delivers 206 miles
(334 km) [EPA13]. Therefore, for long trips, the driver has to continuously
monitor the battery level, and get it charged at regular charging points.

Thus, system lifetime is a major challenge that consumers have to face all
the time, i.e., the time one can use the battery before it is empty.

1.2.2 Robust Performance

Modern embedded multimedia systems are expected to perform robustly under
strict resource constraints. A mobile phone capable of playing HD videos is a
typical example. To process a video frame, the audio and video streams are split
and processed separately. The video stream undergoes various picture enhance-
ment steps to improve the video quality. Similarly, several audio improvement
algorithms, e.g., echo cancellation, noise reduction etc., are performed on the
audio stream. After the audio and video streams are processed separately, they
are put in sync again and output on the screen and speakers. Hence, seamless
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and robust performance is a key requirement for consumers.

Modern day mobile phones such as Google Pixel [GOO16] are able to support
VR, which has even higher video quality and resolution than HD videos. Thus,
VR requires more intensive processing than HD videos, which in turn requires
more processing power, to provide the same seamless performance.

1.3 Challenges: An Industry Perspective

Gordon Moore predicted in 1965 that processing power for computers will double
every two years [Moo65]. Over the past half-century, engineers more or less
managed to maintain that predicted pace. As a result, software applications
with increasing concurrency and complexity are continuously implemented on
embedded multimedia systems. Mobile phones, discussed earlier, are a typical
example of devices with increasing complexity. We see the same trend of
increasing complexity also in other embedded multimedia systems such as VR-
enabled gaming consoles, TVs, and cameras. Frits Vaandrager predicted this
trend in 1998 by stating [Vaa98]:

‘In recent years there has been a dramatic growth of the number of embedded
applications and of the size and complexity of the software used in these applic-
ations. For many products in the area of consumer electronics the amount of
code is doubling every two years.’

To cope with the ever-increasing complexity and deliver robust performance,
modern-day embedded multimedia systems must possess sufficient computational
power . At the same time, energy consumption must be kept to a minimum as
most of these devices are battery powered (e.g., mobile phones, tablets, satellites,
portable gaming consoles etc.). Thus, we cannot add processors more than a
certain extent due to strict energy limitations. In addition to energy, these
devices also have size and cost limitations which further restrict the number of
processors.

To minimise energy consumption and prolong system lifetime, modern pro-
cessors are being equipped with several energy management techniques, e.g.,
adapting the speed of the system to balance energy and performance imple-
mented as Dynamic Voltage and Frequency Scaling [WWDS94], sleep modes
implemented as Dynamic Power Management [BBDM00], and partitioning pro-
cessors as Voltage and Frequency Islands [HM07]. This thesis deals with all of
these energy management methods. Furthermore, the processors in a hardware
platform can be classified as: (1) homogeneous where all processors are identical,
so a (streaming) task can be mapped on any processor, or (2) heterogeneous
where a (streaming) task cannot be mapped to any processor.

Moreover, in modern embedded multimedia systems, different components
are interconnected, and hence influence each other. Thus, it is not easy to
separate different design concerns such as computation, communication, power
consumption, memory storage etc., and then try to integrate them together in a
naive way. Other than rapidly evolving technology, the fierce market competition
puts extra pressure on system designers to shorten time-to-market and reduce
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development cost, while they are dealing with design complexities they have
never seen before.

One solution to bridge this gap is by providing more design automation,
e.g., by utilising computer-aided design (CAD) tools to assist with designing,
synthesis, simulation, analysis, and testing process. By shifting the design tasks
to computers, the minds of the system designers can be liberated to focus more
on understanding the increasing complexity and how to handle it.

1.4 Problem Statement

Real-time embedded multimedia applications are often composed of several
individual tasks. However, embedded multimedia systems have a limited number
of processors to run these applications. To meet severe performance constraints
such as functioning robustly while consuming as low as possible energy, efficient
mapping of tasks to processors is necessary. Mapping an application onto a
multiprocessor system involves three main operations: (1) assigning tasks to
processors, (2) ordering tasks on each processor, and (3) specifying the time
at which each task executes. These operations are collectively referred to as
scheduling the application on the multiprocessor system.

In this thesis, we are interested in generating time- and energy-optimal
schedules of streaming applications. From generated schedules, we can determine
a trade-off between performance, energy consumption, and number of processors.
This facilitates system designers to build robust systems with longer lifetime, and
reduced development and manufacturing costs. The central research question
addressed by this thesis is formulated as follows.

‘How to manage performance and energy of streaming applications running
on a given number of (possibly heterogeneous) processors with respect to their
hard real-time requirements.’

1.5 Proposed Approach

For realising time- and energy-optimal scheduling of streaming applications, we
need an approach with the following components, as shown in Figure 1.3.

• Model of computation for streaming applications. Firstly, we need a model
of computation for streaming applications that captures all semantics of
an application such as inter-task dependencies and their synchronisation
properties. Furthermore, the model of computation must be able to
express the timing behaviour of an application. This thesis considers
synchronous dataflow (SDF) [LM87b] which is a popular formalism for
modelling streaming applications.

• Hardware platform model. Secondly, a multiprocessor hardware platform
model is required onto which the streaming applications’ tasks can be
mapped. The hardware platform model must also offer heterogeneous
mapping capabilities, in case a task cannot be mapped to all processors
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Streaming Application 
Model

Hardware Platform 
Model

Scheduling and 
Analysis

Translation Translation
Analysis 

Environment

Modelling Environment

Figure 1.3: Overview of the approach proposed in this thesis. A streaming
application is modelled, along with a hardware platform, using a modelling
environment. Afterwards, these models are translated to an analysis environment
which analyses performance and derives optimal schedules.

due to computation limitations. Moreover, the hardware platform model
must be decorated with various timing- and energy-related aspects such as
Dynamic Voltage and Frequency Scaling, Dynamic Power Management,
and Voltage and Frequency Islands. To model hardware platforms, we
introduce platform application models (PAMs) in this thesis.

• Analysis environment. Thirdly, we need an analysis environment for gen-
erating time- and energy-optimal schedules for an application. For this
purpose, we model SDF and PAMs in automata and utilise model checking
[CE81, QS82].

• Modelling environment. Lastly, we need an environment that allows effi-
cient modelling of SDF, PAMs, and mappings of SDF tasks to hardware
platforms. This is achieved with the help of model -driven engineering
[VSB+13].

Figure 1.3 shows the flow of our approach and how the aforementioned
components are related to each other. First, a streaming application captured
by an SDF model of computation, and a hardware platform represented as a
PAM, are modelled using model-driven engineering. Secondly, these models are
translated to the model-checking domain, which is used to generate the optimal
schedules and analyse the performance. In the following sections, we discuss the
components in Figure 1.3 in more detail.

1.5.1 Synchronous Dataflow

In an SDF graph, actors communicate with each other by sending ordered
streams of data-elements (termed tokens) over channels. When an actor fires,
it consumes tokens from its input channels, performs computations on these
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Figure 1.4: SDF graph of an MPEG-4 decoder. Each actor performs part of
the MPEG-4 decoding such as, frame detection (FD), variable-length decoding
(VLD), inverse discrete cosine transformation (IDC), motion compensation (MC),
and reconstruction (RC).

tokens, and produces results as tokens on output channels. In an SDF graph,
actors consume and produce a fixed amount of tokens when they fire. This
type of model of computation makes it possible to analyse various features such
as, a throughput [dKBS12, SBGC07, GGS+06], latency [SB09, GSB+07], and
minimum buffer requirements [GBS05, HRG08, WBS07].

Example 1.1. MPEG-4 is a popular data compression method of audio and
visual (AV) digital data. The SDF graph of an MPEG-4 decoder is shown
in Figure 1.4 [TKW12]. Each of the five actors performs part of the MPEG-
4 decoding. The MPEG-4 decoding starts in the actor FD (frame detector)
which detects the type of the incoming frame. Different frame types require
different number of macroblocks, which are processing units in image and video
compression formats. The SDF graph in Figure 1.4 contains the number of
macroblocks equal to five (shown by the number on the tail of the outgoing
channels of FD to VLD and IDC). The actor VLD (variable-length decoder)
decodes the variable number of bits, IDC (inverse discrete cosine transformation)
applies the data decoding, and MC (motion compensation) predicts a frame in
a video by accounting for motion of the camera and/or objects in the video.
The complete frame is decoded when the video is reconstructed by the actor RC
(reconstruction).

The actors are connected by the channels which correspond to (in principle
unbounded) first-in first-out (FIFO) buffers. The actors communicate over
the channels by exchanging tokens (unit of information that is communicated
between the actors) represented by dots. For example, in Figure 1.4, the number
of initial tokens in the channel from RC to FD represent how many frames the
SDF graph can process concurrently. As we have one token in the channel from
RC to FD in Figure 1.4, the SDF graph can process one frame at a time, and
next frame can start only after the completion of the first frame. �



8 1. Introduction

Timed1

Speed

snom

T1

(a) Schedule without DVFS. The speed of the
processor snom is too high, as a result the task
T1 finishes well ahead of its deadline d1, leading
to higher energy consumption.

Timed1

Speed

sopt

T1

(b) Schedule with DVFS. The speed of the pro-
cessor is decreased to sopt , which makes the task
T1 to finish exactly at the deadline d1, leading to
reduced energy consumption.

Figure 1.5: Schedules without and with DVFS

1.5.2 Hardware Platform Model

The SDF actors are mapped onto a hardware architecture termed Platform
Application Model (PAM). The PAM consists of multiprocessors, to handle the
concurrency of an SDF application. Moreover, the PAM is able to capture timing
aspects of SDF actors, and energy related features such as power consumption
of the processors. As mentioned earlier, the energy optimisation for modern
processors has become one of the most critical, challenging and essential criteria.
Therefore, the PAM is equipped with energy management techniques, namely
DVFS and DPM. We explain these techniques in the following.

Dynamic Voltage and Frequency Scaling

The speed (operations per second) of a processor scales cubically to its power con-
sumption [GHK14]. Dynamic Voltage and Frequency Scaling (DVFS) [WWDS94]
is a technique that decreases the clock frequency (and the voltage) of a processor,
leading to reduced speed and power consumption. In this way, power is consumed
for a longer time, but the overall global energy consumption1 is reduced. Other
than processors, DVFS is also used in devices such as flash storage, hard drives,
and network cards [LK10, SC01].

Example 1.2. Let us consider an application in Figure 1.5a having one task
T1 with a finishing deadline d1. The x-axis shows the time, and the y-axis shows
the speed. The amount of work for task T1 is represented by the area of the
task (time × speed). We assume that this task is running at the nominal speed
snom . As a result, it finishes well before its deadline.

Figure 1.5b shows the result after deploying DVFS, where we can see that
the speed of the same task reduces, and it finishes exactly at the deadline d1. As
there is a cubic relation between the speed and the power consumption (energy
per time unit), the overall energy consumption is reduced also. �

1Energy is the integral of power over time.
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Task Amount of Work Arrival Time Deadline

T1 5 0 19

T2 5 0 19

T3 5 14 19

Table 1.6: Task characteristics of the example application

Dynamic Power Management

We have seen earlier that DVFS reduces the energy consumption of a device
when it is active. Another novel energy management technique termed Dynamic
Power Management (DPM) [BBDM00] reduces the energy consumption of a
device when it is idle. DPM supports switching to a low power sleep mode, if
the device is idle for a longer period of time. For example, consider a processor
of a typical mobile phone, having three power states, i.e., ON, INACTIVE, and
OFF. If the processor is in the ON state, LCD and backlight of the phone is
turned on. If the phone remains idle for some time, the processor enters the
INACTIVE state in which the backlight turns off, but the LCD stays turned on.
If the phone stays idle for some more time, the LCD is turned off too (the OFF
state).

A device may have multiple sleep states. The deeper the sleep model, the
higher are the energy savings at the expense of transition latency2. Therefore,
a device is put to the sleep mode only if the energy savings at the sleep mode
outweighs the energy costs of transitioning to the sleep mode and back. The
combination of DPM and DVFS guarantees optimal energy reduction.

Example 1.3. Let us consider an application having three tasks given in
Table 1.6, adapted from [Ger14]. We assume that these tasks are mapped
on a single processor, and that a task cannot be interrupted after it has been
started, i.e., preemption is not allowed. The processor has a single sleep mode
where it consumes no power. The power consumption of the processor is 1 W
when it is idle. The power cost for transition to the sleep mode and back is 2 W
and 1 W respectively. We ignore the active power consumption of this example,
as it does not affect the mapping order of the tasks.

From Table 1.6, we can observe that task T3 cannot be started before 14
time units. Therefore, tasks T1 and T2 must be finished before 14 time units in
any order. Please note that whatever the ordering sequence and the starting
time of tasks T1 and T2, the total idle time of the processor is always equal to 4
time units.

Figure 1.7 shows one possible schedule of this example. Here, the processor is
idle between 5 and 7 time units, where the total idle power consumption is 2 W.
The total power cost of transition to the sleep mode and back is 3 W, which is
larger than the idle power consumption. Therefore, the processor stays idle, and

2Transition latency is the time required to switch to a sleep model and back.
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Time
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Figure 1.7: Suboptimal schedule (idle time energy = 4 W)

Time

T1 T2 T3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 1.8: Optimal schedule (idle time energy = 3 W)

does not go to the sleep mode. The same happens when the processor is idle
again between 12 and 14 time units. Hence, the total idle power consumption of
this schedule is 4 W.

In an optimal schedule of this example, the processor stays idle for 4 time
units continuously. In this way, the total power cost of the transition to the
sleep mode outweighs the idle power consumption. Therefore, the processor
moves to the sleep mode, which reduces the total idle power consumption to
3 W. Figure 1.8 shows one possible optimal schedule of this example, where the
processor is idle for only once between 10 and 14 time units. �

Voltage and Frequency Islands

For multiprocessors, DVFS comes in two favours, viz., local and global DVFS
[MSH+11]. While local DVFS changes the speed per processor, global DVFS
makes this change for all processors. Local DVFS is the more energy-efficient of
the two. However, local DVFS is expensive and complex to implement because
it requires more than one clock domain. In contrast, global DVFS requires a
simpler hardware design, but may lead to less reduction in power consumption
[MSH+11].

To balance the energy efficiency and design complexity, the concept of voltage
and frequency islands (VFIs) [HM07] is introduced. A VFI consists of a group
of processors clustered together, with each VFI running at a common speed.
The speed of the processors in the same VFI may differ from the processors in
other VFIs.

Example 1.4. Figure 1.9 shows an example hardware platform model with 12
processors (adapted from [OMCM07]). The processors are partitioned into three
VFIs shown by white, red, and green background colour. �

Scheduling Techniques

Now, that the methods for energy management in multiprocessors are presented,
we will explain the different scheduling techniques in the following. Recall



1.5. Proposed Approach 11

Figure 1.9: Hardware platform model having 12 processors partitioned into three
VFIs shown by white, red, and green background colour.

that the scheduling problem consists of (1) assigning tasks to processors, (2)
specifying the order in which the tasks fire on each processor, and (3) specifying
the time at which the tasks fire. For generating energy-optimal schedules, the
scheduling method needs to keep into account two additional parameters, i.e., (1)
the optimal idle and running time of the processors (controlled through DPM),
and (2) the optimal frequency to execute a certain task (throttled using DVFS).

Lee and Ha published a scheduling taxonomy based on performing tasks at
either compile-time or run-time [LH89], as shown in Table 1.10. Each scheduling
strategy is explained in the following.

Fully dynamic. The first strategy is fully dynamic, where all of the scheduling
steps are performed at run-time. When all input operands for a task are available,
the task is assigned to an idle processor, its order of firing is determined, and
executed. The most common fully dynamic scheduling strategies are earliest
deadline first (EDF), where the task having the earliest deadline is given priority,
and rate-monotonic scheduling (RMS) where the task with the lowest amount of
work is given priority.

Static-assignment. In static-assignment strategy, instead of assigning a task to
a processor at run-time, this step is done at compile-time. Then, using a local
run-time scheduler, tasks are assigned to a processor and executed.

Scheduling Assignment Ordering Timing

Strategy

Fully dynamic Run Run Run

Static-assignment Compile Run Run

Static-order Compile Compile Run

Fully static Compile Compile Compile

Table 1.10: Multiprocessor scheduling strategies
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Static-order. In static-order strategy, the compiler assigns the processor to
a task, as well as the order of firing. Afterwards, a local run-time scheduler
executes the tasks when their input data is available.

Fully static. The last strategy is fully static; here the compiler determines the
assignment, ordering, and the exact execution time of tasks. There exist different
methods for devising fully static scheduling, e.g., round-robin and Time Division
Multiplexing (TDM).

Fully static strategy is extensively used in scheduling of streaming applications
because of its low implementation overhead [KCMH10]. Because of the same
reason, this thesis also considers the fully static scheduling strategy.

1.5.3 Model Checking

For the analysis of timing and energy behaviour of a streaming application
mapped on a hardware platform, we also need a suitable analysis environment.
Nowadays, three performance analysis approaches are used for embedded ap-
plications, namely simulation, mathematical optimisation, and model checking.
We explain each of the approaches in the following.

Classical Simulation. Simulation is the process of designing a model of a real
system and conducting experiments with this model for the purpose either of
understanding the behaviour of the system or of evaluating various strategies for
the operation of the system [Sha75]. Simulation involves the following phases.

1. The first step is to generate an artificial history of the system.

2. The second step involves observation of the artificial history to derive
inferences concerning the functional characteristics of the real system.

A specific simulation termed Monte Carlo allows probabilistic analysis of a
system. This is done by repeated random sampling of the input variables
based on their distributions to obtain the statistics of the output variables
[Moo97, Fis96]. Monte Carlo method is guaranteed to terminate, but it is not
guaranteed to give the correct result. Simulation explores only a limited set of
possible execution of the system.

Mathematical Optimisation. Optimisation is an approach to find an optimal, or
the absolutely most efficient, way to achieve an objective while simultaneously
satisfying all constraints associated with achieving this objective [OPT, Sny05].
Typically, the objective is maximisation or minimisation of an analytical math-
ematical expression with a large amount of variables. A typical model in
mathematical optimisation consists of the following four key ingredients [Kal04].

• data representing constants in a system such as production capacity of a
manufacturing plant;

• variables representing parameters in a system such as production rate of a
manufacturing plant;
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Approach Optimality Schedule Ease of

Generation Modelling

Classical Simulation − − +

Optimisation + + −

Model Checking + + +

Statistical Model Checking +/− − +

Table 1.11: Comparison of different performance analysis approaches

• constraints representing restrictions of a system such as downtime of a
manufacturing plant caused by breakdowns, material shortages etc., and

• the objective function representing the goal such as maximisation of util-
isation rate of a manufacturing plant.

Model Checking. Model checking is a model-based verification technique that
analyses the system behaviour in a mathematically precise and unambiguous
way [CE81, QS82]. Using model checking, we can explore all possible states in
a brute-force way. In this way, it can be shown that a system truly (dis)satisfies
a property.

As mentioned earlier, we are interested in deriving optimal schedules. For
this purpose, the analysis environment must have the following features.

• It must guarantee that the achieved results are optimal.

• It must be able to generate execution traces (schedules).

• It must be model-based, in order to fit in our model-driven engineering
based framework.

Table 1.11 shows the comparison of these analysis approaches. Classical
simulative methods are mostly model-based and generate traces. However, they
cannot make sure that all interesting corner cases are covered even if we run
simulations exhaustively, and thus optimality cannot be guaranteed. On the other
hand, mathematical optimisation ensures optimality. However, mathematical
optimisation is difficult to model as it requires quantification of all ingredients
such as variables, constraints etc. in a mathematical form. Only model checking
provides all of these features, and hence we consider it as an analysis environment
in this thesis. In addition to model checking, we also consider statistical model
checking. In contrast to classical simulation, statistical model checking combines
simulations and statistical methods (such as sequential hypothesis testing) in
order to decide with some degree of confidence whether the system satisfies the
property or not.



14 1. Introduction

In particular, we use model checking for performing nondeterministic schedul-
ing, where the choices of the assignment, ordering, and the exact firing time of
actors is determined nondeterministically by a scheduler at design-time in such
a way that the generated schedules are time- or energy-optimal. In contrast,
classical fully static strategies such as round-robin and TDM cannot guarantee
optimality. For example, if we have an SDF graph where an actor rarely fires,
we still have to assign a time slice to that actor in the round-robin scheduling
strategy, which will affect the overall finishing time.

1.5.4 Model-Driven Engineering

To achieve optimal timing and energy management of a streaming application,
the last component we need is an efficient modelling environment. This thesis
considers the Model -Driven Engineering (MDE) [VSB+13] paradigm that treats
models as first-class citizens. In MDE, the important concepts of the target
domain are formally captured in a so-called metamodel . Separate metamodels
for the domains of interest help to keep the design modular. All models are
instances of a metamodel, or possibly an integrated set of metamodels. Moreover,
a model can be transformed to another via model transformations, defined at
the metamodel level. MDE also provides modularity, convenient extension
mechanisms, and interoperability between different tools.

1.6 Thesis Structure

1.6.1 Thesis Overview

Figure 1.12 shows the structure of the thesis. The whole thesis is divided into
the following three main parts.

• The first part Background contains Chapter 2 and 3. This part presents
background material required to understand later chapters. Therefore, the
readers are urged to study this part first.

• The second part Analysis and Scheduling contains Chapters 4 – 6. These
chapters explain different scheduling and analysis techniques for SDF
graphs mapped on multiprocessor hardware platforms. The chapters in
this part can be read independently after reading the first part.

• The third part Modelling and Validation contains two chapters. Chapter
7 introduces model-driven engineering for dataflow applications. This
chapter can be studied independently. Chapter 8 applies the methodology
in Chapter 4 in the case study of face recognition system. Thus, the readers
are advised to read Chapter 4 first before reading this chapter.

1.6.2 Contributions

This thesis makes several contributions to efficient modelling and optimal schedul-
ing of streaming applications on a multiprocessor platform. Given an SDF graph,
this thesis presents the following contributions.



1.6. Thesis Structure 15

Background
Analysis and
Scheduling

Modelling and
Validation

Introduction (Ch. 1)

SDF Graphs
(Ch. 2)

Model Checking
(Ch. 3)

Throughput-Optimal
(Ch. 4)

Energy-Optimal
(Ch. 5)

QoS of Batteries
(Ch. 6)

Case Study
(Ch. 8)

Model-Driven
Engineering

(Ch. 7)

Conclusions (Ch. 9)

Figure 1.12: Overview of the structure of the thesis

• Throughput optimisation. A technique of deriving a schedule that fits
on the given number of processors and maximises throughput is given
(Chapter 4). This technique can also handle heterogeneous processor
models, in which only specific processors can run a particular task due to
their computational limitations. Moreover, using this technique, we can
determine a trade-off between number of processors and throughput.

• Energy optimisation. An energy optimisation method that applies the
combination of Dynamic Power Management (DPM) and Dynamic Voltage
and Frequency Scaling (DVFS), and considers processors partitioned into
Voltage and Frequency Islands (VFIs) is presented (Chapter 5). We further
demonstrate that VFIs allow combining DPM and DVFS policy with any
granularity.

• Performance assessment . An approach of assessing performance, and
model checking of multiple batteries for different design alternatives is
presented (Chapter 6). It is further shown that our approach allows better
scalability than a state-of-the-art approach [JHBK09].

• Efficient modelling using MDE . A state-of-the-art model-driven engineer-
ing (MDE) framework is proposed (Chapter 7). In the framework, we
present a reusable set of three coherent, extensible metamodels. Further-
more, we define and apply model transformations from the dataflow domain
to the model-checking domain. Lastly, we demonstrate that our fully auto-
mated framework provides modularity, extensibility and interoperability
between tools.
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• Practical Validation. The technique of generating throughput-optimal
schedules presented in Chapter 4 is validated (Chapter 8). For this purpose,
an industrial case study termed “Face Recognition Application” provided
by Recore Systems, Netherlands is considered.

1.6.3 Contents and Origins of the Chapters

The remainder of the thesis is organised in the following way. The origins of the
chapters are also given where relevant.

• Chapter 2 presents streaming applications and their characteristics. It
also formally defines SDF graphs, and various notions associated with
them. We also introduce the state-of-the-art tool for SDF analysis termed
sdf3.

• Chapter 3 introduces the different model-checking formalisms considered
in the thesis, and describes them with the help of examples.

• Chapter 4 presents a technique of deriving throughput-optimal schedules
of an SDF graph on a given number of processors, using model check-
ing. This chapter is based on the paper “Resource-Constrained Optimal
Scheduling of Synchronous Dataflow Graphs via Timed Automata”, which
was published at ACSD 2014 [AdGH+14a].

• Chapter 5 extends the work in Chapter 4 and presents a method of
generating energy-optimal schedules of an SDF graph on a given num-
ber of processors, using model checking. This chapter is based on the
paper “Green Computing: Power Optimisation of VFI-based Real-time
Multiprocessor Dataflow Applications”, which was published at DSD 2015
[AHSvdP15a].

• Chapter 6 considers an intuitive battery model termed kinetic battery
models (KiBaMs) [MG93] in the hardware platform model. In this way,
the processors are dependent on the battery charge to run. Once the
batteries are empty, the processors cannot run any more. Moreover, using
statistical model checking, different performance aspects are determined.
This chapter is based on the paper “Model Checking and Evaluating QoS of
Batteries in MPSoC Dataflow Applications via Hybrid Automata”, which
was published at ACSD 2016 [AJSvdP16a].

• Chapter 7 proposes a MDE-based approach for SDF graphs. This chapter
is based on the paper “A Model-Driven Framework for Hardware-Software
Co-design of Dataflow Applications”, which was published at CyPhy 2016
[AYRS16a].

• Chapter 8 performs the scheduling of an industrial case study of face
recognition system mapped on a limited number of processors.

• Chapter 9 concludes this thesis and provides future directions.
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1.7 Conclusions

This chapter has laid the foundation for the rest of the thesis. In particular,
the problem statement of the thesis and the proposed approach is explained.
Over the past half century, the revolution in the hardware industry has changed
the shape of the modern-day embedded systems. As a result, more and more
applications and functionalities are being integrated in these systems. On the
one hand, this has improved the standards in our daily life. On the other
hand, this trend is causing negative effects on our environment due to increased
emission of greenhouse gases. Furthermore, many of the embedded systems
are battery-powered. This means that these systems must be recharged more
frequently, which is leading to depletion of the world’s energy sources. To cope
with such situation, green computing has become an important, crucial, and key
necessity of today’s world.

This thesis contributes in overcoming this challenge by presenting an ap-
proach which allows efficient energy management of multiprocessor streaming
applications, leading to energy-conscious systems. To realise this objective, the
following choices are considered in this thesis.

• Streaming (software) applications modelled as SDF graphs.

• Homogeneous/Heterogeneous multiprocessor hardware platform to execute
the streaming (software) tasks.

• Utilisation of MDE for efficient modelling of SDF graphs, hardware platform
models, and mapping of SDF actors to processors.

• Model checking for performance analysis and generation of optimal sched-
ules.





Part I

Background





CHAPTER 2

Dataflow Preliminaries

A
lgorithms for streaming applications can be naturally represented by
block diagrams or flow charts in which computational blocks are intercon-
nected by links that represent sequences of data values. Furthermore, the

utilisation of visual programming in block diagrams or flow charts provides an in-
tuitive specification mechanism for streaming applications. This thesis considers
synchronous dataflow (SDF) [LM87b] to represent streaming applications

One of the reasons for the popularity of SDF models is their ability to capture
parallelism in a streaming application. The imperative programming languages
such as C and FORTRAN are based on von Neumann architecture, in which
a small processor is attached to a big memory. Data items are present in the
memory in their “cells” from where they are fetched one by one. Afterwards,
these data items are sent to the central processing unit (CPU) in which the
actual computation is performed, and then the results are returned one by one to
their original cells. Thus, data in von Neumann architecture is static. This leads
to a significant overhead of data-dependency constraints, resulting in challenges
in compilation of such specifications onto the parallel hardware architectures.
SDF models, on the other hand, impose minimal data-dependency constraints,
enabling a compiler to detect parallelism. This also leads to efficient hardware
synthesis, where it is important to specify and exploit concurrency.

Another reason for the popularity of SDF models is that they offer several
analytical properties. The most important analytical property of SDF models
is to effectively exploit parallelism in a streaming application by scheduling
computations onto multiple processors at design-time. Given such a schedule
computed at design-time, we can extract information from it towards optimising
the final implementation.

Due to the success of SDF in industry, several commercial and research tools
have been developed around SDF and closely related models. Commercial tools
include Signal Processing Worksystem (SPW) from Cadence [PLN92, BL91],
COSSAP [RPM92] and Cocentric System Studio [BV00] from Synopsys, ADS
from Agilent, LabVIEW from National Instruments [AK98], and System Canvas
from Angeles Design Systems [MCR01]. Tools based on the SDF formalism
developed at different research laboratories and institutes include DESCARTES
[RPM92], DIF [HKB05], GRAPE [LEAP95], the Graph Compiler [VPS90], NP-
click [SPRK04], PeaCE [SOIH97], PGMT [Ste97], Ptolemy [BHLM94], StreamIt
[TKA02], the Warp Compiler [Pri92], Lustre [HCRP91], Lucid [WL85], and
sdf3 [SGB06].
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Chapter Outline. SDF graphs are formally defined in Section 2.1. Different
semantics associated with SDF graphs are presented in Section 2.2 and Section 2.3
explains how to model storage capacities in SDF graphs. Section 2.4 describes
the throughput analysis of SDF graphs. A state-of-the art tool implemented with
various SDF graph analysis and techniques termed sdf3 [SGB06] is explained
in Section 2.5. A comparison of SDF and other dataflow models is given in
Section 2.6. Section 2.7 explains different case studies modelled as SDF graphs.
Finally, Section 2.8 presents a summary of the chapter.

2.1 Synchronous Dataflow Models

In typical streaming applications, there is a set of tasks to be executed in a
certain order. An important part of these applications is a set of periodically
executing tasks which consume and produce fixed amounts of data. An SDF
graph is a directed, connected graph in which these tasks are represented by
actors, data communicated is represented by tokens , and (FIFO) buffers used to
transport tokens between actors are represented by channels. Each channel is
connected to precisely one producer and precisely one consumer. The execution
of an actor is known as an (actor) firing and the number of tokens consumed or
produced onto a channel as a result of a firing is referred to as consumption and
production rates respectively.

Example 2.1. Figure 2.1 shows an SDF graph with three actors u, v ,w . Arrows
between the actors depict the channels which hold tokens (dots). The numbers
near the source and destination of each channel are the rates.

u v w1 2 3 2
1

1

1

Figure 2.1: An example SDF graph (adapted from [dKBS12]).

Formally, the definition of an SDF graph is as follows.

Definition 2.2. An SDF graph is a tuple (A,D,Tok0) where:

• A is a finite set of actors,

• D is a finite set of dependency channels D ⊆ A2 × N2, and

• Tok0 : D → N denotes initial tokens in each channel.

A dependency channel d = (a, b, p, q) denotes a data dependency of actor b on
actor a. The firing of actor a results in the production of p tokens on channel d.
If the number of tokens on channel d is greater than q, actor b can execute, and
as a result, it consumes q tokens from channel d.
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u, 2 v, 2 w, 31 2 3 2
1

1

1

Figure 2.2: SDF graph in Figure 2.1 extended with time

Definition 2.3. The sets of input In(a) and output channels Out(a) of an actor
a ∈ A are defined as

In(a) = {(a0, a, p, q) ∈ D|a0 ∈ A, p, q ∈ N}

Out(a) = {(a, b, p, q) ∈ D|b ∈ A, p, q ∈ N}

Informally, if the number of tokens on every input channel di is greater than
qi, actor ai fires and removes qi tokens from every (a0i , ai, pi, qi) ∈ In(a). For
example, actor v in Figure 2.1 consumes two tokens from channel u-v and one
token from channel v-v, and produces three tokens on channel v-w and one token
on channel v-v after finishing firing.

Definition 2.4. The consumption rate CR(a, b, p, q) and production rate PR(a,
b, p, q) of a channel (a, b, p, q) ∈ D are defined as

CR(a, b, p, q) = q

PR(a, b, p, q) = p

Synchronous Dataflow Graphs and Time. So far, the firings of the actors have
been considered to be atomic. However, for analysing different system properties
like throughput and energy optimisation, the notion of time is required to be
associated with the firings of the actors in an SDF graph. In the following, a
timed SDF graphs is defined by assigning a certain execution time to each actor
[SB09].

Definition 2.5. A timed SDF graph is a tuple G = (A,D,Tok0, τ) consisting
of:

• an SDF graph (A,D,Tok0), and

• a function τ : A→ N≥1 that assigns an execution time to each actor.

Example 2.6. Figure 2.2 shows the SDF graph in Figure 2.1 extended with
the execution times which are represented by a number inside the actor nodes.
For example, actor v in Figure 2.2 takes 2 time units to finish its firing.

As we deal with the throughput and energy optimisation of the SDF graphs,
we only consider timed SDF graphs in the rest of this thesis.
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2.2 Semantics of SDF Graphs

The dynamic behaviour of an SDF graph G can be best understood if we define
it in terms of a labelled transition system LT S(G). The LTS LT S(G) is defined
by (S,Lab,→G) where S = (Tok ,TuC ) denotes the states, Lab = κ denotes
the labels, and →G⊆ S × Lab × S depicts the transitions. The ingredients of
LTS LT S(G), i.e., states, labels, and transitions are defined in the following
[GGS+06, SBGC07].

2.2.1 States

Definition 2.7. The state of an SDF graph G = (A,D,Tok0, τ) is a pair
(Tok ,TuC ) with the following components.

• Tok : D → N associates with each channel the number of tokens it currently
holds, and

• TuC : A → NN records for each firing of actor a ∈ A that occurred in
the past, the remaining execution time. Thus, TuC (a)(k) denotes that the
remaining time of completion of different firings of a ∈ A is exactly k time
units. Here, TuC stands for “time until completion”.

The initial state of an SDF graph is defined as (Tok0, {(a, ∅)|a ∈ A}) where
∅ denotes an empty multiset.

Example 2.8. Suppose that the state vector of the SDF graph in Figure 2.2 is
(Tok ,TuC ) where Tok corresponds to channels u-v, v-w, v-v respectively and
TuC represents the multisets for actor u, v and w respectively. The initial state
of the SDF graph in Figure 2.2 is ((0, 0, 1), (∅, ∅, ∅)). �

2.2.2 Auto-concurrency and Self-loops

By introducing the concept of multiset of numbers for actors, it is possible to have
multiple simultaneous firings of same actor also known as auto-concurrency.

Example 2.9. Actor u in Figure 2.2 can fire multiple times simultaneously. �

Self -loops are used to restrict auto-concurrency of any actor with initial
tokens on a self-loop equal to the desired degree of auto-concurrency.

Definition 2.10. A channel (a, b, p, q) ∈ D in an SDF graph is termed self-loop
if a = b.

Example 2.11. Channel v-v in Figure 2.2 is a self-loop. Since the number
of tokens on channel v-v is one, actor v cannot fire more than one at a time.
Hence, the degree of auto-concurrency is also one. If the number of tokens
on channel v-v is increased to two and there are sufficient tokens on all other
incoming channels, then actor v can fire twice simultaneously. Hence, the degree
of auto-concurrency also increases to two. �
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u

u v w

time
0 1 2 3 4 5 6 7

Figure 2.3: An example schedule of the SDF graph in Figure 2.2

2.2.3 Transitions

The transitions are of three forms, namely (1) the start transition labelled by
start and actor name representing the start of actor firing, (2) the end transition
labelled by end and actor name representing the end of actor firing, and (3)
discrete clock ticks labelled by tick representing the progress of time. These
transitions are defined in the following. To help understanding each transition,
an example schedule of the SDF graph in Figure 2.2 is given in Figure 2.3. Each
transition is explained with respect to this example schedule.

Definition 2.12. A transition of an SDF graph G = (A,D,Tok0, τ) from state
(Tok1,TuC 1) to (Tok2,TuC 2) is denoted as (Tok1,TuC 1) −κ→ (Tok2,TuC 2) and
label κ is defined as κ ∈ (A× {start, end}) ∪ {tick} and corresponds to the type
of transition.

• Label κ = (a, start) denotes the starting of a firing by an actor a ∈ A. This
transition may occur if for all a ∈ A and d ∈ In(a), Tok1(d) ≥ CR(d) and
results in Tok2(d) = Tok1(d)− CR(d) and TuC 2(a) = TuC 1(a) ] τ(a).

Here ] represents multiset union; that is we remove CR(d) tokens and
attach a’s execution time τ(a) to TuC 2 for all a ∈ A and d ∈ In(a).

Example 2.13. The actor v in Figure 2.3 takes the transition (v, start)
at 2 time units. As a result, two tokens are subtracted from the channel
u − v , and one token is subtracted from the channel v − v . �

• Label κ = (a, end) denotes the ending of a firing by an actor a ∈ A. This
transition may happen if for all a ∈ A and d ∈ Out(a), 0 ∈ TuC 1(a) and
results in Tok1(d) + PR(d) and TuC 2(a) = TuC 1(a)\{0}.
Here \ represents multiset difference. This transition produces the specified
number of tokens on the outgoing channel of a and removes from TuC 1

one occurrence of a with remaining executing time 0 for all a ∈ A and
d ∈ Out(a).

Example 2.14. In Figure 2.3, the actor v takes the transition (v, end) at
4 time units. As a result, three tokens are produced on the channel v − w ,
and one token is produced on the channel v − v . �

• Label κ = tick denotes a clock tick transition. This transition is enabled if
for all a ∈ A and d ∈ D, 0 /∈ TuC 1(a) and results in Tok2(d) = Tok1(d)
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Figure 2.4: SDF graph in Figure 2.2 with an additional channel v-u.

and TuC 2(a) = {(a,TuC 1(a)) 	 1|a ∈ A} where TuC 1(a) 	 1 denotes a
multiset of elements of TuC 1(a) decreased by one. This transition decreases
by 1 the remaining execution time for all actor occurrences.

Example 2.15. In our running example, there are two tick transitions
between 2 and 4 time units because no end transition is enabled in that
period. At 2 time units, the actor v starts firing. After two tick transitions,
the remaining execution time of the actor v equals 0, and therefore end
transitions is taken at 4 time units. �

In the following, the important concepts related to SDF graphs, i.e., execution,
deadlock, and consistency are defined.

2.2.4 Execution

Definition 2.16. An execution of an SDF graph G = (A,D,Tok0, τ) is a path
in the LTS LT S(G) defined as a sequence of states and transitions χ = s0 −κ0−→
s1 −κ1−→ . . . starting from initial state of SDF graph such that sn −κn−→ sn+1 for all
n ∈ N. An execution is maximal if and only if it is finite with no transitions
enabled in the final state, or if it is infinite.

2.2.5 Deadlock

SDF graphs may end up in a deadlock due to inappropriate initial tokens in case
of non-terminating programs.

Definition 2.17. An SDF graph contains a deadlock if and only if it has a
maximal execution of finite length [GGB+06].

Example 2.18. Assume that in the SDF graph in Figure 2.2, we add a channel
from actor v to u having a single initial token as shown in Figure 2.4. After
a single firing of actor u, one token will be consumed from channel v-u and
produced on channel u-v. Now actor u cannot fire any more as there is no token
on channel v-u. Furthermore, actor v also requires two tokens on channel u-v to
fire where there is only one token. Hence, the SDF graph cannot proceed and is
in the deadlock state.

However, if we increase the number of initial tokens in the channel v-u from
one to two, the SDF graph is deadlock free.
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2.2.6 Consistency

SDF graphs may also suffer from unbounded accumulation of tokens in a certain
channel due to inappropriate consumption and production rates. To avoid
this effect, there is a property termed consistency which must hold [Lee91].
Consistency is defined in terms of repetition vector , which is a classical method
for ensuring that there is no unbounded accumulation of tokens on any channel.
For consistency to hold, the SDF graph must be connected. The repetition
vector is defined as follows.

Definition 2.19. A repetition vector of a connected SDF graph (A,D,Tok0, τ)
is a function γ : A→ N0 such that for every channel (a, b, p, q) ∈ D from a ∈ A
to b ∈ A, the following relation exists.

p.γ(a) = q.γ(b)

Repetition vector γ is termed non-trivial if and only if γ(a) > 0 for all a ∈ A.
An SDF graph is consistent if it has a non-trivial repetition vector.

The relation in Definition 2.19 can be written in the form of matrix-vector
as:

Γγ = 0, (2.1)

Here Γ is termed as the topology matrix of an SDF graph and 0 is a null vector.
The rows in Γ are indexed by the channels (a, b, p, q) ∈ D, and columns by the
actors a ∈ A in an SDF graph. For every channel (a, b, p, q) ∈ D from a ∈ A to
b ∈ A and actor a′ ∈ A, the entries of the topology matrix are defined as:

Γ ((a, b, p, q), a′) =


p, if a′ = a

−q, if a′ = b

0, otherwise.

(2.2)

The formulation 2.1 assumes that the SDF graph does not contain any self-
loops, channels whose source and sink actors are identical, such as channel v-v in
Figure 2.4. In such a case, if we have a self-loop d′, then source and target actor
of d′ are same which makes equation 2.2 self contradictory. In an SDF graph, a
self-loop rules out the possibility of having a schedule if p 6= q; otherwise it does
not have any effect on the existence of a schedule and is therefore not added to
the topology matrix.

From equations 2.1 and 2.2, it follows that the repetition vector of an SDF
graph with n actors numbered from 1 to n is a column vector of length n. If
each actor a′ is invoked a number of times equal to the a′th entry of γ, then the
number of tokens in each channel of the SDF graph remains unchanged. Thus,
a repetition vector generates a finite length schedule, while avoiding unbounded
accumulation of tokens on the channels (i.e., consistency). By repeating this
finite length schedule indefinitely, one can generate infinite schedules of an SDF
graph.
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Figure 2.5: An example schedule of the SDF graph shown in Figure 2.2. The
shaded regions show a finite length schedule in which all actors fire according to
their repetition vector entries.

Example 2.20. Consider the example SDF graph in Figure 2.2, for which the
topology matrix is given below.

Γ =

(
1 −2 0
0 3 −2

)
If we solve the relation Γγ = 0 with Γ given above, the repetition vector

γ results in γ = 〈4, 2, 3〉. Thus, the graph is consistent. An example schedule
consisting of four firings of actor u, two firings of actor v, and three firings of
actor w is shown in Figure 2.5. Here, we are repeating this schedule for two
times. In the same fashion, we can generate an infinite schedule of this SDF
graph. �

In the following, we discuss some concepts related to consistency of an
SDF graph, taken from [LM87a]. Consider a tree-structured graph. This is a
connected graph with no cycles, ignoring the direction of the channels.

Lemma 2.21. A topology matrix Γ for a tree-structured SDF graph with n
actors has rank n − 1.

Proof. Proof is by induction. This lemma is clearly true for two-actor SDF
graph. Assume that the lemma is also true for some n-actor SDF graph, with a
topology matrix Γn = n− 1. Adding one node and one channel connecting the
new actor to the graph will yield n+ 1-actor SDF graph. A topology matrix for
the new graph can be constructed from the old one by adding one column for
the new actor and one for the new channel, as follows:

Γn+1 =

[
Γn|0
ρT

]
(2.3)

where 0 is a column vector full of zeros, and ρT is a row vector corresponding
to the new channel. The last entry in ρT must be nonzero since it indicates
the number of tokens consumed or produced by the new actor on the new
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channel. Hence, the last row is linearly independent from the other rows, so
rank(Γn+1) = rank(Γn) + 1. Since any tree-structured SDF graph can be
constructed by starting with a two-actor SDF graph and adding one more actor
and channel repeatedly, rank(Γn) = n− 1 for any n. �

Lemma 2.22. A topology matrix Γ for a connected SDF graph with n actors
either has rank n or n− 1.

Proof. First, it is obvious that the topology matrix Γ cannot exceed n, because
Γ has only n columns. Now, we show that rank of topology matrix Γ cannot
be less than n − 1. Consider any spanning tree of a connected SDF graph (a
spanning tree is a tree that includes every actor in the graph). This spanning
tree is a subgraph, i.e., it has all the actors of the original SDF graph but only a
subset of the channels. Assume ΓT to be the topology matrix for this subgraph.
Following lemma 2.21, rank(ΓT ) = n − 1. Adding channels to the subgraph
simply adds rows to the topology matrix. Adding rows to a matrix can simply
increase the rank, if the rows are linearly independent of existing rows, but
cannot decrease it. Hence, the rank of Γ cannot be less than n− 1. �

Lemma 2.23. For a connected SDF graph with n actors and topology matrix
Γ , rank(Γn) = n− 1 is a necessary condition for the SDF graph to be consistent.

Proof. If a nonzero repetition vector γ in Γγ = 0 (equation 2.1) is required, it
implies that rank(Γ ) < n, where n is the dimension of γ. From lemma 2.22,
rank(Γ ) is either n or n− 1, so it must be n− 1. �

If Γ has a rank n−1, we obtain the following facts by applying linear algebra
[LM87a]:

Fact 2.24. There exists a vector γ 6= 0 such that Γγ = 0.

Fact 2.25. If Γγ = 0 then Γ (Kγ) = 0 for any constant K .

Fact 2.24 concludes from lemma 2.23. Fact 2.25 explains that if a repetition
vector γ of a connected SDF graph exists, i.e., the SDF graph is consistent,
then the SDF graph is also consistent for any multiple of γ. In the remaining
chapters, we always assume consistency.

2.3 Modelling Channel Capacities

An SDF graph typically only models an application. When mapping an ap-
plication onto a hardware platform, the chosen platform imposes an extra set
of constraints, that we need to take into account. Communication between
actors in an SDF graph requires channel storage capacity. In case of an uni-
processor, we can consider to have a single memory that is shared between all
channels. This provides us with the maximum number of tokens stored at any
time during the execution of the SDF graph, by which we can determine the
required channel capacities. In context of multiprocessor where memories are
not always shared between all processors, we can use a separate memory for
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Figure 2.6: SDF graph shown in Figure 2.2 with channel capacities

each channel. Minimisation of the memory space for multiprocessors is studied
in [BELP96, BML99, GBS05]. In this thesis, we assume that each channel has
its own memory space which is not shared with other channels. We therefore
define a channel capacity function, which yields the maximum number of tokens
that can be stored on a channel.

Definition 2.26. The channel capacity of an SDF graph G is a function ε :
D → N ∪ {∞} that assigns to each channel d ∈ D the maximum number of
tokens it can hold.

The capacity of a channel (a, b, p, q) ∈ D is modelled in an SDF graph by
adding a channel (bε, aε, qε, pε) ∈ D with CR(a, b, p, q) = PR(bε, aε, qε, pε) and
PR(a, b, p, q) = CR(bε, aε, qε, pε) [Stu07]. The capacity of a channel (a, b, p, q) ∈
D is denoted by the number of initial tokens on the channel (bε, aε, qε, pε) ∈ D.

Example 2.27. The SDF graph shown in Figure 2.2 after adding the channel
capacities is shown in Figure 2.6. The channel capacities are ε(u, v, p, q) = 2 and
ε(v, w, p, q) = 6. Now, the number of tokens on channels (u, v, p, q) and (v, u, p, q)
cannot exceed 2. Same is the case for channels (v, w, p, q) and (w, v, p, q) where
the number of tokens never exceeds 6. �

2.4 Throughput Analysis of SDF Graphs

This section explains the throughput analysis of SDF graphs after introducing
necessary terms. If we suppose that an SDF graph (A,D,Tok0, τ) has a repetition
vector γ, then we define iteration as follows.

Definition 2.28. An iteration is a set of actor firings such that for each a ∈ A,
the set contains γ(a) firings of a.

Definition 2.29. The throughput for an execution χ of an SDF graph G de-
noted as TP(G,χ) is the average number of graph iterations that are executed
per time unit in χ. That is,

TP(G,χ) = lim
t→∞

iter(χ, t)

t

where iter(χ, t) is the number of iterations that are finished up to time t of the
execution χ.
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2.4.1 Self-timed Execution

The maximal throughput of an SDF graph G is determined from a specific type
of execution known as a self -timed execution [GGS+06] in which every actor
fires as soon as it is enabled. This subsection is mostly based on the work in
[GGS+06].

Definition 2.30. An execution χ = s0 −κ0−→ s1 −κ1−→ . . . of an SDF graph G =
(A,D,Tok0, τ) in the LTS LT S(G) is self-timed if and only if for all states
s ∈ χ it holds that,

clock transitions occur when Tok1(d) � CR(d) for all a ∈ A and d ∈ In(a),
i.e., when no start transitions are enabled.

In the self-timed execution of an SDF graph, between two clock transitions,
there can be some interleaving of simultaneously enabled start and/or end
transitions. However, as the order in which these transitions occur is completely
independent of each other, the final state before each clock transition, and hence
also the state after each clock transition, is always the same. Self-timed SDF
graph behaviour is therefore deterministic in the sense that all states immediately
before and after clock transitions are completely determined and independent of
the selected execution.

Theorem 2.31. [GGS+06] For every consistent and strongly connected SDF
graph, the state-space of a self-timed execution χst is of the form χst = χpre.χ

∞
per

with a finite sequence of states χpre (transient phase) followed by a periodic
sequence χ∞per repeated infinitely (periodic phase).

Theorem 2.31 states that the state-space of an SDF graph consists of a
particular shape. That is, it contains a transient phase followed by a periodic
phase. The reason is that in a consistent SDF graph, every actor is dependent
on tokens from other actors to fire. This ensures that the number of tokens
accumulated on any channel is bounded. This leads to the fact that the auto-
concurrency of an actor is bounded as only an finite number of copies of an actor
can be firing at the same time. If the number of tokens accumulated on any
channel and auto-concurrency of each actor is bounded, the number of states of
an SDF graph in a self-timed execution is finite. This guarantees that a certain
state that was visited before is revisited implying the fact that execution is then
in the periodic phase. As explained earlier, each actor fires according to the
repetition vector in the periodic phase. For each actor a ∈ A in the SDF graph,
we define its corresponding entry in the repetition vector γ as γ(a).

Example 2.32. The self-timed execution χst of the SDF graph in Figure 2.6 is
explained in Figure 2.7. It is worth noting that after two simultaneous firings of
actor u, an iteration is completed every 9 time units and hence the throughput
is TP(G,χst) = 1

9 . Note that in each iteration, the actor u fires four times, v
two times, and w three times which is exactly the repetition vector as proven in
Theorem 2.31.

Similarly, the self-timed execution in terms of the state vector (Tok ,TuC )
of the same SDF graph is shown in Figure 2.8 where Tok corresponds to the
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Figure 2.7: Self-timed execution of the SDF graph shown in Figure 2.6. After
the transient phase (initial two firings of u), the SDF graph enters the periodic
phase shown by the shaded regions. As the SDF graph takes 9 time units to
finish one iteration in the periodic phase, the throughput is 1

9 .

• • • • • • • • • • • •
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〈u-v〉 : 0 u : ∅
〈v-w〉 : 0 v : ∅
〈w-v〉 : 6 w : ∅
〈v-u〉 : 2
〈v-v〉 : 1

〈u-v〉 : 0 u : ∅
〈v-w〉 : 0 v : {2}
〈w-v〉 : 3 w : ∅
〈v-u〉 : 0
〈v-v〉 : 0

〈u-v〉 : 2 u : ∅
〈v-w〉 : 0 v : ∅
〈w-v〉 : 2 w : {∅, ∅}
〈v-u〉 : 0
〈v-v〉 : 1

〈u-v〉 : 0 u : {∅, ∅}
〈v-w〉 : 1 v : ∅
〈w-v〉 : 3 w : 1
〈v-u〉 : 0
〈v-v〉 : 1

(u,start)
(u,start) tick tick
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(w,start) tick tick
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(w,end)
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Figure 2.8: Self-timed execution of our running example in terms of state vector
(Tok , TuC ) consisting of a transient and periodic phase.

channels u-v, v-w, w-v, v-u, and v-v respectively. Similarly, TuC corresponds
to the multisets for actor u, v, and w respectively. We can also see that the
state-space of the SDF graph consists of a transient and periodic phase. In the
transient phase, the actor u fires twice, and in the periodic phase each actor
fires according to its entry in the repetition vector. The periodic phase has a
duration of 9 time units consisting of precisely one iteration. �

Example 2.33. Figure 2.9 shows another SDF graph having two actors y and
z, with the repetition vector γ = 〈1, 1〉. The self-timed execution χst of this SDF
graph is shown in Figure 2.10. In this example, note that the periodic phase
contains three graph iterations. Moreover, in each iteration, both actors y and z
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Figure 2.9: An example SDF graph
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Figure 2.10: Self-timed execution of the SDF graph shown in Figure 2.9. The
shaded regions show the periodic phase containing three graph iterations in
which all actors fire according to their repetition vector entries.

fire once which is exactly the repetition vector. As the periodic phase takes 2
time units to finish, the throughput is TP(G,χst) = 3

2 . �

The tool sdf3 considers self-timed execution to calculate the throughput of
SDF graphs. The detailed explanation of sdf3 is given in the next section.

2.5 sdf3: Synchronous Dataflow Analysis Tool

This section discusses a state-of-the-art tool for the analysis of SDF graphs
termed SDF For Free (sdf3) [SGB06]. Besides analysis, sdf3 also supports
visualisation of SDF graphs and generation of random SDF graphs. This thesis
extensively utilises sdf3 for modelling SDF graphs. Afterwards, these SDF graphs
are automatically translated to the model-checking formalisms for scheduling
using model-driven engineering. More details are given in Chapter 7. It is worth
mentioning that sdf3 assigns consumption and production rates to actors using
the notion of ports. In contrast to sdf3, we assign consumption and production
rates to channels, thus simplifying the definition of SDF graphs.

For an SDF graph, sdf3 supports computation of (self-timed) throughput
and repetition vector. Furthermore, sdf3 also has a support to check if an SDF
graph is consistent, connected, or deadlock free. sdf3 also offers algorithms to
model required auto-concurrency of actors using self-loops, and model channel
capacities using the technique explained in Section 2.3. A function to visualise
SDF graphs through the popular graph visualisation tool termed dotty [GN00]
is also integrated in sdf3.

sdf3 uses an XML-based format for designing SDF graphs. The layout of
XML format used in sdf3 is given in the next subsection.
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2.5.1 Layout of sdf3 XML

The main layout of XML specification for an example SDF graph in sdf3 is
given in Listing 2.1. Each element is explained in the following, taken from
[SDF].

Listing 2.1: An example SDF graph modelled in XML format of sdf3

1 <sdf3 xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

version ="1.0" type="sdf"

2 xsi:noNamespaceSchemaLocation ="http ://www.es.ele.tue.nl/

sdf3/xsd/sdf3 -sdf.xsd">

3 <applicationGraph name="app">

4 <sdf name=" example" type=" Example">

5 <actor name="a1" type="A">

6 <port name="p1" type="out" rate ="1"/>

7 </actor >

8 <actor name="a2" type="A">

9 <port name="p1" type="in" rate ="1"/>

10 <port name="p2" type="out" rate ="1"/>

11 </actor >

12 ...

13 <channel name="d1" srcActor ="a1" srcPort ="p1" dstActor ="a2"

dstPort ="p1" initialTokens ="1"/ >

14 ...

15 </sdf >

16 <sdfProperties >

17 <actorProperties actor="a1">

18 <processor type="p1" default ="true">

19 <executionTime time ="1"/>

20 </processor >

21 </actorProperties >

22 </sdfProperties >

23 </applicationGraph >

24 </sdf3 >

sdf3. Line 1 assigns the value sdf to the type attribute of the sdf3 element
specifying that the XML file contains the specification of an SDF graph. The
version of the XML syntax is specified in the (required) version attribute.

applicationGraph. The actual specification of an SDF graph is given in the
applicationGraph element on line 3. This element occurs at most once in the
XML file. The optional name attribute for the applicationGraph element allows
specifying a name for the SDF graph, where the default value is no name.

sdf. The structure of the SDF graph is contained inside the sdf element on line
4. The sdf element has two required attributes. The first attribute is name,
which is used to specify the name of the SDF graph. The second attribute is
type, which is used to specify the type of the SDF graph.

actor. Lines 5-7 specify an actor of an SDF graph. The actor element is given
on line 5. Similar to an SDF graph, an actor has a name and type attribute.
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port. In sdf3, an actor contains one or more ports which denote the consumption
and production rates. Furthermore, actors connect to channels using these ports.
Line 6 specifies a port element. The port element has three required attributes.
The first attribute termed name specifies a logical name for the port. This name
is used when connecting the port to a channel. The second attribute termed type
can have the value in or out . The type attribute specifies if an actor consumes
or produces tokens via that port. When a port is of type in, an actor consumes
tokens from the channel to which the port is connected, during the firing. When
a port is of type out , an actor produces tokens on the channel to which the port
is connected, during the firing.

channel. Line 13 specifies a channel of an SDF graph with a channel element. A
channel element has five required attributes. The first attribute termed name is
used to specify the name of the channel. The remaining attributes are explained
as follows.

• srcActor . The srcActor attribute represents the source actor of the channel.

• srcPort . The port on which the source actor is connected to the channel is
denoted by the srcPort attribute.

• dstActor . The dstActor attribute represents the sink actor of the channel.

• dstPort . The port on which the sink actor is connected to the channel is
denoted by the dstPort attribute.

The channel element contains an optional attribute termed initialTokens
that represents the number of initial tokens present in that channel. When this
element is absent, it is assumed that the channel contains zero initial tokens.

sdfProperties. While the structure of the SDF graph is contained inside the sdf
element, the properties of the actors, channels and the graph are contained inside
the sdfProperties element on line 16. The sdfProperties element may contain
zero or more actorProperties used to specify the properties of the actors (e.g.,
execution time).

actorProperties. The actorProperties element on line 17 requires the actor
attribute. The value of this attribute must contain the name of the actor to
which the properties specified inside this element apply.

In sdf3, the execution time of an actor is not attached directly to an actor.
Rather, an actor is associated to a processor to which the execution time of the
actor is associated. Thus, the actorProperties element must contain one or more
processor elements.

processor. The processor element mentioned on line 18 requires the type at-
tribute. The value of this attribute specifies the processor type for which the
properties contained inside the element are valued. The processor element may
also have a default attribute. This attribute can either have the value true or
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Algorithm Description

consistency Checks consistency of the graph

deadlock Checks absence of deadlock of the graph

connected graph Checks whether the graph is connected

repetition vector Computes the repetition vector of the graph

statistics Computes some statistics (e.g., actor and channel

count) of the graph

throughput Computes the throughput of the graph

buffersize Computes the throughput/storage-space trade-off

point of the graph

Table 2.11: Analysis algorithms of sdf3

false. When the default attribute is not given, its default value is false. The
default attribute is used in case that more then one processor element is con-
tained inside a actorProperties element. Then the value of the default attribute
for one of the processor elements is set to true. The analysis algorithms of sdf3

then only considers the processor element whose default attribute is set to true.

executionTime. The processor element must contain a executionTime element
as mentioned on line 19. This element has one required attribute termed time.
The value of this attribute specifies the (worst-case) execution time (in time-
units) of the specified actor. sdf3 uses this attribute to calculate the self-timed
throughput of an SDF graph.

2.5.2 Analysis Algorithms of sdf3

sdf3 contains several SDF graph analysis algorithms. The command line options
of sdf3 are as follows:

sdf3analysis−sdf −−graph < file > −−algo < algorithm >

The mandatory argument −−graph specifies the link to the file containing
the SDF graph. The another mandatory argument −−algo specifies the analysis
algorithm to be executed. Some of the relevant algorithms are given in Table
2.11.

2.6 Comparison of Dataflow Models

There exists several variations of models of computation (MoCs) for dataflow,
modelling different aspects of dataflow applications. This section, based on the
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Figure 2.12: Comparison of dataflow models of computation (taken from [Stu07])

work in [Stu07, dG16], compares these MoCs.

A MoC must have the following three features for designing and analysing a
system.

• Expressiveness and Succinctness. The first step in a system design and
analysis is to model it. Expressiveness refers to which type of system
properties, a model can capture, and succinctness refers to the compactness
of these models.

• Analysability. After modelling a system, the second step is to analyse it.
The analysability of a MoC is determined from how many algorithms are
available to analyse different system properties. Moreover, analysability
also includes the run time of these algorithms on SDF graphs with the
given number of actors, independent of the considered hardware platform.

• Implementation efficiency. After a system is modelled in a certain MoC,
and analysed, the last step is to generate schedules. Implementation
efficiency refers to the complexity of the scheduling problem, and the
(code) size of the generated schedules.

Different MoCs for dataflow are discussed with respect to these features in
the following. The MoCs are divided into two types, (1) ones dating to SDF
graphs, and (2) ones extending SDF graphs. The comparison of different MoCs
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MoC Distinctive Feature Tool Support

Computation Earliest notion of dataflow in the Yes

Graphs context of parallel computing

HSDF Graphs Simplistic MoC leading to faster analysis Yes

KPNs Models data-dependency Yes

SDF Graphs Models multi-rates Yes

CSDF Graphs Models dynamic behaviour Yes

BDF Graphs Models data-dependency Yes

SADF Graphs Models data-dependency and dynamic behaviour Yes

Table 2.13: Distinctive features of dataflow models of computation

is given in Figure 2.12 [Stu07]. Table 2.13 summarises the distinctive features of
these MoCs.

2.6.1 Models of Computation dating to SDF Graphs

Computation Graphs. Computation graphs [KM66] are introduced by Karp and
Miller in 1966. Similar to SDF graphs, actors in computation graphs consume and
produce tokens on channels, and each channel contains initial tokens. Therefore,
each channel in a computation graph has a consumption and production rate,
and initial tokens. However, in contrast to SDF graphs, channels in computation
graphs have one additional parameter, i.e., a threshold value indicating the
minimum number of tokens that must be present on the channel before tokens
may be read from it.

The distinction made in computation graphs between the minimum number
of tokens needed for an actor to fire and the actual number of tokens consumed by
a firing makes computation graphs more succinct. However, this extra condition
also makes analysis algorithms more complex.

(Homogeneous) Synchronous Dataflow. Homogeneous Synchronous Dataflow
(HSDF) graphs correspond to a subclass of Petri Nets [Pet62] termed marked
graphs. HSDF graph are studied by Raymond Reiter in 1968, as a special case
of computation graphs [Rei68]. In an HSDF graph, an actor consumes a single
token from each of its incoming channel, on the start of its firing. An actor
finishes its firing by producing a single token on each of its outgoing channel.
HSDF graphs can be converted into SDF graphs and vice-versa [KCMH10].

Kahn Process Networks. In 1974, Gilles Kahn wrote an influential paper intro-
ducing a MoC for distributed systems, termed Kahn Process Networks (KPNs)
[Kah74]. Gilles Kahn termed these networks “a simple language for parallel
programming”. In KPNs, processes communicate with each other by sending
data over unbounded first-in first-out channels. A process can write to a channel
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whenever it wants. But, to read an empty channel, the process blocks and
waits until the data is available. The key idea of KPNs is that the networks of
sequential processes ensure functional determinacy , which means that, when fed
with the same input sequence, the computation yields the same output sequence.

KPNs are sufficiently expressive to capture all possible properties of a dataflow
application. But, to analyse different system properties such as throughput
and buffer requirements, one need to know all possible inputs, and every input
may require a different schedule. Therefore, KPNs have lower analysability and
implementation efficiency.

Synchronous Dataflow. Synchronous Dataflow (SDF) graphs [LM87b] intro-
duced in 1987, deal with multi-rate data dependencies. In terms of Petri Nets,
SDF graphs correspond to weighted marked graphs [TCWCS92]. In an SDF
graph, actors consume and produce at a fixed but different rates. In comparison
to HSDF graphs, SDF graphs can have multi-rates.

As regular SDF graphs deal with multi-rates, they are more expressive and
succinct than HSDF graphs. But, this also means that the complexity of the
analysis algorithms for SDF graphs is higher (non-polynomial). In contrast, the
complexity of the analysis algorithms for HSDF graphs is polynomial. Thus,
HSDF graphs are more analysable than SDF graphs. Dealing with multi-
rates also leads to having complex scheduling problems in case of SDF graphs.
Therefore, the implementation efficiency of SDF graphs is lower than HSDF
graphs where we only have single rates.

2.6.2 Models of Computation extending SDF Graphs

Cyclo-static Dataflow. SDF graphs represent static streaming applications, i.e.,
the consumption and production rates per firing of an actor are constant. Greet
Bilson et. al introduced a variant of SDF graphs termed cyclo-static dataflow
(CSDF) graphs in 1996 [BELP95, BELP96], which overcomes this limitation.
In a CSDF graph, actor cycles through finite number of periodically varying
phases. In each phase, the execution time of actors may change. Moreover, the
production and consumption rates of channels may also change in each phase.

The fact that CSDF graphs are more dynamic than SDF graphs, makes
CSDF graphs more expressive. But, this also means that the analysis algorithms
are slower than the algorithms for SDF graphs. Moreover, the implementation
efficiency of CSDF graphs would also be lower. Conversion of CSDF graphs into
SDF graphs is studied in [PPL95].

Boolean Dataflow. Both SDF and CSDF graphs cannot capture data-dependent
behaviour. This makes it impossible for an actor to choose between two inputs
depending on the value of a token on a third input. The Boolean Dataflow (BDF)
graph [Lee91] introduced by Edward Lee in 1991 fills this gap. BDF extends SDF
with two additional actors termed switch and select . The switch actor reads the
data from its input, and copies to one of its output based on the value of a boolean
control token. The role of the select actor is reversed, i.e., it reads the data
from one of its input based on the value of a boolean control token, and copies
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to its outputs. Having an ability to model data-dependent behaviour makes
BDF graph more expressive than SDF graphs. But this also makes it difficult
to generate schedules at design-time. Therefore, run-time scheduling must be
performed, which in turns reduces the implementation efficiency. Furthermore,
run-time scheduling also leads to the fact that BDF graphs are less analysable
than SDF graphs at design-time.

Scenario-Aware Dataflow. Scenario-Aware Dataflow (SADF) [TGB+06] is a
recently introduced MoC, which extends SDF graphs with a concept of scenarios .
Each individual scenario is modelled by an SDF graph. The scenarios represent
dissimilar modes of operation originating, for example, from different parameter
settings, sample rate conversion factors, or the signal processing operations to
perform. Thus, as compared to SDF graphs, SADF graphs allow modelling of
dynamic behaviour. Furthermore, each scenario in an SADF graph has data-
dependent consumption and production rates controlled with a control actor.
Hence, in contrast to SDF and BDF graphs, SADF graphs allow varying rates,
which makes them more succinct than SDF and BDF graphs.

Because it is possible to change scenarios inside an iteration of an SADF
graph, the general SADF MoC requires run-time scheduling. This makes its
implementation not very efficient. Moreover, the execution time of the analysis
algorithms of SADF graphs is longer compared to similar analysis algorithms on
equally sized CSDF or SDF graphs [Stu07]. The reason is that SADF graphs can
model more behaviours than SDF graphs and all behaviours need to be analysed.
sdf3 offers support to convert SADF graphs to equivalent SDF graphs.

This thesis focuses on generating optimal schedules for streaming applica-
tions. The MoC representing the streaming applications must offer novel and
efficient analysis algorithms. Moreover, the MoC must have as simple as possible
implementation, so that the generated schedules can be implemented on a hard-
ware platform easily. If we look at Figure 2.12, we see that these requirements
are fulfilled by HSDF, SDF, and CSDF graphs. The HSDF MoC is not chosen
because models of realistic case studies can be very large. The CSDF MoC is not
selected as its implementation efficiency is lower than SDF graphs. Therefore,
we consider SDF to represent streaming applications in this thesis. Furthermore,
SDF graphs lie in between HSDF and CSDF graphs in terms of generalisation,
i.e., CSDF graphs generalise SDF graphs, and SDF graphs generalise HSDF
graphs [dG16]. Therefore, the scheduling techniques discussed in thesis can be
extended to CSDF and HSDF graphs.

2.7 Case Studies

2.7.1 MPEG-4 Decoder

MPEG-4 already introduced in Chapter 1, is a method of defining compression
of audio and visual digital data. The processing unit in video compression is
termed macroblock . A macroblock typically consists of 16×16 array of pixels.
The two major picture types used in the different video algorithms are I and P.
An I-frame is an “Intra-coded picture”, representing a conventional static image
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Figure 2.14: SDF graph of an MPEG-4 decoder [TKW12]

file. On the other hand, an P-frame is an “Predicted picture”, and it carries
only the changes in the image from the previous frame.

The SDF graph of an MPEG-4 decoder is shown in Figure 2.14 [TKW12].
Each of the five actors performs part of the MPEG-4 decoding, and are explained
as follows.

• The MPEG-4 decoding starts in the actor FD (frame detector) which
detects the type of the incoming frame. Different frame types require a
different number of macroblocks. The SDF graph in Figure 2.14 contains
the number of macroblocks equal to five (shown by the number on the tail
of the outgoing channels of FD to VLD and IDC ).

• The actor VLD (variable-length decoder) decodes the variable number of
bits.

• The actor IDC (inverse discrete cosine transformation) applies the data
decoding.

• The actor MC (motion compensation) predicts a frame in a video by
accounting for motion of the camera and/or objects in the video.

• The complete frame is decoded when the video is reconstructed by the
actor RC (reconstruction).

2.7.2 MP3 Decoder

MP3 decoding is a frame based algorithm that transforms a compressed stream
of data into pulse-code modulation (PCM) data. The SDF graph of an MP3
decoder is shown in Figure 2.15 [DSB+11]. Each actor is explained as follows.

• MP3 decoding starts in the actor Huffman, where a specific variable-length
decoding termed Huffman is performed.

• The next step is requantisation. This is done by the actors Req0 and Req1 .
In this step, continuous input signals are converted to discrete ones.
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Figure 2.15: MP3 decoder [DSB+11]

• The output of the actors Req0 and Req1 is not always ordered in the same
way. The actors Reorder0 and Reorder1 reorder the output generated in
the requantisation step.

• MP3 has two different channel modes. The first mode termed mono means
that the audio has a single channel. The other model termed stereo deals
with the audio having two channels. In our case, we consider stereo. The
actor Stereo combines the both audio channels.

• The actors Antialias0 and Antialias1 reduce a specific distortion in the
audio channels termed aliasing .

• The actors IDC0 and IDC1 further compress the data using inverse mod-
ified discrete cosine transformation.

• The actor Freq . Inv0 and Freq . Inv1 compensates for the negation of values
by the actors IDC0 and IDC1 .

• The final step in MP3 decoding is to synthesise sampled analogue signals
represented using pulse-code modulation. This is performed by the actors
Synth0 and Synth1 .

2.7.3 MP3 Playback Application

The SDF graph of an MP3 playback applications is shown in Figure 2.16, adapted
from [Wig09, WBS07]. It consists of the following three actors.

• an MP3 decoder (MP3 ),



2.7. Case Studies 43

MP3,1 SRC,1 DAC,1
470 6

6520470

8 1

11908

1

1

1 1

1

1 1

1

1

Figure 2.16: SDF graph of an MP3 playback application, adapted from [Wig09,
WBS07]

• a sample rate converter (SRC ), and

• a digital-to-analogue (DAC ) converter.

The MP3 decoder processes the input MP3 file, while digital-to-analogue
converter converts the digital output stream from the MP3 decoder to analogue,
so that it can be played on an analogue device such as a speaker. However, the
sampling rate of both MP3 decoder and digital-to-audio decoder must match,
which is performed by the sample rate converter.

2.7.4 Audio Echo Canceller

Audio echo cancellation is an important step in improving voice quality by
removing echo or noise present in an audio signal. Figure 2.17 shows the
SDF graph of an audio echo canceller used in a mobile phone, adapted from
[HGWB12]. It contains the following four actors.

• a sample rate converter (SRC ) for matching the sampling rate of the user’s
voice to the rest of the components in the audio echo canceller,

• an analogue-to-digital (ADC ) converter for converting the analogue signal
of the echo or noise to a digital format,

• an actual echo canceller (AEC ) for separating the user’s voice from the
echo or noise, and

• output (OUT ) which is the echo free voice of the user.

OUT,1 AEC,1 ADC,1

SRC,1

1
44

23

231

23
44

1

123
23

44

1 1

23

1
1

1 1

1

1 1
1

1

1

1

1

Figure 2.17: SDF graph of an audio echo canceller, adapted from [HGWB12]
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2.7.5 Bipartite Graph

Bipartite graph is a well-known and extensively used case study in the literature
of SDF analysis [BML99, GBS05]. A bipartite graph is a graph whose vertices
can be divided into two disjoint sets, such that every edge connects a vertex from
one set to another. That is, there should not be any edge that connects vertices
of the same set. The SDF graph containing four vertices (actors) is shown in
Figure 2.18, where the actors a and b are in the same set, and the actors c and
d are in the same set.
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Figure 2.18: Bipartite graph [BML99, GBS05]

2.8 Conclusions

This chapter reports on various notions of dataflow. First we have introduced
the need for dataflow models. An important conclusion is that dataflow mod-
els better capture parallelism in streaming applications and impose minimal
data-dependency constraints, compared to imperative programming languages.
Furthermore, dataflow models offer several analytical properties which allow
generation of schedules for multiprocessor hardware architectures at design-time.

Moreover, we have formally introduced SDF graphs, and studied different
notions associated to SDF graphs, such as auto-concurrency, execution, deadlock,
consistency, and throughput. This chapter also has presented the state-of-the-art
sdf3 tool for generating, analysing, and visualising SDF graphs. Furthermore,
we also have compared some of the most well-known dataflow models. The
comparison shows that the SDF model is best suited for generating schedules
and analysing streaming applications at design-time. The chapter ends with
presenting several real-life case studies modelled as SDF graphs, which are
considered in later chapters.



CHAPTER 3

Model Checking of Timed and Hybrid

Automata

S
treaming applications have become an inevitable, integral, and tangible
part of a human life, e.g., navigation and video games. With the advance-
ment of hardware technology, streaming applications with more and more

complexity are continuously being developed and implemented on embedded
multimedia systems, e.g., the support for 3D and VR-based games in mobile
phones. Most of the embedded multimedia systems are battery-powered and have
limited computational power. Hence, efficient scheduling of streaming applica-
tions is very important and significant to obtain robust performance and longer
system lifetime. A wide variety of techniques can be applied to achieve this goal,
such as classical simulation [Sha75], mathematical optimisation [OPT, Sny05],
and model checking [CE81, QS82]. This thesis considers model checking for its
advantages of guaranteeing optimality and generating schedules.

Model checking is a method for formal verification of concurrent systems. It
started with two seminal papers, written independently by Clarke and Emerson
[CE81] and by Queille and Sifakis [QS82]. In fact, Clarke, Emerson, and Sifakis
received 2007 ACM Turing Award for their roles in developing model checking
into a highly effective verification technology, widely used in the hardware and
software industries [TUR07]. In this thesis, we utilise model checking to derive
optimal schedules for streaming applications modelled as SDF graphs mapped
on hardware architectures. For this purpose, both SDF graphs and hardware
architectures are translated to the model-checking domain.

Chapter 2 introduced SDF graphs and different concepts related to them.
In this chapter, we explain different model-checking formalisms which are used
later in this thesis. In particular, Timed automata, Priced timed automata,
and Hybrid automata are presented, with the help of examples. Moreover, this
thesis considers the uppaal toolset [LPY97] as a model checking tool for its
advantages of generating time- and cost-optimal schedules. This chapter also
discusses how timed automata, priced timed automata, and hybrid automata
are modelled using uppaal.

Chapter Outline. Section 3.1 provides an informal overview of model check-
ing, followed by a formal coverage of timed automata in Section 3.2. Then, priced
timed automata is presented in Section 3.3 and Section 3.4 discusses hybrid
automata. Finally, Section 3.5 concludes by summarising the contributions of
this chapter.
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3.1 Model Checking

Model checking operates under the assumption that the system under verification
has a finite number of states, which can be modified through state transitions.

System

Model M

Requirements

Property ϕ

Model Checkerfail pass

counterexample

Figure 3.1: An overview of model checking.

Figure 3.1 shows an overview of model checking, taken from [Tim13]. The
model checker tool takes as an input a formal description of the system (M),
and a formal description of the requirements (ϕ) which we call a property . The
model checker then performs exhaustive state-space exploration, and tries to
prove the system correctness, or more precisely that the system is a model of
its requirements: M |= ϕ. However, if the opposite is true, then there exists
some state in the system or some execution through the system, that violates
the required property. In this case, a nice feature of the model checker is that it
delivers a counterexample in the form of an execution trace. The counterexample
can be used to improve the system specification.

3.1.1 Temporal Logics for Model Checking

For model checking, model M of the system under consideration needs to be
accompanied with a specification of the property of interest ϕ that is to be veri-
fied. Temporal Logics [Pnu77] have been deemed a good method for specifying
properties of concurrent systems [Lam83]. Temporal logics are generally categor-
ised based on whether the properties they specify are either in the linear -time
or the branching-time domain.

Linear-time domain. Linear temporal logic (LTL) [Pnu77] is termed linear,
because time is qualitatively viewed as linear: at each moment of time there
is only one possible successor state and thus each time moment has a unique
possible future [BK08]. In particular, LTL has operators for saying that a
condition over a set of atomic propositions will hold eventually or that it always
holds. An extension of LTL is metric temporal logic (MTL) [Koy90] which has
real-time metrics and constraints used for the verification of real-time systems.
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Branching-time domain. Not all properties are expressible in linear time. For
example, in circuit design, the reset property states that “it is always possible to
reach a certain reset state (even if it is never reached actually)” cannot translated
to LTL. LTL can only state that the reset state is actually reached, and not that
it can be possibly reached.

Branching-time logic allows specification of such proprieties by means of ex-
istential and universal quantification operators. The most well-known branching-
time logic is computation tree logic (CTL) [CE81].

3.1.2 Quantitative Model Checking

Traditionally, model checking only focused on the qualitative aspects of the
behaviour of a system. For instance, verifying that a certain undesirable event
can never occur, e.g., buffer overflowing, or that a certain desirable event is
guaranteed to eventually occur, e.g., message arrival.

Over the past two decades, the focus has shifted towards the quantitative and
probabilistic aspects of the behaviour of a system. For example, the least amount
of time required for a message to arrive, the probability of successful message
transmission etc. Using quantitative model checking, real-time systems can be
modelled by timed automata (TA) [AD90, AD94] and hybrid automata (HA)
[DDL+12]. One novel extension of timed automata is the annotation of models
with costs resulting in priced timed automata (PTA) [RTP04, BFH+01b].

Software tools such as the uppaal toolset [LPY97], PRISM [KNP11], MRMC
[KKZ05, KZH+11], and CADP [GLMS11] are dedicated quantitative model check-
ers that have been applied to a number of case studies. This thesis utilises the
uppaal toolset as a model checker because of its distinctive feature of generating
time- and cost-optimal traces for reachability properties.

Reachability properties. Reachability properties ask whether a given state
formula ϕ can be satisfied by any reachable state. The result of checking
such a property is either a trace leading to a state satisfying ϕ or a message
that no reachable state satisfies ϕ. Reachability properties are often used while
designing a model to perform sanity checks. For instance, if we have a model of a
communication protocol involving a sender and a receiver, reachability properties
can be used to check whether it is possible for the sender to send a message at
all or whether a message can possibly be received. We express that some state
satisfying ϕ is reachable using the logical formula E♦ϕ. Here, E♦ represents
that the property ϕ eventually holds in some state of the system.

We specify the scheduling problem of an SDF graph as a reachability property
in this thesis, and use the uppaal toolset to find out the optimal trace which
is translated to a schedule. By uppaal toolset, we refer to classical uppaal
[BDL04], as well as its extensions termed uppaal cora [BLR05] and uppaal
smc [DDL+12]. In the uppaal toolset, the reachability property is written using
the syntax E <> ϕ.

Nondeterminism. Quantitative aspects are often analysed in the presence of
nondeterminism: unquantified freedom for a system to choose from a set of pos-
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sible alternative behaviours [Tim13]. In other words, a system is nondeterministic
if at some point the precise behaviour of the system is unknown to us (although
the possible alternatives are specified). While probabilistic approaches assign
the likelihood to each alternative to happen, nondeterminism always leaves the
choice open. For example, a video game nondeterministically choosing between
respawning the character or aborting the game, after having been killed may
always abort the game, respawn if the game is played online and abort oth-
erwise, or do something completely different. Nondeterminism may occur due
to an unspecified ordering of events between two or more (partly) independent
parallel components, an interaction with an unpredictable environment, or just
underspecification.

Scheduler synthesis using nondeterminism. An SDF graph normally exhibits
interleaving because any actor that has enough input tokens available can fire. In
this thesis, the scheduling choices, i.e., assignment, ordering, and the exact firing
time of actors on processors are left nondeterministic for the uppaal toolset
to resolve. In this way, the uppaal toolset searches the whole state-space, and
explores each scheduling choice to check whether it is (time- or energy-) optimal.
In the end, the uppaal toolset generates a trace in which only the optimal
scheduling choices are considered, resulting in a (time- or energy-) optimal trace.

Now model checking is introduced, we discuss the following model-checking
formalisms. We also explain how these formalisms are modelled using the uppaal
toolset.

• Timed automata. Timed automata (TA) were introduced by Alur and Dill
[AD90, AD94] as a natural and versatile model for real-time systems. They
extend labelled transition systems with real-valued clocks. TA has the
following two major distinctive features.

– They are able to express realistic constraints using real-valued clocks;
and

– Model checking of TA is decidable [AD90, AD94].

In this thesis, clocks are used to model the execution time of SDF actors
in Chapter 4. Then, uppaal is utilised for throughput-optimal scheduling
of SDF graphs.

• Priced timed automata. Priced timed automata (PTA) extend TA with costs
[RTP04, BLR05], which we use to model power consumption of processors
in Chapter 5. Afterwards, uppaal cora is utilised for energy-optimal
scheduling of SDF graphs.

• Hybrid automata. Hybrid automata (HA) extend TA with continuous
variables [HR98], which are used to model hybrid behaviour of batteries in
Chapter 6. Furthermore, uppaal smc is used to analyse the performance
of SDF graphs mapped on battery-powered processors.

The reachability problems for hybrid automata are known to be undecidable
in general [Ras05]. uppaal smc addresses this challenge by offering



3.2. Timed Automata 49

statistical model checking approach generalised to handle undecidable
problems [BDL+12] .

3.2 Timed Automata

This section introduces the basic definitions of syntax and semantics of timed
automata (TA) [AD90, AD94]. In the following, we use B(C) to denote a
set of clock constraints for a finite set of clocks C. That is, B(C) contains all
conjunctions over simple conditions of the form x on c or x − y on c, where
x, y ∈ C, c ∈ N and on∈ {<,≤,=,≥, >}.

3.2.1 Definition

Definition 3.1. A timed automaton A is a tuple (L, l0,Act , C,E, Inv), where

• L is a set of locations;

• l0 ∈ L is the initial location;

• Act is a finite set of actions, co-actions and internal λ-actions;

• C is a finite set of clocks;

• E ⊆ L×Act×B(C)× 2C × L is a set of edges, and

• Inv : L→ B(C) assigns an invariant to each location.

Example 3.2. Figure 3.2 shows an example of a timed automaton of an auto-
matic lamp. Clock y measures the progress of time. The timed automaton of the
lamp has three locations, i.e., off, dim and full, where the initial location is off.
In the beginning, the lamp moves from off to dim location representing that the
lamp is turned on and is emitting dim light. The lamp can stay in dim location
for at most 10 time units because of the invariant y ≤ 10. From here, the lamp
can take two actions: either switch off or give full light. If full light is to be
emitted, the lamp has to take the edge in less than 5 time units represented by
the guard condition y < 5. Otherwise, the lamp moves to off location by taking
the edge with the guard condition y ≥ 5. From full location, the lamp switches
off automatically between 10 and 15 time units.

3.2.2 Semantics

A clock valuation is a function η : C → R≥0 from a set of clock to the non-
negative real numbers. Let RC be a set of all clock valuations. Edges are labelled
with tuples (g, α,D) where g is a clock constraint on the clocks of the timed
automaton, α is an action, and D ⊆ C is a set of clocks. We can interpret an

edge l −g:α,D−−−→ l′ as a timed automaton moving from location l to l’ if guard g is
satisfied. As a result, an action α is performed and any clock in D is reset to
zero. Let η0(x) = 0 for all x ∈ C. We will say that the clock values denoted by
η satisfy the guard g written as η |= g. Similarly, the clock values denoted by η
satisfies Inv(l), written as η |= Inv(l). The semantics of TA are defined below.
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off
dim

y≤10
full

y≤15

y:=0

y≥5

y:=0
y<5

y≥10

Figure 3.2: Timed automaton of an automatic lamp. The lamp is either off or
emits dim or full light.

Definition 3.3. Let (L, l0,Act , C,E, Inv) be a timed automaton. The semantics
of TA is defined as a labelled transition system 〈S, s0,→〉 where S ⊆ L× RC is
the set of states, s0 = (l0, η0), and →⊆ S × (R≥0 ∪ Act) × S is the transition
relation such that,

• (l, η) −d→ (l, η + d) if ∀d′ : 0 ≤ d′ ≤ d⇒ η + d′ |= Inv(l),
where for d ∈ R≥0, η + d maps each clock x in C to the value of η(x) + d,
and

• (l, η) −a→ (l′, η′) if there exists e = (l, a, g, r, l′) ∈ E s.t. η |= g, η′ = [r 7→
0]η, and η′ |= Inv(l′),
where [r 7→ 0]η denotes the clock valuation which maps each clock in r to 0
and satisfies with η over C\r.

Time-critical systems are often modelled as a parallel composition of TA,
which is denoted by a parallel composition operator || parametrised with hand-
shaking actions H . Actions in H need to be carried out by both involved timed
automata jointly.

Definition 3.4. Let Ai = (Li, l
0
i ,Act i, Ci, Ei, Inv i), i = 1, 2 with H ⊆ Act1 ∩

Act2 and C1 ∩ C2 = ∅. The timed automaton A1||A2 is defined as,

(L1 × L2, l
0
1 × l02,Act1 ∪Act2, C1 ∪ C2, E, Inv1 ∧ Inv2)

The edge set E is the smallest set that contains the following transitions:

• for α ∈ H :

l1 −g1:α,D1−−−−→1 l
′
1 ∧ l2 −

g2:α,D2−−−−→2 l
′
2

〈l1, l2〉 −g1∧g2:α,D1∪D2−−−−−−−−−−→ 〈l′1, l′2〉

• for α /∈ H :

l1 −g:α,D−−−→1 l
′
1

〈l1, l2〉 −g:α,D−−−→ 〈l′1, l2〉
and

l2 −g:α,D−−−→2 l
′
2

〈l1, l2〉 −g:α,D−−−→ 〈l1, l′2〉
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off
dim

y≤10
full

y≤15 idle

press?
y:=0

y≥5
press?

press?
y:=0
y<5

press?
y≥10

press!

Figure 3.3: Timed automaton of a lamp and user, synchronised on a shared
action press. The lamp is either off or emits dim or full light, controlled by the
pressing of the switch by the user.

off, idle
dim, idle

y≤10
full, idle

y≤15

press
y:=0

press
y≥5

press
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y<5
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y≥10

Figure 3.4: Timed automaton Lamp||H={press}User

Example 3.5. Figure 3.3 shows the timed automaton in Figure 3.2 parallel
composed with user. In this way, the lamp is not automatic anymore, and it
is controlled by the user. The timed automaton of the user has one location
only, i.e., idle. Both automata synchronise on the action press representing the
pressing of the switch to turn the lamp on or off. The complete model system is
given by

Lamp||H User

where H = {press}. The composite timed automaton Lamp||H User is shown
in Figure 3.4. The LTS of this example has the following transitions for all
d, t ∈ R≥0, where t is a shorthand for the clock valuation η(y) = t.

(off , idle, t) −d→ (off , idle, t+ d) for all t ≥ 0 and d ≥ 0

(off , idle, t) −press−−−→ (dim, idle, 0) for all t ≥ 0

(dim, idle, t) −d→ (dim, idle, t+ d) for all t ≥ 0 and d ≥ 0 with t+ d ≤ 10

(dim, idle, t) −press−−−→ (full , idle, 0) for all 0 ≤ t < 5

(dim, idle, t) −press−−−→ (off , idle, t) for all 5 ≤ t ≤ 10
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(full , idle, t) −d→ (full , idle, t+ d) for all t ≥ 0 and d ≥ 0 with t+ d ≤ 15

(full , idle, t) −press−−−→ (off , idle, t) for all 10 ≤ t ≤ 15. �

3.2.3 Timed Automata in uppaal

uppaal supports additional syntax for convenient modelling of TA. In particular,
uppaal models can declare variables that can be used in guards, and be updated
on edges. This subsection explains the related features extended to TA by
uppaal modelling language, taken from [BDL04].

• A system model in uppaal consists of a network of processes. The de-
scription of a model has three parts, i.e., declarations, automata templates
and system definition.

• Declarations are either local or global and may contain declarations of
clocks, arrays, (bounded) integers, channels and types. For example,

– const int a = 1; represents constant a with value 1 of type integer.

– bool b[8], c[4]; represent two boolean arrays b and c, with 8 and 4
elements respectively.

– int[0, 100] a = 5; denotes an integer variable a with the range [0, 100]
initialised to 5.

– int a[2][3] = {{1, 2, 3}, {4, 5, 6}}; denotes a multidimensional integer
array a with default range and an initialiser. Arrays are permitted
for clocks, channels, integer variables and constants.

– clock x, y; denote two clocks x and y.

– chan d; represents a channel d.

– urgent chan e; represents a urgent channel e.

– struct {int a; bool b;} s1 = {2, true}; denote an instantiation of a
structure where the members a and b are set to 2 and true.

– Custom types are defined with the C-like typedef construct. For
example, the following declares a structure type A containing an
integer a, and a boolean b:
typedef struct
{
int a;
bool b;
} A;

– meta int swap;
int a;
int b;
assign swap = a; a = b; b = swap;
express a meta variable used to swap the contents of two integers a
and b.
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Integers, booleans, and arrays and records over integers and booleans
can be marked as meta variables by prefixing the type with the
keyword meta. Meta variables are stored in the state vector, but are
semantically not considered part of the state, i.e., two states that only
differ in meta variables are considered to be equal.

• Templates, which are blueprints of TA, have local declarations and a set
of parameters of any type, e.g., int , chan. A template is instantiated in
the system definition.

• In the system definition, the whole system model is defined in terms of
one or more concurrent processes (instances of templates).

• Automata synchronise through channels. Binary channels model binary
and, are declared as chan c. An edge labelled as c! denotes a sender and
synchronises with another edge labelled as c? representing a receiver.

• Broadcasting channels model asymmetric one-to-many synchronisation
and are declared as broadcast chan c. In a broadcast channel, one sender
c! can synchronise with an arbitrary number of receivers c?. Note that
broadcasting channels are non-blocking.

• Urgent locations are semantically equivalent to adding an extra clock x,
that is reset on all incoming edges, and having an invariant x ≤ 0 on the
location. Hence, time is not allowed to pass when the system is in an
urgent location.

• Committed locations are even more restrictive on the execution than urgent
locations. A committed location cannot delay and the next transition must
involve an edge from one of the committed locations.

• User defined functions are defined either globally or locally to the tem-
plates. Local functions can access the template parameters.

Expressions in uppaal can be written over clocks and variables and are
placed using the following labels . All of these expressions are associated to edges
except invariants which are associated to locations.

• A select label contains a comma-separated list of name : type expressions
where name is a variable name and type is a defined type. The select label
nondeterministically binds name to a value in the range of type.

• Guards are side-effect free expressions on edges and evaluates to a boolean.
Only clocks, integer variables and constants can be referenced. Guards
over clocks are essentially conjunctions of clock bounds. An edge annotated
with a guard is enabled in a state if and only if the guard evaluates to true.

• Processes can synchronise over channels. A synchronisation label is of a
form Expression! or Expression? or can be empty. A synchronisation label
must be side-effect free.
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• When executed, the update expression of the edge is evaluated. An update
is a comma-separated list of expressions with side-effects. Expressions in
an update label must refer to clocks, integers, variables and constants only.
They may also call functions.

• An invariant is a side-effect free label which can refer to clocks, integers,
variables and constants only. An invariant is a conjunction of conditions of
the form x < e or x <= e where x is a clock and e evaluates to an integer.

The uppaal interface has three tabs, i.e., the editor, the simulator and the
verifier. The key idea is that the user models a system graphically in the editor,
simulates it to check its behaviour, and verifies it in the verifier against a set of
queries.

uppaal also offers the following options for generating a counterexample or
witness trace (if there is one) during verification. The trace is loaded into the
simulator after verification. Traces can be of the following types.

• Shortest. Generate a shortest trace, i.e., a trace with the smallest number
of transitions.

• Fastest. Generate a fastest trace, i.e. a trace with the shortest accumulated
time delay.

In this thesis, we are interested in generating fastest traces, as they represent
throughput-optimal schedules.

Example 3.6. Consider a bridge puzzle (adapted from the uppaal distribution)
having four soldiers s1, s2, s3, and s4 who need to safely cross a river via the
bridge at night. There is only one flash light available. As the bridge is completely
dark, it is not possible to cross the bridge without the flash light. There cannot
be more than two soldiers on the bridge at a same time. Furthermore, each
soldier has a different walking speed, i.e., s1, s2, s3, and s4 takes 5 min, 10 min,
20 min, and 25 min respectively. The flash light has two levels of producing
light, i.e., dim or full. If one soldier is on the bridge, dim light is sufficient. If
there are two soldiers, it is important to have full light. Otherwise, the flash
light is off.

Figure 3.5a shows the uppaal model of a soldier. This automaton has four
locations, i.e., unsafe, crossing, safe, and going back representing if the soldier
has not crossed the bridge, is currently crossing the bridge, has safely crossed
the bridge, or is going back to return the flash light respectively. The variable
walking speed is a parameter representing the walking speed of each soldier. The
clock variable y records progress of time. As there are four soldiers who need to
cross the bridge, this automaton is instantiated four times.

Figure 3.5b shows the uppaal model of the flash light. The flash light can
either be off, or emit dim or full light depending on the number of soldiers on
the bridge. Both automata synchronise on the channels take and release. The
integer variable L represents if the flash light is present either at the safe or
unsafe side of the bridge. If the value of L is 0, it is present at the unsafe side of
the bridge. Otherwise, it is present at the safe side. Initially, L is 0.
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(a) uppaal model of a soldier who wants to cross a
bridge. Each soldier can take the flash light via the
channel take, and release it after crossing the bridge
via the channel release. The variable walking speed is a
parameter representing the walking speed of each soldier.

(b) uppaal model of
the flash light capable
of producing dim or full
light.

Figure 3.5: uppaal models of soldier and flash light

Consider a soldier on the unsafe side of the bridge, i.e., location unsafe in
Figure 3.5a. If the flash light is also present on the same side, the soldier can take
the flash light via the channel take, and move to the location crossing representing
that the soldier is now crossing the bridge. The flash light automaton moves
to the location marked U representing that this location is urgent. In urgent
locations, time is not allowed to progress. If there is another soldier who wants
to cross the bridge, the flash light automaton moves to the location full by
synchronising on the channel take. This represents the fact that there are two
soldiers on the bridge, and thus full light is required. Otherwise, the flash light
automaton moves to the location dim representing the fact that there is only
soldier on the bridge, and dim light is sufficient.

Consider there are two soldiers on the bridge, and the flash light automaton is
in the location full. After a soldier crosses the bridge, then the soldier automaton
moves to the location safe from the location crossing, by synchronising on the
channel release. As a result, the flash light automaton moves to the location
dim representing that currently there is only one soldier on the bridge. The
edge from the location crossing to the location safe is annotated with a guard
condition y ≥ walking speed representing the walking speed of the soldier.

From the location dim, the flash light automaton can only move to the
location free by synchronising on the channel release. As a result, the second
soldier also crosses the bridge safely and the respective automaton moves to the
location safe. The value of L changes to 1, denoting that the flash light is on the
safe side. However, the two remaining soldiers on the unsafe side also need the
flash light to cross the bridge. Thus, one of the safe soldiers needs to go back.

The scheduling problem in which we are interested is what is the minimum
time for everyone to cross the bridge. In uppaal, we use the following query
and ask for the fastest trace.

E <> (soldier1.safe and soldier2.safe and soldier3.safe and

soldier4.safe)
�
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Figure 3.6: Time-optimal schedule of the soldiers for crossing the bridge. The
white and red blocks denote if the soldier is moving from the unsafe side to the
safe side or vice versa respectively.

Here, soldier1 represents the name of the automaton modelling the soldier
s1, and so on.

Figure 3.6 shows a time-optimal schedule of the soldiers for crossing the
bridge. First the soldiers s1 and s2 cross the bridge, and the soldier s1 comes
back with the flash light. Afterwards the soldiers s3 and s4 cross the bridge,
and the soldier s2 returns with the flash light. Finally the soldiers s1 and s2
cross the bridge. The whole process takes 60 minutes.

3.3 Priced Timed Automata

Price timed automata (PTA) extend TA with costs [RTP04, BLR05]. Costs
can either be accumulated in states, proportionally to the residence time, or
by taking an edge. Similar to TA, PTA can be analysed for a wide number of
properties, including absence of deadlocks, safety, and liveness.

3.3.1 Definition

Definition 3.7. A priced timed automaton PT over clocks C and actions Act
is a tuple (L, l0,Act , E,P, Inv), where

• L is a set of locations;

• l0 ∈ L is the initial location;

• Act is a finite set of actions, co-actions and internal λ-actions;

• E ⊆ L×Act×B(C)× 2C × L is a set of edges;

• P : (L ∪ E)→ N assigns costs to edges and locations, and

• Inv : L→ B(C) assigns an invariant to each location.

Example 3.8. Figure 3.7 extends the example in Figure 3.3 with costs, making
it a PTA model. For simplicity, the invariants are removed. The costs are used
to model power consumption of the lamp. The priced timed-automaton of the
lamp has three locations, i.e., off, dim and full. Initially, the lamp is in the off
location. The PTA of the user contains one location only, i.e., idle. If the user
presses a switch once and synchronises with press, then the lamp is on and emits
dim light, while consuming power equal to 4 W (indicated by the differential
equation p′ == 4). The user has to press again to switch off the lamp, or to get
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Figure 3.7: Priced timed automaton of a lamp and user, modelled by extending
Figure 3.3 with costs. The costs are used to model the power consumption of
the lamp. The user can choose the lamp to be off, or to emit dim or full light.
The lamp consumes no power while off. Otherwise, a higher amount of light
requires a higher power consumption.

full light. If full light is required, the switch must be pressed rapidly (in less than
5 time units indicated by the condition y <5), in which case the lamp consumes
more power (8 W). To switch off the lamp, the user has to wait at least 5 time
units (indicated by the condition y ≥5). The clock y is used to detect if user is
fast (y <5) or slow (y ≥5). The cost variable is represented by p.

3.3.2 Semantics

Clock values in PTA like TA are represented as a function termed clock valuations
from C to the non-negative reals R≥0. Let RC be a set of all clock valuations.
The semantics of PTA are defined as a priced transition system [BFH+01a]. A
priced transition system is a labelled transition system, where the transition
relation is given by a partial function from transitions to the non-negative reals,

intuitively being the cost of the transition. We write l −g:α,D−−−→
p
l′ whenever the

function is defined on the edge (g, α,D) and the cost is p.

Definition 3.9. Let (L, l0,Act , E,P, Inv) be a priced timed automaton. The
semantics of PTA is defined as a labelled transition system 〈S, s0, Σ,→〉 where
S ⊆ L × RC is the set of states, s0 = (l0, η0), Σ = R≥0 ∪ Act is the set of
labels, and →: (S ×Σ × S) 9 R≥0 is a partial function from transitions to the
non-negative reals representing the transition relation defined below.

• (l, η) −d→
p

(l, η + d) if ∀d′ : 0 ≤ d′ ≤ d⇒ η + d′ |= Inv(l), and p = d · P(l),
where for d ∈ R≥0, η + d maps each clock x in C to the value of η(x) + d,
and

• (l, η) −a→p
(l′, η′) if there exists e = (l, a, g, r, l′) ∈ E s.t. η |= g, η′ = [r 7→

0]η, η′ |= Inv(l′), and p = P(l, a, g, r, l′),
where [r 7→ 0]η denotes the clock valuation which maps each clock in r to 0
and satisfies with η over C\r.
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For PTA that are synchronised over their set of actions H , parallel composition
is defined as follows [PSE04].

Definition 3.10. Consider two priced timed automaton PT i = (Li, l
0
i ,Act i, Ei,

Pi, Inv i), i = 1, 2 with H ⊆ Act1 ∩Act2 and C1 ∩C2 = ∅. The PTA PT 1||PT 2

is defined as,

(L1 × L2, l
0
1 × l02,Act1 ∪Act2, E,P1 + P2, Inv1 ∧ Inv2)

The edge set E is the smallest set that contains the following transitions:

• for α ∈ H :

l1 −g1:α,D1−−−−→1 l
′
1 ∧ l2 −

g2:α,D2−−−−→2 l
′
2

〈l1, l2〉 −g1∧g2:α,D1∪D2−−−−−−−−−−→ 〈l′1, l′2〉

• for α /∈ H :

l1 −g:α,D−−−→1 l
′
1

〈l1, l2〉 −g:α,D−−−→ 〈l′1, l2〉
and

l2 −g:α,D−−−→2 l
′
2

〈l1, l2〉 −g:α,D−−−→ 〈l1, l′2〉

The cost of an execution trace is simply the accumulated cost of all transitions
in the trace, as defined in the following [BFH+01a].

Definition 3.11. Let τ = (l0, η0) −a1−→p1
(l1, η1) . . . −an−→pn

(ln, ηn) be a finite
execution trace. The cost of τ, cost(τ), is the sum

∑n
i=1 pi. For a given state

(l, η), the minimum cost mincost(l , η) of reaching the state, is the infimum of
the costs of finite traces ending in (l, η). For a given location l, the cost-optimal
reachability problem is to find the largest cost k such that k ≤ mincost(l , η) for
all clock valuations η.

Example 3.12. The complete model of the system in Figure 3.7 is given by

Lamp||H User

where H = {press}. The composite timed automaton Lamp||H User is shown
in Figure 3.8. The transitions in the LTS of this example remain the same as

off, idle
p′ == 0

dim, idle
p′ == 4

full, idle
p′ == 8

press
y:=0

press
y> 5

press
y:=0
y<5

press
y≥10

Figure 3.8: Timed automaton Lamp||H={press}User
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(a) uppaal cora model of a soldier (b) uppaal cora model of the
flash light which consumes power
when turned on

Figure 3.9: uppaal models of soldier and flash light

in Figure 3.4. A sample trace τ0 is given below. The accumulated cost of the
following trace is cost(τ0) = 88.

τ0 = (off , idle, 0) −press−−−→0
(dim, idle, 0) −2→

8
(dim, idle, 2)

−press−−−→0
(full , idle, 0) −10−→

80
(full , idle, 10) −press−−−→0

(off , idle, 10) �

3.3.3 Priced Timed Automata in uppaal cora

uppaal cora is a branch of uppaal which has a convenient support for modelling
PTA and finding cost-optimal schedules. Optimality is defined in terms of a
variable named cost. The optimal trace can be found by using the Best trace
option. With this option, uppaal cora keeps searching until a trace to a goal
state with the smallest value for the cost variable has been found. The rate of
growth of cost is specified as cost′. uppaal cora inherits all other features from
uppaal. It is worth mentioning that in general, there can be more than one
cost variables in PTA. However, in uppaal cora, there can be only one cost
variable.

Example 3.13. Consider the example in Figure 3.5. We extend this example in
such a way that the flash light runs on a battery. The flash light consumes power
equal to 1 and 2 W when producing dim and full light respectively. Figure 3.9
shows the uppaal cora model of this example. The power consumption of
the flash light is modelled using the variable cost′ in full and dim locations in
Figure 3.9b. The soldier automaton remains the same.

Now the scheduling problem is: what is the minimum energy consumption of
the flash light for everyone to cross the bridge? We use the same query as used
in uppaal but ask for the best trace.

Figure 3.10 shows an energy-optimal schedule of this example. We can see
that the soldier s1 has to return every time with the flash light so that other
soldiers can cross the bridge. This schedule takes 65 minutes and the total energy
consumption is 80 W·minutes.
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Figure 3.10: Energy-optimal schedule of the soldiers for crossing the bridge. The
white and red blocks denote if the soldier is moving from the unsafe side to the
safe side or vice versa respectively.

The schedule in Figure 3.10 is energy-optimal but not time-optimal. We have
seen in Figure 3.6 that the minimum time required by everyone to cross the
bridge is 60 minutes. We can ask for an energy- and time-optimal schedule by
adding a global clock variable time which is never reset. The following query is
then used. The schedule remains the same as Figure 3.6.

E <> (soldier1.safe and soldier2.safe and soldier3.safe and

soldier4.safe and time <= 60)
�

3.4 Hybrid Automata

3.4.1 Definition

Hybrid automata (HA) extend TA with continuous variables [HR98]. Let X be
a finite set of continuous variables. A variable valuation over X is a mapping
υ : X → R, where R is the set of reals. We write RX for the set of valuations
over X. Valuations over X evolve over time according to delay functions
F : R≥0 × RX → RX , where for each delay d and valuation υ, F (d, υ) provides
the new valuation after a delay of d. It is worth mentioning that in uppaal
smc, the delay function F allows the continuous variables X to evolve according
to differential equations.

Definition 3.14. A hybrid automaton H is a tuple (L, l0,Act , X,E, F, Inv),
where

• L is a finite set of locations;

• l0 ∈ L is the initial location;

• Act is a finite set of actions, co-actions and internal λ-actions;

• X is a finite set of continuous variables;

• E is a finite set of edges in the form (l, g, a, ϕ, l′), where l and l′ are
locations, g is a predicate on RX , a ∈ Act is an action label, and ϕ is a
binary relation on RX ;

• for each location l ∈ L, F (l) is a delay function defined as F : R≥0×RX →
RX ; and



3.4. Hybrid Automata 61

on
T ≤ 27

T ′ = −T + 30

off
T ≥ 23

T ′ = −T + 20

T ≥ 27

T ≤ 23

Figure 3.11: Hybrid automaton of a thermostat maintaining the temperature T
of a room at 25 Celsius

23

27

T

q = on

off

on

off

on

off

turn thermostat off

turn thermostat on

Figure 3.12: Evolution of the continuous and the discrete states of the hybrid
automaton in Figure 3.11

• Inv assigns an invariant predicate Inv(l) to any location l.

Example 3.15. Let us consider an example of a thermostat maintaining the
temperature T of a room at 25 Celsius. If the thermostat is on, the temperature
dynamics is given by T ′ = −T + 30, and if it is off, the temperature dynamics
is given by T ′ = −T + 20. The hybrid automaton describing the heating of
the room is shown in Figure 3.11. The two states q(t) ∈ {on, off} represent the
two discrete modes of the system: the thermostat is either on or off . As long
as the thermostat is in on mode, the temperature T will follow the dynamics
specified in the left state, i.e., T will tend to 30. When the temperature is 27,
the thermostat jumps from on to off mode. This is indicated by the invariant in
on mode and the guard condition on the transition from on to off mode. In off
mode, the temperature follows the dynamics given by the differential equation
specified in the right location, i.e., T will tend to 20. When the temperature is
23, the thermostat jumps from off to on mode. This is indicated by the invariant
in off mode and the guard condition on the transition from off to on mode.

The state evolution of this example is shown in Figure 3.12. Initially the
temperature is T = 0, and the thermostat is in the mode q = on. Furthermore,
the thermostat is switched on and off via the discrete jumps at T = 23 and 27
respectively. �
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3.4.2 Semantics

We write l −g:α,ϕ−−−→ l′ whenever the automaton can move from location l to l’
if guard g is satisfied such that υ |= g and ϕ(υ, υ′) for some valuation υ′. As
a result, an action α is performed. The semantics of HA are defined below
[DDL+13].

Definition 3.16. Let (L, l0,Act , X,E, F, Inv) be a hybrid automaton. The
semantics of HA is defined as a labelled transition system 〈S, s0,→〉 where
S ⊆ L× RX is the set of states, s0 = (l0, υ0), and →⊆ S × (R≥0 ∪Act)× S is
the transition relation such that,

• (l, υ) −d→ (l, υ′) with d ∈ R0 and υ′ = F (l)(d, υ), and

• (l, υ) −a→ (l′, υ′) if there exists e = (l, g, a, ϕ, l′) ∈ E s.t. υ |= g and ϕ(υ, υ′).

For HA that are synchronised over their set of actions H , parallel composition
is defined as follows [DDL+12].

Definition 3.17. Let Hi = (Li, l
0
i ,Act i, Xi, Ei, Fi, Inv i), i = 1, 2 with H ⊆

Act1 ∩Act2 and X1 ∩X2 = ∅. The hybrid automata A1||A2 is defined as,

(L1 × L2, l
0
1 × l02,Act1 ∪Act2, X1 ∪X2, E, F, Inv1 ∧ Inv2)

where F (l)(d, υ)(x) = Fi(li)(d, υ ↓Xi)(x) when x ∈ Xi. Here, υ ↓Xi is the
projection of υ to Xi if υ ∈ RX with X = X1 ∪ X2. The edge set E is the
smallest set that contains the following transitions:

• for α ∈ H :
l1 −g1:α,ϕ1−−−−→1 l

′
1 ∧ l2 −

g2:α,ϕ2−−−−→2 l
′
2

〈l1, l2〉 −g1∧g2:α,ϕ1∪ϕ2−−−−−−−−−→ 〈l′1, l′2〉

• for α /∈ H :

l1 −g:α,ϕ−−−→1 l
′
1

〈l1, l2〉 −g:α,ϕ−−−→ 〈l′1, l2〉
and

l2 −g:α,ϕ−−−→2 l
′
2

〈l1, l2〉 −g:α,ϕ−−−→ 〈l1, l′2〉

Example 3.18. The LTS of the thermostat in Figure 3.11 has the following
transitions for d ∈ R0.

(on, T ) −d→ (on, T ) for all d ≥ 0 and T ≥ 0 with T ≤ 27

(on, T ) → (off , T ) for all T ≥ 0 with T = 27

(off , T ) −d→ (off , T ) for all d ≥ 0 and T ≥ 0 with T ≥ 23

(off , T ) → (on, T ) for all T ≥ 0 with T = 23 �
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Figure 3.13: uppaal smc model of sine and cosine functions (taken from
[BDL+12])

3.4.3 Hybrid Automata in uppaal smc

HA can be analysed by uppaal smc, which implements the delay function
F using invariants on clock variables with differential equations of the form
x′ == e, where x is a clock variable and e evaluates to an integer. Moreover,
uppaal smc employs statistical model checking in which several simulation runs
of the system with respect to some property are monitored, and then results
from statistics are used to get an overall estimate of the value of a property.
The values of expressions (evaluating to integers or clocks) can be visualised
along the simulation runs in the form of a line or bar plot, by using the following
query.

simulate N [<= bound]{E1, . . . , Ek}

where N is a natural number representing the number of simulations to be
performed, bound is a time bound on the simulations, and E1 , . . . ,Ek are k
state-based expressions that are to be monitored and visualised. uppaal smc
also supports the evaluation of expected values of min or max of an expression
that evaluates to integers or clocks. The syntax of the queries is as follows.

E[bound; N] (min : expr)

or
E[bound; N] (max : expr)

where bound is a time bound on the runs, N is the explicit number of runs, and
expr is the expression to be evaluated.

Example 3.19. Figure 3.13 shows a uppaal smc model of sine and cosine
functions [BDL+12]. The clocks sin t and cos t are used to compute sin(t) and
cos(t) using the following facts.

• sin(t+ dt) ≈ sin(t) + sin′(t)dt for small steps of dt→ 0, whereas sin′(t) =
cos(t) and sin(0) = 0, and

• cos(t+ dt) ≈ cos(t)− cos′(t)dt for small steps of dt→ 0, whereas cos′(t) =
sin(t) and cos(0) = 1.

The high exponential rate (1000) tells the uppaal smc engine to take small
(random) time steps and record the duration in clock dt. The value of variables
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Figure 3.14: Evolution of variables sin t and cos t in terms of time

Figure 3.15: sin t values versus cos t values

sin t and cos t in terms of time is plotted in Figure 3.14, using the following
query.

simulate 1 [<= 12]{sin t, cos t}

Similarly, Figure 3.15 shows sin t values with corresponding cos t which forms
a circle. The following query has been used for this purpose.

simulate 1 [cos t <= 1]{sin t}

The expected values of min or max of sin t and cos t can also be evaluated
using uppaal smc. For example, the queries

E[<= 12; 10] (min : sin t)

and
E[<= 12; 10] (max : sin t)

evaluates to -1 and 1 respectively. �

3.5 Conclusions

This chapter has introduced different concepts related to model checking. This
chapter has further defined and discussed different model-checking formalisms,
i.e., timed automata, priced timed automata, and hybrid automata with the
help of examples. The timed automaton model combines real-time clocks with
nondeterministic choices. We will use clocks in Chapter 4 to model execution
times of actors, and nondeterministic choices for throughput-optimal scheduling
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of SDF graphs. PTA extend TA with costs, which we will use in Chapter 5 to
model power consumption of processors. This enables us to perform energy-
optimal scheduling of SDF graphs. HA extend TA with continuous variables
which we use to model hybrid behaviour of batteries in Chapter 6. We also
explain how these formalisms are modelled using the uppaal toolset in this
chapter.





Part II

Scheduling and Analysis





CHAPTER 4

Resource-Constrained Scheduling

Abstract

S
ynchronous dataflow (SDF) graphs are a widely used formalism for
modelling, analysing and realising streaming applications, both on a single
processor and in a multiprocessing context. Efficient scheduling methods

are essential to obtain maximal throughput under the constraint of the available
number of resources. This chapter presents an approach to schedule SDF
graphs using the proven formalism of timed automata (TA). TA maintain a good
balance between expressiveness and tractability, and are supported by powerful
verification tools, e.g., uppaal. In this chapter, we describe a compositional
translation of SDF graphs to TA, and analysis and verification in the state-of-the-
art tool uppaal. This approach does not require the (exponential) transformation
of SDF graphs to homogeneous SDF graphs and helps to find schedules with
a compromise between the number of processors required and the throughput.
This translation also forms the basis to extend this analysis of SDF graphs with
new features such as energy consumption and batteries in later chapters.

About this chapter: The current chapter is based on the paper “Resource-Constrained
Optimal Scheduling of Synchronous Dataflow Graphs via Timed Automata”, which was
published at ACSD 2014 [AdGH+14a]. An extended report on the work was published at
University of Twente Eprints [AdGH+14b]. The original paper largely remains the same.
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4.1 Introduction

Modern multimedia applications, such as multi-party video conferencing and
video-in-video, impose high demands on the system throughput. At the same
time, resource requirements, e.g., buffer sizes and number of processors used
should be minimised. Therefore, smart scheduling strategies are needed.

Synchronous Dataflow (SDF) graphs are well-known computational models
for analysing dataflow and digital signal processing applications. Nowadays,
they are increasingly utilised for both modelling and analysing multimedia
applications on a multiprocessor systems [LM87b, SB09, BSLM96]. Currently,
resource-allocation strategies and scheduling of tasks for SDF graphs are carried
out using the max-plus algebraic semantics and graph analysis by transforming
SDF graphs to equivalent homogeneous SDF graphs (HSDF) [dKBS12, Kar78].
This approach leads to a larger graph; in the worst case, the derived HSDF graph
can be exponentially larger than the original SDF graph [DSB+11]. Another
state-of-the-art method [GGS+06] calculates the throughput of SDF graphs by
exploring the state-space until a periodic phase is found. However, this method
executes each task as soon as it is enabled and it is assumed that sufficient
resources are available to accommodate all the enabled executions simultaneously.
On the contrary, it may not be the case in the real-life applications, where there
is always a constraint on the number of resources.

We propose an alternative, novel approach to analyse schedules of SDF graphs
on a limited number of processors using timed automata (TA) [AD94]. TA are a
natural choice for modelling time-critical systems and to check whether all timing
constraints are met. By definition, TA are automata in which clock variables
measure the elapse of time. Clock guards on the edges indicate conditions under
which an edge can be taken and invariants show the conditions under which a
system can stay in a certain location. TA are extensively used in the verification
and model checking of industrial applications [NM10, TY98, BGK+02, SS01].

The complete overview of our approach is shown in Figure 4.1. We translate
SDF graphs and hardware architecture to TA using the model checker uppaal.
After defining the mapping of actors to processors, we utilise uppaal to search
the state-space and derive a schedule that fits on the given number of processors
and maximises throughput. In this way, we can efficiently determine a trade-off
between the number of processors and throughput for a certain application. We
also demonstrate that our translation preserves deadlock freedom if the number
of processors varies.

The main contributions of this chapter are:

• Deriving a schedule that fits on the given number of processors and max-
imises throughput;

• Handling heterogeneous processor models, in which only specific processors
can run a particular task due to their computational limitations; and

• Determining a trade-off between the number of processors and throughput.
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SDF Application Hardware Architecture

SDF Application Model
Hardware Architecture 

Model

Throughput Analysis

Translation to TA Translation to TA

UPPAAL

Figure 4.1: Our approach using timed automata. After both SDF application
and hardware architecture are modelled as timed automata, uppaal is used to
derive throughput-optimal schedules.

Chapter Outline. Firstly, Section 4.2 reviews related work. Section 4.3
explains how we extend SDF graphs with resource constraints, and Section 4.4
describes the throughput analysis of resource-constrained SDF graphs. The
translation of SDF graphs and platform models to TA using uppaal is explained
in Section 4.5. Section 4.6 discusses the throughput analysis of SDF graphs
using uppaal, and Section 4.7 experimentally validates our approach via case
studies. The tool-chain developed to support this work is given in Section 4.8.
Finally, Section 4.9 draws conclusions.

4.2 Related Work

Throughput analysis of HSDF graphs is studied extensively in [YTO91, Kar78,
dKBS12, WBS07]. An algorithm proposed by Karp in [Kar78] to calculate
maximum cycle mean (MCM) is an another efficient method of calculating the
throughput. All these studies require a conversion of SDF graphs into HSDF
graphs which can be exponentially larger than the original SDF graphs in the
worst case. On the other side, the throughput calculation method applicable
directly to SDF graphs [GGS+06] is practical only if we only have sufficiently
many processors. However, our strategy calculates maximal throughput on a
given finite number of processors.

Another novel techniques for task binding and scheduling of SDF graphs
under given throughput constraints are presented in [DSB+11, MVB07]. These
approaches use an combination of static-order scheduling and Time-Division
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Multiplex (TDM). Our method, rather than utilising pre-computed static-
order schedules, considers nondeterministic scheduling scheme and generates
throughput-optimal schedules at design-time. Secondly, in contrast to the
approach in [DSB+11], our method can handle heterogeneous systems as well.
A model checking based approach to guarantee timing bounds of multiple SDF
graphs running on shared-bus multi-core architectures is analysed in [FGFR13].
However, this analysis also needs a pre-computed static-order schedule.

Model checking of a recently introduced extension of SDF graphs known as
Scenario-Aware Dataflow (SADF) [TGB+06] is done in [TKW12]. This approach
utilises the CADP tool suite [GLMS11] by the application of Interactive Markov
Chains (IMC). Nevertheless, it does not investigate the calculation of throughput
or consider multiprocessor platforms.

4.3 SDF Graphs with Resource Constraints

This section first recalls the definition of SDF graphs (with time) from Chapter
2 and then introduces how we add resource constraints to SDF graphs in the
form of platform application models.

4.3.1 SDF Graphs

An SDF graph is defined as follows.

Definition 4.1. An SDF graph is a tuple G = (A,D,Tok0, τ) where:

• A is a finite set of actors,

• D is a finite set of dependency channels D ⊆ A2 × N2,

• Tok0 : D → N denotes initial tokens in each channel, and

• τ : A→ N≥1 assigns an execution time to each actor.

A dependency channel d = (a, b, p, q) denotes a data dependency of actor b on
actor a. The firing of actor a results in the production of p tokens on channel d.
If the number of tokens on channel d is greater than q, actor b can execute, and
as a result, it consumes q tokens from channel d.

Example 4.2. Figure 4.2 shows an SDF graph with three actors u, v ,w . Arrows
between the actors depict the channels which hold tokens (dots). The execution
time (ms) of the actors is represented by a number inside the actor nodes. The
numbers near the source and destination of each channel are the rates. �

4.3.2 Platform Application Models

Embedded streaming applications always face tight and strict performance
requirements. These applications must be processed within tight time budgets
to provide customer satisfaction and good user experience. For example, the
video bit rate of video compression standard H.264/AVC ranges from 64 kbps
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Figure 4.2: An example SDF graph

to 240 Mbps [WSBL03] depending on the user’s requirements. Other than
timing requirements, another factor that affects the performance is resource
limitation. Having higher number of resources ensures better performance.
However, due to space and cost limitations, there is always a bound on the number
of resources in the system. Therefore, system designers must maintain a balance
between performance requirements and resource constraints to achieve optimal
solutions based on customer needs. This requires careful mapping between
actors of SDF graphs and hardware components. Furthermore, in practice
not all actors can be mapped onto every processor, because of memory and
bandwidth limitations, analogue versus digital processing capabilities, instruction
set limitations etc. Thus, the better the match between actors and underlying
hardware implementations, the higher the chances that the given performance
requirements are met. A good design always implies a good mapping between
an application and hardware architecture. Therefore, we introduce platform
application models to represent the hardware architecture as follows.

Definition 4.3. A platform application model (PAM) is a tuple P = (Π, ζ)
consisting of

• a finite set of processors Π = {π1, . . . , πn}, and

• a function ζ : Π → 2A indicating which actors can be mapped to which
processor.

The platform application model allows us to reason about the behaviour
of an application under a specific mapping on the hardware architecture. The
processor is claimed by an actor at the beginning of its firing and after the
execution time of the actor elapses, it finishes firing and releases the processor
as shown in Figure 4.3.

4.3.3 Example of SDF Graphs with Resource Constraints

In this subsection, we give an example of an SDF graph mapped on a PAM.
Let us consider the example SDF graph shown in Figure 4.2 mapped on four
processors Π = {π1, π2, π3, π4}. Figure 4.4 shows an example schedule of our
running example. As we can see in Figure 4.4, the actor u is mapped on the
processors π1 and π2 for its two initial firings. Afterwards, the SDF graph enters
the periodic phase in which each actor is mapped on some processor to fire. As
each iteration takes 12 ms, the throughput is 1

12 ms−1.
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Firing Starts

Claim Processor

Firing Ends

Release Processor

Execution Time

Figure 4.3: Firing of an actor (taken from [YGB+09]). An actor claims the
processor at the beginning of its firing, and releases it when the firing ends.
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Figure 4.4: An example schedule of the SDF graph shown in Figure 4.2 on four
processors π1, π2, π3, and π4 (shown on y-axis)

4.3.4 Semantics of SDF Graphs with Resource Constraints

In the following, we explain the semantics of an SDF graph G mapped on a
PAM P in terms of a labelled transition system LT S(GP). For this purpose, we
define the notions of states and transitions.

Definition 4.4. A state of an SDF graph (A,D,Tok0, τ) mapped on a platform
application model (PAM) (Π, ζ) is a triple (Tok , status,TuC ) with the following
components.

• channel quantity Tok : D → N associates with each channel the number of
tokens currently present in that channel, and

• status : Π → {idle, occup} associates with each processor π ∈ Π if it is
available or occupied.

• To observe the progress of time, TuC : Π→ N records for each processor
the remaining execution time required to complete its current task. Here,
TuC abbreviates time until completion.

The initial state (Tok0, status0,TuC 0) is given by status0(π) = idle, and TuC 0(π)
= 0, for all π ∈ Π.

Example 4.5. The initial state of the example explained in Section 4.3.3 is given
by (Tok0, status0,TuC 0) = ((0, 0, 6, 2, 1), (idle, idle, idle, idle), (0, 0, 0, 0)). Here,
initial tokens in all channels are represented by Tok0. The initial availability of
processors is given by status0. Similarly, TuC 0 represents the initial remaining
execution times of processors. �



4.3. SDF Graphs with Resource Constraints 75

Now we have defined the state of an SDF graph mapped on a PAM, we give
the definition of a transition in the following.

Definition 4.6. A transition of an SDF graph (A,D,Tok0, τ) mapped on a plat-
form application model (PAM) (Π, ζ) from state (Tok1, status1,TuC 1) to state
(Tok2, status2,TuC 2) is denoted as (Tok1, status1,TuC 1) −κ→ (Tok2, status2,
TuC 2) and label κ is defined as κ ∈ (A×Π× {start, end}) ∪ {tick} and corres-
ponds to the type of transition.

• Label κ = (a, π, start) denotes the starting of a firing by actor a ∈ A on a
processor π ∈ Π. This transition may occur if

– Tok1(d) ≥ CR(d) for all d ∈ In(a). That is, all input channel d ∈ D
have sufficiently many tokens,

– status1(π) = idle. That is, the processor π is currently unoccupied,
and

– a ∈ ζ(π). That is, if the actor a can be mapped on the processor π.

This transition results in a new state (Tok2, status2,TuC 2) given by

– Tok2(d) = Tok1(d) − CR(d) for all d ∈ In(a). That is, the tokens
equal to the consumption rate CR(d) are removed from each incoming
channel,

– status2(π′) = status1(π′), and status2(π) = occup for all π′ 6= π.
That is, the processor π ∈ Π is claimed, and

– TuC 2(π) = τ(a). That is, the execution time of the actor a τ(a) is
attached to the processor π.

Example 4.7. The actor u in the example given in Section 4.3.3 takes
the transitions (u, π1, start) and (u, π2, start) at t = 0 ms. As a result,
two tokens are subtracted from the channel v − u. �

• Label κ = (a, π, end) denotes the ending of a firing by actor a ∈ A and
releasing a processor π ∈ Π. This transition may occur if

– status1(π) = occup. That is, the processor π is currently occupied,
and

– TuC 1(π) = 0. That is, the actor a ∈ A has finished its execution.

This transition results in a new state (Tok2, status2,TuC 2) given by

– Tok2(d) = Tok1(d) + PR(d) for all d ∈ Out(a). That is, the tokens
equal to the production rate PR(d) are produced on all outgoing
channels,

– status2(π′) = status1(π′) and status2(π) = idle for all π′ 6= π. That
is, the processor π ∈ Π is released, and

– TuC 2 = TuC 1.
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Example 4.8. In the example given in Section 4.3.3, the actor u takes
the transitions (u, π1, end) and (u, π2, end) at t = 2 ms. As a result, two
tokens are produced on the channel u − v . �

• Label κ = tick denotes a clock tick transition. This transition is enabled if,

– ∀π′ ∈ Π, TuC 1(π′) 6= 0. That is, no end transition is enabled.

For all d′ ∈ D and π′ ∈ Π, this transition results in a new state (Tok2,
status2,TuC 2) given by

– Tok2(d′) = Tok1(d′),

– status2(π′) = status1(π′), and

– TuC 2(π′) = TuC 1(π′) − 1. That is, the remaining execution time
assigned to the processors is decreased by 1.

Example 4.9. In our running example, at t = 13 ms, the actor u takes the
transitions (u, π1, end) and (u, π2, end). Then, between t = 13 and 14 ms, there
is no enabled end transition, and the next end transitions (w, π3, end) and
(w, π4, end) are at t = 14 ms taken by the actor w. Thus, there is one tick
transition between t = 13 and 14 ms. �

By defining LTS LT S(GP) of an SDF graph G when mapped on a PAM
P in terms of states and transitions, it is easier to understand the underlying
semantics of SDF graphs with resource constraints. In the following, we describe
the throughput analysis of an SDF graph G with resource constraints with the
help of its LTS LT S(GP).

4.4 Throughput Analysis of SDF Graphs with Resource
Constraints

This section illustrates the throughput analysis of an SDF graph with resource
constraints. Recall from Chapter 2 that the maximal throughput of an SDF graph
without resource constraints is determined from self -timed execution [GGS+06]
in which every actor fires as soon as it is enabled. Similar to self-timed execution,
we will show that the state-space of an SDF graph with resource constraints
also contains a transient phase followed by a periodic phase. As we have seen
in Section 2.2, the notion of resources is not relevant for detecting the periodic
phase, and calculating throughput. Thus, we consider the definition of the state
(ρ, υ) given in Section 2.2.

Let (ρ0, υ0) and (ρr, υr) denote the initial and recurrent states at the com-
pletion of the periodic phase respectively in a self-timed execution. For each
actor a ∈ A, let Fat and Fap represents the number of times actor a ∈ A fires
in the transient and periodic phase respectively. We also define the number of
iterations per period as iter .

Lemma 4.10. If a periodic phase in a self-timed execution is repeated for n′

times, then Fap is equal to n′ · iter · γ(a).
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Proof. The proof follows from the definition of self-timed execution, repetition
vector, and iteration in Chapter 2. �

The self-timed execution takes the minimum amount of time to revisit (ρr, υr)
and provides the maximum throughput of an SDF graph. Therefore, we can
consider it as a fastest execution to reach (ρr, υr) again.

As a result of the fastest execution, let us say that the SDF graph has
repeated the periodic phase n′ times and is in the state (ρr, υr). Then, we can
say the following.

Lemma 4.11. The SDF graph G reaches the initial state (ρ0, υ0) if G is executed
from the state (ρr, υr) in such a way that each actor a ∈ A fires equal to
F ′at = k · γ(a)−Fat for some constant k.

Proof. Total number of firings for each actor a ∈ A in this case are:

= Fat + Fap + F ′at

= Fat + n′ · iter · γ(a) + k · γ(a)−Fat
= (n′ · iter + k) · γ(a)

From Fact 2.25, Γ (n′ · γ) = 0 for any constant n ′. �

A necessary condition for previous lemma to hold is F ′at ≥ 0 by having a
suitable value for k. If the value of k is not large enough, F ′at can be less than
0, which will violate Lemma 4.11. To reach (ρ0, υ0) from (ρr, υr) in the least
number of firings, F ′at must be minimal. Let kmin denotes the smallest k such
that F ′at ≥ 0 and F ′at is minimal for all actors a ∈ A.

If we assume that the part of execution from (ρr, υr) to (ρ0, υ0) is fastest
also, then we can say the following.

Lemma 4.12. The fastest execution of every consistent and strongly connected
SDF graph repeats the periodic phase n′ times if each actor a ∈ A fires equal to
(n′ · iter + kmin) · γ(a) for some constants n′ and kmin.

Proof. Trivial following Lemma 4.11. If a transient phase does not exist and
the SDF graph enters the periodic phase directly, then Fat = 0. In this case,
the minimum value of k satisfying F ′at ≥ 0 is kmin = 0. Furthermore, the total
number of firings is equal to n′ · iter · γ(a) for each a ∈ A and the periodic phase
is repeated n′ times. �

We propose uppaal as a tool to compute the repetition vector and through-
put. uppaal can automatically verify a number of properties, including invariant
and reachability checking. An important feature in our approach is the option
of generating a trace with the shortest possible accumulated time delay to reach
the final state, i.e., (n′ · iter + kmin) · γ(a) for each actor a ∈ A from the initial
state (ρ0, υ0), termed Fastest Trace. uppaal explores the whole state-space and
finds the fastest execution trace containing the periodic phase repeated n′ times.
From the periodic phase, we determine the maximal throughput of the SDF
graph.
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Self-timed execution assumes that there is an unbounded number of processors
to accommodate all enabled firings of all actors at a certain time. Let Πmin

denotes a finite set containing the minimum number of processors required to
allow self-timed execution. From Lemmas 4.11 and 4.12, we can generalise the
following.

Lemma 4.13. For every consistent and strongly connected SDF graph mapped
on a platform application model (PAM) (Π, ζ) in such a way that

⋃
ζ(π) = A

and ∅ ⊂ Π ⊆ Πmin, the maximal throughput of an SDF graph is determined from
the periodic phase of the fastest execution to the ith multiple of the repetition
vector, for some constant i .

Proof. In a strongly connected and consistent SDF graph, each actor depends on
other actors in order to have a sufficient amount of tokens on its input channels
to be enabled for firing. This implies a bound on the difference in the number of
firings of each actor with respect to the corresponding entries in the repetition
vector. The state-space of reaching the ith multiple of the repetition vector for
some constant i if ∅ ⊂ Π ⊆ Πmin could contain multiple possible executions. If
we search the whole state-space and consider only the fastest execution out of
all executions, we notice that it contains a periodic phase implying the maximal
throughput.

The reason is that in a fastest execution, if insufficient processors are available
to map all simultaneous enabled firings, some of the firings will be delayed.
Delaying a certain firing does not change any dependency. Instead, successors
firings would also be delayed. The constraint of having to reach the final state
in the least possible time ensures that delayed firings are mapped in such a way
that they cause the least delay for their successor firings to be enabled. As the
number of simultaneous firings of the actors and number of tokens in any channel
remains bounded, the state-space is also finite. This ensures that a certain
state (ρr, υr) will be revisited eventually during the execution representing the
periodic phase. We explore the whole state-space with uppaal and find the
fastest execution trace from all possible executions. �

For each SDF graph, the value of kmin varies by altering the given number
of processors and depends on how many times each actor a ∈ A has fired during
the transient phase. Therefore, the value of n′ · iter + kmin given to uppaal as
a final state must be large enough to ensure that F ′at is greater than 0 and the
SDF graph enters the periodic phase.

Example 4.14. Figure 4.5 shows the self-timed execution for the SDF graph in
Figure 4.2 on page 73. If we compare it with the example schedule in Figure 4.4
on page 74, we see that each actor is firing as soon as it enabled in Figure 4.5.
For example, the actor w is enabled after the first firing of the actor v. Therefore,
in the self-timed execution in Figure 4.5, the actor w fires immediately after the
first firing of the actor v is finished. Whereas, in the example schedule in Figure
4.4, the actor w has to wait 2 ms extra to fire.

As we can further see in Figure 4.5, the minimum number of processors to
achieve the self-timed execution is 4, i.e., |Πmin| = 4. If we map the same SDF
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Figure 4.5: Self-timed execution of the SDF graph shown in Figure 4.2. After
the transient phase (initial two firings of u), the SDF graph enters the periodic
phase shown by the shaded regions.
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Figure 4.6: Schedule by fastest execution to 3rd multiple of repetition vector
on four processors π1, π2, π3 and π4. After the initial transient phase (initial
two firings of u), the SDF graph enters the periodic phase shown by the shaded
regions. The SDF graph repeats the periodic phase twice, and then enters the
final transient phase.

graph on four processors {π1, π2, π3, π4}, then the fastest execution to the 3rd

multiple of repetition vector, i.e., 3·γ = 〈12, 6, 9〉 is shown in Figure 4.6. In this
example, the values of n′, iter and kmin are 2, 1 and 1 respectively. Therefore,
the periodic phase is repeated twice. We could determine the throughput from
the periodic phase which is equal to 1

9 ms−1.

We can also observe that the firing sequence of the actors in the self-timed
execution is same as fastest execution, except the final transient phase. In the
rest of chapter, we do not analyse the final transient phase as it does not affect
throughput.
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4.5 From SDF Graphs and Platform Application Models
to Timed Automata

This section first explains the translation of SDF graphs and platform application
models (PAMs) to timed automata (TA), and then implementation of this
translation in uppaal.

4.5.1 Translation of SDF Graphs and PAMs to Timed Automata

Our framework of scheduling SDF graphs consists of separate models of an SDF
graph and the processors in a PAM. This method splits the scheduling problem
of the SDF graphs in terms of the tasks and resources.

Given an SDF graph G = (A,D,Tok0, τ) together with a platform application
model (PAM) P = (Π, ζ), we generate a parallel composition of timed automata
(TA):

AG‖Processor1‖ . . . ‖Processorn,

as shown in Figure 4.7 on page 84. Here, the timed automaton AG models
the SDF graph as shown in Figure 4.7a. The TA Processor1, . . . ,Processorn
model the processors Π = {π1, . . . , πn}, as shown in Figure 4.7b. The un-
derlying LTS LT S(GP) of G mapped on P is given by (S,Lab,→G) where
S = (Tok , status,TuC ) denotes the states, Lab = κ denotes the labels, and
→G⊆ S × Lab× S depicts the transitions.

Timed Automaton AG. The timed automaton AG models the SDF graph G.
Given G and P, the automaton AG is defined as

AG = (L, l0,Act , C,E, Inv)

All components of AG are explained as follows.

• The location L = l0 = {Initial} is the only location in our SDF graph
model.

• The action set Act = {fire!, end?} contains two parametrised actions to
synchronise with the TA Processor1, . . . ,Processorn. The first action
fire[π][a]! (exclamation mark signifies a sending operation) represents the
start of the firing of an actor a on a processor π for each π ∈ Π and
a ∈ A. The second action end[π][a]? (question mark signifies a receiving
operation) represents the end of the firing of an actor a on a processor π
for each π ∈ Π and a ∈ A.

• The automaton AG does not contain any clocks and invariants. Therefore,
Inv: L→ B(C) and Inv(l0) = true.

• The action fire[π][a] is enabled if the incoming channels of a ∈ A have
sufficient tokens. For each a ∈ A and all d ∈ In(a), the edge set E contains
two edges such that:

– Initial −Tok(d)≥CR(d):fire[π][a]!,Tok(d)=Tok(d)−CR(d)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial
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– Initial −true:end[π][a]?,Tok(d)=Tok(d)+PR(d)−−−−−−−−−−−−−−−−−−−−−−−−→ Initial.

Here, Tok(d) ≥ CR(d) refers to a guard and it signifies that tokens on all
input channels d ∈ In(a) of an actor a ∈ A must be greater than or equal to
their consumption rate in order to take the action fire!. As a result of taking
the action fire!, tokens on all input channels d ∈ In(a) of an actor a ∈ A are
subtracted, i.e., Tok(d) = Tok(d)−CR(d). Similarly, by taking the action
end?, the actor firing is completed and tokens are produced on all output
channels d ∈ Out(a) of an actor a ∈ A, i.e., Tok(d) = Tok(d) + PR(d).

The automaton AG contains a number of variables: for each channel from
actors a ∈ A to b ∈ B, an integer variable buff a2b = Tok(a, b, p, q) contains the
number of tokens in the channel from a to b. The boolean variable flag active
which is initially false, is set to true as soon as any actor fires. The variable
counter a counts how many times the actor a ∈ A has been fired. Initially,
counter a = 0 and buff a2b = Tok0(a, b, p, q) contains the number of tokens in
the initial distribution of the channel (a, b, p, q).

Taking the action fire[π][a] consumes, for each actor a ∈ A and input channel
(b, a, p, q) ∈ In(a) in G, the q tokens from the channel buff b2a, and is carried
out by the function consume(buff b2a, q). The action end[π][a] adds, for each
actor a ∈ A and output channel (a, b, p, q) ∈ Out(a) in G, the p tokens on the
buffer buff a2b by carrying out the function produce(buff a2b, p).

Timed Automata Processor j. The timed automata Processor j model PAMs.
For each πj ∈ Π, we define the processor TA

Processorj = (Lj , l
0
j ,Actj , Cj , Ej , Inv j).

All components of Processor j are explained as follows.

• The TA Processor j include both an idle and occupied state. That is, for
each a ∈ ζ(πj), let Lj = {Idle, InUse a|a ∈ A} indicating that the processor
πj ∈ Π is either in the idle state, or is currently occupied by the actor
a ∈ A.

• The initial location is given by l0j = Idle. This represents that initially,
each processor is in the idle state.

• The action set Act = {fire?, end!} contains two parametrised actions to
synchronise with the timed automaton AG. The first action fire[π][a]?
represents the start of the firing of an actor a on a processor π ∈ Π. This
action further signifies that the processor π is currently in use. The second
action end[π][a]! represents the end of the firing of an actor a on a processor
π ∈ Π. This action also signifies the releasing of the processor π.

• The TA Processor j has only clock Cj = {xj}. Since clocks in uppaal are
local, we can abbreviate xj by x.

• For each πj ∈ Π and a ∈ ζ(πj), the edge set E contains two edges,
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– Idle −true:fire[π][a]?,x=0−−−−−−−−−−−→ InUse a, and

– InUse a −x=τ(a):end[π][a]!,∅−−−−−−−−−−−−→ Idle.

• Each location InUse a is equipped with an invariant Inv j(InUse a) ≤ τ(a)
enforcing the system to stay in InUse a for less than or equal to the execution
time τ(a).

The action fire[π][a] is enabled in the idle state Idle and leads to the location
InUse a. Thus, fire[π][a] “claims” the processor π ∈ Π, so that any other firing
cannot run on π ∈ Π before the current firing of a ∈ A is finished. As each
location InUse a has an invariant Inv j(InUse a) ≤ τ(a), the automaton can stay
in InUse a for at most until the execution time τ(a). If x = τ(a), the system has
to leave InUse a by taking the action end[π][a]. In this way, AG is notified that
the execution of a ∈ A has ended, so that AG updates the SDF graph channels
and other variables.

In the next subsection, we will describe the implementation of the translation
explained above in uppaal. For this purpose, we take help of the example SDF
graph in Figure 4.2 on page 73.

4.5.2 Modelling SDF Graphs and PAMs in uppaal

Let us consider an SDF graph in Figure 4.2 and its self-timed execution shown in
Figure 4.5 on page 79. Following the setup in AG‖Processor1‖ . . . ‖Processorn,
we build a separate template for the SDF graph and PAM namely SDFG and
Processor respectively in uppaal. As we need four processors to observe the
self-timed execution, we create four instances of the Processor template. Each
actor in SDFG and each instantiation of the Processor template is given an unique
id and passed as parameters to the templates. Whole system is comprised of
one instance of SDFG called SDF Graph and four instances of Processor called
Processor1,Processor2,Processor3 and Processor4 as it is declared in Listing 4.1.

Figure 4.7 on page 84 shows the models of SDFG and Processor in the editor
of uppaal and Listing 4.2 shows all global declarations used in these templates.
There are two channels for each actor and a single location Initial. The parameters
consist of ids of each actor. The label e : id r selects processor ids from the user-
defined type id r declared in Listing 4.2 by which the SDF graph template SDFG
communicates with the processor template Processor. For each channel in an
SDF graph, there is an integer variable in the uppaal model. The initial value
of this variable is equal to the initial number of tokens in the channel. For
example, in Listing 4.2, the initial tokens in the channel from actor w ∈ A
to actor v ∈ A are defined by int buff w2v = 6;. The constant variables N and
M denote the given number of processors, and the actors respectively. The
channels fire[N][M] and end[N][M] are used to synchronise both templates. The
functions produce (consume) respectively produces (consumes) tokens equal to
production (consumption) rate of the particular channel. The integer variables
counter u, counter v and counter w count the number of times actor u, v and w
fires respectively. The boolean variable flag act has an initial value equal to
false and its value changes to true as soon as any actor fires. In Listing 4.2, the
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Listing 4.1: System declarations in uppaal for system in Section 4.5.2

1 // Actor ids

2 const int u=0;

3 const int v=1;

4 const int w=2;

5

6 // Processor ids

7 const int p1=1;

8 const int p2=2;

9 const int p3=3;

10 const int p4=4;

11

12 // SDF Graph template instantiation

13 SDF_Graph = SDFG(u,v,w);

14

15 // Processor template instantiation

16 Processor1 = Processor(p1 ,u,v,w);

17 Processor2 = Processor(p2 ,u,v,w);

18 Processor3 = Processor(p3 ,u,v,w);

19 Processor4 = Processor(p4 ,u,v,w);

20

21 // Processes to be composed into a system.

22 system SDF_Graph , Processor1 , Processor2 , Processor3 , Processor4

;

clock variable global observes the overall time progress of any trace. The clock
variable x of the processor is declared as a local variable (not shown here).

The location Idle in the Processor model in Figure 4.7b is an initial location
and InUse u, InUse v and InUse w are the dedicated locations for each actor.
In this model, the processor ids are represented by p id and are passed as
parameters.

4.6 Resource-Constrained Scheduling of SDF Graphs us-
ing uppaal

In this section, we will describe scheduling of SDF graphs on a given number
of processors using uppaal. For this purpose, we consider the SDF graph in
Figure 4.2 on page 73 as an example.

4.6.1 Throughput Calculation

Following Lemma 4.13, starting from the initial token distribution of an SDF
graph, we ask uppaal to find a trace which leads us to the initial token distribu-
tion again in the least possible time. We have a boolean variable flag active with
an initial value false in our uppaal model. As soon as the uppaal model starts
executing, the value of flag active changes to true. In a nutshell, the purpose of
flag active is not to give the initial state as a result and to force the model to
start executing. We also associate a counter with each actor. By checking the
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(a) uppaal model AG for SDF graph in Figure 4.2 having three actors u, v, w

(b) uppaal model Processorj onto which SDF graph in Figure 4.2 is mapped

Figure 4.7: uppaal editor showing SDF graph and Processor TA models
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Listing 4.2: Global declarations in uppaal for SDF graph in Figure 4.2

1 // Global Clock

2 clock global;

3

4 const int N = 4; //# of Processors

5 const int M = 3; //# of Actors

6

7 // Processors IDs

8 typedef int[1,N] id_r;

9

10 // UPPAAL Channels

11 chan end[N][M], fire[N][M];

12

13 //SDF graph channel sizes

14 int buff_u2v ,buff_v2w =0;

15 int buff_v2u =2;

16 int buff_w2v =6;

17 int buff_v2v =1;

18

19 //Flag to check if SDF graph has started

20 bool flag_active=false;

21

22 // Counter for each actor

23 int counter_u , counter_v , counter_w =0;

24

25 // Consume function for consuming tokens from incoming channels

26 void consume(int &channel_tokens , int tokens)

27 {

28 channel_tokens -= tokens;

29 }

30

31 // Produce function for producing tokens on outgoing channels

32 void produce(int &channel_tokens , int tokens)

33 {

34 channel_tokens += tokens;

35 }

values of counters, we determine how many times each actor has fired to reach
the target state (initial token distribution) which gives us the repetition vector .

As we know the initial token distribution of the SDF graph in Figure 4.2,
selecting Fastest trace and verifying the following query in uppaal generates a
trace by which we determine the repetition vector.

E <> (buff u2v == 0 and buff v2w == 0 and buff v2u == 2 and

buff w2v == 6 and buff v2v == 1 and flag active == true)

As a result of this query, a trace is generated and by examining the variables
counter u, counter v and counter w, we can determine the value of repetition
vector, i.e., 〈u,v,w〉=〈4, 2, 3〉.

The repetition vector γ found in the previous step is an input to find
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the maximal throughput . Following Lemma 4.13, we find the fastest trace
to n ′ · iter + kmin -multiple of the repetition vector.

We find out the throughput of the SDF graph shown in Figure 4.2 on page 73
using n ′ · iter + kmin = 3rd multiple of the repetition vector, i.e., 〈12, 6, 9〉 by
verifying the following query.

E <> (counter u == 12 and counter v == 6 and counter w == 9)

Figure 4.6 on page 79 shows the schedule build from the generated trace
when the SDF graph in Figure 4.2 on page 73 is mapped on four processors.

Similarly, we can detect the presence or absence of deadlocks in an SDF
graph by checking “A[] not deadlock”.

Using the results presented earlier, if we model the same SDF graph with
three processors in uppaal, we get a schedule shown in Figure 4.8. We can
observe that even we have reduced the number of processors from four to three,
the throughput still is 1

9 ms−1 which clearly shows that we do not always need
a self-timed execution to realise the maximum throughput.
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Figure 4.8: Schedule by fastest execution on three processors π1, π2 and π3.

In the same fashion, Figure 4.9 shows a schedule using two processors. Thus,
even we have reduced the number of processors by one, the throughput does not
deteriorate significantly and decreases slightly to 1

11 ms−1. The Pareto space in
terms of throughput and number of processors is shown in Figure 4.10.
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Figure 4.9: Schedule by fastest execution on two processors π1 and π2

Table 4.11 shows the results for peak memory consumption and computation
time needed to find out throughput and deadlock freedom for the SDF graph
shown in Figure 4.2 on page 73. These figures are determined using an utility
called memtime [MEM02]. The experiments were run on a dual-core 2.8 GHz
machine with 4 GB RAM. The first column displays the number of processors,
and the second column represents the value of maximal throughput (ms−1)
with respect to various numbers of processors. Columns 3-6 depict the memory
consumption (KB) and computation time (s) required by uppaal in generating
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Figure 4.10: Pareto space showing number of processors and maximum through-
put for SDF graph in Figure 4.2

Number of Maximal Max. Throughput Deadlock Freedom sdf3

Processors Throughput Memory Time Memory Time Time

4 (self-timed) 1/9 38144 0.3 37880 0.21 0
3 1/9 2008 0.1 2008 0.1 -
2 1/11 2008 0.1 2008 0.1 -
1 1/21 2008 0.1 2008 0.1 -

Table 4.11: Experimental Results for SDF graph in Figure 4.2 regarding through-
put with respect to varying numbers of processors

the fastest trace of the second multiple of the repetition vector to determine
throughput, and to verify deadlock freedom. The final column represents time
(s) taken by sdf3 for calculating the throughput for self-timed execution. It also
explains that sdf3 only calculates the throughput of an SDF graph assuming
that sufficient number of processors to realise self-timed execution are available.

4.6.2 Scheduling in a Heterogeneous System

So far, we have assumed a homogeneous system in which an actor can be mapped
on any processor as all processors are identical. A homogeneous system gives
more freedom to decide which actor to assign to a particular processor. However,
this freedom is constrained in a heterogeneous system by which processors could
be utilised to execute a particular actor.

In uppaal, we can utilise the same models described earlier in a heterogeneous
system following Lemma 4.13. Let us consider the SDF graph in Figure 4.2 on
page 73 mapped on a heterogeneous system in such a way that the actor u can
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Figure 4.12: SDF graph in Figure 4.2 mapped on a heterogeneous system. Actor
u is mapped on the processors π1 and π2, actor v is mapped on the processor
π3, and the processor π4 is assigned to execute actor w.

Listing 4.3: System declarations in uppaal for Heterogeneous System in Sec-
tion 4.6.2

1 // Actor ids

2 const int u=0;

3 const int v=1;

4 const int w=2;

5 const int dummy =3;

6

7 // Processor ids

8 const int p1=1;

9 const int p2=2;

10 const int p3=3;

11 const int p4=4;

12

13 // SDF Graph template instantiation

14 SDF_Graph = SDFG(u,v,w);

15

16 // Processor template instantiation

17 Processor1 = Processor(p1 ,u,dummy ,dummy);

18 Processor2 = Processor(p2 ,u,dummy ,dummy);

19 Processor3 = Processor(p3 ,dummy ,v,dummy);

20 Processor4 = Processor(p4 ,dummy ,dummy ,w);

21

22 // Processes to be composed into a system.

23 system SDF_Graph , Processor1 , Processor2 , Processor3 , Processor4

;

be mapped only on the processors π1 and π2, the actor v can be executed only
on the processor π3, and the processor π4 is assigned to execute the actor w
only, as shown in Figure 4.12. This setting is shown in Listing 4.3.

We change the value of variable M to four in Listing 4.2 and introduce a
dummy actor in “System declarations” as mentioned in Listing 4.3. We can
see in Listing 4.3 that the dummy actor is passed as a parameter in place of
those actors which are not to be bound to a particular processor The schedule of
this heterogeneous system is shown in Figure 4.13 and the maximal throughput
achieved is 1

9 ms−1.
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Figure 4.13: Schedule of the heterogeneous system in Figure 4.12 on four
processors π1, π2, π3 and π4

4.7 Case Studies

This section presents the results of the experiments in various case studies given
in Chapter 2 namely, an MPEG-4 decoder in Figure 2.14, an MP3 decoder in
Figure 2.15, an MP3 playback application in Figure 2.16, an audio echo canceller
in Figure 2.17, and a bipartite graph with buffer capacities in Figure 2.18. We
also consider an example SDF graph given in Figure 4.14.

Table 4.15 records the repetition vector of each SDF graph and Table 4.16
displays the results of the experiments of generating the fastest trace of the
second multiple of the repetition vector to find out throughput (ms−1), verify
deadlock freedom and comparison with sdf3.

We could determine the exact number of processors required for a self-timed
execution, using sdf3. Then, we apply our approach to derive an optimal schedule
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Figure 4.14: An example SDF graph case study
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Case Studies Repetition Vector

MPEG-4 Decoder in Figure 2.14 [FD VLD IDCT RC MC] = [1 5 5 1 1]
MP3 Decoder in Figure 2.15 [Huffman, Req0, Req1, Redorder0,

Reorder1, Stereo, Antialias0, Antialias1,
Hyb Syn.0, Hyb Syn.1, Freq. Inv0,
Freq. Inv1, Subb. Inv0, Subb. Inv1] =
[2 1 1 1 1 1 1 1 1 1 1 1 1 1]

MP3 Playback Application in [MP3 SRC DAC] = [3 235 1880]
Figure 2.16
Audio Echo Canceller in [OUT SRC AEC ADC] = [23 23 1 23]
Figure 2.17
Bipartite graph in Figure 2.18 [a b c d] = [12 36 9 16]
Example SDF graph in [a b c d e f] = [5 3 2 6 12 10]
Figure 4.14

Table 4.15: Repetition vectors of case studies calculated using uppaal

on fewer processors. Thus, using model checking, we could generate an optimal
schedule in a simple manner on a given number of processors automatically, once
the target state is specified in a query.

4.8 Tool Support

In previous sections, we proposed uppaal for optimal scheduling of SDF graphs.
We explained translation of SDF graphs to timed automata in Section 4.5.1,
uppaal models in Section 4.5.2, and utilising uppaal for deriving optimal
schedules in Section 4.6. To automate these steps, we developed a tool-chain based
on Eclipse Modeling Framework (EMF) [SBMP08] termed stars (Scheduling
and Temporal Analysis on limited Resources for SDF graphs). It takes as an
input an SDF graph generated using the well-known tool termed sdf3, and a
PAM. Then, it transforms these components to uppaal, which in turn outputs
the optimal schedules. Figure 4.17 on page 92 shows the workflow of the stars
tool-chain.

4.8.1 Input

The stars tool-chain takes as an input SDF graphs generated using sdf3 in XML
format. However, sdf3 only provides throughput of a self-timed execution where
each actor is fired as soon as it is enabled. Thus, it is assumed that sufficient
processors are available to accommodate all enabled firings simultaneously.
Nevertheless, sdf3 provides a limited support for specifying hardware architecture
in the form of processor types and execution time of actors on these processor
types. We use this feature to develop PAMs.

All components of the stars tool-chain can be found at https://github.com/

utwente-fmt/STARS. An instruction manual to use the stars tool-chain is also given in
this repository.

https://github.com/utwente-fmt/STARS
https://github.com/utwente-fmt/STARS
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Number of Maximal Max. Throughput Deadlock Freedom sdf3

Processors Throughput Memory Time Memory Time Time

MPEG-4 Decoder in Figure 2.14

6 (self-timed) 1/4 99460 259.18 41576 3.5 0
5 1/5 48960 12.04 39320 1.11 -
4 1/5 39628 0.71 38268 0.41 -
3 1/6 2008 0.11 38008 0.2 -
2 1/8 2008 0.1 2008 0.11 -
1 1/13 2008 0.1 2008 0.1 -

MP3 Decoder in Figure 2.15

2 (self-timed) 1/9 38172 0.22 2008 0.1 0
1 1/15 2008 0.1 2008 0.1 -

MP3 Playback Application in Figure 2.16

2 (self-timed) 1/1880 99176 7.25 67056 8.93 0.036002
1 1/2118 59472 1.41 47248 2.1 -

Audio Echo Canceller in Figure 2.17

4 (self-timed) 1/23 2874728 302.97 1820852 856.36 0.004
3 1/24 484736 133.65 578080 181.36 -
2 1/25 149264 18.29 150088 26.46 -
1 1/70 55572 1.41 60856 2.82 -

Bipartite graph in Figure 2.18

4 (self-timed) 1/42 38036 0.41 38024 0.21 0
3 1/44 37880 0.31 38008 0.2 -
2 1/51 37884 0.21 2008 0.1 -
1 1/73 2008 0.1 2008 0.1 -

Example SDF graph in Figure 4.14

5 (self-timed) 1/24 153048 108.48 71932 36.2 0
4 1/24 63924 10.28 48600 0.2 -
3 1/28 2008 0.1 40500 1.92 -
2 1/38 2008 0.1 38284 0.3 -
1 1/76 2008 0.1 2008 0.1 -

Table 4.16: Maximum throughput of case studies calculated using uppaal, and
comparison with sdf3

4.8.2 Transforming sdf3 Models to uppaal Models

After creating sdf3 models, the next step is to transform these models auto-
matically to TA models in the uppaal format. As both sdf3 and uppaal
utilises XML format, we have implemented a text-to-text transformation in the
stars tool-chain using Epsilon Generation Language (EGL) [RPKP08]. The
generated TA models are already explained in Section 4.5.
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Timed Automata Model
(UPPAAL)

  
SDF graph and PAM

(SDF3)

Eclipse Modeling 
Framework

  

Optimal Schedule 
Visualisation

(SDF FISH)

Figure 4.17: The workflow of the stars tool-chain. After the sdf3 model and
PAM are transformed to uppaal using the Eclipse framework, we generate the
optimal schedules using uppaal. Afterwards, we utilise sdf fish to visualise
the schedules.

4.8.3 Output

The optimisation problem of finding throughput-optimal schedules is encoded as
a reachability query over TA. Afterwards, the model checker uppaal extracts a
trace that satisfies the query. To visualise the traces generated by uppaal, we
have developed a visualisation tool termed sdf fish, having the following key
features.

• Gantt chart style visualisation of SDF schedule.

• Zooming, filtering, and scaling features.

• Playing function to see changes occurring in the schedule over time.
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Figure 4.18: Screen shot of sdf fish showing the schedule of the example in
Section 4.3.3 on page 73. The lower part shows which actor is executed on
which processor at what time. The playing function displays the progress of
the complete schedule over time. On the upper part, we can see processors and
actors involved in the schedule. Furthermore, we can also filter the schedule for
the specific processors and actors. The upper part also shows the number of
actor firings and processor utilisation.

• Various controls to navigate through the schedule such as number of times
an actor has fired, and processor utilisation, until any given time.

The schedule visualisation of the example in Section 4.3.3 on page 73 in sdf
fish is given in Figure 4.18. As we can see in the lower part, the schedule shows
which actor is executed on which processor at what time. Next to the time bar,
we have a playing function to navigate through the complete schedule over time.
On the upper left and middle part, we have all processors and actors involved
in the schedule respectively. Using the filtering functions, the schedule can be
visualised only for the specific processors and actors. The upper part also shows
the number of actor firings and processor utilisation.

4.9 Conclusions

Despite the remarkable progress in the analysis of SDF graphs, compact methods
for efficient scheduling of SDF graphs are still needed with an optimum trade-off
between the maximum throughput and number of processors. In this chapter,
we have demonstrated a novel throughput analysis technique for SDF-modelled
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streaming applications on the given number of processors using TA. Moreover, our
approach also generates optimal schedules. With experiments, we have compared
our approach with sdf3 which considers self-timed execution only to derive the
throughput. We, on other hand, can handle any given number of processors. We
also have introduced the stars tool-chain which can automatically generate and
visualise the schedules of the SDF graph modelled in sdf3.



CHAPTER 5

Green Computing: Energy-Optimal

Scheduling

Abstract

T
he previous chapter focused on resource-constrained scheduling of SDF
graphs in such a way that the throughput is maximised. However, through-
put is no longer the only performance metric for modern-day computer

systems. In fact, a trend is emerging to trade raw performance for energy savings.
Techniques like Dynamic Power Management (DPM, switching to low power
state) and Dynamic Voltage and Frequency Scaling (DVFS, throttling processor
frequency) help modern systems to reduce their power consumption while adher-
ing to performance requirements. To balance flexibility and design complexity,
the concept of Voltage and Frequency Islands (VFIs) was introduced for en-
ergy optimisation. It achieves fine-grained system-level energy management, by
operating all processors in the same VFI at a common frequency/voltage.

This chapter presents a novel approach to compute an energy management
strategy combining DPM and DVFS. In our approach, applications (modelled
in synchronous dataflow, SDF) are mapped on heterogeneous multiprocessors
(partitioned in voltage and frequency islands). We compute an energy-optimal
schedule, meeting minimal throughput requirements. We demonstrate that the
combination of DPM and DVFS provides an energy reduction beyond considering
DVFS or DPM separately. Moreover, we show that by clustering processors in
VFIs, DPM can be combined with any granularity of DVFS. Our approach uses
model checking, by encoding the optimisation problem as a query over priced
timed automata. The model checker uppaal cora extracts a cost minimal
trace, representing an energy minimal schedule. We illustrate our approach with
several case studies introduced in Chapter 2 on commercially available hardware.

About this chapter: The current chapter is based on the paper “Green Computing:
Power Optimisation of VFI-based Real-time Multiprocessor Dataflow Applications”, which
was published at DSD 2015 [AHSvdP15a]. An extended report on the work was published at
University of Twente Eprints [AHSvdP15b]. The original paper largely remains the same.
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5.1 Introduction

The power consumption of computing systems has increased exponentially
[IP05]. Therefore, minimising power consumption has become one of the most
critical, challenging and essential criteria for these systems. Over the past
years, system-level power management based on the properties such as execution
time of the tasks, frequency etc. has gained significant value and success
[BBDM00, IP05, ZSB+13].

Power Reduction Techniques. The total power consumption of a processor
is the sum of static (leakage) and dynamic power (in terms of switching activ-
ity). Two well-known techniques for power reduction in modern processors are
Dynamic Power Management (DPM) [BBDM00] and Dynamic Voltage and Fre-
quency Scaling (DVFS) [WWDS94]. DPM reduces the static power consumption,
whereas DVFS is used to lower the dynamic power consumption.

Dynamic Power Management. DPM works on the principle of switching a
processor to a low power state when it is not used, thus resulting in reduced power
utilisation. For example, let us consider a processor of a typical mobile phone,
having three power states, i.e., ON, INACTIVE, and OFF. If the processor runs
in ON state, then the LCD and backlight of the phone is turned on. If the
phone remains idle for some time, then the processor enters the INACTIVE
state in which the backlight turns off but the LCD stays turned on. If the phone
stays idle for some more time, then the LCD is turned off too (the OFF state).
It is very commonly assumed by power optimisation methods in the literature
that the transition overhead of switching to another power state is negligible
[NPK+05]. However, this may not be the case in real-life applications, where
there is always a non-negligible overhead [PPS+13]. We consider transition
overheads while moving to a different power state. DPM is widely used; many
processor manufacturers, such as Intel and AMD, have implemented an open
standard for power management named Advanced Configuration and Power
Interface [GHK14].

Dynamic Voltage and Frequency Scaling. On the other hand, DVFS
[WWDS94] lowers the voltage and clock frequency at the expense of the execution
time of a task. Power consumption of a processor scales linearly in frequency
and quadratically in voltage. But, frequency and voltage also have a linear
relation, therefore, when the clock frequency decreases, the voltage can also
reduce, so that the power is reduced cubically. DVFS comes in two flavours,
viz. local and global [MSH+11]. Local DVFS works on the principle that each
processor has its own individual clock frequency/voltage, whereas all processors
operate on the same clock frequency/voltage in the case of global DVFS. Local
DVFS gives more freedom in choosing clock frequencies and is therefore more
energy-efficient. However, local DVFS is expensive and complex to implement
because it requires more than one clock domain. In contrast, global DVFS
requires a simpler hardware design, but may lead to less reduction in power
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consumption [MSH+11]. Several modern processors such as Intel Core i7 and
NVIDIA Tegra 2 employ global DVFS [GHK14].

Voltage and Frequency Islands. To balance the energy efficiency and design
complexity, the concept of voltage and frequency islands (VFIs) [HM07] was put
forward. A VFI consist of a group of processors clustered together, and each VFI
runs on a common clock frequency/voltage [PCL15]. The clock frequencies/-
voltage supplies of a VFI may differ from other VFIs. Furthermore, different
VFI partitions represent DVFS policies of different granularity. Recently, some
modern multi-core processors, such as IBM Power 7 series, have adopted the
option of VFIs [HWZ+12].

Shortcomings in Literature. While DPM and DVFS are popular power
minimisation techniques, most of the earlier work [HMGM13, NMM+11, SDK13,
ZSJ08] focuses on DVFS only, neglecting static power completely. On the con-
trary, modern processors have significant static power, which must be addressed.
Hence, optimal energy minimisation cannot be guaranteed without considering
both DVFS and DPM. Our work is the first to compute energy schedules for
combined DVFS and DPM. Furthermore, with the help of VFIs, we combine
DPM with a DVFS policy with any granularity, generalising local and global
DVFS. This achieves fine-grained system-level energy management.

The second shortcoming in existing literature is addressing the applications
where inter-task dependencies are modelled by directed acyclic graphs (DAGs),
without analysing periodicity [dLJ06, LSWC08]; or frame-based periodic applic-
ations with no data dependencies between periods [DA12, GK13]. In real-time
streaming applications, there are three challenges in implementing power man-
agement [HMGM13]. First, the schedules of these applications are typically
infinite, making the problem scope infinite. Second, the iterations overlap in
time and we have to deal with data dependencies within and across iterations.
Last, performance constraints such as throughput are critical, and must be met.
Hence, we cannot capture all semantics of real-time streaming applications using
DAGs or frame-based models.

Our Approach. Alternatively, we use Synchronous Dataflow (SDF) [LM87b]
as a model of computation (MoC) in this thesis. In addition to not considering the
resource limitations, contemporary SDF analysis tools, e.g., sdf3 [SGB06] also
lack support for cost optimisation. Therefore, we propose an alternative, novel
approach based on uppaal cora [BLR05], the tool for Cost Optimal Reach-
ability Analysis, using priced timed automata (PTA) as a modelling language.
PTA extend timed automata [AD94] (for the modelling of time-critical systems
and time constraints) with costs, which we use to model energy consumption.
Furthermore, energy reduction techniques based on mathematical optimisation
[HMGM13, NMM+11, WLL+11, GKA14] do not support quantitative model
checking and evaluating user-defined properties. PTA also bridge this gap to
achieve benefits over the range of analysable properties such as the absence of
deadlocks and unboundedness, safety, liveness and reachability. Finally, PTA
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SDF Application
Hardware Architecture 
with Energy Constraints

SDF Application Model
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Figure 5.1: Our approach using priced timed automata. After both SDF
application and hardware architecture with energy constraints are modelled as
priced timed automata, uppaal cora is used to derive energy-optimal schedules.

provide straightforward compositional and extendible modelling capabilities to
system engineers, as opposed to mathematical optimisation approaches.

Methodology. Our approach as shown in Figure 5.1, takes three inputs: an
SDF graph that models the application tasks; a platform model that describes
the specifics of the hardware such as VFI partitions, frequency levels and power
usage per processor; and a throughput constraint. We translate the SDF graph
and the platform model to PTA using the model checker uppaal cora. After
defining the mapping of actors to processors, we utilise uppaal cora to search
the state-space. In this way, we compute an energy-optimal schedule that meets
the constraint, utilising the dynamic and static slack in the application. The
method can also be used to determine optimal VFI partitions in terms of design
complexity and energy efficiency, facilitating system designers to build durable
systems.

Contributions. The main contribution of this chapter is a fully automated
technique to compute energy-optimal schedules. In particular, we demonstrate
the following:

• We apply a combination of DPM and DVFS, confirming earlier results
[DA12, GK13] that DPM and DVFS together result in lower energy con-
sumption than considering only DVFS;
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• Our method considers processors partitioned into VFIs; thus allowing to
combine DPM, and DVFS policy with any granularity.

• We consider power overheads of transitions between different frequencies.

• Our approach is able to handle heterogeneous platforms, in which only
specific processors can run a particular task.

Moreover, our technique is based on the solid semantic framework of priced
timed automata, enabling the verification of functional system correctness.

We only consider discrete frequency and voltage levels in this work as real-life
platforms can support only a limited set of discrete frequency and voltage levels
[HMGM13].

Chapter Outline. Section 5.2 reviews related work. The power model con-
sidered in this chapter is introduced in Section 5.3. Section 5.4 explains SDF
graphs and platform models equipped with energy constraints, with a help of an
example. Different power reduction techniques are compared in Section 5.5, and
Section 5.6 covers the translation of SDF graphs and platform models to PTA.
The methodology of power optimisation of SDF graphs using uppaal cora
is explained in Section 5.7. Section 5.8 experimentally compares the results
of different power optimisation techniques explained earlier, and Section 5.9
validates our approach via case studies. The tool-chain developed to support
our work is described in Section 5.10. Finally, Section 5.11 draws conclusions.

5.2 Related Work

Considerable work has been done on power management. An extensive survey
paper [IP05] outlines the research work in the field of algorithmic power man-
agement, but without reviewing any work done on SDF graphs. Another survey
paper [ZSB+13] discusses several energy-cognizant scheduling techniques. All of
the presented techniques do not evaluate effectiveness of optimal combination of
global DVFS with scheduling. The novel methods for VFI-aware power optim-
isation are discussed in [JDP08] and [OMCM07]. It is assumed in these papers
that task scheduling is finished beforehand, and therefore, task precedence is
not considered. Whereas in practice, there are always precedence constraints
due to inter-task data dependencies.

A state-of-the-art methods of applying DVFS only on SDF graphs is ad-
dressed in [NMM+11, SDK13, ZSJ08]. These papers, in comparison to ours,
consider dynamic power only, and ignore static power which is non-negligible in
modern processors. Moreover, work in [NMM+11] also requires to transform an
SDF graphs to equivalent Homogeneous SDF (HSDF) graphs and model them
with additional static ordering channels, which is not needed in our approach.
Similarly, work in [ZSJ08] uses self-timed execution and static order firing, which
means we need as many processors as actors, unlike real-life applications where
there is always a constraint on the available number of processors. Therefore, this
work is not scalable on any other hardware platform, where there are fewer pro-
cessors than actors. Another method of throughput-constrained DVFS of SDF
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graphs on a heterogeneous multiprocessor platform is proposed in [HMGM13].
The difference with our approach is that the work in [HMGM13] ignores trans-
ition overheads. Therefore, optimality cannot be guaranteed. Moreover, this
paper also suffers from the limitation of static ordering.

More advanced approaches that combine DPM and DVFS are presented
in [WLL+11, GKA14]. Unlike our method, these approaches discuss a specific
energy optimisation policy where DPM and DVFS can be applied to each
processor independently only. In contrast, we consider VFI-based hardware
platforms where DPM and DVFS can be applied to any DVFS policy ranging
from each processor having independent voltage/frequency level to all processors
running at the same voltage/frequency level. Furthermore, these papers are
restricted to acyclic applications only, which makes the problem scope simpler.
The work in [DA12, GK13] describes an another novel algorithm for the optimal
combination of DPM and DVFS. In comparison to our work, this technique is
confined to global DVFS only, as it does not consider VFIs.

The next section introduces the power model used in this chapter.

5.3 Power Model

The clock frequency of a processor represents its speed. We assume that the
speed of the processors scale linearly with the clock frequency. However, in
practice, the relation between speed and clock frequency is not perfectly linear.
The reason is that the computer memory is a separate device and it is often
running on a different clock frequency. Therefore, the speed of the computer
memory typically does not scale with the clock frequency of the processor [DA12].

Nevertheless, if measured at the maximum frequency, the round-trip time for
a memory access in terms of processor clock cycles is at its highest. Memory
access for the same task running at a lower frequency level is cheaper in terms
of processor clock cycles. Therefore, our assumption made in this chapter that
speed of the processors is linearly related to the clock frequencies, does not
violate the deadline constraints of an application [GHK14].

The total power consumption by a processor is given by [dLJ06]:

PTot = PD + PS + Ptr (5.1)

where PD and PS is the dynamic and static power usage of a processor respect-
ively. The dynamic power is consumed due to the activity of the processor and
is given by:

PD = aCv2ddf (5.2)

where a is the circuit switching activity, C is the switched capacitance, vdd is the
supply voltage, and f is the operating frequency. Here, a and C are technology
dependent. The static power is consumed independently of the processor activity
and clock frequency. The static power is given by:

PS = VddIsubn + |Vbs|Ij (5.3)

where Vdd is the supply voltage, and rest of the parameters are fixed technology



5.4. SDF Graphs with Energy Constraints 101

FD MC

RC

VLD IDC

1

1

11

1

1 1

5

1

1 1

1

5
1

5

1

1
1

1

1

5

1

Figure 5.2: SDF graph of an MPEG-4 decoder

dependent. The transition overhead of transition from a certain frequency level
to another is denoted by Ptr .

5.4 SDF Graphs with Energy Constraints

This section first recalls the definition of SDF graphs from Chapter 2. Further-
more, we also extend the platform application model defined earlier in Chapter 4
with energy constraints. The execution time of actors is dependent on the run-
ning frequency of processors in a platform application model (PAM). Therefore,
we decided to include the execution time of actors in the definition of PAMs
instead of SDF graphs, opposed to the definition of SDF graphs and PAMs in
Chapter 4.

5.4.1 SDF Graphs

Definition 5.1. An SDF graph is a tuple G = (A,D,Tok0) where:

• A is a finite set of actors,

• D is a finite set of dependency channels D ⊆ A2 × N2, and

• Tok0 : D → N denotes distribution of initial tokens in each channel, and

The sets of input channels In(a) and output channels Out(a) of an actor a ∈ A
are defined as: In(a) = {(a′, a, p, q) ∈ D|a′ ∈ A ∧ p, q ∈ N} and Out(a) =
{(a, b, p, q) ∈ D|b ∈ A∧ p, q ∈ N}. The consumption rate CR(e) and production
rate PR(e) of a channel e = (a, b, p, q) ∈ D are defined as: CR(e) = q and
PR(e) = p.

Informally, for all actors a ∈ A, if the number of tokens on every input
channel (a′i, a, pi, qi) ∈ In(a) is greater than or equal to qi, actor a fires and
removes qi tokens from every In(a). The firing ends by producing pi tokens on
all (a, bi, pi, qi) ∈ Out(a).

Example 5.2. Figure 5.2 recalls the SDF graph of an MPEG-4 decoder from
Chapter 2. The actors A={FD, VLD, IDC,RC, MC} represent individual tasks
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performed in MPEG-4 decoding. For example, the frame detector (FD) models
the part of the application that determines the frame type and the number of
macro blocks to decode. The rest of the steps in MPEG-4 decoding are Variable
Length Decoding (VLD), Inverse Discrete Cosine (IDC) Transformation, Motion
Compensation (MC), and Reconstruction (RC) of the final video picture.

5.4.2 Platform Application Models

The Platform Application Model (PAM) models the multiprocessor platform
where the application, modelled as SDF graph, is mapped on. We extend the
definition of PAMs from Chapter 4 with a notion of power consumption. In
particular, we extend with the following features.

• A partitioning of processors in voltage and frequency islands.

• Different frequency levels each processor can run on.

• Power consumed by a processor in a certain frequency, both when in use
and when idle.

• Transition overheads required to switch between frequency levels.

Definition 5.3. A platform application model (PAM) is a tuple P=(Π, ζ, F,
Pidle ,Pocc ,Ptr , τact) consisting of,

• a finite set of processors Π. We assume that Π = {π1, . . . , πn} is partitioned
into disjoint blocks of voltage/frequency islands (VFIs) such that

⋃
Πi = Π,

and Πi ∩Πj = ∅ if i 6= j,

• a function ζ : Π→ 2A indicating which processors can handle which actors,

• a finite set of discrete frequency levels available to all processors denoted
by F = {f1, . . . , fm} such that f1 < f2 < . . . < fm,

• a function Pocc : Π× F → N denoting the power consumption (dynamic)
of a processor operating at a certain frequency level f ∈ F in the operating
state,

• a function Pidle : Π× F → N assigning the power consumption (static) of
a processor operating at a certain frequency level f ∈ F in the idle state,

• a partial function Ptr : Π × F 2 9 N expressing the transition overhead
from one frequency level f ∈ F to next frequency level f ∈ F for each
processor π ∈ Π, and

• the valuation τact : A×F → N≥1 defining the execution time of each actor
a ∈ A mapped on a processor at a certain frequency level f ∈ F .

The notations fi and Πj represent ith frequency level and jth VFI respectively.
We also use the notation [π] to denote the VFI of a processor π ∈ Π.
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Level Voltage Frequency Level Voltage Frequency

1 1.2 1400 4 1.05 1128.7

2 1.15 1312.2 5 1.00 1032.7

3 1.10 1221.8

Table 5.3: DVFS levels and corresponding CPU voltage and clock frequencies of
Samsung Exynos 4210 processors

Example 5.4. Exynos 4210 [SAMa] is a state-of-the-art processor used in high-
end mobile platforms such as Samsung Galaxy Note, Galaxy SII etc. Table
5.3 shows different DVFS levels, and corresponding CPU voltage (V) and clock
frequency (MHz), of Samsung Exynos 4210 processors [PPS+13]. �

5.4.3 Example of SDF Graphs with Energy Constraints

In this subsection, we explain the aforementioned semantics of an SDF graph
mapped on a processor application model by means of an example. Let us consider
that the SDF graph of an MPEG-4 decoder shown in Figure 5.2 is mapped on
four Samsung Exynos 4210 processors. The processors Π = {π1, π2, π3, π4} are
partitioned in three VFIs such that Π1 = {π1}, Π2 = {π2, π3} and Π3 = {π4}.
Two DVFS levels (MHz) {f1, f2} ∈ F taken from Table 5.3, i.e., f2 = 1400
and f1 = 1032.7 are available to all processors. The transition overhead (W)
of all Exynos 4210 processors is, Ptr(π, f2, f1) = 0.2 and Ptr(π, f1, f2) = 0.1
[PPS+13]. Let us assume that all processors start at the highest frequency level,
i.e., f2 ∈ F . Table 5.4 shows the formation of VFIs and experimental power
consumption against each frequency level. We also assume that the execution
times (ms) of all actors a ∈ A at the frequency level f1 are rounded to the next

integer. As f1 = 0.738× f2, τact(a, f1) = d τact(a,f2)0.738 e.
Figure 5.5 shows a schedule of our running example for a constraint of 125

frames per second (fps). To achieve 125 fps, MPEG-4 decoder completes the
iteration in 1

125= 8 ms. In this figure, grey and white coloured boxes denote, if
a processor is running at the frequency level f2 or f1 respectively.

As we can see in Figure 5.5, the processor π1 ∈ Π changes its frequency
level from f2 ∈ F to f1 ∈ F at t = 0 ms, thus incurring the transition overhead
Ptr (π1, f2, f1) = 0.2 W. From thereon, it operates at the frequency level f1 ∈ F
for 5 ms. During this time interval, the actors FD ∈ A and VLD ∈ A are fired
once on π1 ∈ Π. At t = 5 ms, the processor π1 ∈ Π switches the frequency level
from f1 ∈ F back to f2 ∈ F after incurring Ptr (π1, f1, f2) = 0.1 W, and stays in
the frequency level f2 ∈ F for the rest of the iteration. During this time interval,
the actors IDC ∈ A and RC ∈ A claim π1 ∈ Π twice and once respectively. Thus
per iteration, the processor π1 ∈ Π consumes dynamic energy for 8 ms. As the
processor π1 ∈ Π does not remain idle during the iteration, it does not consume
any static energy. The total energy consumption (mWs) per iteration of the
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Processor VFI Voltage(V) Frequency(MHz) Pidle(W) Pocc(W)

π1 Π1 1.2 1400 0.1 4.6

1.00 1032.7 0.4 1.8

π2 Π2 1.2 1400 0.1 4.6

1.00 1032.7 0.4 1.8

π3 Π2 1.2 1400 0.1 4.6

1.00 1032.7 0.4 1.8

π4 Π3 1.2 1400 0.1 4.6

1.00 1032.7 0.4 1.8

Table 5.4: Description of the platform containing four Samsung Exynos 4210
processors π1, π2, π3, and π4. These processors are partitioned into three VFIs
Π1, Π2, and Π3.
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Figure 5.5: An example schedule of MPEG-4 decoder in Figure 5.2 on four
processors π1, π2, π3, and π4. The grey and white coloured boxes denote, if a
processor is running at the frequency f2 or f1 respectively

processor π1 ∈ Π is
ETot = ES + ED + Etr

ETot = Pidle×0+Pocc(π1, f2)×3+Pocc(π1, f1)×5+Ptr (π1, f2, f1)+Ptr (π1, f1, f2)

ETot = 0 + 4.6× 3 + 1.8× 5 + 0.2 + 0.1 = 23.1

In the same fashion, we can calculate energy consumption per iteration for each
processor, which gives us the total energy consumption equal to 57.7 mWs per
iteration.

5.4.4 Semantics of SDF Graphs with Energy Constraints

The dynamic behaviour of an SDF graph G mapped on a PAM P can naturally
be understood in terms of a labelled transition system (LTS) LT S(GP). Below,
we define LT S(GP) by giving its states and transitions.

Definition 5.5. A state is a tuple (Tok , status, freq ,TuC ,TotPow) with the
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following components.

• channel quantity Tok : D → N associates with each channel the number of
tokens currently present in that channel, and

• status : Π→ {idle, occup} and freq : Π→ F associates with each processor
π ∈ Π, whether it is idle or occupied, and its current frequency level f ∈ F .

• To observe the progress of time, TuC : Π→ N records for each processor
the remaining execution time required to complete its current task.

• TotPow : Π→ N records the total accumulated power consumption for each
processor.

The initial state (Tok0, status0, freq0,TuC 0,TotPow0) is given by status0(π) =
idle, freq0(π) = fm, TuC (π) = 0, TotPow0(π) = 0 for all π ∈ Π.

Example 5.6. The initial state of the example explain in Section 5.4.3 is given
by (Tok0, status0, freq0,TuC 0,TotPow0) = ((0, 0, 0, 0, 0, 0, 0, 0, 1, 1), (idle, idle,
idle, idle), (f2, f2, f2, f2), (0, 0, 0, 0), (0, 0, 0, 0)). Here, the initial tokens in all
channels are represented by Tok0. The initial availability of processors and
their active frequency level is given by status0 and freq0 respectively. Similarly,
TuC 0 and TotPow0 represents the initial, remaining execution times and power
consumption, of processors respectively. �

The transitions in LT S(GP) are given in the following.

Definition 5.7. A transition from state (Tok1, status1, freq1,TuC 1,TotPow1)
to (Tok2, status2, freq2,TuC 2,TotPow2) is denoted as,

(Tok1, status1, freq1,TuC 1,TotPow1) −κ→ (Tok2, status2, freq2,TuC 2,TotPow2)

The label κ is defined as κ ∈ (A×Π×F×{start, end})∪{tick}∪(Π×F×F×jump)
and corresponds to the type of transition.

• Label κ = (a, π, f, start) denotes mapping and starting of an firing of an
actor a ∈ A on a processor π ∈ Π at a frequency level f ∈ F . This
transition may occur if

– Tok1(d) ≥ CR(d) for all d ∈ In(a). That is, all input channels d ∈ D
have sufficiently many tokens.

– status1(π) = idle, i.e., the processor π is currently unoccupied.

– freq1(π′) = f for all π′ ∈ [π], i.e., the active frequency level of all
processors in VFI [π] is f ∈ F , and

– a ∈ ζ(π), i.e., if the actor a can be mapped on the processor π or not.

This transition results in a new state (Tok2, status2, freq2,TuC 2,TotPow2)
given by,

– Tok2(d) = Tok1(d)−CR(d) for all d ∈ In(a). That is, CR(d) tokens
are removed from each incoming channel.
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– status2(π′) = status1(π′) and status2(π) = occup for all π′ 6= π. That
is, the processor π ∈ Π is claimed.

– freq2 = freq1, i.e., the active frequency level of all processors does not
change,

– TuC 2(π) = τact(a, f), i.e., τact(a, f) is attached to the processor π,
and

– TotPow2 = TotPow1, i.e., this transition does not cost any power.

Example 5.8. The actor FD in the example given in Section 5.4.3 takes
the transition (FD , f2, π1, start) at time t = 0 ms. As a result, one token
is subtracted from the channel RC − FD . �

• Label κ = (a, π, f, end) denotes the ending of a firing by an actor a ∈ A
and releasing a processor π ∈ Π operating at a frequency level f ∈ F . This
transition may occur if,

– TuC 1(π) = 0, i.e., the actor a ∈ A has finished its execution.

This transition results in a new state (Tok2, status2, freq2,TuC 2,TotPow2)
given by,

– Tok2(d) = Tok1(d) + PR(d) for all d ∈ Out(a). That is, PR(d)
tokens are produced on all output channels.

– TuC 2 = TuC 1,

– status2(π′) = status1(π′), and status2(π) = idle for all π′ 6= π. That
is, the processor π ∈ Π is released.

– freq2 = freq1, i.e., the active frequency level of all processors does not
change, and

– TotPow2 = TotPow1, i.e., this transition does not cost any power.

Example 5.9. In the example given in Section 5.4.3, the actor FD takes
the transition (FD , f2, π1, end) at time t = 3 ms. As a result, five tokens
are produced on the channels FD − IDC and FD −VLD , and one token
is produced on the channels FD −MC and FD − RC . �

• Label κ = tick denotes a clock tick transition. This transition is enabled if,

– TuC 1(π′) 6= 0 for all π′ ∈ Π. That is, no end transition is enabled.

This transition results in a new state (Tok2, status2, freq2,TuC 2,TotPow2).
For all d′ ∈ D and π′ ∈ Π, the new state is given by,

– Tok2(d′) = Tok1(d′),

– status2(π′) = status1(π′),

– freq2(π′) = freq1(π′),

– TuC 2(π′) = TuC 1(π′)−1, i.e., the remaining execution time assigned
to the processors is decreased by 1,



5.5. Comparison of Energy Optimisation Methods 107

– if status1(π′) = occup, then TotPow2(π′) = TotPow1(π′) + Pocc(π′,
freq1(π′)), and

– if status1(π′) = idle, then TotPow2(π′) = TotPow1(π′) + Pidle(π′,
freq1(π′)).

Example 5.10. In our running example, there are three tick transitions
between t = 0 ms and t = 3 ms on the processor π1 ∈ Π, because no end
transition is enabled in that period. At t = 0 ms, the execution time of the
actor FD , i.e., τact(FD , f2) is attached to the processor π1. After three
tick transitions, the remaining execution time assigned to the processor π1
equals 0, and therefore an end transition is taken at t = 3 ms. �

• Label κ = (Πj , fi, f
′, jump) denotes a transition of all processors π′ ∈ Πj

running at a frequency level fi ∈ F , to another frequency level f ′ ∈ F such
that f ′ = fi+1 or f ′ = fi−1. This transition is enabled if,

– for all π′ ∈ Πj, freq1(π′) = fi and status1(π′) = idle, i.e., the
processors in the same VFI can change to another frequency level only
if they all are in the idle state at the same frequency level.

This transition results in a new state (Tok2, status2, freq2,TuC 2,TotPow2)
given by,

– Tok2(d) = Tok1(d) for all d ∈ D. That is, the token distribution does
not change.

– status2(π′) = idle and freq2(π′) = f ′ for all π′ ∈ Πj. That is, the
active frequency level of all processors in the same VFI changes to
f ′ ∈ F .

– TuC 2 = TuC 1, and

– TotPow2(π′) = TotPow1(π′) + Ptr (π′) for all π′ ∈ Πj. That is, the
transition overhead of all processors belonging to the same VFI is
incurred.

Example 5.11. In Figure 5.5, there is one jump transition at time t = 0
ms, i.e., (Π1, f2, f1, jump). �

5.5 Comparison of Energy Optimisation Methods

This section illustrates the importance of considering DPM along with DVFS,
with the help of a non-trivial observation. Furthermore, we explain how VFIs
allow us to achieve fine-grained energy optimisation, by combining DPM with
any granularity of DVFS. Let us consider a real-time periodic application mapped
on a single processor. Figure 5.6 shows the behaviour of static (ES ) and dynamic
(ED) energy consumption of the processor as a function of processor frequency
for the execution of an entire iteration. Note that ES also includes transition
overheads. The minimum frequency at which the task can meet its deadline is
denoted by fa. Similarly, f∗ denotes the minimum frequency at which there
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ffa f∗ fmax

Region A Region B

E

ED

ES

Figure 5.6: Static (ES ) and dynamic
(ED) energy as a function of frequency

ffopt1=fa f∗ fopt2 fmax

Region A Region B

E

E(fopt1 )

E(fopt2 )

ETot

Figure 5.7: Total energy (ETot) as a
function of frequency

is enough slack for the processor to move to the low power state. Thus, the
processor can only move to the low power state, if its frequency is no less than
f∗. Otherwise, it will not be able to meet the deadline.

As explained earlier, ED increases cubically with the increase of frequency.
However, ES shows varying patterns. In Region A where fa ≤ f < f∗, the idle
period of the processor is too short to allow it to move to the low power state
where static energy consumption is lower. Therefore, ES is higher and constant
in Region A. However, as frequency reaches f∗, slack, i.e., the idle period of the
processor increases, allowing the transition to less static power consuming states.
Thus, ES drops down at f = f∗. As frequency increases beyond f∗ in Region
B, the idle period of the processor increases further in linear fashion, leading to
switching to deeper sleep states by the processor. Without loss of generality, if
we assume that transition overhead of switching to deeper low power states also
increases linearly, we get linear decrease of ES with the increase of frequency in
Region B, as shown in Figure 5.6.

Figure 5.7 shows ETot = ES + ED , as a function of processor frequency. In
Region A where ETot grows with the increasing frequency, local minimum fopt1
of ETot is fopt1 = fa. Whereas, in Region B, ETot decreases with the increasing
frequency. The local minimum fopt2 of ETot in Region B is fopt2 ∈ [f∗, fmax ].
Depending on power consumption of low power states, and transition overheads,
steepness of ES can increase or decrease in Region B. As a result, the minimum
value of ETot can have different values in Region B, as shown by dashed lines.

As we have seen that local optimal frequencies to minimise ETot in both
regions are well defined. However, there is no a priori reason that global
minimum of ETot should lie in Region A or Region B . Depending on the
power consumption values of the processor and deadline of the application, the
global optimal frequency can be either in Region A or B.

Alternatively, if we do not consider DPM, ES in Region B remains same
as A, and consequently, ETot increases in Region B as well. Therefore, we can
safely conclude that we must consider both DPM and DVFS to determine the
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Figure 5.8: Energy-optimal execution wrt No− PowerOpt. The processors remain
idle for last 5 ms resulting in dynamic slack.

Voltage(V) Frequency(MHz) GDVFS GDVFS+DPM

Pidle(W) Pocc(W) Pidle(W) Pocc(W)

1.2 1400 0.4 4.6 0.1 4.6

1.00 1032.7 0.4 1.8 0.4 1.8

Table 5.9: Frequency and voltage levels considered for GDVFS and GDVFS + DPM

optimal energy consumption. We can generalise this result for multiprocessors
also. Moreover, partitioning processors into VFIs enable us to assign frequency
per partition, rather than running all processors at the same frequency.

To illustrate earlier arguments, let us consider an example of an MPEG-4
decoder shown in Figure 5.2 on page 101, mapped on the platform containing
four Samsung Exynos 4210 processors, i.e., Π = {π1, π2, π3, π4}. For the deadline
of completing three graph iterations within 23 ms, we consider the following
scenarios.

• Case 0: Without Power Optimisation (No− PowerOpt)

Let us assume that the processors do not utilise any power management
technique. The only frequency f ∈ F available to the processors is f =
1400 MHz. The idle (static) and operating (dynamic) power consumption
at f = 1400 MHz is Pidle(π, f)=0.4 W and Pocc(π, f)=4.8 W respectively.
Figure 5.8 shows the optimal execution of this case, where we can see that
the constraint of finishing three graph iterations is met well before the
deadline, and the processors remain idle for the rest of the time resulting
in dynamic slack. Hence, DVFS is needed to minimise dynamic slack. The
total energy consumption of this case is 204.2 mWs.

• Case 1: Global DVFS only (GDVFS)

Now, to introduce DVFS in processors, we add an extra frequency level
(MHz), i.e., {f1, f2} ∈ F such that f2 = 1400 and f1 = 1032.7. In this case,
the processors employ DVFS only, without considering DPM and VFIs.
Table 5.9 shows the idle (static) and operating (dynamic) power consump-
tion at both frequencies. Note that, idle power consumption of all processors
π ∈ Π is constant at both frequencies, i.e., Pidle(π, f2)=Pidle(π, f1)=0.4 W.
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Figure 5.10: Energy-optimal execution wrt GDVFS. The processors consume high
static power while being idle, leading to static slack.

Recall that GDVFS assumes one VFI, i.e., Π1 = {π1, π2, π3, π4}. The op-
timal execution of this scenario is shown in Figure 5.10. As we can see
in Figure 5.10, the constraint of finishing three graph iterations is ful-
filled exactly at the deadline, as opposed to No− PowerOpt. Thus, DVFS
helps to reduce dynamic slack. As a result, the total energy consumption
drops to 185.2 mWs from 204.2 mWs. However, in case of GDVFS, the
processors consume high static power while being idle, leading to static
slack. Therefore, we must utilise DPM to reduce static slack.

• Case 2: Global DVFS + DPM (GDVFS + DPM)

In order to allow processors benefit from both DPM and DVFS, we intro-
duce a low power state, i.e., the idle power consumption of all processors
π ∈ Π at frequency level f2 = 1400 MHz is changed to Pidle(π, f2)=0.1 W
because more idle time allows DPM. However, the operating power con-
sumption of all processors π ∈ Π at both frequencies, i.e., Pocc(π, f2)
and Pocc(π, f1) remains same as GDVFS, as given in Table 5.9. The trans-
ition overhead (W) of all processors π ∈ Π is, Ptr(π, f2, f1) = 0.2 and
Ptr(π, f1, f2) = 0.1. In this case, the schedule remains the same. However,
the total energy consumption drops significantly to 179.8 mWs. Hence,
it shows that optimality of energy minimisation can only be guaranteed
by considering both DPM and DVFS. However, as we may observe, all
processors run at the same frequency in GDVFS + DPM, which might be
unnecessary. Instead, we may partition processors into VFIs so that only
required processors run at the same frequency, and others may run at the
different frequency.

• Case 3: DVFS + DPM with 2 VFIs (DVFS + DPM− 2)

In this scenario, we partition processors into two VFIs such that Π1 =
{π1, π2} and Π2 = {π3, π4}, while utilising both DVFS and DPM. The
power consumption values of processors at both frequencies remain the
same as in Case 2. As a result, the total energy consumption reduces
to 179.2 mWs, demonstrating the effectiveness of VFIs to achieve fine-
grained energy management. The optimal execution of this case is shown
in Figure 5.11.

• Case 4: DVFS + DPM with 3 VFIs (DVFS + DPM− 3)
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Figure 5.11: Energy-optimal execution wrt DVFS + DPM− 2. The processors are
partitioned into two VFIs.
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Figure 5.12: Energy-optimal execution wrt DVFS + DPM− 3. The processors are
partitioned into three VFIs.

The total energy consumption drops further to 176.5 mWs, if we par-
tition processors into three VFIs such that Π1 = {π1}, Π2 = {π2} and
Π3 = {π3, π4}. Figure 5.12 shows the optimal execution of Case 4, i.e.,
DVFS + DPM− 3.

5.6 From SDF Graphs and Platform Application Models
to Priced Timed Automata

Similar to previous chapter, our framework consists of separate models of an
SDF graph and the processor application model. In this section, we describe the
translation of an SDF graph along with a PAM to PTA using uppaal cora.

Given an SDF graph G = (A,D,Tok0, τ) mapped on a PAM P = (Π, ζ, F,
Pidle ,Pocc ,Ptr , τact), we generate a parallel composition of PTA:

AG‖Processor1‖, . . . , ‖Processorn‖Scheduler .

PTA models of the example given in Section 5.4.3 is shown in Figure 5.13 on
page 116. Here, the automaton AG models actors and channels of an SDF
graph, as shown in Figure 5.13a. The PTA Processor1, . . . ,Processorn model
processors Π = {π1, . . . , πn}, as shown in Figure 5.13b. Figure 5.13c presents
the automaton of Scheduler , that decides when to switch the frequency level of
all processors in the same VFI. We assume that the underlying LTS of G is given
by (S,Lab,→G) where S = (Tok , status, freq ,TuC ,TotPow) denotes the states,
Lab = κ denotes the labels, and →G⊆ S × Lab× S depicts the transitions.
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Priced Timed Automaton AG. The automaton AG models the SDF graph G.
Given G and P, the automaton AG is defined as,

AG = (L, l0,Act , E, P, Inv)

All components of AG are explained as follows.

• The location L = l0 = {Initial} is the only location in our SDF graph
model.

• The action set Act = {fire!, end?} contains two parametrised actions, i.e.,
fire! (exclamation mark signifies a sending operation) and end? (ques-
tion mark signifies a receiving operation) to synchronise with the PTA
Processor1, . . . ,Processorn. For each processor π ∈ Π and a ∈ A, fire[π][a]
represents the start of the firing of an actor a on a processor π, and end[π][a]
represents its firing. The action fire[π][a] is enabled if the incoming channels
of a ∈ A have sufficient tokens.

• For each a ∈ A and d ∈ D, the edge set E contains two edges such that:

– Initial −Tok(d)≥CR(d): fire[π][a]!, Tok(d)=Tok(d)−CR(d)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial

– Initial −true: end[π][a]?, Tok(d):=Tok(d)+PR(d)−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial

Here, Tok(d) ≥ CR(d) refers to a guard and it signifies that tokens
on all input edges d ∈ In(a) of an actor a ∈ A must be greater than
or equal to their consumption rate in order to take the action fire!. As
a result of taking the action fire!, tokens on all input edges d ∈ In(a)
of an actor a ∈ A are subtracted, i.e., Tok(d) = Tok(d) − CR(d).
Similarly, by taking the action end?, actor firing is completed and
tokens are produced on all output edges d ∈ Out(a) of an actor a ∈ A,
i.e., Tok(d) = Tok(d) + PR(d).

• The automaton does not contain any costs.

• We do not have any clocks and invariants in AG. Therefore, Inv: L→ B(C)
and Inv(l0) = true.

The automaton AG contains a number of variables: for each channel from
actors a ∈ A to b ∈ B, an integer variable buff a2b = Tok(a, b, p, q) containing
the number of tokens in the channel from a to b. The variable counter a counts
how many times actor a ∈ A has been fired in an execution. Initially, counter a
= 0 and buff a2b = Tok0(a, b, p, q) contains the number of tokens in the initial
distribution of the channel (a, b, p, q).

The action fire[π][a] consumes, from each input channel (b, a, p, q) ∈ In(a) in
G, the q tokens from the variable buff b2a, and is carried out by the function
consume(buff b2a, q). The action end[i][a] adds, for each actor a ∈ A and output
channel (a, b, p, q) ∈ Out(a) in G, the p tokens on the variable buff a2b by
carrying out the function produce(buff a2b, p).

The function estimate() provides an estimate of lower bound on the remaining
cost, which is used to improve the performance of uppaal cora.
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Priced Timed Automata Processor j . The priced timed automata (PTA) Processor j
model PAMs. For each πj ∈ Π, we define Processor j PTA as follows.

Processor j = (Lj , l
0
j ,Actj , Ej , Pj , Inv j)

All components of Processor j are explained as follows.

• For each frequency level fi ∈ F , we include both an idle state and an active
state running on that frequency level in the PTA Processor j . Thus, for
each a ∈ ζ(πj) and F = {f1, . . . , fm} such that f1 < f2 < . . . < fm, let
Lj = {Idle f1, . . . , Idle fm, InUse a f1, . . . , InUse a fm} indicating that the
processor πj ∈ Π is currently used by the actor a ∈ A in the frequency
level fi ∈ F , either in idle or running state.

• For F = {f1, . . . , fm} such that f1 < f2 < . . . < fm, the initial location is
given by l0j = Idle fm. This explains that a processor π ∈ Π always starts
at the highest frequency level fm ∈ F .

• The action set Actj = {fire?, end!, jump ik?} contains three actions fire?,
end! and jump ik?. The actions fire? and end! in Actj are paramet-
rised with processor and actor ids, and synchronise with AG. The action
jump ik? in Actj is parametrised with the VFI id. For all fi, fk ∈ F ,
and πj ∈ Πy, the broadcast action jump ik[y] synchronises the automata
Processor1, . . . ,Processorn with the automaton Scheduler , to switch all
processors in the VFI [πj ] from the frequency level fi to fk.

• For each π ∈ Π, a ∈ ζ(π) and fi ∈ F , the edge set Ej contains two edges
such that:

– Idle fi −true: fire[π][a]?, x=0−−−−−−−−−−−−→ InUse a fi, and

– InUse a fi −x=τact (a,fi): end[π][a]!,∅−−−−−−−−−−−−−−−→ Idle fi.

The action fire[π][a] is enabled in the idle state Idle fi and leads to the
location InUse a fi. Thus, fire[π][a] claims the processor π ∈ Π at the
frequency level fi ∈ F , so that any other firing cannot occur on π ∈ Π
before the current firing of a ∈ A is finished. As each location InUse a fi
has an invariant Inv j(InUse a fi) ≤ τact(a, fi), the automaton can stay in
InUse a fi for at most the execution time of actor a ∈ A at frequency level
fi ∈ F , i.e., τact (a, fi). If x = τact (a, fi), the system has to leave InUse a fi
at exactly the execution time of actor a ∈ A at frequency level fi ∈ F , by
taking the end[π][a] action. In this way, AG is notified that the execution
of a ∈ A has ended, so that AG updates the variables.

• For F = {f1, . . . , fk, fi} such that f1 < f2 < . . . < fk < fi, and πj ∈ Πy,
the edge set Ej has the following edges Ebroad ∈ E for handling broadcast
such that:

– Idle fi −true: jump ik[y]?,∅−−−−−−−−−−−→ Idle fk,
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– Idle fk −true: jump ki[y]?,∅−−−−−−−−−−−→ Idle fi,
...

– Idle f1 −true: jump 12[y]?,∅−−−−−−−−−−−−→ Idle f2

• For each actor a ∈ ζ(π) and frequency level fi ∈ F , the costs to stay in idle
or running states are given as Pj(Idle fi) = Pidle(π, fi) and Pj(InUse a fi) =
Pocc(π, fi). Furthermore, for all fi, fk ∈ F , πj ∈ Πy, and Ebroad ∈ E,
the cost of transition from one frequency level to another is given as

Pj(Idle fi −true: jump ik[y]?,∅−−−−−−−−−−−→ Idle fk) = Ptr (πj, fi, fk).

• For each actor a ∈ ζ(π) and frequency level fi ∈ F , the invariants are
given as Invj(Idle fi) = true, and Invj(InUse a fi) ≤ τact(a, fi) enforcing
the system to stay in InUse a fi for at most the execution time τact(a, fi).

Please note that Processor j contains exactly one clock xj ; since clocks in
uppaal cora are local, we can abbreviate xj by x. A separate clock variable
global observes the overall time progress. Moreover, as we only can have integer
costs, all values of power consumption are multiplied by 10 in the uppaal cora
model in Figure 5.13 on page 116.

For all πj ∈ Πy, Processor j has a variable freq lev[y] to count processors in
the running state. Initially, freq lev[y] = 0 for all πj ∈ Πy. If a processor πj ∈ Πy

is claimed by an actor a ∈ A, the counter freq lev[y] is incremented by one.
Similarly, if a processor πj ∈ Πj is released, the value of the counter freq lev[y]
is reduced by one. For all πj ∈ Πy, Processor j has another variable curr freq[y]
that determines the current frequency level of all πj ∈ Πy. Initially, for F =
{f1, f2, . . . , fm} such that f1 < f2 < . . . < fm, and for all πj ∈ Πy, curr freq[y]
= m. In Figure 5.13b, for all πj ∈ Πy, the initial value of curr freq[y] = 2
denoting that the highest frequency level is f2 ∈ F . For all πj ∈ Πy, when action
jump 21[y] is taken, the value of curr freq[y] changes to 1.

Priced Timed Automaton Scheduler. The automaton Scheduler models the
scheduler, defined as,

(L, l0,Act , E, P, Inv)

All components of Scheduler model are defined in the following.

• The location L = l0 = {Initial} is the only location in Scheduler model.

• For F = {f1, . . . , fk, fi} such that f1 < f2 < . . . < fk < fi, the action set
Act = {jump 12, . . . , jump ik} parametrised with the VFI ids, synchronises
with the PTA Processor1, . . . ,Processorn.

• For F = {f1, . . . , fk, fi} such that f1 < f2 < . . . < fk < fi, and πj ∈ Πy,
the edge set E has the following edges for broadcast such that:

– Initial −freq lev[y]==0∧curr freq[y]==i: jump ik[y]!,∅−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial,

– Initial −freq lev[y]==0∧curr freq[y]==k: jump ki[y]! ∅−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial,
...
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– Initial −freq lev[y]==0∧curr freq[y]==1: jump 12[y]!,∅−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial

• The automaton Scheduler does not contain any costs.

• We do not have any clocks and invariants in Scheduler . Therefore,
Inv: L→ B(C) and Inv(l0) = true.

For example, in Figure 5.13c, the action jump 21[y] is enabled when all
processors πj ∈ Πy are in the idle state and the current frequency level is
f2 ∈ F , i.e., freq lev[y] == 0 && curr freq[y] == 2. When this action is taken,
all processors πj ∈ Πy synchronise with the automaton Scheduler , and change
the frequency level to f1 ∈ F . Same is the case with the other action jump 12[y].

5.7 Energy Optimisation of SDF Graphs using uppaal
cora

This section illustrates how we use uppaal cora to obtain energy-optimal
schedules. As explained earlier in Chapter 2, each actor fires according to the
repetition vector γ in an iteration. For each actor a ∈ A in the SDF graph, we
define its corresponding entry in the repetition vector as γ(a). We also define
the number of iterations per period as iter .

A technique of calculating the maximum throughput of an SDF graph mapped
on a given number of processors via timed automata (TA), using the model
checker uppaal is proposed in Chapter 4. This work demonstrates that the
fastest execution of every consistent and strongly connected SDF graph, mapped
on a platform application model, repeats the periodic phase n times if each
actor a ∈ A fires equal to (n · iter + k) · γ(a) for some constants n and k.
The maximal throughput of the SDF graph is determined from the periodic
phase. For example, we know that the repetition vector γ of the example SDF
graph given in Section 5.4 is 〈FD,VLD, IDC,RC,MC〉 = 〈1, 5, 5, 1, 1〉. We can
find out the throughput using the 3rd multiple of the repetition vector, i.e.,
(n · iter + k) = 3 · γ(a) for all actors a ∈ A, by selecting the Fastest trace option
in uppaal, and verifying the following query.

E <> (counter FD == 3 and counter VLD == 15 and counter IDC == 15

and counter RC == 3 and counter MC == 3)

We find the periodic phase from the generated trace, representing the max-
imum throughput. To compute an energy-minimal schedule from an SDF graph
G and a PAM P, we perform the following steps.

1. TA models are extracted such that AG‖Processor1‖, . . . , ‖Processorn.

2. We obtain the time T needed to complete the fastest execution of AG, by
running the query Q1 = E <> (

∧
a∈A

counter a = (n · iter + k) · γ(a)) in

uppaal.

3. PTA models are extracted such that AG‖Processor1‖, . . . , ‖Processorn‖
Scheduler .



(a) uppaal cora model AG for MPEG-4 decoder in Figure 5.2 having five actors (b) Scheduler model used to
change the frequency levels

(c) uppaal cora model Processorj onto which MPEG-4 decoder in Figure 5.2 is mapped

Figure 5.13: uppaal cora editor showing SDF graph, Processor and Scheduler models
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4. We obtain the cheapest trace finished within time T , by running the query
E <> (Q1 ∧ time ≤ T) in uppaal cora.

5. The trace is translated into an energy-optimal schedule. That is, by
considering the action labels on the transitions, we know which actor is
executed on which processor at which frequency.

For example, the fastest execution of the query mentioned above completes in
18 ms, if the corresponding SDF graph is mapped on four processors. If we add
the constraint global = 18 to our earlier query in uppaal cora, we get the
optimal schedule in terms of energy utilisation at the maximum throughput on
a given number of processors. The clock variable global is used to observe the
overall time progress, and is never reset.

5.8 Experimental Evaluation via MPEG-4 Decoder

We analyse results of energy optimisation by means of an example of the MPEG-4
decoder example in Figure 5.2 on page 101. We evaluate energy consumption
with respect to (1) fixed number of processors (2) varying number of processors.
Finally, the method of verifying various user-defined properties using model
checking is explained.

5.8.1 Fixed Number of Processors

We consider an MPEG-4 decoder mapped on the platform containing four
Samsung Exynos 4210 processors, i.e., Π = {π1, π2, π3, π4}. For the constraint of
finishing three graph iterations with respect to the varying deadlines, Figure 5.14
shows the energy consumption calculated for each scenario. The first two
scenarios are compared as follows.

GDVFS vs GDVFS+DPM

• In almost all cases, considering DVFS only (GDVFS) results in higher
energy consumption, as compared to considering the combination of DVFS
and DPM (GDVFS + DPM). However, at the deadline of 30 ms, energy
consumption in GDVFS + DPM surpasses GDVFS. If we compare the schedule
of GDVFS and GDVFS + DPM at the deadline of 30 ms, we notice that it
remains the same. However, considering GDVFS + DPM includes transition
overheads incursion to move to idle states, making it less energy-optimal
than GDVFS.

• At tighter deadlines when idle time of the processors is not sufficient to
move to low power state, the difference between GDVFS and GDVFS + DPM

is not significant. Thus, ETot lies in Region A. However, as the deadline is
relaxed, the processors spend more time in low power state and ETot moves
to Region B. Consequently, GDVFS + DPM gets more promising, implying
the benefits of DPM. For example, at the deadline of 50 ms, GDVFS + DPM

saves significant energy consumption equal to 10.3% compared to GDVFS.
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Figure 5.14: Comparison of power optimisation techniques for different scenarios

Therefore, the results explained above prove our earlier claim that static power
is non-negligible in order to guarantee optimality, and both Region A and B
must be analysed to determine minimum energy consumption.

Now we have seen the benefits of DPM, the effect of varying the number of VFI
partitions, i.e., GDVFS + DPM, DVFS + DPM− 2 and DVFS + DPM− 3 is described
below.

DVFS+DPM with VFIs

• At tighter deadlines, for the reason that the system is at the maximum
capacity all the time, having higher number of VFIs does not result in
major energy reduction.

• But, as the deadline is relaxed, we see that increasing the number of VFIs
prove to be more effective, and produce considerable reduction in energy
consumption. For example, for the deadline of 50 ms, DVFS + DPM− 2 and
DVFS + DPM− 3 save 4.9% and 8.3% energy consumption respectively, as
compared to GDVFS + DPM. The reason is that in GDVFS + DPM where we
have one VFI only, all processors have to run at the same frequency, even
though fewer might be required. By partitioning into more VFIs, we can
cluster the processors in such a way that only the required processors run
at the specific frequency, and others may run at the different frequency;
thus, trading system’s complexity for energy minimisation.

Hence, VFIs provide better control over energy optimisation and design com-
plexity. Without VFIs, system designers are left with two options only, i.e.,
either local or global DVFS. However, with the help of VFIs, it is possible to
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Figure 5.15: Energy usage per frame against Frames per second. The legend
shows the number of processors/VFIs.

achieve fine-grained energy reduction by employing any DVFS policy, ranging
from local to global. Therefore, the use of VFIs enables system designers with
the larger range of design choices.

5.8.2 Varying Number of Processors

We also evaluate the performance of the MPEG-4 decoder on a varying number of
processors. The maximum number of processors required for self-timed execution
of this example is 6, calculated by sdf3. We obtain a Pareto front by sweeping
the throughput constraint, as shown in Figure 5.15. We get three majors results
from Figure 5.15, as explained below.

• Achieving higher frames per second at fewer processors increases the energy
consumption. The reason is the smaller slack at the tighter frames per
second constraint. Therefore, more work is done on the fewer processors
to attain same frames per second.

• As we relax the frames per second constraint, slack increases, and the
same frames per second can be achieved by consuming less energy on fewer
processors. For instance, in Figure 5.15, we can reach 100 frames per
second on four processors with 2.4% less energy consumption, as compared
to five processors. For higher slack in the application, this difference gets
bigger. Thus, we may not require more processors in our platform, and
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reach a certain throughput at a considerably lower energy consumption.

• Relaxing the frames per second beyond a certain limit increases the energy
consumption, as the static energy surpasses the dynamic energy. For
instance, the energy consumption of three processors increases by 1.9%,
when moving from 77 to 59 frames per second.

5.8.3 Quantitative Analysis

We can analyse several functional and temporal properties of an MPEG-4 decoder
using model checking. This includes simple reachability properties such as, “does
RC eventually fire?” and “after five consecutive VLD firings, MC must fire at
least once”. We can also check safety properties such as, “all processors belonging
to the same VFI should never run at the different frequency”. Similarly, liveness
properties such as, “after a processor is occupied, it is eventually released” can
also be verified.

5.9 Other Case Studies

Apart from the MPEG-4 decoder example, we present other real-life case studies
namely, an MP3 decoder in Figure 2.15, an MP3 playback application in Figure
2.16, and an audio echo canceller in Figure 2.17. We also used an artificial
bipartite SDF graph with 4 actors in Figure 2.18. The execution times of these
case studies are given in ms. We assume that these case studies are mapped
on a multiprocessor platform containing Samsung Exynos 4210 processors Π =
{π1, . . . , πn}. Table 5.4 shows the considered frequency levels, and assumed
power consumption of Exynos 4210 processors. For easier understanding, we
only consider deadline constraint equal to minimum achievable time (ms) per
iteration on a given number of processors. We also assume that, for all actors

a ∈ A, τact(a, f1) = d τact(a,f2)0.738 e.
Table 5.16 shows the results of the experiments to find out the least power

consumption. The first column displays the given number of processors, and
the second column represents the division of processors into VFIs. Columns
3-4 depict per iteration, minimum achievable time (ms) and minimum energy
consumption (mWs) respectively, on the given number of processors.

We could determine the exact number of processors required for a self-timed
execution, using sdf3. Then, we apply our approach to derive an optimal
schedule on a smaller number of processors to determine the least energy usage.
As we can see in case of a bipartite graph in Table 5.16, reducing the number of
processors to three does not deteriorate minimum time per iteration considerably,
and decreases slightly to 44 ms. Nonetheless, the decrease in energy consumption
per iteration is significant, equal to 6.8 mWs, due to presence of higher slack in
the application. It clearly shows, that similar performance with substantially less
energy dissipation can be achieved, even with fewer processors than required for a
self-timed execution. Thus, using model checking, we generate an energy-optimal
schedule automatically in a simple manner, on a given number of processors
partitioned into VFIs, once the target state is specified in a query.
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Number of VFIs Time per Energy
Processors Iteration Consumption

MP3 Decoder in Figure 2.15

2 Π1 = {π1, π2} 8 64·6
1 Π1 = {π1} 14 64·4

MP3 Playback Application in Figure 2.16

2 Π1 = {π1, π2} 1880 9907
1 Π1 = {π1} 2118 9742·8

Audio Echo Canceller in Figure 2.17

4 Π1 = {π1, π2},Π2 = {π3, π4} 23 324·2
3 Π1 = {π1},Π2 = {π2, π3} 24 322·3
2 Π1 = {π1, π2} 35 322
1 Π1 = {π1} 73 335·8

Bipartite Graph in Figure 2.18

4 Π1 = {π1, π2},Π2 = {π3, π4} 42 345·3
3 Π1 = {π1},Π2 = {π2, π3} 44 338·5
2 Π1 = {π1},Π2 = {π2} 51 333·1
1 Π1 = {π1} 73 335·8

Table 5.16: Energy optimisation results for various case studies calculated using
uppaal cora

So far, we have assumed a homogeneous system in which an actor can be
mapped on any processor. A homogeneous system gives more freedom to decide
which actor to assign to a particular processor. However, this freedom is limited
in a heterogeneous system by which processors could be utilised to execute a
particular actor.

In uppaal cora, we can utilise the same models described earlier in a hetero-
geneous system. Let us consider the SDF graph of the MPEG-4 decoder mapped
on a heterogeneous system containing two Samsung Exynos 4210 processors
Π′ = {π′1, π′2} and two Samsung Exynos 4212 [SAMb] processors Π′′ = {π′′1 , π′′2}.
We assume that both Exynos 4210 and 4212 processors are available with the
same frequency levels (MHz) {f1, f2} ∈ F such that f2 = 1400 and f1 = 1032.7.
Furthermore, let us consider the following assumptions also.

Ptr (π′, f2, f1) = Ptr (π′′, f2, f1)

Ptr (π′, f1, f2) = Ptr (π′′, f1, f2)

For all π′ ∈ Π′, π′′ ∈ Π′′ and f ∈ F ,

Pidle(π′, f) = Pidle(π′′, f)

Pocc(π′, f) = Pocc(π′′, f)
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Figure 5.17: Optimal energy consumption of MPEG-4 decoder in Figure 5.2 in
a heterogeneous system

Let us consider that the platform is implemented in such a way that
actor {FD} ⊆ A can be mapped only on the processor {π′1} ⊆ Π′, actors
{VLD, IDC} ⊆ A can be executed only on the processors {π′2, π′′2} ⊆ Π′ ∪Π′′,
and the processor {π′′1} ⊆ Π′′ is assigned to execute actors {RC, MC} ⊆ A only.
The processors are partitioned into VFIs in such a way that, Π1 = {π′1, π′′1} and
Π2 = {π′2, π′′2}. Figure 5.17 shows the Pareto front of total energy consumption
for varying throughput constraint.

5.10 Tool Support

To automate the energy-optimal scheduling of SDF graphs, a tool-chain termed
comet (CO-design using Model-Driven Engineering for DaTaflow Applica-
tions) is developed based on the principles of Model-Driven Engineering (MDE).
Figure 5.18 shows the workflow of the comet tool-chain. It takes as an input
an SDF graph using sdf3, and a PAM. Then, it transforms these components
to uppaal cora, which in turn outputs optimal schedules. Later, Chapter 7
provides a detailed explanation of benefits of using MDE.

5.10.1 Input

The input to the comet tool-chain is an SDF graph developed using sdf3, and
a PAM. For easier modelling of PAMs, a domain-specific visual editor is built
using EuGENia [KRPP09]. Figure 5.19 shows the screen shot of an example
PAM containing four Exynos 4210 processors partitioned into two VFIs. Each
processor is equipped with two frequency levels. The top part of the figure shows
the processors and VFIs. The bottom part of the figure shows the frequency

All components of the comet tool-chain can be found at https://github.com/

utwente-fmt/COMET. An instruction manual to use the comet tool-chain is also given in
this repository.

https://github.com/utwente-fmt/COMET
https://github.com/utwente-fmt/COMET
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Figure 5.18: The workflow of the comet tool-chain. After the sdf3 model and
PAM are transformed to uppaal cora using the model-to-model transformation,
the optimal schedules are generated.

Figure 5.19: PAM created using visual editor
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Time Processor1 Processor2 Processor3 Processor4

0 Idle_f2 Idle_f2 Idle_f2 FD_f2

2 VLD_f2 VLD_f2 Idle_f2 VLD_f2

3 VLD_f1 IDC_f1 IDC_f1 VLD_f1

5 IDC_f1 IDC_f1 IDC_f1 MC_f1

7 Idle_f2 RC_f2 Idle_f2 Idle_f2

8 Idle_f2 Idle_f2 Idle_f2 Idle_f2

Figure 5.20: Example schedule of the MPEG-4 decoder on four processors. The
columns show the processors, the rows show the time, and the cells represent the
name of the actor and the frequency level at which they are fired. If there is no
actor being fired, then the cells represent at which frequency level, a processor is
idle.

levels and transition overheads. For example, at 1400 MHz, a processor consumes
0.1 W if it is idle, or 4.6 W if it is working. Furthermore, a processor consumes
0.2 W if changes its frequency from 1044 MHz to 1033 MHz.

5.10.2 Transforming Models to uppaal cora Models

After creating the sdf3 models and PAMs, the next step is to transform these
models automatically to PTA models in uppaal cora format. This is done
using a model-to-model transformation developed in Epsilon Transformation
Language (ETL) [KPP08]. The generated PTA models are already explained in
Section 5.6.

5.10.3 Output

The problem of finding energy-optimal schedules (while satisfying minimal
throughput requirements) is given as an optimisation problem, defined as a
reachability property over PTA models. The property is then checked by uppaal
cora which extracts an energy-optimal trace. The trace is translated to a
schedule in a Excel sheet showing which actor at which frequency level (cells in
the Excel sheet) is fired on which processor (columns in the Excel sheet) at what
time (rows in the Excel sheet). Figure 5.20 shows an example schedule of the
MPEG-4 decoder in Figure 5.2 on page 101 on four processors. For example, at
time t = 0 ms, the actor FD is fired on the processor π4 at the frequency level
f2. If there is no actor being fired, then the cells represent at which frequency
level, a processor is idle. For example, at time t = 0 ms, the processor π1 is idle
at the frequency level f2.

5.11 Conclusions

Despite the remarkable progress in energy optimisation of deadline-constrained
applications, compact methods for optimal energy management of SDF graphs
are still needed. In addition, with the growth of processing power in battery-
constrained devices, efforts must be made to keep energy utilisation to minimum.
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We have demonstrated a novel energy reduction technique for SDF-modelled
streaming applications, which combines the benefits of DVFS and DPM using
model checking. This technique can be applied to any multiprocessor heterogen-
eous platform, having transition overheads and partitions of VFIs.





CHAPTER 6

Model Checking and Evaluating QoS of

Batteries

Abstract

S
ystem lifetime is a major design constraint for battery-powered mobile
embedded systems. The increasing gap between the energy demand of
portable devices and their battery capacities is further limiting system

lifetime of mobile devices. Thus, the guarantees over the Quality of Service
(QoS) of the battery-constrained devices under strict battery capacities are of
primary interest for mobile embedded systems’ manufacturers and stakeholders.

In earlier chapters 4 and 5, we focused on resource and energy-optimal
scheduling of SDF graphs, but considered an ideal battery source. In this
chapter, we extend the work in Chapter 5 by an intuitive battery model termed
kinetic battery models (KiBaMs). In this way, processors are dependent on the
charge from these batteries to run. Once the batteries are empty, the processors
cannot run any more. This signifies the end of the system lifetime. We model the
whole system including SDF graphs, heterogeneous multiprocessor platforms, and
multiple kinetic battery models (KiBaMs) as hybrid automata. Afterwards, we
apply Monte Carlo simulations to evaluate, (1) system lifetime; and (2) minimum
required initial battery capacities to achieve the desired application performance.
We demonstrate that our approach shows a significant improvement in terms of
scalability, as compared to a priced timed automata based KiBaM approach.
This approach also allows early detection of design errors via model checking.

About this chapter: The current chapter is based on the paper “Model Checking and
Evaluating QoS of Batteries in MPSoC Dataflow Applications via Hybrid Automata”, which
was published at ACSD 2016 [AJSvdP16a]. An extended report on the work was published at
University of Twente Eprints [AJSvdP16b]. The original paper largely remains the same.
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6.1 Introduction

Mobile computing has experienced a major upswing over last two decades. As a
result, applications with increasing functionality and complexity are continuously
implemented on mobile embedded devices such as smart phones and satellites,
allowing these systems to operate independently. For example, modern-day
satellites are capable of transmitting videos, communicating with aeroplanes,
providing navigation to automobiles etc., compared to the first-generation satel-
lites which were only able to transmit radio signals. However, this trend also
has increased the energy consumption of mobile devices manifold. On the other
hand, battery energy densities have not grown at the same rate over the years,
thus leading to system lifetime as a major design constraint [Cha07]. We define
the lifetime as the time one can use the battery before it is empty.

Mobile embedded systems are often powered only by batteries that may or
may not be recharged regularly by an external power source. For example, in
a military Software Defined Radio that is being operated in a desert or on a
mountain where energy supplies are unreliable, the primary Quality of Service
(QoS) concern is to determine system lifetime. Also, a geostationary satellite
with solar panels to charge on-board batteries, is recharged at a regular intervals
of 12 hours when facing the sun. However, the satellites have strict limitations
regarding mass and volume. In this case, the main QoS interest is to assess
the battery sizes and weight that yield the relevant performance criteria. To
summarise, the evaluation of the QoS of battery-constrained mobile embedded
systems has emerged as one of the most critical, challenging and essential concern
for manufacturers, investors and users of such systems.

One can identify three QoS factors, and their relation with different design
choices, as given in Table 6.1. First, the throughput of a system, defined as
a measure of how many units of information a system can process in a given
amount of time, has a direct impact on system lifetime. Secondly, the number
of processors affects both system lifetime, and manufacturing cost of the overall
system. Lastly, the number of batteries relates not only to system lifetime and
cost, but also to mass and volume of a system. Therefore, this chapter takes in
account aforementioned design alternatives, with respect to system lifetime and
minimum batteries’ capacities.

We consider a very intuitive battery model termed Kinetic Battery Model
(KiBaM) [MM93] as a representation of dynamic behaviour of a conventional
rechargeable battery, see Figure 6.4 on page 133. A KiBaM models the total
charge in a battery as two separate tanks separated by conductance. One tank
holds the charge which is immediately available to be consumed by the load.
The other tank holds the charge which is chemically bound. For a given load
current, a KiBaM describes the charge stored in a battery by two coupled
differential equations. Experimental studies show that the KiBaM provides a
good approximation of system lifetime across various battery types [JH09].
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Design

Choices

QoS

Factors System

Lifetime
Cost

Volume

and Mass

Throughput 3

Number of Processors 3 3

Number of Batteries 3 3 3

Table 6.1: Relation between design choices and QoS factors. 3represents that
the QoS factor holds for the given design choice.

6.2 Background

In this section, we explain two important factors that affect the system lifetime,
(1) load level, and (2) scheduling pattern of the batteries. We also introduce a
novel method from the literature [JHBK09] that generates the optimal battery
schedules, and discuss its limitations.

Load level of batteries. The level of the load current can be altered using
the power management techniques already introduced in Chapter 5, namely
Dynamic Power Management (switching to low power state) (DPM) [BBDM00]
and Dynamic Voltage and Frequency Scaling (throttling processor frequency)
(DVFS) [WWDS94]. The concept of voltage-frequency islands (VFIs) [HM07]
further allows us to cluster a group of processors in such a way that each VFI runs
on a common clock frequency/voltage. Furthermore, different VFI partitions
represent DVFS policies of different granularity. Thus, with the help of VFIs,
we can combine DPM, and DVFS policy with any granularity, generalising local
and global DVFS. To further illustrate the relation of power management in
processors, and system lifetime, let us consider an example below.

A typical system configuration for connecting a battery to a voltage/frequency
scalable processor is shown in Figure 6.2. The battery’s voltage and current
is represented by Vbat and Ibat , and the processor’s voltage and current is
represented by Vproc and Iproc. Portable electronic devices, such as, mobile
phones, satellites, and laptop computers often contain several sub-circuits, each
with its own voltage level requirement, that is different from the voltage supplied
by the battery. Hence, a DC-DC converter is utilised to convert DC (direct
current) power provided by the battery from one voltage level to another. If
we represent the efficiency of the DC-DC converter by η, the voltage/frequency
scaling is governed by the following equation.

η × Vbat × Ibatt = Vproc × Iproc (6.1)

Modern day microprocessors are designed using a specific circuitry design tech-
nology, termed as complementary metal-oxide semiconductor (CMOS). In CMOS
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Battery DC-DC Converter Processor
Vbatt

Ibat

Vproc

Iproc

Figure 6.2: System level configuration of a single processor. Vbatt (Ibat) and Vproc
(Iproc) represents the voltage (current) of the battery and processor respectively.

based processors, voltage/frequency scaling by a factor of s causes the processor
current Iproc and the battery current Ibatt to scale by a factor of s2 and s3

respectively [CC02]. Therefore, slack utilisation by DVFS and DPM can greatly
affect the load current, which in turn can impact the overall system lifetime.
Moreover, partitioning processors into VFIs provide even better control over
system lifetime. Without VFIs, systems are left with two options only, i.e.,
achieving Ibatt with respect to either local or global frequency, resulting in unop-
timised system lifetime. However, with the help of VFIs, it is possible to prolong
the system lifetime, by modifying Ibatt with respect to any frequency, ranging
from local to global. We have shown in Chapter 5 that only the combination of
DPM and DVFS, and partitioning of processors into VFIs guarantees energy
optimisation.

Scheduling of batteries. If we have multiple batteries in a system, another
important factor contributing to the overall lifetime is the usage pattern of
batteries, i.e., how batteries are scheduled. This leads to an important research
problem of devising a battery-aware scheduling mechanism, where given a set of
tasks, a set of resources to execute the tasks, and a given number of multiple
batteries, we are able to derive a battery-optimal schedule of tasks. However, the
charge stored in a battery is represented by a finite set of continuous variables in a
KiBaM, making the behaviour of the KiBaM hybrid. Evaluating the performance
of various (battery-) scheduling strategies using existing analysis techniques for
hybrid systems, is very expensive [WHL14].

To address this problem, the state-of-the-art method in [JHBK09] discretises
the KiBaM, and models it as priced timed automata (PTA). Furthermore, for a
fixed execution order of tasks, this approach deploys the model checker uppaal
cora that searches the whole state-space and generates the optimal battery
schedule, using the well-developed model-checking techniques for PTA. However,
this method also does not solve the scalability problem. As increasing the initial
battery capacities leads to searching the bigger state-space, this approach only
allows to model limited total battery capacities.

6.3 Methodology and Contributions

We propose an approach based on Hybrid Automata (HA) [HR98] introduced
in Chapter 3. In contrast to discretisation, as done in [JHBK09], we take into
account the continuous variables of the KiBaM by modelling it as a hybrid
automaton, which obviously makes it a more accurate model. This approach
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enables us to utilise uppaal smc to employ the highly scalable technique of
Monte Carlo simulations to assess various QoS parameters, such as system
lifetime and adequate battery capacities. We show that our approach scales
better than the one presented in [JHBK09]. Furthermore, we utilise uppaal
smc also for applying model checking to verify various user-defined properties.
Thus, as opposed to other simulation based tools for hybrid systems, modelling
as HA and using uppaal smc provides an additional benefit of model checking.

Our approach takes four ingredients: (1) a platform model that describes
the specifics of the hardware, such as, VFI partitions, frequency levels and
power usage per processor; (2) an SDF graph scheduler that maps application
tasks on the platform model in a static-order manner; (3) given number of
batteries; and (4) a battery scheduler that defines the scheduling scheme. For
given battery capacities and timing constraints, we compute system lifetime
(SDF graph iterations). Similarly, for given application performance criteria, we
determine adequate battery capacities. This method facilitates system designers
to evaluate aforementioned QoS factors for different design choices, such as,
varying number of VFIs, processors, and batteries. Furthermore, this method
also allows system designers to detect subtle battery design errors in early phases
via model checking. In particular, our main contributions are as follows.

• Assessing QoS of multiple KiBaMs for different design alternatives, without
discretising time.

• We consider realistic hardware platforms equipped with the novel energy
management techniques, compared to the state-of-the-art [WHL14];

• We show that our approach allows better scalability than PTA-based
discretised KiBaM [JHBK09];

• Our approach allows early detection of design errors via model checking.

Chapter Outline. Section 6.4 reviews related work. Section 6.5 provides all
relevant definitions, and translation to HA using uppaal smc is illustrated
in Section 6.6. Section 6.7 experimentally evaluates the QoS analysis, and
Section 6.8 verifies the functional and temporal properties using model checking.
Finally, Section 6.9 draws conclusions and outlines possible future research.

6.4 Related Work

An extensive survey paper [JH09] outlines the broad research work on various
battery models. The state-of-the-art methods in the realm of battery-aware
scheduling for multiple batteries, are presented in [JHBK09] and [FLM11].
The approach in [JHBK09], in comparison to ours, discretises time. This
approach helps to find optimal battery schedules, but do not scale well because
of discretisation. The technique in [FLM11] models KiBaMs as hybrid like us,
and discretises time to search the state-space, leading to the better results than
the work in [JHBK09]. But, due to the fact that the state-space grows larger
with the number of batteries, the scalability of this approach also suffers. We,
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Method
Without

Discretisation

Multiple

KiBaMs

[JHBK09, FLM11] 7 3

[WHL14] 3 7

[HKN15] 3 7

Our Method 3 3

Table 6.3: Comparison of different KiBaM analysis methods

on the other hand, run Monte Carlo simulations, that allows us to avoid the
state-space explosion. The analysis shows that the scalability of our approach is
better than the technique in [JHBK09].

A more advanced technique that utilises hybrid automata like us, is presented
in [WHL14]. In this paper, the KiBaM provides energy to an uniprocessor.
Unlike our method, this approach discusses a single battery case only. Another
novel work in [HKN15] extends KiBaMs with random initial SoC and load,
without discretising time. In this way, probabilistic guarantees about the system
lifetime can be provided. In comparison to our work, this technique is also
confined to a single KiBaM only. Table 6.3 summarises different aforementioned
KiBaM analysis methods.

6.5 System Model Definition

In this section, we first explain KiBaMs and define a KiBaM system. Then, we
recall the definition of SDF graphs from Chapter 2. In this chapter, we consider
that the processors depend on the charge available in the batteries. Therefore,
we redefine the platform application model (PAM) introduced in Chapter 5,
and replace the concept of power consumption with charge consumption. The
execution time of actors is dependent on the running frequency of processors in a
PAM. Therefore similar to Chapter 5, the execution time of actors are included
in the definition of PAMs instead of SDF graphs.

6.5.1 Kinetic Battery Model

The kinetic battery model (KiBaM) [MM93] is a mathematical characterisation of
state of charge of a battery. Key feature is that not all energy stored in a battery
can be utilised at all times. To model this phenomenon, the total charge stored
in a battery is divided into two ”tanks” respectively termed as, the available
charge and the bound charge, see Figure 6.4. Only the available charge can be
consumed immediately by a load at the time-dependent rate i , and thereby
behaves similar to an ideal energy source. During low or no discharge current,
some of the bound charge is converted to available charge. This conversion is at
a rate proportional to the height difference with the proportionality factor being
the rate constant k , and is available to be consumed. Thus, the available charge
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b a

k i(t)

hb ha

1− c c

Figure 6.4: Model of a KiBaM showing available and bound charge tanks

replenishes bound charge, and this effect is termed as recovery effect .
If the widths of the available and bound charge tanks are given by c and

1 − c respectively, then the tanks are filled to heights ha and hb , and the charges
in both tanks are a = cha and b = (1− c)hb respectively. Formally, a KiBaM is
characterised by the following system of differential equations.

ȧ(t) = −i(t) + k(hb − ha) (6.2)

ḃ(t) = −k(hb − ha) (6.3)

The system starts in an equilibrium, i.e. ha = hb. With an initial capacity of
C , the initial conditions are a(0) = cC and b(0) = (1 − c)C . The battery is
considered empty when a = ha = 0, as it cannot supply charge any more at the
given moment even though it may still contain bound charge. In fact, due to
the dynamics of the system, the bound charge cannot reach zero in finite time.
The system lifetime ends when all batteries are emptied.

The differential equations can be solved using Laplace transformation, which
gives:

y1 = y1,0e
−k′t +

(y0k
′c− i)(1− e−k′t)

k′
− ic(k′t− 1 + e−k

′t)

k′
(6.4)

y2 = y2,0e
−k′t + y0(1− c)(1− e−k

′t)− i(1− c)(k′t− 1 + e−k
′t)

k
(6.5)

where k′ is defined as:

k′ =
k

c(1− c)
, (6.6)

and y1,0 and y2,0 are the amount of available and bound charge, respectively, at
t = 0. For y0, we have y0 = y1,0 + y2,0.

Definition 6.1. A KiBaM system is a tuple KS = (B,Cap) consisting of,

• a finite set of KiBaMs B = {bat1, . . . , batm}, and

• a function Cap : B → R≥0 denoting the initial capacity of a KiBaM
bat ∈ B.
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As discussed earlier, in case of more than one battery in a system, the batteries
are chosen according to some schedule or scheduling policy. In most systems,
the batteries are used sequentially, i.e., only when one battery is empty, the
other is used [JHBK09]. However, by switching between batteries, their recovery
effect is utilised, which in turn extends the overall system lifetime [JHBK09]. We
consider a scheduling scheme termed round -robin. In this scheduling scheme,
after an SDF graph iteration finishes, (i.e., not during the execution of the
iteration) the next available battery in a circular order is selected to provide
energy for the next iteration.

Example 6.2. Let us consider that we have two KiBaMs B = {bat1, bat2} in
our KiBaM system. The supposed capacity of both batteries is, Cap(bat1 ) =
Cap(bat2 ) = 50 mAs. As mentioned earlier, we consider round -robin scheduling
scheme, in which a new task is served by the next available battery in a fixed
order.

Figure 6.5 shows the simulation of an arbitrary periodic load. The (solid)
red and (dashed) blue lines represent the current load (mA) of the batteries
bat1 ∈ B and bat2 ∈ B respectively. The upper solid lines represent the total
charge in both batteries, i.e., the sum of the bound charge (b, not shown) and
the available charge (a, the lower solid lines). Initially, the battery bat1 ∈ B
serves the first task. When this task is going on, the available charge a1 of the
battery bat1 ∈ B reduces. After the current task finishes, the next task is served
by the next battery, i.e., bat2 ∈ B. In the meanwhile, bat1 recovers, and so
on. Just after time 87 and 96 ms, the available charge of both batteries expires
respectively, representing the end of the system lifetime, finishing 8 tasks in
total. Please note that when the system lifetime ends, both batteries have only
expended about 60% its total charge. For better visibility, the load currents are
scaled by multiplying by 25.

In our case studies, we consider the batteries having the capacity of 1300 mAh,
as used in the Samsung Galaxy Fame smartphones [SAMc].

6.5.2 SDF Graphs

Definition 6.3. An SDF graph is a tuple G = (A,D,Tok0) where:

• A is a finite set of actors,

• D is a finite set of dependency channels D ⊆ A2 × N2, and

• Tok0 : D → N denotes distribution of initial tokens in each channel, and

The sets of input channel In(a) and output channel Out(a) of an actor a ∈ A
are defined as: In(a) = {(a′, a, p, q) ∈ D|a′ ∈ A ∧ p, q ∈ N} and Out(a) =
{(a, b, p, q) ∈ D|b ∈ A∧ p, q ∈ N}. The consumption rate CR(e) and production
rate PR(e) of an channel e = (a, b, p, q) ∈ D are defined as: CR(e) = q and
PR(e) = p.

Informally, for all actors a ∈ A, if the number of tokens on every input
channel (a′i, a, pi, qi) ∈ In(a) is greater than or equal to qi, actor a fires and



6.5. System Model Definition 135

Figure 6.5: Simulation of a periodic load powered by two batteries bat1 and
bat2. For batj , i j shows the load current, avail bj shows the available charge,
and avail bj+bound bj shows the total charge. The load currents are multiplied
by 25 for better visibility.
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Figure 6.6: SDF graph of an MPEG-4 decoder

removes qi tokens from every In(a). The firing ends by producing pi tokens on
all (a, bi, pi, qi) ∈ Out(a).

Example 6.4. Figure 6.6 recalls the SDF graph of an MPEG-4 decoder from
Chapter 2. The actors A={FD, VLD, IDC,RC, MC} represent individual tasks
performed in MPEG-4 decoding. For example, the frame detector (FD) models
the part of the application that determines the frame type and the number of
macro blocks to decode. In our case, MPEG-4 can process only P-frames. The
rest of the steps in MPEG-4 decoding are Variable Length Decoding (VLD),
Inverse Discrete Cosine (IDC) Transformation, Motion Compensation (MC),
and Reconstruction (RC) of the final video picture.
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6.5.3 Platform Application Model

A Platform Application Model (PAM) models a multiprocessor platform where
the application, modelled as an SDF graph, is mapped on. Our PAM models
supports several features, including

• heterogeneity, i.e., actors can run on certain type of processors only,

• a partitioning of processors in voltage and frequency islands,

• different frequency levels each processor can run on,

• power consumed by a processor in a certain frequency, both when in use
and when idle, and

• power and time-overhead required to switch between frequency levels.

Definition 6.5. A platform application model (PAM) is a tuple P = (Π, ζ, F,
Iocc , Iidle , Itr ,Ttr , τact) consisting of,

• a finite set of processors Π assuming that Π = {π1, . . . , πn} is partitioned
into disjoint blocks Π1, . . . ,Πk of voltage/frequency islands (VFIs) such
that

⋃
Πi = Π, and Πi ∩Πj = ∅ for i 6= j,

• a function ζ : Π→ 2A indicating which processors can handle which actors.

• a finite set of discrete frequency levels available to all processors denoted
by F = {f1, . . . , fm} such that f1 < f2 < . . . < fm,

• a function Iocc : Π × F → N denoting the operating load current, if the
processor π ∈ Π is running at frequency level f ∈ F in the working state,

• a function Iidle : Π×F → N denoting the idle load current, if the processor
π ∈ Π is running at a certain frequency level f ∈ F in the idle state,

• a partial function Itr : Π× F 2 9 N expressing the transition load current,
in case of a frequency change by the processor π ∈ Π from one frequency
level f ∈ F to next frequency level f ∈ F ,

• a partial function Ttr : Π× F 2 9 N expressing the time overhead in case
of a frequency change by the processor π ∈ Π from one frequency level
f ∈ F to next frequency level f ∈ F , and

• the valuation τact : A× F → N≥1 defining the execution time τact of each
actor a ∈ A mapped on a processor at a certain frequency level f ∈ F . For
instance, τact(ai, f) = n means that the actor ai has an execution time n,
if run on the frequency level f .

Example 6.6. Exynos 4210 is a state-of-the-art processor used in high-end
platforms such as Samsung Galaxy Note, SII etc. Table 6.7 shows its different
DVFS levels, and corresponding CPU voltage (V) and clock frequency (MHz)
[PPS+13].
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Level Voltage Frequency Level Voltage Frequency

1 1.2 1400 4 1.05 1128.7

2 1.15 1312.2 5 1.00 1032.7

3 1.10 1221.8

Table 6.7: DVFS levels and corresponding CPU voltage and clock frequencies of
Samsung Exynos 4210 processors

Processor VFI Voltage(V) Frequency(MHz) Iidle(mA) Iocc(mA)

π1 Π1 1.2 f2 = 1400 20 500

1.00 f1 = 1032.7 8 190

π2 Π2 1.2 f2 = 1400 20 500

1.00 f1 = 1032.7 8 190

π3 Π2 1.2 f2 = 1400 20 500

1.00 f1 = 1032.7 8 190

π4 Π3 1.2 f2 = 1400 20 500

1.00 f1 = 1032.7 8 190

Table 6.8: Description of platform containing four Samsung Exynos 4210 pro-
cessors π1, π2, π3, and π4. These processors are partitioned into three VFIs Π1,
Π2, and Π3.

Let us assume that the processors Π = {π1, π2, π3, π4} are partitioned in
three VFIs such that Π1 = {π1}, Π2 = {π2, π3} and Π3 = {π4}. Two DVFS
levels (MHz) {f1, f2} ∈ F taken from Table 6.7, i.e., f2 = 1400 and f1 = 1032.7,
are available to all processors. The supposed transition overhead (ms) of all
Exynos 4210 processors is, Tr(π, f2, f1) = Tr(π, f1, f2) = 1. Table 6.8 shows the
formation of VFIs and experimental load current against each frequency level.

Definition 6.7. Given an SDF graph G = (A,D,Tok0, τ), a static-order (SO)
schedule is a function ξ : Π × R → (A × F ) ∪ (⊥ ×F ) ∪ (F × F ) that assigns
to each processor π ∈ Π over time, an ordered list of actors or idle slots to be
executed at some frequency, or frequency transitions. Here ⊥ represents the idle
slots.

Example 6.8. Table 6.9 shows an example static-order (SO) schedule. Here,
(fi → fk) represents the frequency transition from fi ∈ F to fk ∈ F . The
execution of an actor a ∈ A at a frequency level fi ∈ F is represented by
(a-fi)

ex, where ex indicates the consecutive executions of the actor a. Similarly,
(Idle-fi)

ex denotes the idle time spent by a processor π ∈ Π at a frequency level
fi ∈ F , where ex represents the duration of the idle time (ms). We assume that
the execution times (ms) of all actors a ∈ A at frequency level f1 are rounded
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π1 π2 π3 π4

(f2 → f1)(FD-f1)(VLD-f1)
(f1 → f2)(IDC-f2)

2(RC-f2)
(Idle-f2)

3(f2 → f1)(VLD-f1)
(MC-f1)(f1 → f2)(Idle-f2)

(Idle-f2)
3(f2 → f1)(VLD-f1)

(MC-f1)(f1 → f2)(Idle-f2)
(Idle-f2)

3(VLD-f2)
2

(IDC-f2)
2(Idle-f2)

3

Table 6.9: Example SO schedule on four processors π1, π2, π3, and π4

f2→f1 FD

f2→f1

f2→f1

VLD

VLD

VLD

VLD

VLD IDC

f1→f2

MC

IDC

IDC

IDC IDC

f1→f2

f1→f2

RC

time
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f2
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Figure 6.10: Gantt chart of the SO schedule in Table 6.9. The grey and
white coloured boxes denote, if a processor is running at the frequency f2 or
f1 respectively. Moreover, the yellow dashed boxes represent the frequency
transitions.

to the next integer. As f1 = 0.738 × f2, we obtain τact(a, f1) = d τact(a,f2)0.738 e.
For simplicity, we omit the time of occurrence of tasks in the SO schedule, and
assume that they happen consecutively.

Figure 6.10 shows the Gantt chart of the SO schedule in Table 6.9. As seen
from Figure 6.10, the SO schedule given in Table 6.9 takes 10 ms to complete
an iteration. Thus, the throughput is 1

10 = 100 frames per second (fps). In
Figure 6.10, the grey and white coloured boxes denote, if a processor is running
at the frequency f2 or f1 respectively. Similarly, the dashed yellow coloured
boxes refer to the frequency transition from f1 to f2, and vice versa. Please note
that the processors π2 and π3 are in the same VFI, hence they always run at
the same frequency. �

6.6 Translation of System Model to Hybrid Automata

Our framework consists of separate models of KiBaMs, a KiBaM scheduler, an
SDF graph scheduler, and the processor application model. In this way, we
divide the problem of evaluating the QoS in terms of power source, tasks and
resources. In this section, we describe the translation of an SDF graph scheduler
along with a processor application model and KiBaMs to HA using uppaal smc.

Given an SDF graph G = (A,D,Tok0, τ) mapped on a processor applica-
tion model (Π, ζ, F, Iocc , Iidle , Itr ,Ttr , τact) powered by a KiBaM system KS =
(B,Cap), we generate a parallel composition of HA:
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G schedj

Processorj

Gobs Ksched Ky

Kobs

startNextIter !

firingFinished !

fire! end !

startNextIter !

emptied !

allEmptied !

Figure 6.11: Interactions between HA of different components

Ksched‖K1‖, . . . , ‖Km‖G sched1‖, . . . , ‖G schedn‖
Processor1‖, . . . , ‖Processorn‖Gobs‖Kobs.

The brief explanation of each component is as follows.

• Ksched: The automaton Ksched models the scheduling scheme of KiBaMs.
We consider the round-robin scheduling scheme, i.e., after every iteration,
the next available KiBaM is chosen to serve for the next iteration.

• Ky: The HA K1, . . . ,Km model the KiBaMs B = {bat1, . . . , batm}.

• G schedj : We define a SO schedule for each processor. The HA G sched1 ,
. . . ,G schedn implement these SO schedules on the processors Π = {π1,
. . . , πn}.

• Processorj : The HA Processor1, . . . ,Processorn model the processors
Π = {π1, . . . , πn}.

• Gobs : The SDF graph observer automaton Gobs counts if each processor
has fired all its mapped actors, according to its SO schedule. Hence, this
automaton determines when an iteration is finished.

• Kobs: The KiBaM observer automaton Kobs observes if any KiBaM gets
emptied. This automaton also observes when all KiBaMs get emptied,
symbolising end of the system lifetime.

Figure 6.11 shows the interactions between HA of different components. In
the start, G schedj maps an actor to processor Processor j according to its SO
schedule, using the action fire. When an actor finishes its firing on Processor j , it
is informed back to G schedj by Processor j using the action end so that G schedj
can map the next actor on Processor j . When all actors in a SO schedule of
Processor j are fired, G schedj conveys this information to Gobs using the action
firingFinished. As a result, Gobs increments the number of finished iterations
by one. Afterwards, Gobs asks G schedj to start executing the SO again via
the action startNextIter. Similarly, Gobs also synchronises with Ksched using the
same action startNextIter, so that Ksched activates the next available battery.
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When a battery Ky is emptied, it informs to Kobs via the action emptied. When
all batteries get emptied, Kobs informs Gobs via the action allEmptied about the
end of the system lifetime.

The detailed translation of all components to HA, is given in Appendix A on
page 199.

6.7 Experimental Evaluation via MPEG-4 Decoder

We evaluate QoS factors via the example of the MPEG-4 decoder in Figure 6.6
on page 135. The experimental setup consists of an MPEG-4 decoder mapped
on Samsung Exynos 4210 processors Π = {π1, . . . , πn}. The processors Π =
{π1, . . . , πn} are provided charge by Samsung batteries B = {bat1, . . . , batm}
used in Samsung Galaxy Fame smartphones. The capacity of all bat ∈ B is,
Cap(bat) = 1300 mAh. The processors Π = {π1, . . . , πn} are available with
two frequency levels (MHz) f2 = 1400 and f1 = 1032.7. Table 6.8 on page 137
shows idle and operating load currents of both KiBaMs B = {bat1, bat2} at both
frequencies. The supposed transition overhead (ms) of all Exynos 4210 processors
is, Ttr (π, f2, f1) = Ttr (π, f1, f2) = 1. The supposed time overhead is Itr (π,f2,f1)
= Itr (π,f1,f2) = 0.5 mA for all π ∈ Π. We evaluate the completed number of
video frames with respect to the QoS aspects of varying (1) frames per second
(throughput); (2) number of processors; and (3) batteries. Similarly, for the
same factors, we assess adequate battery capacities. Please see Figures 6.13-6.20
for results.

6.7.1 Varying Frames per Second

For 6 Exynos 4210 processors Π = {π1, . . . , π6} served by two batteries B =
{bat1, bat2}, we consider different SO schedules, as given in Table 6.12. For
varying frames per second (fps) constraint, Figure 6.13 shows the total number
of video frames completed. At tighter performance constraints (i.e., higher fps),
the idle time of processors is not sufficient to move to low power state. As a
result, the batteries are drained more rapidly. Thus, we achieve less number of
frames. Alternatively, if we require fewer fps from an MPEG-4 decoder, then
the battery lifetime increases.

For the same SO schedules, Figure 6.14 shows the minimum initial required
capacity Cap(bat1 ) for KiBaM bat1 ∈ B to complete 1000 video frames. It
can be seen from Figure 6.14 that if we relax the fps constraint, the minimum
required capacity also decreases.

Nevertheless, if the video quality is enhanced from 125 to 200 fps, then the
increase in required initial battery capacity is relatively small equal to 84 mAh.
However, the improvement in the video quality is considerable. Thus, higher
performance can also be achieved at the expense of a small increase in battery
capacities, leading to high-performance systems with less mass and volume.
Hence, this method allows us to obtain a Pareto front by sweeping throughput
constraints, for a fixed number of processors and batteries.
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SO
Schedule

Fps π1 π2 π3 π4 π5 π6

S1 200
(FD-f2)(VLD-f2)
(IDC-f2)(RC-f2)

(Idle-f2)
2(VLD-f2)

(IDC-f2)(Idle-f2)
(Idle-f2)

2(VLD-f2)
(IDC-f2)(Idle-f2)

(Idle-f2)
2(VLD-f2)

(IDC-f2)(Idle-f2)
(Idle-f2)

2(VLD-f2)
(IDC-f2)(Idle-f2)

(Idle-f2)
3

(MC-f2)(Idle-f2)

S2 125
(FD-f2)(VLD-f2)
(f2-f1)(IDC-f1)
(f1-f2)(RC-f2)

(Idle-f2)
2(VLD-f2)

(f2-f1)(IDC-f1)
(f1-f2)(Idle-f2)

(Idle-f2)
2(VLD-f2)

(f2-f1)(IDC-f1)
(f1-f2)(Idle-f2)

(Idle-f2)
2(VLD-f2)

(f2-f1)(IDC-f1)
(f1-f2)(Idle-f2)

(Idle-f2)
2(VLD-f2)

(f2-f1)(IDC-f1)
(f1-f2)(Idle-f2)

(Idle-f2)
3(f2-f1)

(MC-f1)(f1-f2)
(Idle-f2)

S3 111
(FD-f2)(f2-f1)
(VLD-f1)(IDC-f1)
(f1-f2)(RC-f2)

(Idle-f2)
2(f2-f1)

(VLD-f1)(IDC-f1)
(f1-f2)(Idle-f2)

(Idle-f2)
2(f2-f1)

(VLD-f1)(IDC-f1)
(f1-f2)(Idle-f2)

(Idle-f2)
2(f2-f1)

(VLD-f1)(IDC-f1)
(f1-f2)(Idle-f2)

(Idle-f2)
2(f2-f1)

(VLD-f1)(IDC-f1)
(f1-f2)(Idle-f2)

(Idle-f2)
2(f2-f1)

(Idle-f1)
2(MC-f1)

(f1-f2)(Idle-f2)

S4 100
(FD-f2)(f2-f1)
(VLD-f1)(IDC-f1)
(RC-f1)(f1-f2)

(Idle-f2)
2(f2-f1)

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(Idle-f2)
2(f2-f1)

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(Idle-f2)
2(f2-f1)

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(Idle-f2)
2(f2-f1)

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(Idle-f2)
2(f2-f1)

(Idle-f1)
2(MC-f1)

(Idle-f1)
2(f1-f2)

S5 91
(f2-f1)(FD-f1)
(VLD-f1)(IDC-f1)
(RC-f1)(f1-f2)

(f2-f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(f2-f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(f2-f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(f2-f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(f2-f1)(Idle-f1)
5

(MC-f1)(Idle-f1)
2

(f1-f2)

Table 6.12: SO schedules for varying number of video frames on 6 processors π1,
π2, π3, π4, π5, and π6
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Figure 6.13: System lifetime against
varying fps
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Figure 6.14: Minimum required
capacity for bat1

6.7.2 Varying Number of Processors

We consider different SO schedules given in Table 6.15, all yielding 71 fps.
Figure 6.16 shows the total number of video frames completed for varying
number of processors. As we can see from Figure 6.16, for the same batteries’
capacities, higher number of processors achieve more or equal number of frames.
The reason is that, if we reduce the number of processors, then the same amount
of work is done on fewer processors to attain the same throughput, resulting in
shorter idle times. Therefore, battery charge is consumed more rapidly, if the
number of processors are reduced.

For the same SO schedules considered earlier in Table 6.15, Figure 6.17 shows
the minimum required capacity Cap(bat1 ) for KiBaM bat1 ∈ B to complete 1000
video frames. The results reiterate the earlier conclusions in Figure 6.16 that, to
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SO
Schedule

π1 π2 π3 π4 π5 π6

S1

(FD-f2)(VLD-f2)
(VLD-f2)(VLD-f2)
(VLD-f2)(VLD-f2)
(IDC-f2)(IDC-f2)
(IDC-f2)(IDC-f2)
(IDC-f2)(MC-f2)
(RC-f1)

- - - - -

S2

(f2 → f1)(FD-f1)
(f1 → f2)(VLD-f2)
(VLD-f2)(VLD-f2)
(IDC-f2)(IDC-f2)
(MC-f2)(RC-f2)
(MC-f2)

(f2 → f1)(Idle-f1)
3

(f1 → f2)(VLD-f2)
(VLD-f2)(IDC-f2)
(IDC-f2)(IDC-f2)
(Idle-f2)

3

- - - -

S3

(f2 → f1)(FD-f1)
(VLD-f1)(f1 → f2)
(VLD-f2)(IDC-f2)
(IDC-f2)(RC-f2)
(Idle-f2)

2

(f2 → f1)(Idle-f1)
3

(VLD-f1)(f1 → f2)
(VLD-f2)(IDC-f2)
(MC-f2)(Idle-f2)

3

(f2 → f1)(Idle-f1)
3

(VLD-f1)(f1 → f2)
(IDC-f2)(Idle-f2)

4

- - -

S4

(f2 → f1)(FD-f1)
(VLD-f1)(VLD-f1)
(IDC-f1)(f1 → f2)
(RC-f2)(Idle-f2)

3

(f2 → f1)(Idle-f2)
3

(VLD-f1)(IDC-f1)
(IDC-f1)(f1 → f2)
(Idle-f2)

3

(f2 → f1)(Idle-f2)
3

(VLD-f1)(IDC-f1)
(MC-f1)(f1 → f2)
(Idle-f2)

3

(f2 → f1)(Idle-f2)
3

(VLD-f1)(IDC-f1)
(Idle-f2)

2(f1 → f2)
(Idle-f2)

3

- -

S5

(f2 → f1)(FD-f1)
(VLD-f1)(IDC-f1)
(MC-f1)(RC-f1)
(f1 → f2)(Idle-f2)

2

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

3(f1 → f2)
(Idle-f2)

2

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

3(f1 → f2)
(Idle-f2)

2

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

3(f1 → f2)
(Idle-f2)

2

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

3(f1 → f2)
(Idle-f2)

2

-

S6

(f2 → f1)(FD-f1)
(VLD-f1)(IDC-f1)
(RC-f1)(Idle-f1)3
(f1 → f2)

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

5(f1 → f2)

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

5(f1 → f2)

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

5(f1 → f2)

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

5(f1 → f2)

(f2 → f1)(Idle-f1)
3

(IDC-f1)(Idle-f1)
7

(f1 → f2)

Table 6.15: SO schedules for varying number of processors. All of these schedules
yield 71 fps.

achieve the same throughput, fewer processors carrying out the work of same
magnitude require larger battery capacities.

Hence, using this method, a system designer can estimate QoS for different
design alternatives. For instance, in our running example, one can clearly see
that we can achieve same throughput for 4 processors, as 5, without requiring
extra capacities for batteries. Therefore, we may not need more processors in
our platform, and reach a certain throughput with fewer number of processors,
and same batteries’ capacities, contributing to low-cost embedded systems with
reduced mass and volume.

6.7.3 Varying Number of Batteries

Let us consider that we have 6 Exynos 4120 processors Π = {π1, . . . , π6}. We
consider a SO schedule producing 71 fps, as given in Table 6.18. For varying
batteries, Figure 6.19 and 6.20 shows the total number of video frames completed,
and the minimum required capacity Cap(bat1 ) for battery bat1 ∈ B to complete
1000 video frames respectively. As it can be seen from Figure 6.19, increasing
the number of batteries improves the attainable number of video frames linearly.

However, if we analyse Figure 6.20, we can see that increasing the number of
batteries does not reduce the minimum required battery capacities at a linear
rate. Therefore, we can conclude that, having fewer batteries with larger capa-
cities is more beneficial than higher number of batteries with smaller capacities.
This achieves the low-cost and high-performance systems.
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Figure 6.16: System lifetime against
varying number of processors
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Figure 6.17: Minimum required
capacity for bat1

π1 π2 π3 π4 π5 π6

(f2 → f1)(FD-f1)
(VLD-f1)(IDC-f1)
(RC-f1)(Idle-f1)3
(f1 → f2)

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

5(f1 → f2)

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

5(f1 → f2)

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

5(f1 → f2)

(f2 → f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

5(f1 → f2)

(f2 → f1)(Idle-f1)
3

(IDC-f1)(Idle-f1)
7

(f1 → f2)

Table 6.18: SO schedule for varying number of batteries yielding 71 fps
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Figure 6.19: System lifetime against
varying number of batteries
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Figure 6.20: Minimum required
capacity for bat1

6.7.4 Comparison with PTA-KiBaM

In this subsection, we compare our approach (HA-KiBaMs) with a PTA-based
approach (PTA-KiBaM) [JHBK09]. In PTA-KiBaM, the behaviour of batteries
is based on a discretised version of the KiBaM, and is modelled as priced timed
automata (PTA). For a given load, the model checker uppaal cora is utilised to
search the whole state-space and to generate optimal battery schedules. However,
this approach suffers serious scalability issues. As increasing the initial batteries’
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SO
Schedule

π1 π2 π3 π4 π5 π6

S1

(f2 → f1)(FD-f1)
(VLD-f1)(f1 → f2)
(VLD-f2)

2(IDC-f2)
(IDC-f2)

2(RC-f2)

(f2 → f1)(Idle-f1)
3

(VLD-f1)(f1 → f2)
(VLD-f2)(IDC-f2)
(MC-f2)(Idle-f2)

(f2 → f1)(Idle-f1)
3

(VLD-f1)(f1 → f2)
(IDC-f2)(IDC-f2)
(Idle-f2)2

- - -

S2
(f2-f1)(FD-f1)
(VLD-f1)(f1-f2)
(IDC-f2)

2(RC-f2)

(Idle-f2)
3(f2-f1)

(VLD-f1)(MC-f1)
(f1-f2)(Idle-f2)

(Idle-f2)
3(f2-f1)

(VLD-f1)(MC-f1)
(f1-f2)(Idle-f2)

(Idle-f2)
3(VLD-f2)

2

(IDC-f2)
2(Idle-f2)

3 - -

S3
(f2-f1)(FD-f1)
(VLD-f1)(IDC-f1)
(RC-f1)(f1-f2)

(f2-f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(f2-f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(f2-f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(f2-f1)(Idle-f1)
3

(VLD-f1)(IDC-f1)
(Idle-f1)

2(f1-f2)

(f2-f1)(Idle-f1)
5

(MC-f1)(Idle-f1)
2

(f1-f2)

Table 6.21: SO schedules for comparison of our approach (HA-KiBaMs) with
the PTA-based approach (PTA-KiBaM)

capacities leads to searching the bigger state-space, this approach only allows
to model limited batteries’ capacities. Furthermore, this approach requires to
discretise the temporal dimension, which limits the accuracy of this approach.
In contrast, we use hybrid automata to model the continuous behaviour of
batteries. This leads us to analyse the behaviour of KiBaMs without discretising
time. Furthermore, following this approach, we can make use of highly scalable
Monte Carlo simulations, over hybrid automata. It is worth mentioning that
the PTA-KiBaM [JHBK09] analyses the completed number of tasks, instead of
iterations. However, as iterations are the key metric in SDF graphs, we also
compare both techniques in terms of the completed number of iterations.

Let us consider the example of an MPEG-4 decoder in Figure 6.6 on page 135.
We assume that we have two batteries, i.e., B = {bat1, bat2}. Table 6.22
shows the completed number of video frames for the arbitrary SO schedules
in Table 6.21, calculated using both methods. The experiments were run on a
dual-core 2.8 GHz machine with 8 GB RAM.

Columns 3-8 in Table 6.22 show the completed number of iterations and
computation time (ms), calculated using both methods, against different battery
capacities (mAh) in Columns 1-2. The results in Table 6.22 show that HA-
KiBaM achieves the same results as PTA-KiBaM except S2. The reason of not
producing the same results in S2 is that PTA-KiBaM allows to change the active
battery during the iteration. Whereas, we consider a specific scheduling scheme,
where we change the battery after an iteration is finished.

However, the biggest advantage of HA-KiBaM is the scale of capacities it
can handle. As Table 6.22 shows, PTA-KiBaM can only handle very small
battery capacities that are able to finish not more than one video frame. This
makes PTA-KiBaM impracticable for modern-day systems, as opposed to our
method that scales to much larger capacities (see Section 6.7). Furthermore,
PTA-KiBaM requires considerably longer computation time than HA-KiBaM.
Please note that zero in Table 6.22 means that the battery capacities are not
enough, even to finish one iteration.

In addition to the battery capacities, our method also scales better to the
number of batteries. Table 6.23 compares the iterations completed for varying
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Cap(bat1 ) Cap(bat2 ) S1 (computation time) S2 (computation time) S3 (computation time)

PTA-KiBaM HA-KiBaM PTA-KiBaM HA-KiBaM PTA-KiBaM HA-KiBaM

1.25×10−4 1.25×10−4 0 (520) 0 (28) 0 (200) 0 (46) 0 (2130) 0 (51.4)

2.5×10−4 2.5×10−4 0 (510) 0 (55) 1 (41060) 0 (48) Out of Memory 0 (52.7)

3.75×10−4 3.75×10−4 Out of Memory 2 (62) 1 (14810) 0 (49) Out of Memory 2 (52.8)

5×10−4 5×10−4 Out of Memory 4 (64) Out of Memory 2 (49) Out of Memory 4 (54.1)

Table 6.22: Comparison of two approaches with respect to varying battery
capacities. Our approach performs better in terms of capacities and computation
time.

Number of HA-KiBaM PTA-KiBaM

Batteries

1 1 N/A

2 4 Out of Memory

3 6 Out of Memory

4 12 Out of Memory

5 15 Out of Memory

6 18 Out of Memory

7 21 Out of Memory

8 24 Out of Memory

9 27 Out of Memory

10 30 Out of Memory

Table 6.23: Comparison of two approaches with respect to number of batteries.
Our approach scales better in terms of number of batteries.

number of batteries for both methods. For this experiment, we consider SO
schedule S3, and Cap(bat) = 5×10−4 mAh for all bat ∈ B.

6.8 Model Checking via MPEG-4 Decoder

In this section, we demonstrate the analysis of functional properties, using the
uppaal smc model checker and its query language. We consider the case study
of an MPEG-4 decoder in Figure 6.6 on page 135 mapped on Exynos 4210
processors, and powered by a KiBaM system.

Parallel firings of actors

We can check whether any actors can fire in parallel within time T . For
example, actors p and q mapped on the processors π1 and π2 respectively, can
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fire in parallel if the following query Pr[<= T](<> activeActor 1 == p and

activeActor 2 == q) evaluates to true. Here, activeActor j represents the actor
currently mapped on the processor πj ∈ Π. In our experiment, p = MC and
q = RC . As these two actors cannot fire in parallel, uppaal smc answers that
the probability for this query to hold is [0,0.0973938] with 0.95 confidence, which
means that this property is not satisfied.

Same running frequency in an VFI

We can also check safety properties such as, at a given time, all processors
belonging to the same VFI should not run at the different frequency within
time T . For this purpose, we create a variable named curr freq available to all
processors, that keeps account of current running frequency of each processor.
If we have two processors π1 and π2 in a same VFI, then we check the query
Pr[<= T]([] Processor 1.curr freq == Processor 2.curr freq) to verify
this property. uppaal smc answers that the probability for this query to hold is
[0.902606,1] with 0.95 confidence, which means that this query is satisfied.

Fair Battery Scheduling

We can also verify if a new battery is selected after each iteration. Let us assume
that we have two batteries, and an integer empty count to count the number
of empty batteries. Let us further assume that we have a variable bound bj
to keep account of bound charge of a KiBaM batj ∈ B. We run the query
Pr[<= T]([] bound b2 - bound b1 < n and empty count < 2) that determines
if within time T , the difference between the bound charge of two batteries does
not exceed more than a certain amount, and each battery gets a fair chance to
recover its bound charge. The probability for this property to hold is [0.902606,1]
with 0.95 confidence. In our experiment, n is 4.

Active Number of Batteries

Similarly, we can also check that no more than one battery should be active
within any given time T . Let us assume that we have two batteries, and
boolean variables b1 active and b2 active is assigned to each battery respectively,
to check if that battery is active. To verify this property, we use the query
Pr[<= T](<> b1 active == true and b2 active == true). The probability
for this property to hold is [0,0.0973938] with 0.95 confidence, which means that
this property is not satisfied.

6.9 Conclusions

With the growing gap between the energy demand and battery densities, com-
pact methods for guaranteeing QoS of multiple KiBaMs are still needed. We
have presented a novel technique to predict system lifetime for SDF-modelled
streaming applications, mapped on processors equipped with energy reduction
techniques and powered by multiple batteries. This provides us with a best
trade-off between the throughput, the number of processors and batteries. The
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batteries are modelled as a hybrid system, which has the advantage of being
accurate.





Part III

Modelling and Validation





CHAPTER 7

Model-Driven Engineering for Dataflow

Applications

Abstract

T
he previous chapters have presented techniques of analysis and scheduling
dataflow applications mapped on hardware platforms. This practice of
separating software and hardware is known as HW-SW co-design. We

have seen in earlier chapters that the models describe the behaviour of a system
in an accurate and unambiguous way. Furthermore, modelling at a right abstract
level, helps to understand complex systems such as concurrent ones, and their
solutions.

What we have not presented in chapters 4 - 6 is an explanation of the
modelling approach used for HW-SW co-designing of dataflow applications and
platform application models. Furthermore, it is yet to be described how models
in the model-checking domain are obtained. One may argue that the modelling
approach is irrelevant as long as the models are correct. However, in today’s
agile world, we are witnessing that requirements change rapidly, there is always
a competition to introduce new products/functionalities, and shortened time-to-
market is required. Therefore, an automated modelling approach is needed which
satisfies modularity, extensibility, and interoperability requirements. Model-
Driven Engineering (MDE) is a prominent paradigm that, by treating models and
model transformations as first-class citizens, helps to fulfil these requirements.

In this chapter, we present a state-of-the-art MDE-based framework for HW-
SW co-design of dataflow applications. In the framework, we introduce a reusable
set of three coherent metamodels for creating models concerning SDF graphs,
platform application models (PAMs) and allocation of SDF tasks to PAMs.
The framework also contains model transformations that cast these models
into model-checking domain. We demonstrate how our framework satisfies the
requirements of modularity, extensibility, and interoperability with a case study.

About this chapter: The current chapter is based on the paper “A Model-Driven
Framework for Hardware-Software Co-design of Dataflow Applications”, which was published
at CyPhy 2016 [AYRS16a]. An extended report on the work was published at University of
Twente Eprints [AYRS16b]. The original paper largely remains the same.
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7.1 Introduction

HW-SW Co-design. Hardware-software (HW-SW) co-design is a success-
ful engineering practice in the development of embedded and cyber-physical
systems by the manufacturing companies of these systems [DS96]. Key insight
is that HW and SW should be designed and evaluated together. In this way,
the synergy of hardware and software is exploited to meet system-level ob-
jectives. For instance, HW-SW co-design allows exploring design alternatives
and finding more efficient solutions, and helps to improve the development
cost and time-to-market. Nowadays, HW-SW co-design has become common
practice in the domain of automation [BGJ+02], avionics [CCE+99], indus-
trial design [Mic96], automotive [KKN96], home appliances [SKH+97], mobile
devices [vvK05], and many more [Tei12]. To support HW-SW co-design and
its validation and verification, a large number of tools has been developed,
e.g., Octopus [BHRV13], Ptolemy [BHLM94], COMPLEX [GHH+13], VeriSTA
[HG13], SystemCoDesigner [KSS+09], Real-time Calculus [TCN00], and CoWare
[RVBM96].

Challenges in HW-SW Co-design. As mentioned in the recent paper
[Tei12], the challenges in HW-SW co-design include increasing complexity of
modern-day applications due to concurrency, energy-constraints, heterogeneous
multiprocessor architectures, etc. To deal with these challenges, it has been
recognised that a HW-SW co-design approach must have the following features
[BHRV13, GHH+13, HG13, BHLM94].

• Modularity [BHRV13, GHH+13]: The hardware platform, software applic-
ation, and mapping of this application to the platform are not modularly
and explicitly expressed as separate models. Hence, the final analysis
model is a combined representation of these three aspects. As a result,
any change occurring in any of these points will require modifications in
the combined representation, even though the three points are largely
independent from each other. Furthermore, if one wishes to analyse a
particular software application on various platforms or a different mapping
to the same platform, there is no hardware model that is explicitly defined
as a module to be reused. A similar problem occurs if one wishes to test
several applications on a particular platform. This suggests that, for the
sake of modularity, the model should separate the aspects of hardware,
software and their mappings: modules targeting different concerns are
better maintainable and reusable.

• Interoperability [BHRV13, BHLM94, Tei12]: HW-SW co-designing often
involves design groups from different disciplines, including firmware, op-
erating system (OS), and application developers on the software side, as
well as hardware developers and chip designers. These groups use different
tools, with different models of computation and based on different pro-
gramming languages. Systematic support for interoperability is required
for flexible orchestration between such tools to work together.
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• Extensibility [GHH+13]: Evolution in the domain and accordingly changes
in the requirements and design aspects are inevitable. The introduction
of new hardware technologies and the adaptation of new design analysis
techniques are two examples of such changes. The HW-SW co-designing
approach should have convenient extension mechanisms allowing rapid
implementation of possible future requirements sourcing from these changes.

Model-Driven Engineering. Existing approaches for HW-SW co-design do
not fully satisfy all of these features. Model-Driven Engineering (MDE) is an
approach that helps to fulfil all of the aforementioned requirements [VSB+13].
In MDE, the important concepts of the target domain are formally captured
in a so-called metamodel. Separate metamodels for the domains of interest
help to keep the design modular. All models are instances of a metamodel, or
possibly an integrated set of metamodels. These models can be transformed to
other models via model transformations defined at the metamodel level, which
provides interoperability. Moreover, metamodels and model transformations can
be systematically extended to satisfy future requirements.

Proposed Approach. This chapter presents a novel HW-SW co-design frame-
work based on the principles of MDE. Our framework allows model-driven HW-
SW co-design of SDF applications mapped on multiprocessor hardware platforms.
To exemplify, we consider the approach in Chapter 5 where we utilised priced
timed automata (PTA) for modelling SDF graphs and platform applications
models (PAMs), and performing energy-optimal scheduling. In this chapter,
we explain how SDF graph models and PAMs are obtained and transformed to
PTA models in uppaal cora format explained in Chapter 5, using MDE.

Our framework consists of the following three metamodels, as shown in
Figure 7.1:

1. a metamodel for SDF graphs;

2. a metamodel for Platform Application Models (PAMs), which describe the
processor types and their power levels, and the cost of switching between
the power levels; and

3. a metamodel for expressing potential allocations of the tasks in an SDF
graph to the processor types in a PAM.

As mentioned earlier, our framework considers the model checker uppaal
cora for generating energy-optimal schedules. Therefore, for supporting the
generation of uppaal cora models, we use an existing uppaal metamodel
developed at the University of Paderborn [PAD]. Triples of models conforming to
the three metamodels discussed above are transformed to uppaal cora models
automatically via model transformations in the framework.

Chapter 5 already described the principles of our method of using PTA for
the purpose of energy optimisation. Rather the novelty of this chapter is the
design prospect of using MDE. In Section 7.5, we provide a case study as an
evidence to show how our framework satisfies the modularity, extensibility and
interoperability requirements.
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Figure 7.1: Overview of our framework. The framework contains metamodels of
(1) SDF graphs, (2) PAMs, and (3) allocations. After models conforming to each
metamodels are generated, they are automatically transformed to PTA models
conforming to uppaal metamodel. The numbered metamodels are explained in
the main text.

Chapter Contributions. The main contributions of this chapter are as fol-
lows:

• A reusable set of three coherent, extensible metamodels for HW-SW co-
design centred the SDF formalism is developed1.

• A set of model transformation rules is defined and applied. Using these
rules, an automated tool which transforms from the dataflow domain to
the PTA domain is developed, to compute energy-optimal schedules for
dataflow applications.

• We have demonstrated that our fully automated framework provides mod-
ularity, extensibility and interoperability between tools, using a diverse set
of scenarios for a case study. In particular:

– Modularity is demonstrated by analysing an SDF graph on multiple
platforms. We develop a new PAM for each platform, but we generate
the SDF graph model only once, and reused it every time we need to
analyse it on a different platform.

– Interoperability is demonstrated by implementing model transform-
ations between two different tools, i.e., sdf3 (discussed below) and
uppaal cora. In this way, sdf3 models can be automatically trans-
formed to uppaal cora models.

1All metamodels, model transformations, and case studies discussed in this chapter can be
found at https://github.com/utwente-fmt/COMET. An instruction manual for replicating the
experiments is also given in this repository.

https://github.com/utwente-fmt/COMET
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– Extensibility is demonstrated by extending PAMs with a memory
element. This new extension takes memory read and write times of
data required by the tasks into consideration.

• The complete set of the PTA models of the case study is provided.

Origins of the Chapter. This chapter was written in collaboration with
Bugra M. Yildiz from University of Twente. The author defined and applied
model transformations, and performed all case studies along with their analysis,
while Bugra M. Yildiz developed metamodels and a visual editor for modelling
PAMs.

Chapter Outline. The rest of the chapter is structured as follows: Section 7.2
discusses related work. Section 7.3 gives an overview of our framework and
Section 7.4 describes the framework components in detail. Section 7.5 evaluates
our framework using a case study, and Section 7.6 concludes the chapter.

7.2 Related Work

There exists a plethora of commercial and academic tools for HW-SW co-
designing [BHRV13, GHH+13, HG13, BHLM94, TCN00, RVBM96, KSS+09].
However, most of these tools provide their own modelling and analysis mechan-
isms which makes it difficult to integrate them. Furthermore, most of these tools
offer much less support for systematic extensions. Our framework improves upon
these existing approaches by making use of model-driven engineering techniques
with the advantages discussed above. In the following, we discuss different tools
based on (1) HW-SW co-design and (2) MDE.

7.2.1 HW-SW Co-Design

In the study by Basten et al. [BHRV13], the Octopus Design-Space Exploration
toolset is introduced to support model-driven design-space exploration for em-
bedded systems. The toolset aims to support reuse and combined use of models
between different domains and tools. The toolset contains a set of Java libraries
for reading the design models written in their own textual specification language
and then transforming them to other tools such as coloured Petri-Nets tools,
sdf3, and uppaal for design-space exploration. If any further transformations
need to be defined for other tools, one has to implement these transformations
using the Java libraries. Rather than Java, which is a general-purpose language,
we use etl, a domain-specific language for model transformation. Furthermore,
the Octopus toolset does not provide any metamodels. The lack of metamodels
and failure to use a model transformation language cause challenges in interop-
erability and maintainability of the toolset, which are in fact stated as a future
directions of research in their study.

Ptolemy [BHLM94] is another well-known tool supporting experimentation
with HW-SW co-design. Ptolemy allows detailed task-oriented design and
simulation using various modelling techniques including SDF models, process
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networks, continuous-time models, etc.. The models are designed using object-
orientation approach in C++. Similar to Octopus, Ptolemy faces challenges in
interoperability and maintainability due to the lack of metamodels and model
transformations.

The work in [FGFR15, Fak16] aims to analyse timing bounds of SDF graphs,
using the uppaal model checker. The method, similar to ours, extracts SDF
models from sdf3 and models hardware separately, and then generates a timed-
automata model from them using a graphical user interface implemented using
EMF. However, the method does not make use of any explicit metamodels or
model transformations. As a result, it is not clear how future requirements such
as integration of different tools and analysis approaches can be implemented.

Grüttner et al. proposes a reference framework to generate virtual executable
prototypes from HW-SW co-designs and study different hardware platforms
and power management strategy at early states of development [GHH+13].
The framework generates the prototypes in terms of executable models derived
from formal UML/MARTE specifications. Grüttner et. al.’s framework follows
the modularity principle by separating various concerns of the system through
viewpoints while we achieve this through the use of metamodels for various
concerns. In their paper, there is no explanation about if the reference framework
offers any systematic extension mechanisms for future requirements.

Herber and Glesner proposed a framework for automatic verification of
HW/SW co-designs using timed-automata models in [HG13]. The framework
translates the HW-SW co-design implemented in SystemC to the timed-automata
format of the uppaal model checker. This translation is automatically achieved
by the SystemC Timed Automata Transformation Engine (STATE) that is
specifically designed for SystemC-to-uppaal transformations. Since STATE
is implemented in a general-purpose programming language, i.e., Java, and
does not use model-driven engineering techniques, this limits to what extent
the requirements of modularity, interoperability and extensibility are satisfied
[VSB+13].

7.2.2 Model-Driven Engineering

The closest work to ours is presented in [BDD05] and [GMA+11]. In [BDD05],
Bonde et al. apply MDE techniques to achieve HW-SW co-design of embedded
systems for simulation and code generation purposes. They have developed a new
model transformation engine and a declarative XML-based model transformation
language for this engine. Using the transformation engine and the specified
transformation definitions, they generate allocation models and subsequently
code templates for simulation. Our framework differs from the work by Bonde
et al. mainly in two points. Firstly, we are aiming to achieve analysis of the
final models via model checking rather than simulation. Secondly, our choice of
etl as the model transformation language provides us better and more flexible
functionality while defining and extending model transformations for various
purposes, as explained in Section 7.3.3.

The MADES approach introduced in [GMA+11] supports validation, simu-
lation and code generation of embedded systems using MDE techniques. They
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Figure 7.2: Metamodelling layered approach [Obj15]. Semantic artefacts at
Layer 3 are implemented as models as Layer 2, which conform to the metamodels
in Layer 1.

use the MADES modelling language to create design and analysis models. Our
work is in a different direction since it is focused more on dataflow applications
and heterogeneous processors.

7.3 The Model-Driven Framework

7.3.1 Model-Driven Engineering

Models are powerful artefacts to express behaviour, structure and other prop-
erties in many domains such as mathematics, engineering, and other natural
sciences. Model-Driven Engineering (MDE) is a software engineering paradigm
that considers models not only as documentation, but also adopts them as the
basic abstraction to be used throughout all engineering disciplines and in any
application domain [dS15]. The models in MDE are closer to some particular
domain concepts rather than the computing concepts. These models are con-
sidered equivalent to code, since they are formally defined and have execution
semantics.

To define models, we need to specify their language as a model of these models
at a more abstract level, so-called metamodels. In other words, metamodelling is
the modelling of models. In their common use, metamodels define the permitted
structure, to which models must adhere. Therefore, metamodels describe the
syntax of models [SRVK10]. The layered approach used in metamodelling
[Obj15] is shown in Figure 7.2. In Figure 7.2, the artefact in each layer conforms
to, or is abstracted by the adjacent layer. Therefore, semantic artefacts in
Layer 3 are abstracted in models defined in Layer 2, which further conform
to the metamodels given in Layer 1. For example, some information —such
as a task graph— is a semantic artefact, located at Layer 3. The XML file
representing this information is a model of this semantic artefact, which is located
at Layer 2. Finally, the DTD or XSD schema that this XML file conforms to
can be counted as a metamodel, located at Layer 1. The design process that
utilises metamodelling first abstracts the concepts of some domain or application
(Layer 3) into the metamodel (Layer 1). Afterwards, the models (Layer 2)
defining the domain conforming to their metamodels are generated.
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MDE helps us to satisfy modularity, interoperability, and extensibility re-
quirements in the following way:

• There can be multiple domains in a project. In MDE, the concepts and
their relationships in each of these domains can be captured separately into
different metamodels. In this way, various concerns of these domains can
be kept modular. Models that are instances of these metamodel become
better reusable.

• The tools used in a project have typically their own concrete syntax for
their models, such as XML, JSON or plain text. MDE allows interoper-
ability between different domains (and tools in these domains) via model
transformations. Model transformations provide interoperability and fur-
thermore save effort and reduce errors by automating the model derivation
and modification process.

• Technologies used for applying MDE provide the following mechanisms
for systematic extensibility : Extending existing metamodels and model
transformations, introduction of new metamodels to existing tool chains.

7.3.2 Overview of the Model-Driven Framework

Figure 7.3 gives a detailed overview of our framework introduced earlier in Figure
7.1. The HW-SW co-design of the application consists of the first four steps:

• In step 1, an SDF model of the software application is created using the
sdf3 tool in an XML format specific to the tool.

• In step 2, the SDF model is automatically transformed to an SDF model
that conforms to the metamodel we defined for SDF graphs.

• In step 3, a hardware platform model is created using PAM Visual Editor
that is a graphical editor for specifying Platform Application Models
(PAMs). This model conforms to the PAM metamodel.

• In step 4, an allocation model is created for specifying the mapping of the
tasks in the SDF model to the processor types in the PAM.

The analysis of the co-design for energy-optimal schedules is conducted using
the uppaal cora model checker. This is achieved in the last three steps:

• In step 5, the co-design is transformed to a PTA model that conforms to
the uppaal metamodel.

• In step 6, the PTA model is transformed to the format accepted by the
model checker.

• In step 7, we compute the energy-optimal schedule using the uppaal cora
model checker.
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Figure 7.3: Detailed overview of our framework. The elements with dark
background colour represent the new contributions in this thesis. The numbered
steps are explained in the main text.

Here, the steps 1, 3, and 4 are manual, and the steps 2, 5, 6, and 7 are automatic.
Further details related to the elements of the framework are described in

Section 7.4.
Although the steps in Figure 7.3 show a general guideline for a HW-SW

co-design of a system from scratch, a different strategy can be adopted according
to the requirements of the system design. For example, if a system designer
needs to analyse how a software application runs on various hardware platforms,
s/he can create an SDF model by follow steps 1 and 2 only once and then create
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several PAM models by conducting step 3 multiple times.

7.3.3 Tooling Choices

To realise the model-driven approach, we have created metamodels using ECore
in the Eclipse Modelling Framework (EMF) [SBMP08]. EMF provides a plethora
of plugins to support various functions, such as querying, validation, and trans-
formation of EMF models. For instance, using the EuGENia plugin [KRPP09],
we have created the PAM Visual Editor based on Eclipse Graphical Editing
Framework (GMF). To ensure the well-formedness of the metamodels, we have
defined Object Constraint Language (OCL) rules. OCL is a precise text language
to express constraints on metamodels that cannot otherwise be expressed by
diagrammatic notation [Obj12].

The model transformations have been implemented using Epsilon Transform-
ation Language (etl) [KPP08], which is one of the domain-specific languages
provided by the Epsilon framework. etl is a hybrid model transformation
language that combines declarative mapping style with imperative features to
support definition of complex transformations. etl supports many input-to-
many output model transformations; it also allows the users to inherit, import
and reuse other Epsilon modules in the transformations.

7.4 Details of the Model-Driven Framework

This section presents our concrete instantiation of the model-driven framework
by describing our modelling choices in some detail. We recall the formal (math-
ematical) definitions of the domain concepts from Chapter 5 and discuss how we
have chosen to translate them to metamodel elements.

7.4.1 SDF Graphs

Definition and Metamodel

Definition 7.1. An SDF graph is a tuple G = (A,D,Tok0) where

• A is a finite set of actors,

• D ⊆ A2 × N2 is a finite set of channels, and

• Tok0 : D → N denotes the initial number of tokens on each channel.

Some notation: given an SDF graph G as above, the sets of input and output
channels of an actor a ∈ A are defined respectively as In(a) = {(b, a, p, q) ∈ D |
b ∈ A, p, q ∈ N} and Out(a) = {(a, b, p, q) ∈ D | b ∈ A, p, q ∈ N}.

The state of an SDF graph is represented by a function from D to N called a
token distribution. For instance, the function Tok0 in Definition 7.1 is such a
distribution — namely, the initial one. Actor a can fire if each input channel
(b, a, p, q) ∈ In(a) contains at least q tokens in the current distribution; firing it
removes those tokens, and ends by producing p tokens on each output channel
(a, b, p, q) ∈ Out(a). We consider SDF graphs to be untimed.
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Figure 7.4: SDF graph of an MPEG-4 decoder

Figure 7.5: SDF Metamodel. SynchronousDataflowRoot is the root of a model,
Actor corresponds to the set of actors, and Channel corresponds to the set of
channels.

Example 7.2. Figure 7.4 shows the SDF graph of an MPEG-4 decoder. The
actors A={FD, VLD, IDC,RC, MC} represent individual tasks performed in
MPEG-4 decoding. For example, the frame detector (FD) models the part of the
application that determines the frame type and the number of macro blocks to
decode. The rest of the steps in MPEG-4 decoding are Variable Length Decoding
(VLD), Inverse Discrete Cosine (IDC) Transformation, Motion Compensation
(MC), and Reconstruction (RC) of the final video picture. �

The SDF Metamodel capturing the concepts of Definition 7.1 is shown in
Figure 7.5. Recall that an SDF graph is a tuple G = (A,D,Tok0).

• SynchronousDataflowRoot is the root of a model, in which everything else
is contained; it corresponds to G.

• Actor corresponds to the set A; the associations incomingChannels and
outgoingChannels represent the derived functions In and Out from A to
sets of channels.

• Channel corresponds to the set D. The 4-tuples (a, b, p, q) ∈ D are
represented in the metamodel by the source and target associations (for a
and b), respectively the sourceRate and targetRate attributes (for p and
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q). initialTokens represents the function Tok0; thus, it has been modelled
as an attribute of Channel , rather than as a separate function.

With respect to the mathematical definition, there are two differences: (i) whereas
a channel (a, b, p, q) is completely determined by its constituent values, due to
the nature of metamodels a Channel has its own identity (and so conceivably
there could be two Channels with the same 4-tuple of values), which can not
occur in the mathematical set up in Definition 7.1; (ii) the function Tok0 has
been combined with Channel . This removes some of the modularity of the
mathematical model, at the benefit of simplicity.

Model Creation

In our framework, SDF models are created in steps 1 and 2 of Figure 7.3. The
starting point is an SDF graph created using the well-known open-source sdf3

tool (step 1). This tool produces output in the form of an XML document,
adhering to its own schema (fixed in an XSD). To bring such documents into our
framework, we have defined an sdf3-to-SDF Transformation which produces
models conforming to the SDF metamodel of Figure 7.5. The transformation
definition involves a systematic mapping of the sdf3 concepts to our SDF
metamodel concepts. The layout of XML format used in sdf3 is already explained
in Chapter 2.

Listing 7.1 shows a partial view of the sdf3-to-SDF transformation. A rule in
etl starts with the rule name. Following the rule name, the transform keyword
defines from which input elements to which output elements this rule does the
mapping. The transformation direction is specified by the to keyword, which
also acts as a separator between input and output elements. These elements are
defined with a given name (that is used to refer to that element inside the rule
body) followed by its type (in its metamodel) separated by “:”. Following this,
the rule body is defined inside curly brackets. The rules in Listing 7.1 can be
explained as follows:

• Sdf3Type defines the SDF graph in the sdf3 XSD schema. The first rule
named SDFGraph2SDFModel at line 2 transforms an Sdf3Type element in
the sdf3 XML document to a SynchronousDataflowRoot element in the
SDF model.
• ActorType defines an actor with a name in the sdf3 XSD schema. The

rule named Actor2Actor at line 7 transforms an ActorType element in the
sdf3 XML document to an Actor element in the SDF model. The rule
sets the identifier property of the Actor element as the name property of
ActorType element.
• ChannelType defines a channel with its properties in the sdf3 XSD schema.

The rule named Channel2Channel at line 13 transforms a ChannelType
element in the sdf3 XML document to a Channel element in the SDF
model. At lines 16 and 17, the names and initial tokens of all channels in
the SDF model are created according to the respective names and initial
tokens in the sdf3 XML document. At lines 18-22, the source actor and
production rate of each channel in the sdf3 XML document are assigned to
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Listing 7.1: A partial view of sdf3-to-SDF Transformation

1 /** Transforms an SDF3 root element to an SDF root element .*/

2 @rule@ SDFGraph2SDFModel transform

3 sdf3In: In!Sdf3Type to sdfOut: Out!SynchronousDataflowRoot

4 {

5 }

6 /** Transforms an SDF3 actor to an SDF actor .*/

7 @rule@ Actor2Actor transform

8 aIn: In!ActorType to aOut: Out!Actor

9 {

10 aOut.identifier = aIn.name;

11 }

12 /** Transforms an SDF3 channel to an SDF channel .*/

13 @rule@ Channel2Channel transform

14 cIn: In!ChannelType to cOut: Out!Channel

15 {

16 cOut.identifier = cIn.name;

17 cOut.initialTokens = cIn.initialTokens.asInteger ();

18 // Assign source actor and production rate

19 var srcActorIn : In!ActorType = getInActor(cIn.srcActor);

20 cOut.source ::= srcActorIn;

21 cOut.sourceRate = srcActorIn.getInPort(cIn.srcPort).rate.

22 asInteger ();

23 // Assign target actor and consumption rate

24 var dstActorIn : In!ActorType = getInActor(cIn.dstActor);

25 cOut.target ::= dstActorIn;

26 cOut.targetRate = dstActorIn.getInPort(cIn.dstPort).rate.

27 asInteger ();

28 // Creating the list of incoming and outgoing channels of each

actor

29 for (a in In!ActorType)

30 {

31 if (a.name == cIn.srcActor)

32 {

33 cOut.source.outgoingChannels.add(cOut);

34 }

35 else

36 {

37 cOut.target.incomingChannels.add(cOut);

38 }

39 }

40 }

corresponding channel in the SDF model, using the operations getInActor
and getInPort (not shown here) respectively. Similarly, at lines 23-27,
target actor and consumption rate of each channel in the SDF model are
assigned. As mentioned earlier, each Actor in the SDF metamodel keeps
the list of its incoming and outgoing channels. Therefore, at lines 28-39,
each actor in the sdf3 XML document is checked if it is the source or
target actor of the current channel. If it is the source, then the channel is
added as outgoing channel of the actor in the SDF model. Otherwise, the
channel is added as the incoming channel.
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7.4.2 Platform Application Models

A Platform Application Model (PAM) models the multiprocessor platform to
which the application, modelled as an SDF graph, is mapped. Our PAMs support
several features, including (1) heterogeneity, i.e., there can be multiple processors
with different types, (2) a partitioning of the processors in voltage/frequency
islands, (3) frequency levels each processor can run on, (4) power consumed by a
processor at a certain frequency, both when in use and when idle, and (5) power
overhead required to switch between frequency levels.

Definition and Metamodel

Definition 7.3. Given an SDF graph G = (A,D,Tok0) with a set of actors
A, a platform application model (PAM) is a tuple P = (Π, ζ, F,Pidle ,Pocc ,Ptr ,
τact) consisting of

• a finite set of processors Π = {π1, . . . , πn}. We assume that Π is partitioned
into disjoint blocks of voltage/frequency islands (VFIs) such that

⋃
Πi = Π,

and Πi ∩Πj = ∅ for i 6= j,

• a function ζ : Π→ 2A indicating which processors can handle which actors,

• a finite set F = {f1, . . . , fm} of discrete frequencies available to all pro-
cessors,

• a function Pocc : Π× F → N denoting the power consumption (static plus
dynamic) of a processor operating at a certain frequency f ∈ F in the
operating state,

• a function Pidle : Π× F → N denoting the power consumption (static) of
a processor operating at a certain frequency f ∈ F in the idle state,

• a partial function Ptr : Π × F 2 9 N denoting the transition overhead
between frequencies for each processor π ∈ Π, and

• a function τact : A× F → N≥1 denoting the actual execution time of each
actor (in A) mapped to a processor at a certain frequency level (in F ).

As SDF graphs are considered to be untimed, the execution time of the SDF
actors are defined along with PAM components. Moreover, we assume that
the processors can switch from the active frequency only to the neighbouring
frequency.

The principle of Dynamic Voltage and Frequency Scaling (DVFS) dictates
that a processor can change its running frequency. A processor π ∈ Π running
at frequency f ∈ F consumes Pocc(π, f) if working, or Pidle(π, f) otherwise.
Intuitively, the lower the frequency f ∈ F of a processor π ∈ Π is, the lower the
power consumption Pocc(π, f) of that processor is, at the expense of a longer
execution time τ(a, f) of an actor a ∈ A.

The state of a processor can be changed by Dynamic Power Management
(DPM) at run-time when the processor is not in use. However, the power overhead
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No. Frequency(MHz) Pidle(W) Pocc(W)

1 1400 0.1 4.6

2 1033 0.4 1.8

Table 7.6: Platform description of Samsung Exynos 4210 processors

of switching to another power state (i.e., frequency level) is non-negligible. The
power overhead is captured by the function Ptr .

Furthermore, the concept of voltage/frequency islands (VFIs) allows to run
a group of processors at a common voltage/frequency. The clock frequen-
cies/voltage supplies of a VFI may differ from other VFIs. Without VFIs, we
are left with two options only, i.e., either running each processor at an indi-
vidual voltage/frequency (local DVFS), or running all the processors at the
same voltage/frequency (global DVFS). Hence, VFIs provide better control over
energy management.

Example 7.4. Table 7.6 recalls two frequencies (MHz) {f1, f2} ∈ F and cor-
responding experimental power consumption of Exynos 4210 processors from
Chapter 5. We assume that our PAM contains four Exynos 4210 processors,
i.e., Π = {π1, π2, π3, π4}. The processors are partitioned into two VFIs, i.e.,
Π1 = {π1, π2} and Π2 = {π3, π4}. We assume that the power overhead (W) of
all π ∈ Π is, Ptr(π, f1, f2) = 0.2 and Ptr(π, f2, f1) = 0.1. �

The PAM Metamodel capturing most of the concepts of Definition 7.3 is
shown in Figure 7.7. A brief explanation can be given as follows:

• PlatformApplicationModelRoot stands for the PAM as a whole.

• ProcessorType collects the characteristics of a set of processors. In the
metamodel, the power and frequency characteristics of a processor are
associated with its type, creating a reusable layer of indirection with respect
to the mathematical model.

• Processor stands for the elements of Π. Each Processor has a type associ-
ation to the corresponding ProcessorType.

• VoltageFrequencyIsland stands for the clusters Πi in the VFI partitioning
of Π. The element-of relationship between a processor and its VFI is
captured by the (opposite) island and processors associations.

• ProcessorState associates the working/idle state of a processor (type)
(the boolean isWorking attribute), combined with a frequency level, to a
powerConsumption value. This encodes the Pocc and Pidle functions of
the mathematical definition.

• ProcessorStateChange encodes the Ptr function of the definition: each
instance associates a powerCost with a certain pair of source and target
ProcessorStates.
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Figure 7.7: PAM Metamodel. PlatformApplicationModelRoot is the root of
a model, ProcessorType corresponds to the processor types, Processor corres-
ponds to the set of processors, and VoltageFrequencyIsland stands for the VFIs.
Furthermore, ProcessorState and ProcessorStateChange encodes the states and
transition overheads of the processor types respectively.

In a major change with respect to the mathematical definition, we have
chosen not to include the ζ and τact functions in the PAM, but to isolate them
in a separate allocation model. This enhances the modularity of the modelling
framework. Apart from this change, all elements of Definition 7.3 are clearly
recognisable in the metamodel, though sometimes encoded in a different manner.
In particular, we have introduced the processor types as an intermediate level to
enhance modularity; Pocc and Pidle are combined in ProcessorState; and Ptr is
encoded as ProcessorStateChange.

Model Creation

The creation of PAMs corresponds to step 3 in Figure 7.3. Although EMF
provides a default tree-based model editor, we have built PAM Visual Editor, a
domain-specific visual editor for PAMs, by benefiting from state-of-the-art MDE
techniques. To build PAM Visual Editor, we have used EuGENia, which can
automatically generate a visual editor from an annotated ECore metamodel. We
show an example PAM created using this visual editor in Section 7.5.

7.4.3 Allocation Models

In a heterogeneous system, the freedom of assigning actors a ∈ A to processors
π ∈ Π is constrained by which processors can be utilised to execute a particular
actor. Thus, in order to run an SDF model on a PAM, we need to know (1)
which SDF actors can be run on which processors of the PAM and (2) what
their execution times are at given frequencies. This information is encoded in
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Figure 7.8: Allocation Metamodel. Capability refers to Actor in the SDF
metamodel and ProcessorState in the PAM metamodel.

an allocation model, which relates both the SDF and PAM models. Allocation
models conform to Allocation Metamodel that we define to represent this concern.

The information related to allocation concern was part of Definition 7.3,
but we have chosen to put this into a separate Allocation Metamodel for the
sake of modularity, making the PAM metamodel fully independent of the SDF
metamodel.

Definition and Metamodel

The information to be represented in the Allocation metamodel consists of the
ζ and τact functions of Definition 7.3. The Allocation Metamodel is shown in
Figure 7.8. It contains:

• AllocationRoot , which stands for the combined allocation functions ζ and
τact of Definition 7.3.

• Capability , following τact : A× F → N≥1 in Definition 7.3, refers to Actor
in the SDF metamodel, and ProcessorState (defining the frequency of the
processor) in the PAM metamodel, and yields the time needed to execute
the actor at the processor state. At the same time, ProcessorState also
encodes which processor type an actor can be executed on.

The metamodel is in fact more expressive than the mathematical definition: for
instance, the execution time of an actor is not constrained to be always the same
for a given frequency level; instead, it may also depend on the processor type.

Model Creation

The creation of Allocation models corresponds to step 4 in Figure 7.3. It is
supported out-of-the-box via the default tree-based model editor provided by
EMF.

7.4.4 Common Metamodel

In addition to those discussed above, Figure 7.3 also shows an element called
Common Metamodel. This demonstrates an MDE technique for reuse: our



168 7. Model-Driven Engineering for Dataflow Applications

common metamodel defines the general concept of Identifiable, which has a
string-valued identifier attribute; Actors and ProcessorTypes are subtypes of
Identifiable and thereby inherit this feature. Whenever (during extension of the
framework) additional reusable concepts are introduced, these can be added to
the common metamodel.

7.4.5 Priced Timed Automata Models

Once the SDF, PAM and allocation models are available, one can generate
the PTA model using the Co-Design-to-uppaal Transformation and successive
model-to-text transformation. These correspond to steps 5 and 6 in Figure 7.3.
Step 7 in Figure 7.3 corresponds to reusing the idea in Chapter 5, to generate
the energy-optimal schedule of an SDF graph.

Co-Design-to-uppaal transformation

Given an SDF graph G = (A,D,Tok0) mapped on a processor application model
P = (Π, ζ, F,Pidle ,Pocc ,Ptr , τact), the Co-Design-to-uppaal transformation
creates a parallel composition of PTA:

AG‖Processor1‖, . . . , ‖Processorn‖Scheduler .

Here, the automaton AG models the actors and channels of an SDF graph, and
the automata Processor1, . . . ,Processorn model the processors Π = {π1, . . . , πn}.
The automaton Scheduler is responsible for the scheduling task.

This parallel composition of automata is represented as the PTA model
generated as the output of the Co-Design-to-uppaal transformation. This model
conforms to the uppaal metamodel. The metamodel not only contains the
conceptual timed automaton elements such as locations, edges and clocks; but
also specifies the abstract syntax of the plain-text expressions. PTA models are
already explained in Chapter 5.

Model-to-text transformation

As mentioned earlier, the model generated by step 5 does not have the right
format to be directly processable by uppaal cora. For this reason, we have
defined a model-to-text transformation, which takes an uppaal cora model
as input and transforms it into the native uppaal cora XML format. This
transformation corresponds to step 6 in Figure 7.3.

Computation of the Energy-Optimal Schedule

This activity corresponds to step 7 in Figure 7.3. We reuse the idea presented in
Chapter 5, to determine the throughput of an SDF graph, and energy optimisation
with respect to it. The trace generated by uppaal cora is interpreted to derive
an energy-optimal schedule.
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7.5 Case Study and Evaluation

In this section, we show the effectiveness of our framework for HW-SW co-design
by applying it on a case study. We also demonstrate how our framework satisfies
the features stated in Section 7.1, namely: (1) modularity, (2) extensibility, and
(3) interoperability. We also evaluate the timing performance of our framework
with the help of some other case studies.

7.5.1 Case Study

As a case study, we consider the dataflow application of the MPEG-4 decoder in
Figure 7.4 on page 161 mapped to a platform with four processors of the type
Exynos 4210 in Example 7.4 on page 165.

Following step 1 in Figure 7.3, we have created the SDF graph of the MPEG-4
decoder using sdf3. This SDF graph was already given in Figure 7.4. In step 2,
we apply sdf3-to-SDF transformation to generate the SDF model conforming to
our metamodel for the SDF graph.

In step 3, we create the PAM using the visual editor, as described in Sec-
tion 7.4.2. The created PAM is given in Figure 7.9. The top part of the figure
shows four processors partitioned into two VFIs. The big rectangle at the bottom
part of the figure shows the processor type, which is Samsung Exynos 4210 for
our case. The oval shapes inside the processor type represent the processor
states. For example, at the frequency level (MHz) f1 = 1400, a processor π ∈ Π
consumes Pidle(π, f1) = 0.1 W if it is idle, or Pocc(π, f1) = 4.6 W if it is working.
The arrows between processor states represent transitions between states, and
the power overhead of each transition are assigned to the respective arrows. For
example, as Ptr(π, f1, f2) = 0.2 W, the arrow pointing from State 2 (representing
the idle processor at f1) to State 4 (representing the idle processor at f2) has
value 2 assigned to it. As uppaal cora only can have integer costs, all power
consumption values in Figure 7.9 are multiplied by 10. This can also be done in
the Co-Design-to-uppaal transformation in step 5.

After we have the PAM and SDF models, we create the allocation model that
assigns the actors to the processor states with their execution times in step 4.

Once we have the SDF, PAM, and allocation models, we apply the Co-
Design-to-uppaal transformation in step 5 and the model-to-text transformation
in step 6 to generate the PTA model that is compatible with uppaal cora.
The uppaal cora models of our running example are already presented in
Chapter 5.

In step 7, we follow the approach presented in Chapter 5 to compute the
energy-optimal schedule for some given throughput requirements.

Figure 7.10 shows the energy-optimal schedule, for the time per graph
iteration constraint of 8 ms for our example. The schedule shows the execution
order of the actors at the specific frequency and processors.

7.5.2 Evaluation

a) Modularity:. To show that our framework satisfies the modularity criterion,
let us consider the following example: We want to analyse the energy consumption
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Figure 7.9: PAM created using PAM Visual Editor. The top part shows four
processors partitioned into two VFIs. The lower rectangle shows the processor
states and transition overheads of the processor type Samsung Exynos 4210.
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Figure 7.10: An example schedule of MPEG-4 decoder in Figure 7.4 on four
processors π1, π2, π3, and π4. The grey and white coloured boxes denote, if a
processor is running at the frequency f2 or f1 respectively.

of the MPEG-4 decoder on a different hardware platform, viz., Intel Core2 Duo
E6850.
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No. Frequency(MHz) Pidle(W) Pocc(W)

1 3006 0.1 5.5

2 1776 0.4 2.2

Table 7.11: Platform description of Intel Core2 Duo E6850

Table 7.11 shows the frequencies and corresponding power consumption of
this new processor [PPS+13]. For this scenario, we only changed the processor
type while keeping the number of processors and VFI distributions the same.
Now, all we have to do is to develop a new PAM corresponding to this new
platform specification and generate the corresponding PTA model. We reuse
the existing SDF model of the application without making any modifications.
Using the framework, we derive the energy-optimal schedule for time per graph
iteration constraint of 8 ms. The schedule remains the same as Figure 7.10.

c) Interoperability:. As explained in Section 7.1, HW-SW co-designing involves
tools having different domains and focus areas. There must be interoperability
between these tools to work together efficiently. In our framework, we utilise
sdf3 for creating SDF graphs and uppaal cora for deriving energy-optimal
schedule. To automatically generate uppaal cora models from sdf3 models,
we have implemented model transformations in our framework, thus providing
interoperability.

b) Extensibility:. Due to the adaptation of MDE techniques, our framework
provides systematic extensions for future requirements. As an example, suppose
we want to extend our hardware platform models with the concept of “data
memory”. The current version of the hardware platform does not consider
memory access times of processors, which means processors can access data
without incurring any read or write time. However, we want to include a data
memory in our HW-SW co-design as a resource. For this purpose, we extend
Definition 7.3 of PAM to P = (Π, ζ, F,Pidle ,Pocc ,Ptr , τact,DM ,RdDM ,WrDM ).
The new components are defined as follows:

• a global data memory element DM ,

• a function RdDM : DM → N indicating the read time of the data memory
DM , and

• a function WrDM : DM → N indicating the write time of the data memory
DM .

Figure 7.12 shows the execution phases of an actor a ∈ A on a processor
π ∈ Π at a frequency fi ∈ F considering the memory accesses. The execution
starts with a read phase. The processor π ∈ Π reads the memory DM to access
tokens on all input channels of the actor a. After the read phase, the processor
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read execute write

RdDM τact(a, fi) WrDM

actor execution

Figure 7.12: Execution phases of an actor a at a frequency fi. First the input
tokens are read from the memory, and then the actor is executed and the output
tokens are produced. Afterwards , the output tokens are written on the memory.
The whole process takes RdDM + τact(a, fi) + WrDM time units.

π executes the actor a in τact(a, fi) time units. Finally, in the write phase, the
produced tokens are written to the memory DM .

To extend our framework to support the memory concept, we perform the
following steps:

• Extending the PAM metamodel : We define a Memory Metamodel as an
extension of the PAM metamodel, as shown in Figure 7.13. The Memory
metamodel includes only a single element called Memory. Memory is a
singleton entity with the readRate and writeRate attributes that represents
the time cost of reading and writing from the memory, respectively. Memory
has also the root reference to the root element of the PAM metamodel.

• Extending the Co-Design-to-uppaal model transformation: To reflect the
memory access times in the scheduling analysis, we have to adjust the
Co-Design-to-uppaal transformation accordingly. This is achieved in the
following way: The memory access times should be added to the execution
time of each actor. The execution times of the actors are mapped to
the invariants of the locations (that correspond to the working state of
processor types) in PTA models. This mapping is implemented in the
PAMProcessorState2InUseLocation transformation rule. We define a new
transformation called Memory Extension Transformation that extends the
Co-Design-to-uppaal transformation and overrides the PAMProcessor-
State2InUseLocation transformation rule. This is shown in Figure 7.14.
In this way, we only change the single rule that is relevant to our purpose
and reuse the rest of the original transformation.

7.5.3 Timing Performance

To determine the timing performance of our framework, we consider four real-life
case studies namely, an MPEG-4 Decoder in Figure 7.4, an MP3 Decoder in
Figure 2.15, an MP3 playback application in Figure 2.16, and an Audio Echo
Canceller in Figure 2.17. We also used an artificial bipartite SDF graph with 4
actors in Figure 2.18. We assume that these case studies are mapped on Exynos
4210 processors having two frequencies.
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extends

<metamodel>
PAM

<metamodel>
Memory Extension

Figure 7.13: Memory Metamodel as an extension of PAM Metamodel. readRate
and writeRate represents the time cost of reading and writing from the memory,
respectively.
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Figure 7.14: Extension of the Co-Design-to-uppaal Transformation. The time
cost of reading and writing from the memory is added to the execution times of
each actor in the PTA model of Processor .

We examine the timing performance of our framework in two parts: the first
part is the timing performance of our framework, i.e., cumulative computation
time of steps 2 (sdf3-to-SDF transformation), 5 and 6 (Co-Design-to-uppaal
and model-to-text transformations). The second part is the timing performance
of obtaining the optimal schedule via uppaal cora model checker, i.e., step 7.
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Number of Steps Time per Energy Step 7
Processors 2+5+6 Iteration Consumption

MPEG-4 Decoder in Figure 7.4

5 0.253 6 62.8 18826.46
4 0.253 6 64.6 47.03
3 0.145 7 64.3 3.33
2 0.142 9 64 0.41
1 0.140 14 64.4 0.21

MP3 Decoder in Figure 2.15

2 0.281 8 64.6 1.41
1 0.256 14 64.4 0.21

MP3 Playback Application in Figure 2.16

2 0.101 1880 9907 28800.05
1 0.081 2118 9742.8 71.15

Audio Echo Canceller in Figure 2.17

4 0.119 23 324.2 13.78
3 0.108 24 322.3 0.71
2 0.106 35 322 0.71
1 0.108 73 335.8 0.41

Bipartite Graph in Figure 2.18

4 0.123 42 345.3 366.04
3 0.110 44 338.5 145.12
2 0.102 51 333.1 4.95
1 0.102 73 335.8 0.71

Table 7.15: Timing performance of our framework for different case studies

The experiments were conducted on a dual-core 2.8 GHz machine with 8 GB
RAM.

Table 7.15 shows the results of the experiments. The first column shows the
number of processors available for the experiment. The second column shows
the timing performance (s) of the first part. The columns 3-5 show the timing
performance of the second part. For time per graph iteration constraint (ms)
in column 3, the optimal energy consumption (mWs) derived by uppaal cora
is shown in column 4, and column 5 shows the time (s) taken to compute the
results in column 4. As one can realise, the time that step 2, 5 and 6 take in
total does increase insignificantly as the number of available processor increases.
This is due to the slight increase in the model size with the addition of processor
instances. For step 7, the time required to complete increases exponentially as
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the number of processor increases, which is because of the fact that the size of
the state-space created by the model checker increases exponentially with the
size of the model itself.

7.6 Conclusions

In this chapter, we have presented a model-driven framework for HW-SW co-
design of dataflow applications. In our framework, we have proposed a reusable
set of three coherent metamodels for HW-SW co-design domain. To provide
interoperability among domains, we have defined a reusable set of extensible
model transformations. We have demonstrated that our framework satisfies the
modularity, interoperability and extensibility requirements with a case study.

As future direction of our work, we plan to extend our framework with other
analysis techniques such as simulation and automated HW-SW partitioning. We
also plan to add code generation functionality to our framework.





CHAPTER 8

Case Study: A Face Recognition System

Abstract

T
he proof of the pudding is in the eating. The main research question of
this chapter is to evaluate the performance of our methods in a real-life
case study. In particular, we are interested in comparing theoretical and

actual results, which will help us in understanding the effect of communication
overheads and context switching present in real-life hardware platforms. To
address this question, we consider the approach of deriving schedules of an
SDF graph on a limited number of processors presented in Chapter 4. For this
purpose, the stars tool-chain discussed in Chapter 4 is utilised. The case study
is a concrete case from Recore Systems, The Netherlands, an industrial partner
in the European project SENSATION. The (theoretical) schedules obtained
using our method have been implemented in the case study to determine the
(actual) throughput. The experimental evaluation shows that the final deviation
of the theoretical results from the actual results is 28% (see Figure 8.8) which can
be attributed to communication overheads and context switching. Furthermore,
the scalability evaluation shows that the run time of our approach exceeds 8
hours if there is more than one processor. We tackle this issue by utilising the
random optimal depth first search option in uppaal that searches the successor
states in a random fashion and generates a best trace out of all witnessed traces.

8.1 Introduction

Face Recognition System. Face recognition is an embedded multimedia
application which identifies or verifies a person from a digital image. This
is done by comparing facial features from the image and a facial database.
Face recognition systems are getting huge popularity in application areas like
surveillance, biometric security, video games, and image messaging applications.
All of these application areas are constrained to adhere to stringent completion
times. For example, police cannot afford to spend too much time in identifying a
suspect from the CCTV footage. Similarly, facial recognition of a user connected
to its avatar in Xbox’s Avatar Kinect must be done with minimum delay.
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Proposed Approach and Contributions. All this makes the face recogni-
tion system a perfect case study to investigate the applicability of the theory and
analysis techniques presented in this thesis. In particular, we utilise the approach
presented in Chapter 4 of optimal scheduling of dataflow applications on a given
number of processors. This approach is supported by the stars tool-chain which
is also presented in Chapter 4. The case study of face recognition system is
provided by the company Recore Systems [REC].

However, the stars tool-chain does not consider any communication costs,
and runtime synchronisation and updates to the administration. Thus, it would
be relevant to evaluate how well the schedules obtained using the stars tool-chain
perform if implemented on a realistic hardware platform.

To achieve this goal, the first step is to obtain the SDF graph of the face
recognition system application. This step is done by executing the application
on a hardware platform. As a result of this step, a trace file is generated by
which we determine the firing times and order of tasks which we use to extract
an SDF graph.

The second step is to utilise the stars tool-chain to generate (theoretical)
schedules showing mappings of SDF actors to processors. Afterwards, the face
recognition system application is executed on an actual hardware platform but
considering the mappings generated by the stars tool-chain in the last step.
This gives us the (actual) schedules, which we compare to see the performance
of our method.

The main contributions of this chapter are twofold.

• First, we evaluate how our method performs in a real-life large scale
application. This helps to understand how much abstracting away from
the communication costs affects. Moreover, we also evaluate the scalability
of our method.

• Second, we determine the behaviour of the case study such as speedup
ratio when increasing the number of processors.

Origins of the Chapter. The case study of face recognition system has been
kindly provided by Recore Systems, The Netherlands, who were an industrial
partner with University of Twente in an EU FP7 project SENSATION.

Chapter Outline. Section 8.2 explains the case study, and Section 8.3 presents
the research questions posed in this chapter. The experimental setup used for
addressing the research questions is illustrated in Section 8.4, and Section 8.5
discusses the results. Finally, Section 8.6 draws conclusions.

8.2 Description of the Case Study

This section describes face recognition systems, and the hardware platform
developed by Recore Systems termed flexaware.
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8.2.1 Application: A Face Recognition System

A face recognition system is an embedded multimedia application for automated
identification of a person from a digital image. Recently, face recognition systems
are being integrated more and more into embedded multimedia systems. For
example, face recognition based games such as NBA 2K17 in Xbox 360 [NBA16],
and mobile applications such as Oasis [OAS15] for unlocking mobile phones
or mobile banking using face recognition. Similarly, face recognition is being
used nowadays for better shopping by taking a photo of something, e.g., a
book, and mobile applications like camfind [CAM13] compares price in multiple
stores. In this case, instead of face, the features of a book such as title or
ISBN are detected and identified. Other than embedded multimedia systems,
the application areas of face recognition systems are video surveillance, CCTV
control, suspect tracking etc.

A typical face recognition system consists of the following two steps, as shown
in Figure 8.1.

1. face detection, and

2. face recognition.

Each step is briefly discussed in the following.

Face Detection

Face detection starts with image acquisition either by digitally scanning an
existing photograph or by using a camera to capture a live photograph of a
person. The next phase is to locate human faces in an image. The most
commonly used face detection algorithm termed Viola-Jones face detector was
introduced by Paul Viola and Michael Jones in 2001 [VJ01]. In this algorithm,
the pixel intensities (RGB values) of different features of a human face such as
eyes, nose etc. are learned by a classifier . Afterwards, the classifier is moved
over the input image in the form of a search window. For each subsection of
the image, the pixel intensities are calculated and compared to the learned pixel
intensities. In this way, the face is identified from the other things in the image
such a buildings, trees, bodies etc.

face detection face recognition

face
locationimage identification

Figure 8.1: An overview of a face recognition system. The first step is of
identifying and locating a face in an input image. The second step is of recognising
a face with the aid of a facial database.
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Face Recognition

After the face has been detected and extracted from an image, the next step
is to compare it with the facial database and recognise it. To realise this step,
a feature vector is constructed. The simplest form of a feature vector are the
pixel intensities of different features of a human face calculated in the last
step. A feature vector is a numerical representation of a human face. Similarly,
each face in the database is also represented by a feature vector. Having such
representation facilitates comparison, as well as statistical analysis of an image.

After constructing the feature vector of the detected face, it is compared
with all feature vectors in the database to calculate a score vector. The best
score is compared to a threshold to verify if the input image is in the database.

8.2.2 Platform: flexaware

Recore Systems has developed a face recognition system application on top of
its flexaware platform [FLE] consisting of the following components.

• A heterogeneous many-core hardware platform containing embedded pro-
cessors, digital signal processors, and function accelerators. To enable com-
munication between processing cores, memories and interfaces, a dedicated
on-chip interconnect is integrated in the many-core hardware architecture.

• A many-core operating system termed flexaware runtime that exposes
an application programming interface (API) to run user applications on
the platform.

flexaware also offers an intuitive software development environment (SDE)
to provide a convenient implementation of an application on the flexaware
platform. Using the flexaware SDE, user models the applications into sets
of parallel tasks. Afterwards, the mapping of tasks to processors and memory
allocation is done using the flexaware runtime under the hood.

At the time of writing, the flexaware platform of Recore Systems is still in
the development phase, and the flexaware runtime experiments are run on a
x86 64 architecture containing four processors.

8.3 Research Questions

The central research questions addressed in this chapter are as follows.

• How much the theoretical results calculated using the stars tool-chain
deviate from the results measured in the actual case study.

• How well our approach presented in Chapter 4 scales in an industrial case
study.

• What is the speedup ratio of the case study when the number of processors
is increased.
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8.4 Experimental Setup

This section first presents an overview of the experimental setup considered in
this chapter. Then, a detailed explanation of the experimental setup is given.

8.4.1 Overview of the Experimental Setup

The experimental setup consists of the following two stages.

1. An SDF graph of the face recognition system application is obtained
by running the application on a single processor using the flexaware
runtime. As a result, a trace file is generated from which we acquire the
firing times and order of tasks of the face recognition system application. By
utilising this information in the trace file, an SDF graph of the application
is obtained.

2. The SDF graph obtained in the last stage is analysed using the stars tool-
chain to generate (theoretical) schedules on a varying number of processors.
The mappings in these schedules are fed to the flexaware runtime to
derive (actual) schedules. Afterwards, the difference between theoretical
and actual schedules is determined.

8.4.2 Details of the Experimental Setup

Figure 8.2 shows a detailed overview of the experimental setup.

Compilation and execution using flexaware Runtime

1. The first step is to extract an SDF graph of the face recognition system
application in the sdf3 XML format. The input to this step is the applic-
ation which is compiled and executed on the single threaded flexaware
runtime. The output of this step is a trace file in the flexaware trace
format (FTF). The FTF file contains the firing times and communication
topology of tasks of the face recognition system application.

In our experiment, the application was executed 20 times. A single ex-
ecution took an input stream of 10 video frames. The facial database
contained 2048 images, and the face recognised in the input frame was
compared to every image in the database to determine the best match.

SDF graph extraction using Host PC

2. The FTF file produced in step 1 is an input to step 2, in which the firing
times and communication topology of tasks in the FTF file are parsed by
the Host PC. The firing times of tasks are used to determine the execution
times of SDF actors, and communication topology is used to build SDF
actors and dependencies between them. This information is utilised to
generate an SDF graph of the application as an output of step 2.
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Figure 8.2: Experimental setup used for the analysis of face recognition system.
The numbered steps are explained in the main text.

A B C D E F G H I J K L M N O P Q

R

T

S

U

V

X Y ZW

AA

1862
1877

1862 186258 58

AB

32 32

31 1817 16

16
1718

31

3232

2 2

Figure 8.3: SDF graph of face recognition system

Figure 8.3 shows the anonymised SDF graph of the face recognition system
consisting of 28 actors. For the sake of readability, production/consump-
tion rates equal to one and initial tokens are omitted. Furthermore, in
Figure 8.3, the degree of auto-concurrency of all actors is one (hence, we
omitted the self-loop with rate one for all actors for simplicity).

As mentioned earlier, the application was run for 10 times in our experi-
ment. The execution times of actors are calculated by taking average of
the resource usage by each actor in each execution. Hence, the considered
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Figure 8.4: uppaal model for SDF graph in Figure 8.3 with respect to actor A.
The uppaal model is modified so that an actor can run on one processor only
throughout the execution.

execution times are not worst-case.

3. The SDF graph obtained in step 2 is an input to step 3, in which an sdf3

XML file is extracted by an FTF Converter as an output.

Generation of schedules using stars tool-chain

4. Step 4 takes as an input the sdf3 XML file generated in step 3, and
translates it to the uppaal model checker which generates schedules on
the varying number of processors, as explained in Chapter 4. In this step,
we choose the number of processors to vary from one to four.

Restrictions in the uppaal model. We have an extra constraint in the
uppaal model that an actor should always fire on the same processor during
the entire execution. This is done to avoid costless task migration. To
integrate this constraint, we have to modify the uppaal models explained
in Chapter 4. Figure 8.4 shows the modified uppaal model for the SDF
graph in Figure 8.3 with respect to actor A. Please note that Figure 8.4
only shows the SDF graph template; the PAM template remains unaffected.

As seen in Figure 8.4, we have made the following modifications to the
uppaal models explained in Chapter 4.

• an integer variable proc assigned[M] where M is the total number of
actors in the SDF graph. In our case, the value of M is 28.

• an integer variable actor id with an initial value of zero. This variable
is used to allocate a processor to each actor on which that actor fires
for the whole execution. Recall that each actor in the SDF graph is
assigned an id in the range

[
0,M-1

]
.

• a location Initialise with a self-edge.

• an edge from the location Initialise to the location Initial.
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The SDF graph template starts in the location Initialise, and takes the self-
edge on the location Initialise. The self-edge has a label e : id r which selects
a processor id nondeterministically from user-defined type id r and stores
in e. As a result of taking this edge, the processor id stored in e is assigned
to actor id via the assignment proc assigned[actor id] = e. Moreover, the
value of actor id is incremented by one. This edge can be taken before the
value of actor id turns to M, annotated by the guard condition actor id<M.
In this way, starting from the actor with id equal to zero, a processor is
assigned to each actor.

The edge from the location Initialise to the location Initial is taken when
the value of actor id is equal to M, specifying that each actor is as-
signed a processor to map on. The self-edges originating from the location
Initial has one modification. Originally, the edges are annotated with a
Select label e : id r which selects processor ids nondeterministically, and
the actors are mapped to the processors using the actions fire[e][actor id]
and end[e][actor id]. Now, the processors are already assigned, therefore
we omit the Select label. Rather, the actors are mapped on the as-
signed processors using the actions fire[proc assigned[actor id]][actor id] and
end[proc assigned[actor id]][actor id]. For example, in Figure 8.4, the actor
A having an id equal to zero, maps to its assigned processor using the
actions fire[proc assigned[0]][A] and end[proc assigned[0]][A].

Hardware constraints specification using flexaware SDE

5. After schedules are generated, the next step is to validate them. Step 5
takes as an input the schedules generated in step 4, and specifies the
hardware constraints, i.e., deployment of an actor to its assigned processor
in the corresponding schedule generated in step 4. This is done by the
application mapper in the flexaware SDE which creates a mapping . This
mapping is stored as a mapping constraint file which is also an output of
step 5.

Measurements using flexaware runtime

6. Step 6 takes as an input a mapping constraint file produced in step 5.
Furthermore, in step 6, the face recognition system application is compiled
and loaded in the flexaware runtime. During the application execution,
the creation of tasks is handled by the runtime service shown in Figure 8.5.
The flexaware runtime assigns actors to the runtime kernel corresponding
to the processor according to the mapping constraint file constructed in
step 5. As a result of step 6, a trace file is generated. This trace file
contains per processor, the start and end times of intervals during which a
specified actor has been active on that processor.

7. In step 7, the trace file constructed in step 6 is translated to a schedule.
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Figure 8.5: Mapping constraints supported by flexaware runtime

8.5 Results

In this section, we first evaluate the performance of our approach by comparing
the calculated and measured results. Next, we discuss the speedup of the face
recognition application system based on the measured results. Last, we evaluate
the scalability of our approach in terms of computation times and memory
consumption.

8.5.1 Performance Evaluation

Table 8.6 compares the completion times (µs) calculated by the stars tool-
chain and measured by flexaware. Column 1 shows the number of frames
processed by the face recognition system. Column 2-5 shows the completion
times calculated by the stars tool-chain on a varying number of processors, and
columns 6-9 presents the completion times measured by flexaware. The same
results are plotted in Figure 8.7.

We can see in Table 8.6 and Figure 8.7 that increasing the number of
processors leads to higher speedup, both in calculated and measured completion
times. However, there is an exception in the case of four processors, where
the measured completion times are lower than three processors. In fact, the
measured completion times for four processors are closer to two processors.

The reason is probably that the considered platform consists of four pro-
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Number Calculated Completion Time Measured Completion Time

of Frames Number of Processors Number of Processors

1 2 3 4 1 2 3 4

1 566735 438743 359237 375367 433059 436358 408097 443019

2 1133470 750976 595183 587446 1609664 1166961 1015100 1420824

3 1700200 1047510 878083 807429 2227867 1587763 1278901 1820026

4 2266940 1349500 1146090 1076570 2844070 2005365 1580103 2214227

5 2833680 1669730 1397580 1247400 3458672 2423167 1868905 2603030

6 3400410 1937980 1678160 1467380 4077275 2851169 2141905 2993231

7 3967140 2303460 1894070 1692310 4692878 3267770 2420907 3389033

8 4533880 2572960 2228080 1932930 5313280 3690173 2708308 3773835

9 5100620 2919420 2529470 2161740 5920884 3 4108174 3000509 4148036

10 5667350 3233340 2803290 2347310 6495886 4492376 3230110 4242837

Table 8.6: Comparison of calculated (stars) and measured (flexaware) com-
pletion time (µs) for varying number of frames and processors. The leftmost
column shows the number of frames processed by face recognition system. The
number of processors are shown in the second row.

cessors, and when the schedules are mapped on four processors, there is no room
for operating system to perform administrative tasks and routines, e.g, updating
the internal operating system kernel clock. Thus, because of interference from
the operating system, the progress of the main application is involuntarily inter-
rupted. As a result, performance is degraded on four processors compared to
three processors. In the rest of the chapter, the analysis for four processors is
neglected.

Figure 8.8 shows the difference between the calculated and measured comple-
tion times, where we see three trends. A reasonable explanation of these trends
is discussed below.

• At the first frame, the measured completion times are lower than the
calculated completion times. The reason is that the execution times of
SDF actors are an average over the run of 10 frames. At the first frame,
the execution times of the SDF actors are too pessimistic. Furthermore,
for processing one frame, the buffers are empty and internal actions never
get blocked. Therefore, the first frame completes earlier than expected.

• At the second frame, the measured completion times are higher than the
calculated completion times. This is due to the fact that at the second
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Figure 8.7: Comparison of calculated (stars) and measured (flexaware) com-
pletion times (µs) for varying number of frames and processors. The dashed and
solid lines represent the calculated and measured completion times respectively.
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Figure 8.8: Difference between calculated (stars) and measured (flexaware)
completion times for varying number of frames and processors

frame, the pipeline is not sufficiently filled, and during the idle slots, there
is not any other frame in the pipeline to be started.

• From the third frame onward, the difference between the calculated and
measured completion times starts reducing. This is caused due to sufficient
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Figure 8.9: ∆-time difference between calculated (stars) and measured
(flexaware) completion times for one processor and varying number of frames

filling of the pipeline. Thus, the idle slots are better utilised by executing
next frames, even though the previous one(s) are still executing. Further-
more, the observed execution time of a task drops below the average time
of the SDF actor, as the initial penalty of the insufficient pipeline filling
becomes insignificant.

The results in Figure 8.8 can be seen as “transient” and “steady-state”
phases. The transient phase consists of the first and second frame, whereas
the steady-state phase comprises of the third frame and onward. If we ignore
the results for four processors, the deviation of the calculated results from the
measured results at the 10th frame is 28% (for 2 processors).

Discussion

The first frame completes earlier than expected on one processor, due to pess-
imistic execution times. The second frame takes much longer to complete,
because of insufficient pipeline filling. In the steady-state phase, the difference
starts decreasing. At the 10th frame, the difference between the calculated and
measured results is 13% for 1 and 3 processors, and 28% for 2 processors. This
difference can be associated to communication overheads and context switch-
ing. Considering the fact that the extracted SDF model —based on runs on a
single processor— does not contain overheads, this difference is in line with the
expectation.

The transient and steady-phase behaviour of the case study can be better
understood by looking at the ∆-times. For ith frame, the ∆-time(i) is defined as,
Completion time(i)− Completion time(i − 1), where Completion time(0) = 0.
Figure 8.9 shows the ∆-time difference between the calculated and measured
completions times for one processor and varying number of frames. We can
see the same trend in Figure 8.9 as Figure 8.8. For the first frame, the ∆-time
difference is negative, as the actual execution times are lower than the average
execution times. For the second frame, the ∆-time difference is positive. After
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Figure 8.10: Speedup trends when increasing the number of processors for
varying number of frames

the second frame, the ∆-time difference starts reducing, and at the 10th frame,
it reduces to 1%.

If we increase the number of frames, we observe that the ∆-times for the
calculated results remain almost the same. But for the measured results, the
∆-times reduce with an increase in the number of frames. The reason probably
is that in the measured results, the ∆-times depend on the pipeline depth. If we
have higher number of frames in the pipeline, the hardware platform experiences
fewer context switches and therefore requires shorter time to produce the next
frame.

Thus, we can conclude that if we increase the number of frames from 10, the
pipeline depth increases resulting in faster production of frames by the hardware
platform. As a result, the ∆-times will reduce further, which will also reduce
the overall difference between the calculated and measured results.

8.5.2 Speedup Evaluation

Here, we analyse the speedup of the face recognition application system based
on the measured results. Figure 8.10 shows the speedup trends achieved by
increasing the number of processors for varying number of frames. The highest
speedup is achieved when the number of processors is increased from one to
two, followed by the increase in the number of processors from two to three. As
discussed earlier, due to interference from operating system, the speedup gets
worse when the number of processors is increased from three to four.

8.5.3 Tool Evaluation

This section reports on computation times and memory consumption of our
approach when applied in the case study of face recognition system application.
Recall from Chapter 4 that we use the fastest trace option in uppaal to achieve
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Number Computation Time Memory Consumption

of Frames Number of Processors Number of Processors

1 2 3 4 1 2 3 4

1 26.5 152.05 69.95 175.83 1095.1 23071.376 18623.908 36474.805

2 - - - - - - - -

Table 8.11: Computation time (min) and memory consumption (MB) when
using breadth first search. “-” denotes that the experiment is aborted if the run
time has exceeded 8 hours.

maximum throughput. Furthermore, the breadth first search order is used to
search the state-space. Breadth first search is typically the most efficient option
when the complete state-space must be searched which ensures optimality.

When using the breadth first search order, Table 8.11 shows the computation
times (min) and the memory consumption (MB) of our approach. The experi-
ments are run on a high-performance cluster server with 72 cores and 74 GB
memory. Note that “-” denotes that the experiment is aborted if the run time
has exceeded 8 hours. We can see that the breadth first search order is able to
produce results for one frame only within 8 hours.

Alternatively, we have used the random optimal depth first (abbreviated
RODF) search order to obtain the results reported earlier in Table 8.6. The
RODF search order randomly searches the successor states and generates a
time-optimal trace out of all witnessed traces. Furthermore, traces may vary
from run to run.

Using the RODF search order, we run an experiment for some period of
time, and then terminate it and observe the completion time of the trace. In
this way, we run the same experiment multiple times and select the trace which
has the shortest completion time. Even though we cannot guarantee optimality
using the RODF search order, we can, at least, get a trace using which we have
evaluated the performance of our approach in an industrial case study.

8.6 Conclusions

In this chapter, we have validated the performance of our approach presented in
Chapter 4 in a realistic scenario. The case study considered in this chapter is
of face recognition system. The experimental setup has been also explained in
detail before presenting the results. The results also have helped to understand
the following trends of the case study.

• Difference between the calculated and measured results which is 28% at
the final frame.

• Difference between the calculated and measured results for initial frames
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shows a transient behaviour followed by a steady-state behaviour for later
frames.

• ∆-time difference between the calculated and measured results which is
10% for processing 10 frames.

• Scalability evaluation of our approach shows that random optimal depth
first search is more feasible than breadth first search which breaks down
completely for large scale models.

Currently, the SDF graph is extracted from runs on a single processor. As a
future work, we plan to extract SDF graphs from multiprocessor runs. This will
give a better indication of the performance of our approach.

Acknowledgements. The author thanks Recore Systems for providing us
with the face recognition system case study and validation of the generated
schedules, in particular, Kim Sunesen and Timon ter Braak for fruitful discussions
about the case study and help with analysis.





CHAPTER 9

Conclusions

A
pplications for embedded systems are continuously widening, e.g., 3D-
enabled mobile phones, virtual reality gaming consoles, self-driving cars,
nano-satellites etc. On the one hand, this trend is improving the standards

of a human life. On the other hand, this trend poses challenges such as increase
in energy consumption leading to depletion of world’s energy sources. This thesis
presents several performance and energy optimisation methodologies, as well as
smart designing of these applications. We consider SDF graphs as a model of
computation to model streaming applications because SDF graphs naturally cap-
ture the characteristics of streaming applications and allow design-time analysis
of timing and resource usage. Furthermore, we consider (homogeneous/hetero-
geneous) hardware platforms onto which streaming applications are mapped.
This chapter provides an overview of the research results achieved in this thesis,
and gives recommendations for future work.

9.1 Contributions

This thesis provides novel methods for performance and energy optimisation of
streaming applications. The research results presented in this thesis contribute
to the following main research question.

‘How to manage performance and energy of streaming applications running
on a given number of (possibly heterogeneous) processors with respect to their
hard real-time requirements.’

Performance management. The first part of the research question, i.e.,
performance management, is approached by formalising software components
(SDF actors, channels) that form a (software) streaming application and hardware
components (processors) that together form a platform application model (PAM)
in Chapter 4. We also have given definitions of resource capacities (number of
processors) and performance (throughput). To achieve the maximum throughput
of an SDF graph on a limited number of processors, the SDF graph and PAM
are translated to the uppaal model checker automatically using the stars
tool-chain. Afterwards, using the fastest trace generation option of uppaal,
the throughput-optimal trace is generated which can be visualised as a schedule
using sdf fish.
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Energy management. The second part of the research question i.e., energy
management, is addressed by extending the definition of PAMs with the power
consumption values and clustering processors into VFIs in Chapter 5. We have
used the following state-of-the-art energy reduction techniques.

• Dynamic Voltage and Frequency Scaling (DVFS) to lower the dynamic
power consumption, and

• Dynamic Power Management to reduce the static power consumption.

In this work, an SDF graph and a PAM are translated to the uppaal cora
model checker in an automated fashion using the comet tool-chain. The energy
optimisation problem is encoded as a query over priced timed automata. As a
result, uppaal cora computes energy-optimal schedules.

Analysis of battery-powered systems. Energy management of streaming
applications is taken one step forward by including the battery system consisting
of a limited number of batteries and battery capacities in Chapter 6. The whole
system, including an SDF graph, a PAM, and multiple kinetic battery models
(KiBaMs) are modelled as hybrid automata. Then, using the statistical model
checker uppaal smc, Monte Carlo simulations are applied to evaluate (1) system
lifetime; and (2) minimum required initial battery capacities to achieve the
desired throughput.

These contributions are the product of several other contributions of this
thesis, both theoretical and practical, as given below.

More expressive models. Most of earlier works on energy reduction and
analysis of battery-powered systems either consider directed acyclic graphs
(DAGs) without analysing periodicity; or frame-based periodic applications with
no data dependencies between periods. In contrast, we consider SDF graphs as a
MoC for streaming applications which are more expressive and better represent
streaming applications.

More powerful methodologies. This thesis contributes to the field of schedul-
ing and analysis of streaming applications by providing powerful methodologies,
as described in the following.

• Existing techniques of generating schedules for SDF graphs on multipro-
cessors consider either transforming SDF graphs to other forms such as
HSDF graphs and directed acyclic graphs (DAGs), or considering self-timed
execution which assumes to have sufficient processors to accommodate all
the enabled executions simultaneously. As opposed to these techniques, this
thesis provides a methodology of generating throughput-optimal schedules
on a given number of processors without transforming the SDF graphs.

• Existing techniques use specific scheduling schemes such as round-robin
or TDM which cannot guarantee optimality. This thesis considers non-
deterministic scheduling, and whole state-space is explored to search for
the optimal schedules.
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• Contemporary tools such as sdf3 do not support verification of functional
system correctness or detection of subtle design errors in early phases. This
thesis addresses this lack by bridging the gap between SDF analysis and
model checking. This allows verification of (preservation of) user-defined
properties such as the absence of deadlocks, safety, and liveness.

Maintainable toolset. We have developed a model-driven framework for
HW-SW co-design of SDF graphs mapped on a hardware platform. In this
framework, a reusable set of three coherent metamodels is proposed. To provide
interoperability among SDF and model-checking domains, a reusable set of
extensible model transformations is defined. The metamodel developed for SDF
graphs can be utilised by SDF community to transform SDF models to other
domains and vice versa.

Practical validation. Our experimental evaluation of performance analysis
in an industrial case study confirms the validity and effectiveness of our method.
This contributes to the field of model checking by demonstrating its application
in large scale case studies.

9.2 Recommendations for Future Work

As proposed in Chapter 1, the approach presented in this thesis consists of four
ingredients, namely (1) a model of computation for streaming applications (SDF
graphs), (2) a hardware platform model, (3) an analysis environment (model
checking), and (4) a modelling environment (model-driven engineering). For
each of these ingredients, we propose the following recommendations for future
work.

1. Model of computation for streaming applications. Although SDF
graphs offer fast analysis algorithms, and allow efficient implementation, they are
not very expressive. As a future work, we envision to consider more expressive
models of computation such as Scenario-Aware Dataflow (SADF) or multidimen-
sional synchronous dataflow (MDDF) [Lee93, ML02], which generalises scalar
consumption and production rates to tuples that specify multidimensional index
spaces.

2. Hardware platform model.

Shared Resources. This thesis does not consider any interprocessor communic-
ation and shared resources. This can be achieved by extending PAMs with an
interconnect and a shared FIFO buffer. The interconnect will arbitrate requests
from different processors according to some arbitration mechanisms such as
First-Come-First-Serve, Round-Robin, and Fixed-priority, and transport tokens
to the shared FIFO buffer.
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Changing frequency level during actor firing. Currently in the energy-optimal
scheduling approach, once an actor starts firing at a certain frequency, the
processor cannot change the frequency level until the end of the firing. An
advanced energy optimisation methodology which considers this possibility can be
modelled using stopwatch automata [CL00] (timed automata with stopwatches)
in order to record the elapsed execution times of the actors being fired.

3. Analysis environment. This thesis has discussed energy-optimal schedul-
ing of battery-powered systems. However, battery-aware scheduling has not
been considered. One of the reasons for this was the lack of suitable tools
which can model hybrid aspects of KiBaMs, and nondeterminism together. This
limitation can be overcome by modelling in stochastic hybrid games [LMM+16]
which combine priced timed automata, hybrid automata, and timed games
[CDF+05]. Stochastic hybrid games can be analysed using the uppaal strat-
ego tool [DJL+15] which provides synthesis of safe and near-optimal strategies
for stochastic hybrid games, using a combination of symbolic synthesis, statistical
model checking, and reinforcement learning. A first sketch of this approach
is published in [AvdP16]. In this work, energy-optimal solutions are derived
using uppaal stratego by first synthesising a permissive controller satisfying a
throughput constraint, and then select a near-optimal strategy that additionally
minimises the energy consumption.

We believe that battery-aware energy-optimal scheduling can be achieved by
following the same line of research, as stochastic hybrid games allow modelling
of both hybrid aspects of KiBaMs, and nondeterminism together.

4. Modelling environment. Currently, our model-driven framework termed
comet includes only one tool for the analysis of SDF graphs, i.e., sdf3. For
considering more expressive models of computation for streaming applications
such as MDDF graphs, we must also consider to include relevant tool support in
the comet framework.

As a future work, we plan to provide interoperability between uppaal and
a state-of-the-art tool for modelling and analysis of MDDF graphs termed
Ptolemy [BHLM94]. This can be done by extending the framework with the
metamodels for MDDF graphs and Ptolemy, and developing model transforma-
tion from Ptolemy to uppaal.

With every passing year, (non-renewable) energy sources are getting scarce.
Therefore it is a joint responsibility of civil society, government, and industry
to pave a path towards green computing in order to secure a better future for
our coming generations. The author hopes that this thesis provides a crucial
stepping stone along this path.
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APPENDIX A

Detailed Translation of System Model

to Hybrid Automata (Chapter 6)

Here, we give the detailed translation of the system model defined in Chapter 6
to hybrid automata. Let us consider the example of an MPEG-4 decoder in
Figure 6.6 on page 135 mapped on Samsung Exynos 4210 processors which
are powered by three batteries B = {bat i, batk, bat l} such that k = i + 1 and
l = k + 1.

Hybrid Automaton Ksched. The hybrid automaton Ksched models the schedul-
ing scheme of batteries, i.e., round-robin. After an iteration is finished, this
automaton switches from the battery bat i ∈ B to the next available battery
batk ∈ B. If the battery batk ∈ B has already run out of charge, Ksched will
switch to the next battery, i.e., bat l ∈ B, and so on. Figure 1.1 shows the
automaton Ksched, for three batteries.

The automaton Ksched is defined as,

Ksched = (L, l0,Act , X,E, F, Inv)

We define all components of the Ksched as follows.

• For each battery baty ∈ B, we include a location L = {avail baty} to
indicate which the battery is currently active.

• For B = {bat1, bat2, . . . , batm}, the initial location is, l0 = avail bat1,
indicating that the battery bat1 serves first.

• The hybrid automaton Ksched has an action Act = {startNextIter?} to
synchronise with Gobs when the current iteration finishes, so that Ksched
can choose the next battery for the next iteration.

• The hybrid automaton Ksched does not contain any continuous variable.

• The hybrid automaton Ksched has a variable: active KiBaM id that de-
termines the currently active battery. For B = {bat1, bat2, . . . , batm}, the
initial value of active KiBaM id=1, indicating that the battery bat1 is the
first to serve. For each battery bat i ∈ B, batk ∈ B, and bat l ∈ B (for
k = i+ 1 and l = k + 1), the edge set E have the following edges.

– avail bati −on k!=0: startNextIter?, active KiBaM id=k−−−−−−−−−−−−−−−−−−−−−−−−→ avail batk



200 A. Detailed Translation of System Model to Hybrid Automata (Chapter 6)

Figure 1.1: Ksched modelling battery scheduler

– avail bati −on k=0∧on l!=0: startNextIter?, active KiBaM id=l−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ avail batl

– avail bati −on k=0∧on l=0: startNextIter?,∅−−−−−−−−−−−−−−−−−−−→ avail bati
...

– avail batl −on i!=0: startNextIter?, active KiBaM id=i−−−−−−−−−−−−−−−−−−−−−−−−→ avail bati

– avail batl −on i=0∧on k!=0: startNextIter?, active KiBaM id=k−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ avail batk

– avail batl −on i=0∧on k=0: startNextIter?,∅−−−−−−−−−−−−−−−−−−−→ avail batl

After an iteration finishes, the action startNextIter synchronises with Gobs
to start a new iteration. But, before the new iteration starts, the next
available battery is selected, and all other batteries are going to stay idle
in the meanwhile.

• There are no delay functions in Ksched.

• We do not have any clocks and invariants in Ksched. Therefore, Inv(l) =
true for all l ∈ L.

Hybrid Automata Ky. The HA K1, . . . ,Km model the batteries B = {bat1, . . . ,
batm}. The model of baty ∈ B is shown in Figure 1.2. The HA Ky inform Kobs,
when the battery baty gets empty.

For each baty ∈ B, the HA Ky is defined as,

Ky = (Ly, l
0
y,Acty, Xy, Ey, Fy, Invy)

All components of Ky are given in the following.
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Figure 1.2: Ky modelling baty

• The HA Ky contain two locations Ly = {Running,Emptied} to denote if a
battery is running or emptied.

• The initial location is given by l0y = {Running}. This explains that a
battery by ∈ B always starts in the running state.

• There is an action in Ky, i.e., Acty = {emptied!} to synchronise with Kobs.

• The HA Ky contain two continuous variables Xy = {avail y, bound y} to
denote the available and bound charge in baty ∈ B, respectively.

• The HA Ky contain a number of variables: a boolean variable on y to
determine if the battery has available charge or whether it has run out of
it; and a variable i y to annotate the load current being consumed from
baty ∈ B. Initially, we have on y = true and i y = 0. The edge set Ey has
only edge, given as follows.

– Running −on y∧avail y=0: emptied!, on y=false−−−−−−−−−−−−−−−−−−−−−→ Emptied

The above edge synchronises with Kobs over the urgent action emptied!,
and is taken if the available charge avail y reaches zero, emphasising that
the battery baty ∈ B is empty. As a result of this action, the value of on y
changes to false.

• The initial location l0y uses equations (6.2) and (6.3) as a delay function.
For convenience, we give equations (6.2) and (6.3) in the following.

ȧ(t) = −i(t) + k(hb − ha)

ḃ(t) = −k(hb − ha)

This represents that, as long as baty ∈ B is non-empty, the available and
bound charge of Ky evolves according to the equations (6.2) and (6.3)
respectively.

• We do not have any clocks and invariants in Ky. Therefore, Inv(l) = true
for all l ∈ L.
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Figure 1.3: G schedj modelling scheduler for processor πj

Hybrid Automata G schedj. The HA G sched j implement static-order (SO)
firings of SDF actors on processors. For this purpose, after Gobs informs G sched j
that an iteration has started, G sched j map actors on Processor j according to
the SO schedule of that processor. When all actors are fired according to the SO
schedule of Processor j , G sched j inform Gobs back, indicating completion of the
current iteration. For a processor πj ∈ Π, Figure 1.3 presents the HA G sched j .

For each πj ∈ Π, G schedj is defined as,

G schedj = (Lj , l
0
j ,Actj , Xj , Ej , Fj , Inv j)

where

• The location set contains five locations Lj = {Start, fireActor, endFiring,
totalFirings, allFired}.

• The initial location is given by l0j = {Start}.

• The HAG schedj contain four actions, i.e., Actj = {fire!, end?, startNextIter?,
firingFinished!}. The actions fire and end are parametrised with processor
and action ids, and are used to synchronise with Processor j . The actions
startNextIter and firingFinished synchronise G schedj with Gobs.

• There are no continuous variables in G schedj .

• The HA G schedj have a number of local variables: activeActor j that
determines the active actor currently mapped on the processor πj ; and
s j that determines the index of the active actor in the SO schedule.
Initially, activeActor j = 0, and s j = 0. The HA G schedj also contain a
parametrised variable totalFirePerProc j, that defines the total number of
tasks in the SO schedule of the processor πj . Since these variables are local,
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we can abbreviate them by activeActor, s and totalFirePerProc respectively.
The edge set Ej is explained below.

– The following edge fetches the active actor (on a specific processor)
according to the SO schedule for each processor πj , using the function
getReadyActor(j). As a result of this edge, the value of s is incremen-
ted by one, which means that the next actor in the SO schedule is
fetched next time.

Start −true: ∅, activeActor=getReadyActor(j)∧s++−−−−−−−−−−−−−−−−−−−−−−−−−−→ fireActor

– The following edge maps the fetched (active) actor, on the processor
automaton Processorj , using the action fire!.

fireActor −true: fire[j][activeActor]!,∅−−−−−−−−−−−−−−−→ endFiring

– In the following edge, the urgent action end? synchronises with the
processor automaton Processorj . As a result, Processorj informs
G schedj that the firing of the active actor has finished.

endFiring −true: end[j][activeActor]?,∅−−−−−−−−−−−−−−−−→ totalFirings

– The following edge checks if the SO schedule of a processor πj is not
fully executed, using the guard condition s < totalFirePerProc. If this
is the case, the following edge is taken, leading to the Start location
where the next actor in the SO schedule is fetched.

totalFirings −s<totalFirePerProc: ∅,∅−−−−−−−−−−−−−−→ Start

– If all actors in the SO schedule of a processor πj are fired as checked
by the guard condition s == totalFirePerProc on the following edge,
the action firingFinished! synchronises with the observer automaton
Gobs. In this way, G schedj informs Gobs that the processor πj has
fired all mapped actors in the current iteration. The variable s is also
reset.

totalFirings −s=totalFirePerProc: firingFinished!, s=0−−−−−−−−−−−−−−−−−−−−−−→ allFired

– The following edge synchronises with the observer automaton Gobs
on the action startNextIter? to start executing the SO schedule of the
next iteration.

allFired −true: startNextIter?,∅−−−−−−−−−−−−−→ Start

• There are no delay functions in G schedj .

• The HA G schedj do not contain any invariants and clocks. Thus, Inv(l) =
true for all l ∈ L.
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Figure 1.4: Processor j showing processor model with respect to actor FD

Hybrid Automata Processor j. Likewise, the HA Processor1, . . . ,Processorn
model the processors Π = {π1, . . . , πn}, as shown in Figure 1.4. For better
visibility, Figure 1.4 shows the HA of Processor j , with respect to one actor only,
i.e., FD ∈ A. The actors in the SO schedule of a processor πj are mapped on
the HA Processor j by the HA G schedj , using the actions fire and end. Please
note that Processor j contains exactly one clock xj ; since clocks in uppaal smc
are local, we can abbreviate xj by x. A separate clock variable global observes
the overall time progress.

For each πj ∈ Π, we define HA as,

Processor j = (Lj , l
0
j ,Actj , Xj , Ej , Fj , Inv j)

We define all components of Processor j in the following.

• For each frequency level fi ∈ F , we include both an idle state and an
active state running on that frequency level. Thus, for each a ∈ ζ(πj)
and F = {f1, . . . , fm} such that f1 < f2 < . . . < fm, let Lmapping =
{Idle f1, . . . , Idle fm, InUse a f1, . . . , InUse a fm} indicating that the pro-
cessor πj ∈ Π is currently used by the actor a ∈ A at the frequency
level fi ∈ F , either in idle or running state. Furthermore, for F =
{f1, . . . , fm} such that f1 < f2 < . . . < fl < fm, we include locations
which define overhead of switching between frequency levels, such that
Loverhead = {Tr f1 f2,Tr f2 f1, . . . ,Tr fl fm,Tr fm fl}. Moreover, we also
have Linit = {Initial}. Thus, Lj = Lmapping ∪ Loverhead ∪ Linit .

• The initial location is defined as l0j = Linit = {Initial}.

• The action set Actj = {fire?, end!} contains two broadcast actions fire?,
end!. The actions fire? and end! in Actj are parametrised with processor
and actor ids with frequencies, and synchronise with Gsched.
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Listing A.1: selectBatteryInUseFire fi() Function

1 d o u b l e s e l e c t B a t t e r y I n U s e F i r e f i ( )
2 {
3 i f ( a c t i v e K i B a M i d == k )
4 {
5 r e t u r n i k = i k + Iocc(πj , fi) ;
6 }
7 e l s e
8 r e t u r n i l = i l + Iocc(πj , fi) ;
9 }

Listing A.2: selectBatteryInUseEnd fi() Function

1 d o u b l e s e l e c t B a t t e r y I n U s e E n d f i ( )
2 {
3 i f ( a c t i v e K i B a M i d == k )
4 {
5 r e t u r n i k = i k − Iocc(πj , fi) ;
6 }
7 e l s e
8 r e t u r n i l = i l − Iocc(πj , fi) ;
9 }

• We do not have any continuous variables in Processor j .

• For each π ∈ Π, a ∈ ζ(π) and fi ∈ F , the edge set Ej contains two edges
such that:

– Initial −true: fire[π][a fi]?, x=0∧selectBatteryInUseFire fi()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ InUse a fi, and

– InUse a fi −x=τact (a,fi): end[π][a]!, selectBatteryInUseEnd fi()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial.

For batk ∈ B and bat l ∈ B, πj ∈ Π and fi ∈ F , the functions selectBattery-
InUseFire fi() and selectBatteryInUseEnd fi() are defined in Listings A.1 and
A.2 respectively.

The action fire[π][a fi] is enabled in the initial state Initial and leads to
the location InUse a fi. Thus, the action fire[π][a fi] is taken, if the actor
a ∈ A is supposed to claim the processor π ∈ Π at the frequency level
fi ∈ F in the SO schedule. As each location InUse a fi has an invariant
Inv j(InUse a fi) ≤ τact(a, fi), the automaton can stay in InUse a fi for at
most the execution time of actor a ∈ A at the frequency level fi ∈ F , i.e.,
τact (a, fi). If x = τact (a, fi), the system has to leave the location InUse a fi
at exactly the execution time of actor a ∈ A at the frequency level fi ∈ F ,
by taking the end[π][a fi] action.
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Listing A.3: selectBatteryIdleFire fi() Function

1 d o u b l e s e l e c t B a t t e r y I d l e F i r e f i ( )
2 {
3 i f ( a c t i v e K i B a M i d == k )
4 {
5 r e t u r n i k = i k + Iidle(πj , fi) ;
6 }
7 e l s e
8 r e t u r n i l = i l + Iidle(πj , fi) ;
9 }

Listing A.4: selectBatteryIdleEnd fi() Function

1 d o u b l e s e l e c t B a t t e r y I n U s e E n d f i ( )
2 {
3 i f ( a c t i v e K i B a M i d == k )
4 {
5 r e t u r n i k = i k − Iidle(πj , fi) ;
6 }
7 e l s e
8 r e t u r n i l = i l − Iidle(πj , fi) ;
9 }

For each π ∈ Π, and fi ∈ F , the edge set Ej contains two more edges such
that:

– Initial −true: fire[π][idle fi]?, x=0∧selectBatteryIdleFire fi()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle fi, and

– Idle fi −x=1: end[π][idle fi]!, selectBatteryIdleEnd fi()−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial.

For batk ∈ B and bat l ∈ B, πj ∈ Π and fi ∈ F , the functions selectBattery-
IdleFire fi() and selectBatteryIdleEnd fi() are defined in Listings A.3 and
A.4 respectively.

The action fire[π][idle fi] is enabled in the initial location Initial and leads
to the location Idle fi. Thus, fire[π][idle fi] causes the processor π ∈ Π to go
to Idle fi at the frequency level fi ∈ F , whenever the processor π ∈ Π is
supposed to be idle at the frequency level fi ∈ F in the SO schedule. A
processor stays in the occupied state only for the time period, when an
actor is mapped on it. However, the idle time spent by a processor πj ∈ Π
is not a fixed time interval, and a processor πj ∈ Π can stay idle for any
finite period of time. Thus, for convenience, we divide the idle time interval
in the SO schedule into time slots of one time unit. Furthermore, each
location Idle fi has an invariant Inv j(Idle fi) ≤ 1, which means that the
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automaton can stay in Idle fi for at most 1 time unit. If x = 1, the system
has to leave Idle fi at exactly one time unit, by taking the end[π][idle fi]
action.

For F = {f1, . . . , fl, fm} such that f1 < f2 < . . . < fl < fm, and πj ∈ Π,
the edge set Ej has the following edges also.

– Initial −true: fire[π][f1 f2]?, x=0∧selectBatteryTrFire()−−−−−−−−−−−−−−−−−−−−−−−−−−→ Tr f1 f2,

– Tr f1 f2 −x=Ttr (π,f1,f2): end[π][f1 f2]!, selectBatteryTrEnd()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial,

– Initial −true: fire[π][f2 f1]?, x=0∧selectBatteryTrFire()−−−−−−−−−−−−−−−−−−−−−−−−−−→ Tr f2 f1,

– Tr f2 f1 −x=Ttr (π,f2,f1): end[π][f2 f1]!, selectBatteryTrEnd()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial,
...

– Initial −true: fire[π][fl fm]?, x=0∧selectBatteryTrFire()−−−−−−−−−−−−−−−−−−−−−−−−−−→ Tr fl fm,

– Tr fl fm −x=Ttr (π,fl,fm): end[π][fl fm]!, selectBatteryTrEnd()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial,

– Initial −true: fire[π][fm fl]?, x=0∧selectBatteryTrFire()−−−−−−−−−−−−−−−−−−−−−−−−−−→ Tr fm fl,

– Tr fm fl −x=Ttr (π,fm,fl): end[π][fm fl]!, selectBatteryTrEnd()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial

The action fire[π][fl fm] causes the processor π ∈ Π to incur the transition
overhead, whenever the processor π ∈ Π is supposed to change the frequency
fl ∈ F to fm ∈ F in the SO schedule, and so on. The transition overhead is
incurred using the functions selectBatteryTrFire() and selectBatteryTrEnd().

• The HA Processor j do not contain any delay functions.

• For each location InUse a fi ∈ Lj , we have an invariant Invj(InUse a fi) ≤
τact (a, fi) enforcing the system to stay in InUse a fi for at most the execution
time τact(a, fi). As mentioned earlier, we divide the idle time spent by a
processor πj ∈ Π into slots of one time unit, by annotating Invj(Idle fi) ≤ 1.
For F = {f1, f2, . . . , fm} such that f1 < f2 < . . . < fm, and π ∈ Π,
Invj(Tr f2 f1) ≤ Ttr (π, f1, f2).

Hybrid Automaton Gobs. The SDF graph observer automaton Gobs observes if
each processor has fired its all mapped actors according to its SO schedule. The
automaton Gobs also counts the number of finished iterations. Figure 1.5 on the
following page shows the hybrid automaton model of Gobs.

The automaton Gobs is defined as,

Gobs = (L, l0,Act , X,E, F, Inv)

where

• The location set is defined as L = {Initial,Off}.

• The initial location is defined as l0 = {Initial}.

• The set of actions is defined as, Act = {firingFinished?, startNextIter!,
allEmptied?}.
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Figure 1.5: Gobs modelling SDF observer

• The automaton Gobs does not contain continuous variables.

• The automaton Gobs has a number of variables: an integer variable P
to determine the total number of processors, i.e., P = n(Π); an integer
variable Tot Iter to count the number of finished iterations; and an integer
variable totalFiringsFinished to count the number of finished firings in an
iteration. Initially, Tot Iter = 0 and totalFiringsFinished = 0. The edge set
E is described below.

– In the following edge, the guard condition totalFiringsFinished < P
checks if less than P number of processors have finished the SO
mappings assigned to them. If this is the case, the following edge
is synchronised with G schedj over the action firingFinished?. As a
result, totalFiringsFinished is incremented by one.

Initial −totalFiringsFinished<P: firingFinished?, totalFiringsFinished++−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial

– If P number of processors have executed all mappings assigned to
them in an iteration, the following edge is taken. This means that
all processors πj ∈ Π are done with executing the SO mappings
assigned to them, and an iteration is finished. The automaton Gobs
also informs all instances of the automaton G schedj to start next
iteration, by synchronising over the action startNextIter. The function
checkBatteryStatus() checks whether the active battery has not got
emptied during the iteration. If this is the case, the value of variable
Tot Iter is increased by one.

Initial −totalFiringsFinished=P:startNextIter!, checkBatteryStatus()∧totalFiringsFinished=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Initial

For batk ∈ B and bat l ∈ B, the function checkBatteryStatus() is defined in
Listing A.5

– If all batteries are emptied, the automaton Kobs informs Gobs via the
following edge over the urgent action allEmptied?. This signifies that
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Listing A.5: checkBatteryStatus() Function

1 v o i d c h e c k B a t t e r y S t a t u s ( )
2 {
3 i f ( a c t i v e K i B a M i d == k && on k == t r u e )
4 {
5 T o t I t e r ++;
6 }
7 i f ( a c t i v e K i B a M i d == l && o n l == t r u e )
8 {
9 T o t I t e r ++;

10 }
11 }

the system lifetime has ended, and Gobs needs to stop counting the
number of finished iterations.

Initial −true: allEmptied?,∅−−−−−−−−−−−→ Off

• There are no delay functions in Gobs.

• The HA Gobs do not contain any invariants and clocks. Thus, Inv(l) = true
for all l ∈ L.

Hybrid Automaton Kobs. The KiBaM observer automaton Kobs observes if any
battery gets empty. When all batteries get emptied, Kobs synchronises with Gobs
to inform about the end of the system lifetime. Figure 1.6 shows the hybrid
automaton model of Kobs.

The automaton Kobs is defined as,

Kobs = (L, l0,Act , X,E, F, Inv)

where

• The set of locations and the initial location is defined as, L = l0 = {Initial}.

• The set of actions is defined as, Act = {emptied?, allEmptied!}.

• There are no continuous variables in Kobs.

• The automaton Kobs has two variables: an integer variable totBat to
determine the total number of batteries in the system, i.e., totBat = n(B)
where B = {bat1, . . . , batm}; and an integer variable empty count to count
the number of emptied batteries. Initially, empty count = 0. The edge set
E is explained as follows.
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Figure 1.6: Kobs modelling battery observer

– The following edge synchronises with the KiBaM automaton Ky
on the urgent action emptied?, if the battery baty is emptied. The
guard condition checks if not all batteries are emptied. The variable
empty count is incremented by one as a result of taking this edge.

Initial −empty count<totBat: emptied?, empty count++−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initial

– If all batteries are emptied, the following edge synchronises with Gobs
to inform about the end of the system lifetime.

Initial −empty count=totBat: allEmptied!,∅−−−−−−−−−−−−−−−−−−−−→ Initial

• There are no delay functions in Kobs.

• Kobs does not contain any clocks or invariants. Thus, Inv(l) = true for all
l ∈ L.

After modelling whole system, we run the following query, where bound is the
time bound on running the simulation, and Tot Iter is the variable representing
the completed number of iterations. As a result, we get a plot, by which we
determine the total number of iterations completed within bound time units.
We use the same models and query to determine adequate batteries’ capacities.

simulate 1 [<= bound]{Tot Iter}
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snom Nominal speed of a task

sopt Optimal speed of a task

A Set of actors of an SDF graph

D Set of dependency channels of an SDF graph

Tok0 Initial tokens in each channel of an SDF graph

In(a) Input channels of an actor a

Out(a) Output channels of an actor a

CR(d) Consumption rate of a channel d

PR(d) Production rate of a channel d

τ Execution time of an actor

Tok Number of tokens in each channel

TuC Remaining execution time

κ Type of transition of an SDF graph

χ Execution of an SDF graph

γ Repetition vector of an SDF graph

iter Number of iterations per period

Π Set of processors

π Processor

ζ Mapping function from actors to processors

F Set of frequencies

Pocc Operating power consumption of a processor

Pidle Operating power consumption of a processor

Ptr Transition overhead

τact Actual execution time of an actor

[π] VFI of a processor π

status Status of a processor

TotPow Accumulated power of a processor

bat Battery
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Iocc Operating load current of a processor

Iidle Idle load current of a processor

Itr Load current overhead of a transition

Ttr Time overhead of a transition

∆ Difference in completion times

L Set of locations

l0 Initial location

Act Set of actions

C Set of clocks

E Set of edges

Inv Invariant of each location
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