Quantifying balance control
during stance

A multivariate system identification approach

\! \
ww* )wl

¥ €Y.

v

v 3 \ &
> % \ PP
» S v -
X

?

Denise Engelhart



Quantifying balance control during stance:

A multivariate system identification approach

Denise Engelhart



Samenstelling promotiecommissie

Voorzitter/secretaris

prof. dr. G.P.M.R. Dewulf Universiteit Twente
Promotor

prof. dr. ir. H. van der Kooij Universiteit Twente
Co-promotoren

dr. ir. A.C. Schouten Universiteit Twente

dr. ir. R.G.K.M. Aarts Universiteit Twente

Leden

prof. dr. ing. W.B. Verwey Universiteit Twente

prof. dr. ir. P.H. Veltink Universiteit Twente

prof. dr. J.H. van Dieén Vrije Universiteit Amsterdam
prof. dr. J. Schoukens Vrije Universiteit Brussel

dr. R.]J. Peterka Oregon Health & Science University

This research is supported by the Dutch Technology Foundation STW, which is part of the
Netherlands Organisation for Scientific Research (NWO) and partly funded by the Ministry of
Economic Affairs (NeuroSIPE #10737 BalRoom).

ey

Enabling new technology

Ontwerp omslag en binnenwerk:
Denise Engelhart

Drukwerk:
Gildeprint - Enschede

ISBN: 978-90-365-3922-7

DOI: 10.3990/1.9789036539227

Copyright ©2015 by D. Engelhart, Enschede, the Netherlands

All rights reserved. No part of this publication may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopy, recording or any
information storage or retrieval system, without permission in writing from the author.



QUANTIFYING BALANCE CONTROL DRUING STANCE:
A MULTIVARIATE SYSTEM IDENTIFICATION APPROACH

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,
op gezag van de rector magnificus,
prof. dr. H. Brinksma,
volgens besluit van het College voor Promoties
in het openbaar te verdedigen
op donderdag 3 september 2015 om 16:45 uur

door

Denise Engelhart
Geboren op 04 december 1986
te Zwolle, Nederland



Dit proefschrift is goedgekeurd door de promotor
prof. dr. ir. H. van der Kooij

en door de co-promotoren
dr. ir. A.C. Schouten
dr. ir. R.G.K.M. Aarts



Table of Contents

Introduction

Impaired standing balance in elderly: A new engineering methods helps to
unravel causes and effects

Comparison of closed loop system identification methods to quantify multi-
joint human balance control

Assessment of multi-joint coordination and adaptation in standing balance:
A novel device and system identification technique

Adaptation of multi-joint coordination during standing balance in healthy
young and healthy old individuals

Reliability of system identification techniques to assess standing balance in
healthy elderly

General Discussion
Bibliography
Summary
Samenvatting
Acknowledgements

About the author

17

27

55

75

99
121
131
143
147
151
155






Chapter 1

Introduction

Humans are able to maintain balance in many daily life activities and under numerous
environmental conditions. Balancing tasks, such as standing, reaching, cycling and walking,
seem simple and normally do not require much attention; we are able to keep our posture
more or less in the upright position. However, controlling our balance is complex as many
muscles, joints, sensory systems and neural pathways are involved to keep our body upright
and prevent us from falling. When becoming older, or when suffering from diseases, the
balance control system can deteriorate. Elderly people often have difficulties maintaining
balance in daily life activities and this impaired balance is a strong risk factor for falls
(Rubenstein, 2006; Muir et al., 2010). Specifically, about 28-35% of people aged over 65 fall
each year and this incidence increases with advancing age (WHO, 2007). Falls and fear of
falling decreases a person’s mobility, influences the quality of life and can even lead to
premature death (Ambrose et al., 2013). Although the research field in balance control is
large and many studies have been performed on bipedal upright stance, the (patho-)
physiology of balance control remains largely unknown. Because the balance control system
is redundant, humans can compensate for deficits in one of the balance control
mechanisms. For example, in case of unilateral impairment of the muscular system in the
lower extremities, people may rely more on their non-affected leg for balancing (van
Asseldonk et al., 2006). Due to these compensation mechanisms, especially early-stage
balance impairments are hard to detect. Novel methods are required to detect the quality of
the underlying mechanisms in standing balance, and to identify the risk factors for falling at
an early stage. In this thesis, new methods to identify and quantify standing balance control
are presented and evaluated in healthy elderly and healthy younger subjects. This chapter
provides the necessary background, formulates the research goal, and provides the outline
of the thesis.



1.1 Balance control

Bipedal stance is inherently unstable as the pull of gravity constantly moves the body away
from equilibrium, and without a stabilizing control mechanism we would fall. In balance
control studies, the body is often represented as an inverted pendulum; i.e. the body is
considered as a single mass concentrated in the Centre of Mass (CoM), which rotates
around the ankle joint. The ground reaction force represents the weighted pressure average
of the area in contact with the ground and exerts at the Centre of Pressure (CoP). During
standing balance, the position of the CoP is confined to a limited area, the base of support
(BoS), which is roughly the area of the foot.

Balance control is described by the ability of keeping or returning the body CoM over its BoS
and depends on three major components, as depicted in Figure 1.1. First the sensory
systems, which obtain information about the body position relative to the environment.
Secondly, the ability of the brain to process and integrate the information from various
sensory systems. Finally, the muscles for coordinating the movements and generation of the
corrective joint torques to maintain balance (Peterka, 2003; van der Kooij et al., 2005).

Information about the position and velocity of the body in space comes from three sensory
systems; the proprioceptive, visual and vestibular system. Proprioception is the perception
of movement and spatial orientation from within the body itself, arising primarily from
muscle spindles and Golgi tendon organs.
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Figure 1.1: A general scheme of human balance control. The proprioceptive, visual and vestibular
systems obtain information about body movement relative to the environment. The sensory signals
are integrated and processed by the central nervous system which control the muscular activity.
Muscle forces result in a corrective joint torque that counteracts the CoM excursion.



Muscle spindles sense changes in muscle length and contraction velocity. The Golgi tendon
organs sense the tension in the tendon, which is directly related to muscle force. The visual
system senses the head movement (and velocity) relative to the visual world. The position
and translation of the head with respect the gravitational field is sensed by the vestibular
organ, which is sensitive to specific translational (otoliths) and rotational (semi-circular
channels) accelerations (Mergner, 2010).

To control balance, the information from the sensory systems goes directly to the reflex
centres in the brain stem, as the first response to imbalance must be fast and without
thinking (i.e. reflexive). The signals are further transported to the cerebellum, where the
information is integrated and commands are sent to the brainstem motor control centres
where skeletal muscle activity is coordinated and muscle tone is regulated. The activated
muscles generate a corrective joint torque which stabilizes the human body (Marieb, 2004).
However, during all balancing tasks postural sway is present; i.e. we can never execute a
movement perfectly or stand exactly still. This sway results from process noise (execution of
movement), measurement noise (associated with sensory information), and computational
noise (associated with central processing), which causes the body to sway during normal
human upright stance (van der Kooij & de Vlugt, 2007).

When humans are exposed to external (pushes or pulls on the human body) or internal
(noise) disturbances, the best strategy to maintain balance has to be chosen. The body
adapts to different circumstances by adjusting the relative contribution of sensory sources in
human balance control (the sensory reweighting paradigm (Peterka, 2002)), or using
different joint coordination patterns (e.g. ankle and hip strategy (Horak and Nashner,
1986)). In case the adopted strategy becomes insufficient, a fall might occur. Although the
general mechanisms for balance control are known, it is not yet fully understood how the
different parts of the system work together and interact, or what happens when we become
older and systems deteriorate.

1.2 Ageing and balance dysfunction

Falling is not uncommon at any age, as learning to stand or walk takes practice and is
accompanied with many falls. However with age, the risk of falling increases and especially
the consequences of a fall become more severe. Falling can cause profound disruptions in
daily life activities.

Aging can affect balance control in various ways. First of all, balance deficits can be caused
by a wide range of disorders, including vestibular pathology, visual impairments,
neurological diseases and musculoskeletal disorders (Sturnieks et al., 2008; Visser et al.,
2008). Secondly, fear of falling may lead to self-imposed restrictions of daily activities and
thereby causing immobilization (Bloem et al., 2003; Ambrose et al., 2013). Physical
inactivity may lead to a decline in physical capabilities and reduces overall fitness. Reduced
physical activity negatively affects postural control, thereby completing a vicious loop.
Furthermore, some physiological changes can be related to falls. Carotid sinus syncope is
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increasingly recognized as a common cause of falls in elderly. Also orthostatic hypotension
and the reduction of venous pooling in the legs and abdomen by specific maneuvers, such
as standing with crossed legs or squatting, can cause falls (Ambrose et al., 2013). Finally,
medication can also influence balance control, but the exact influence of medication remains
largely unknown (Bloem et al., 2003).

Although the causes of falling are multi-factorial, many epidemiological as well as
experimental studies convincingly proved that balance deficits in postural control are the
most important risk factors for falls. As the postural system contains many interacting
subcomponents, many factors can be underlying the balance deficits (Box 1).

Box 1: Standing balance control requires various resources, which might be altered in elderly. Based on
(Horak, 2006)

Biomechanical constraints: Balance control is often defined as the ability to keep the body
Centre of Mass (CoM) within the base of support (BoS), which is roughly the area of the feet.
Therefore, the size of the feet and the touch/pressure sensors of the skin must be of good quality.
The distance over which the CoM can move before reaching the edge of the BoS, is called the limit
of stability. Elderly people often have smaller limits of stability than young people.

Movement strategies: Three important strategies are used to return the body to equilibrium
during stance. In the ankle strategy, the body moves approximately as an inverted pendulum in
cases of small disturbances and large support surfaces. Additionally, hip strategy is used when
subjects experience large disturbances or narrow support surfaces. If both feet in place strategies
are insufficient, a corrective step; e.g. a change of BoS must be made to prevent falling.
Additionally, arm movements can be used to control the CoM. When elderly are at risk of falling,
they tend to use the hip strategy and stepping strategy more often than young individuals.

Control of dynamics: Controlling balance while changing from one posture to another, or during
gait, requires complex control of the CoM. Intersegmental coordination is of importance as the body
is not only influenced by external disturbances, but the body segments also affect each other. The
available degrees of freedom of the joints and muscle strength contribute to proper control of
balance. Furthermore, both forward and lateral stability must be obtained. Elderly tend to have
larger lateral excursions of the CoM, and in case of walking their foot placement is more irregular.

Sensory strategies: Three sensory systems determine the position of the body parts with respect
to gravity, the support surface, the visual environment and each other. In case of a large and firm
support surface and an environment with sufficient light, persons rely on visual (£10%), vestibular
(£20%) and proprioceptive (£70%) information. When a person is subject to a changing
environment, the contribution of these systems alters; e.g. reliable information is weighted higher
than unreliable information (sensory-reweighting). Some disorders (such as cataract or vestibular
loss), which might be present in elderly, limit this sensory-reweighting capacity.

Cognitive processing: It is often seen that reaction times and performance in a cognitive task
decline when the difficulty of postural task increases; more attention is given to balancing. Falls can
result from insufficient cognitive processing to control posture while occupied with a secondary
task.
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1.3 Assessment of balance disorders

Elderly individuals are falling due to specific, unique constraints on their postural control
system (Horak, 2006). For example, an individual who is incapable of using vestibular
information will be at risk of falling in a dark environment with a moving support surface.
Another individual may be at risk of falling when stepping responses are needed due to
improper movement strategies in the ankle and hip.

To assess the quality of balance control in individual patients typically a combination of
questionnaires, physical examination, clinical balance tests and posturography techniques
are performed (Box 2).

Clinical balance tests

To make an appropriate differential diagnosis in patients presenting with falls or balance
impairments, the clinician typically performs multiple tests. First of all, the case history of
the patient is discussed, concerning mobility and falls. Secondly, some cognitive tests are
performed; e.g. the Mini Mental State Examination (MMSE, (Folstein et al., 1975)), the
Visual Association Test (VAT, (Lindeboom et al., 2002)) or the Montreal Cognitive
Assessment (MOCA, (Nasreddine et al., 2005)). Finally, some balance testing protocols are
performed in which the clinician scores the patient to perform a motor task in which balance
control is involved; e.g. the Short Physical Performance Battery (SPPB, (Guralnik et al.,
1994)), the Berg Balance Scale (BBS, (Berg et al., 1989)) or the Timed Up and Go test
(TUG, (Podsiadlo and Richardson, 1991)) test.

Although the clinical balance tests are practical in clinical use; i.e. they require simple
equipment, they are time efficient and the costs are low, there are some drawbacks. The
clinical balance tests all assess a subject’s balance, however each test focuses on a different
aspect of balance control. Furthermore, these tests have a subjective nature; people tend to
forget when and where they have fallen (Cummings et al., 1988), and the scoring system of
the balance test can be inconsistent between physicians. The tests are a qualitative
assessment of balance disorders; e.g. people are or are not able to maintain balance.
However, details of the underlying pathophysiology in individual patients were not
unravelled, which hampers the possibility to give targeted therapy on an individual level to
prevent falling.

Posturography

Over the years, several technical developments have occurred that permitted better
quantitative studies of the pathophysiology of balance control, like posturography.
Posturography techniques are separated into two categories; static and dynamic
posturography. In static posturography, balance control is assessed during quiet stance,
whereas dynamic posturography involves the use of experimentally induced balance
disturbances (Visser et al., 2008).

The way humans correct for balance disturbances during stance can be allocated into three
categories:
11



Box 2: Existing measurement techniques to assess balance

Physical examination and questionnaires
"I would like you to count backward from 100 by

.@ sevens (93,86,79,72,65...) stop after five
answers.”
"Spell the word WORLD backwards (D-L-R-O-W)”

Mini-Mental-State-Examination (Folstein et

examination by measuring
al., 1975)

Physical
indicate the

hand grip strength to
amount of muscle mass

Clinical balance tests: perform a motor task in which balance is involved

Physical Performance Battery:

Timed up and Go test: (Podsiadlo and Short
Richardson, 1991) (Guralnik et al., 1994)

Posturography: Measuring CoM and CoP movements

I. 2,

Dynamic posturography: challenging balance
control under various sensory conditions (Anon,

2011)

Static posturography: quantifying
balance in quiet stance using
accelerometers and force plates
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1) Feet in place responses, where the feet remain on the floor and the corrective joint
torques around the ankles and hips keep the body in the upright position. It has
been show that the ankles mostly correct for small and slow disturbances and the
hips correct for faster and larger disturbances (Horak and Nashner, 1986; Creath
et al., 2005).

2) In case the ankle and hip torques are not sufficient to control balance, a corrective
step is made, controlling the CoM by enlarging the base of support (Weerdesteyn
et al., 2012).

3) Using protective arm movements in combination with the two above strategies.
Moving the arms decreases the momentum of the CoM and thereby decreases the
influence of the disturbance (van Asseldonk et al., 2007).

With posturography techniques, the above described subject’s response to balance
disturbances are assessed by measuring body sway excursions (with inertial sensors or
position tracking systems) and ground reaction forces (with force plates or in-shoe pressure
sensors). This makes it possible to detect balance or gait abnormalities in a more
quantitative assessment.

In addition to balance responses in stance, posturography methods allow to detect
abnormalities in gait pattern, such as asymmetries, decreased walking speed or shuffling
gait (Ganz et al., 2007). Furthermore, detection of a deterioration in a specific sensory
system can be facilitated by manipulating the base of support (varying foot positions), with
eyes open or eyes closed (eliminating visual information), or on a firm or compliant surface
(Visser et al., 2008; Pasma et al., 2014b). The NeuroCom is a clinically available device
based on dynamic posturography and provides an assessment of the quality of the
individual sensory systems. In six sensory conditions, information of vision, vestibular and
proprioceptive information is eliminated or disturbed. The ratio’s between conditions give an
indication of the quality of the sensory systems (Anon, 2011).

A major advantage of using posturography techniques is that combining inertial sensors
with in-shoe pressure devices, makes it possible to assess balance and gait outside the
laboratory during daily life activities. However, the clinical utility of these posturography
methods has been reviewed focusing on several areas where clinicians presently experience
the greatest difficulties (Visser et al., 2008; Kingma et al., 2011). It was concluded that
none of the existing techniques is currently able to significantly influence the clinical decision
making in individual patients due to the limitations in subject selection, data collection,
analysis and interpretation of the results. Furthermore, these techniques do not unravel the
underlying (patho-)physiological mechanisms in balance control. The contribution of these
different mechanisms are difficult to differentiate since they form multiple parallel and
nested feedback loops (van der Kooij et al., 2005), and cause and effect relations are
intermingled. It is difficult to determine if, for example, changes in electromyography (EMG)
activity result in changes in muscle force that will affect body sway, or that the opposite is
true, i.e. changes in body sway are detected by sensors and transmitted to the nervous
system that excites the muscle groups reflected in EMG changes. Due to this causality
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problem, the impaired underlying mechanism that causes difficulties in balance control
cannot be detected.

System identification techniques

System identification techniques have the potential to unravel cause and effect relations and
to detect the impaired underlying mechanism of balance control. Specifically designed
external disturbances are used to excite and challenge the balance control system. One can
think of force disturbances (pushes or pulls on the human body) or sensory disturbances
(providing subjects with additional visual information). These external disturbances provide
a unique input that is not related to the internal signals of the system, and create a causal
relation between the disturbances and the CoM angle and the corrective ankle torque. By
transforming the signals to the frequency domain, the system dynamics is expressed in a
frequency response function (FRF). The FRF gives information about the magnitude and
timing of the responses to the disturbances as a function of frequency. In addition, a model
of the balance control system (in which each underlying mechanism is represented by a
mathematical function) can be fitted on the experimentally acquired FRF, to determine
physiological relevant parameters such as stiffness, damping, time delays and noise levels.
To assess changes in balance control with age or disease, the FRFs and the parameters can
be compared between age groups or individuals.

1.4 NeuroSIPE: BalRoom project

Within the NeuroSIPE program, which is supported by the Dutch Technology Foundation
STW, system identification and parameter estimation techniques are used in order to
develop diagnostic tools for neurological disorders. Within NeuroSIPE program multiple
projects exist, each focusing on a specific disorder. Specifically in the BalRoom project, we
aim to develop a Balance Test Room (BalRoom) that quantifies balance deficits and unravels
the underlying pathophysiological mechanisms in balance control for people with balance
disorders. The project is a collaboration between universities of technology, university
medical centers and industrial partners. At the University of Twente, the aim is to develop
the BalRoom hardware (in collaboration with Motekforce Link B.V.), algorithms and
protocols, and to validate the device in a healthy population. A close collaboration exists
with the Leiden University Medical Center, to validate the BalRoom under different clinical
conditions in a population of elderly with impaired balance. In collaboration with the LUMC
and the Centre for Human Drug Research in Leiden, the BalRoom will be validated to detect
changes in balance control due to medication (benzodiapine and lorazepam) in healthy
elderly. In a later stage work will take place in the Radboud University Nijmegen Medical
Centre in Nijmegen, to establish the sensitivity of the BalRoom and the relationship with
existing balance scores.

The two main tasks within the BalRoom project at the University of Twente are: the
development of BalRoom hardware and the development of novel system identification
techniques.

14



Development of BalRoom hardware

To unravel cause and effect in balance control, external disturbances are required, which
manipulate specific systems within the closed-loop. The goal of the BalRoom is to apply
multiple disturbances to detect the underlying mechanisms in multi-segmental balance
control and sensory reweighting capacities. All disturbances should be submaximal (without
making people make a step or even fall) and act on the body simultaneously to reduce
measurement time.

To apply these disturbances, specifically designed hardware is required. The development of
the BalRoom hardware is modular, to test if the application of individual disturbances result
in the desired outcome measures. Subsequently, the modules will be combined to study the
application of simultaneous disturbances on the balance control system. The first module
had to apply disturbances to manipulate proprioceptive information of the legs to study
sensory reweighting capacities. This device was developed prior to the BalRoom project; the
Bilateral Ankle Perturbator (Schouten et al., 2011). The second module had to apply two
independent force disturbances on the pelvis and between the shoulder blades, which
should result in upper and lower body movement in the anterior/posterior direction. This
allows us to study multi-segmental balance control; i.e. the contribution of the ankles and
hips to maintain standing balance. The third module had to apply a visual scene disturbance
to manipulate visual information to study sensory reweighting capacities.

Development of system identification techniques

Based on the experimental data obtained with the BalRoom hardware, system identification
techniques can be applied to estimate the underlying mechanisms of balance control.
Although existing system identification techniques have added value over posturography,
most studies were restricted to application of one disturbance and by simplifying the body
as an inverted pendulum. The research goal is to extent system identification techniques to
multiple-input multiple-output models, to capture multi-segmental balance control. We will
investigate where to perturb the human body, select the most suitable system identification
method an fit balance control models on the obtained data to quantify the accuracy of
visual, vestibular and proprioceptive information, time delays in reflex loops, mechanical
properties of muscles and efficiency of inter-segmental coordination.

1.5 Thesis outline

The general goal of this thesis is to create further insight in the (patho-)physiology of
standing balance control in elderly. To achieve this goal, three major objectives were
defined:

1) To develop novel and improved experimental techniques to assess the contribution
of the underlying mechanisms in standing balance control.

2) To quantify age-related changes in standing balance control.

3) To validate the techniques, to quantify the underlying mechanisms of standing
balance control in clinical practice.

15



The studies that were performed to achieve the research goal and objectives, are described
in five chapters (Chapter 2-6), from which the content has been published or submitted as
journal articles. In the last chapter (Chapter 7), the applied methods and findings are
discussed together with come implications and directions for future research.

Chapter 2 elaborates on the added value of using system identification techniques over
clinical balance tests. System identification techniques possibly can detect the impaired
underlying mechanisms in balance control and the compensation strategies which are at
work. We reviewed current clinical balance tests and described the need for system
identification techniques in the diagnostic field.

Chapter 3 compares various system identification techniques for multi-segmental balance
control to identify the contribution of the ankles and hips in standing balance. Based on
model simulations it was investigated whether these methods were able to reliably estimate
the underlying dynamics to maintain upright stance.

Chapter 4 describes the development of a novel experimental set-up, which applies
mechanical disturbances at the hip and shoulder level. In combination with system
identification techniques, the underlying dynamics of multi-joint coordination in balance
control was assessed. Furthermore, we studied adaptation of multi-joint coordination as a
response to external force fields.

Chapter 5 investigates whether adaptation of multi-joint coordination is different with age.
The device and system identification technique, which were presented in Chapter 4, were
used in a study with fifteen healthy young and fourteen healthy elderly participants. Fitting
a model of balance control on the experimental data was used to detect the underlying
physiological changes when becoming older.

Chapter 6 investigates the reliability of standing balance parameters obtained with system
identification techniques. The two mechanical disturbances as described in Chapter 4 and
Chapter 5 were combined with two sensory (visual and proprioceptive) disturbances. All
disturbances were simultaneously applied and the reliability of the frequency response
functions was assessed in a group of twelve healthy elderly.

Chapter 7 discusses all findings of this thesis. The use of system identification methods
and the results of the studies are critically discussed and future directions are elaborated on.
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Chapter 2

Impaired standing balance in elderly: A new
engineering methods helps to unravel causes and
effects

Denise Engelhart, Jantsje H. Pasma, Alfred C. Schouten, Carel G.M. Meskers, Andrea B.
Maier, Thomas Mergner and Herman van der Kooij. JAMDA 15 (2014) 227.e1-227.e6

Abstract

Deteriorated balance control is the most frequent cause of falls and injuries in the elderly.
Balance control comprises a complex interplay of several underlying systems (i.e. the
sensory systems, the motor system, and the nervous system). Available clinical balance
tests determine the patient's ability to maintain standing balance under defined test
conditions and aim to describe the current state of this ability. However, these tests do not
reveal which of the underlying systems is deteriorated and to what extent, so that the
relation between cause and effect often remains unclear. Especially detection of early-stage
balance control deterioration is difficult, because the balance control system is redundant
and elderly may use compensation strategies. This article describes a new method that is
able to identify causal relationships in deteriorated balance control, called CLSIT (Closed
Loop System Identification Technique). Identification of impaired balance with CLSIT is a
base for development of tailored interventions and compensation strategies to reduce the
often serious consequences of deteriorated balance control in the elderly.
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2.1 Introduction

Falls and injuries of the elderly often occur due to impaired balance and may result in
decreased quality of life and premature death (Bloem et al., 2003; Sturnieks et al., 2008). In
daily life, balance is constantly challenged by disturbances. These may be both external -
such as uneven ground or pushes having impact on the body — and internal, such as
inaccurate sensory or motor functions or, indirectly, impairments of the cardiovascular
system with orthostatic hypotension, hypertension, or atrial fibrillation (Ambrose et al.,
2013). Maintaining balance depends on the appropriate functioning of the balance control
system, which comprises the sensory, nervous, and motor systems. These systems are
often directly affected when becoming older, for example by (1) sensory system
deteriorations due to poor visual contrast sensitivity and depth perception, impairment of
the vestibular self-motion sense, or an inaccurate proprioceptive sense of joint position due
to polyneuropathy, (2) nervous system deterioration due to inadequate movement
coordination or impaired attention, (3) motor system deterioration due to muscle weakness
or paresis, or (4) combinations of these factors (Sturnieks et al., 2008).

Impaired balance often becomes symptomatic when several factors co-occur. On the other
hand, there exists some redundancy within the underlying systems, which allows
maintaining balance despite of problems in the sensory, nervous or motor systems by using
appropriate strategies. For example, when vision is deteriorated, the elderly may rely more
on vestibular or proprioceptive information for balance (Peterka, 2002). Or, in case of a
unilateral impairment of the muscular system, elderly may use preferentially the non-
affected leg for balancing (van Asseldonk et al., 2006). Therefore, the impairments may
initially remain unnoticed and without appropriate therapy. However, when the adopted
compensatory strategy becomes insufficient, or the deterioration in the underlying system is
too severe, or when the compensating system is also affected, then impaired balance tends
to become symptomatic and a fall may occur.

Balance control is often studied during bipedal upright stance, in the following referred to as
standing balance. It is the basis for many daily life activities such as walking, reaching and
rising from a chair. Standing balance control tries to keep the body’s Centre of Mass (CoM)
over the base of support, the feet (Bronstein et al., 1996). A simplified explanation of
balance control will be given below in connection to Figure 2.1. Excursions of the CoM may
result from an external disturbance (e.g. force by a push) or may have an internal cause
such as noise in one of the sensory systems; here represented by the proprioceptive, visual
and vestibular system. Furthermore, there may be irregularities in the muscle activities
(motor noise). The sensory signals are integrated and processed by the central nervous
system and are then used to command and perform muscular activity (Neuromuscular
Controller), producing a corrective joint torque that counteracts the CoM excursion. The
corrective torque leads to ground reaction forces, which can be measured using a force
plate under the feet in the form of a Centre of Pressure (CoP) shift. CoM excursion and joint
torques are mutually related to each other.
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Figure 2.1: A basic model of balance control, based on (van der Kooij et al., 2005): The human
body is described by the dynamics of an inverted pendulum (H,,) with the sum of the corrective
joint torque (T) and an external disturbance force (F,,.) as input and the body movement around
the ankle (6.,)) as output. The ankle movement is sensed by the sensory systems; proprioceptive
(W,), visual (W,) and vestibular (W,). Each system has addition of unknown sensory noise in the
feedback loop. Based on the reliability of the sensory information, the sensory weights are changed
and the integrated information is sent with a lumped neural time delay (H;p) to a neural controller
(Hy¢). Both active muscle activation dynamics (H,.) and passive muscle dynamics (H,) determine
the corrective force and torque to maintain standing balance. Balance control can be disturbed by
external mechanical disturbances and experimentally disturbing each of the sensory systems, e.g.
by moving the visual scene. Balance control can then use different strategies to maintain standing
balance, e.g.by putting less weight on the disturbed sensory system. The dotted lines indicate
which signals can be measured in balance control studies with appropriate equipment: motion
capturing systems for CoM excursions, EMG for muscle activity, and force plates for the ground
reaction forces.
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This system is called in the terminology of control engineers a closed-loop feedback
mechanism (Peterka, 2003; van der Kooij et al., 2005). If one investigates standing balance
and ignores this closed-loop feedback mechanism, causes and effects of impaired balance
will be hard to determine (Laessoe et al., 2007; Mancini and Horak, 2010; Nutt et al., 2011)
and identification of the deteriorated underlying system is almost impossible. A recent
review (Visser et al., 2008) shows that the existing clinical balance tests are unable to reveal
how well the underlying systems are functioning and have little or no influence on the
choice of the therapy of individual patients. It is to mention, however, that assessment of
standing balance across different studies is currently limited due to differences in subject
selection criteria, data collection methods, and analysis and interpretation of the results.
Also the therapeutic aims should be defined. Assessment of standing balance should aim at
an early detection of the cause of impaired standing balance, i.e. identification of the
primarily deteriorated underlying system, and of the compensation strategies that are at
work and should be the desired goal of therapy (van der Kooij et al., 2005; Mancini and
Horak, 2010). Tailored interventions and prevention strategies to reduce the consequences
of impaired balance in the elderly, will be cost effective.

In this paper we will expand an overview of important current tests that assess standing
balance, to novel techniques that are able to unravel the closed-loop feedback mechanism
and to identify causes and effects, i.e. the underlying system deteriorations and the adopted
compensation strategies. This can be the basis for developing interventions that specifically
address impaired standing balance and thereby reduce falls (Kingma et al., 2011).

2.2 Balance assessment methods

For assessing standing balance, three major approaches can be distinguished: Clinical
balance tests, posturography, and Closed Loop System Identification Techniques (CLSIT).

Clinical balance tests

In the most widely used clinical balance tests, the clinician scores the ability of the subject
to perform a motor task in which balance control is involved. For example, the Short
Physical Performance Battery (SPPB) (Guralnik et al., 1994) consist of three types of
physical activities: balance tests, gait speed tests, and the chair stand test. The Berg
Balance Scale (BBS) (Berg et al., 1989) is a set of simple balance related tasks, ranging
from rising from a chair to standing on one foot. The timed Up and Go test (TUG) (Mathias
et al., 1986; Podsiadlo and Richardson, 1991) determines the time that a subject takes to
rise from a chair, walk three meters, turn around, walk back to the chair and sit down.
Although these clinical balance tests all assess a subject’s balance, each test focuses on a
different aspect of balance control.

The test-retest reliability of these clinical balance tests is high (>80%). However, the tests
differ in specificity and sensitivity, because of ambiguous outcome measures; either
assessment of recurrent falls (over different time periods), prediction of future falls or
identification of impaired standing balance. Even within one test, conflicting specificities and
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sensitivities are found, due to variations in the population of interest and differences in
physical activity between the populations (Visser et al., 2008; Mancini and Horak, 2010;
Panzer et al., 2011; Merlo et al., 2012). Clinical balance tests often relate to fall history, but
it is hard to determine whether a person is at risk of future falls, especially if this person has
not fallen before (Pickering et al., 2007). Another drawback of the clinical balance tests is
that falls in elderly are very multifactorial and do not solely depend on the ability to perform
certain tasks that involve balance. The important questions — which underlying system is
primarily affected and which compensation strategies are at work — are not addressed by
clinical balance tests, making it next to impossible to give targeted therapy on an individual
level.

Posturography

In posturography, inertial sensors and a force plate have replaced the subjective eye of the
clinician in the clinical balance tests. Measuring the CoM excursions and CoP shifts aim to
quantify the quality of standing balance. The general assumption is that abnormal CoM
excursions stem mainly from internal problems within the closed-loop feedback mechanism
and abnormalities in the CoP shifts reflect more the adequacy of the subject’s strategy to
maintain standing balance (Visser et al., 2008).

In static posturography, subjects are asked to maintain standing balance during quiet
stance. Dynamic posturography uses experimentally induced balance disturbances to
determine the resilience against these disturbances. When a specific type of disturbance
(e.g. standing on a tilting support surface) results in an abnormally large CoM excursion or
CoP shift, this may indicate some deterioration in the underlying systems of balance control
(Bronstein et al., 1996; Visser et al., 2008; Mancini and Horak, 2010). The Sensory
Organization Test (SOT) is used to identify deterioration in an individual sensory system
(Anon, 2011). However, comparing the SOT in specificity and sensitivity to clinical balance
tests is hard, as the goal of the SOT is to identify the quality of the sensory systems and not
to assess the cause of recurrent falls or to predict future risk of falling (Panzer et al., 2011).

Interpretation of CoM excursions and CoP shifts remains difficult, as less or more CoM or
CoP movement is not simply good or bad. For example, muscle activities and joint torques
can compensate for CoM excursions, but can also initiate CoM excursions (Laughton et al.,
2003). Therefore, enlarged CoM or CoP movements can indicate deterioration of an
underlying systems as well as a proper strategy to maintain standing balance; cause and
effect relations remain unclear. A recent study has shown that deterioration in the motor
system in terms of reduced muscle mass does not necessarily affects the CoP shifts
associated with balancing (Bijlsma et al., 2013).

In summary, all tests are per se ambiguous and fail to reveal latent deteriorations in balance
control, as there exist various many compensation strategies in and across the underlying
systems. The outcomes of the currently used tests are unable to reveal how well the
underlying systems are functioning and they have little or no influence on the choice of the
therapy of individual patients (Visser et al., 2008).
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Closed loop system identification techniques

A new engineering method termed Closed Loop System Identification Technique (CLSIT), is
aimed to detect the functioning of the underlying systems, the deterioration — even if it is
compensated for — together with the influence of internal disturbances on standing balance.
To explain CLSIT, balance control is compared to a box. For the bare eye it is possible to
determine the size of the box (i.e. the ability to maintain standing balance as determined by
clinical balance tests). By picking up the box, the weight of the box can be determined (i.e.
the quality of standing balance as determined by posturography). However, the mechanisms
working inside the box remain unclear. CLSIT reveals the quality and contribution of
underlying systems and the used balance strategies by sending well defined external
disturbances into the box at one end and measure the reactions on the other end; i.e. CoP
and CoM movements and corrective joint torques. This is often called a ‘black box’ approach
or, when additional knowledge is included (e.g. about sensors, neural or motor properties
from physiology), a ‘grey box’ approach. These approaches allow to distinguish between the
causes (e.g. a deteriorated sensory system) and the effects (e.g. higher muscle activation)
of impaired standing balance in the closed-loop balance control system (van der Kooij et al.,
2005).

2.3 Method of closed loop system identification

CLSIT originates from system and control theory and describes standing balance in the form
of a simplified model where the human body and a neuromuscular controller are
schematically shown (Figure 2.1). The simplest representation of the human body is an
inverted pendulum. The body mass is concentrated in the CoM that balances on lumped
legs, with a pivot point at the ankle joint. The neuromuscular controller contains all the
mechanisms and properties that are required to keep the CoM within the base of support
and includes the sensory systems, the nervous system and the motor system (van der Kooij
et al., 2005).

Dynamics of the neuromuscular controller

Using CLSIT, the goal is often to describe the behaviour of the neuromuscular controller, i.e.
how balance is regulated over time and under specific test conditions. The neuromuscular
controller receives information about the CoM excursions and responds by generating
muscle forces that provide the corrective torques in the joints. As mentioned earlier, various
underlying systems interact within this neuromuscular controller, allowing humans to use
various balance strategies. CLSIT aims to distinguish between: (1) The contribution of each
leg in generating corrective muscle forces to keep the CoM within the base of support (van
Asseldonk et al., 2006) (2) The contribution from various joints — such as the ankle and the
hip — in generating these forces (Boonstra et al., 2013); (3) The separate contribution from
intrinsic properties of the muscle-skeletal system (passive control) and the neural
components (active control) in the generation of the forces (de Vlugt et al., 2002, 2006;
Ludvig et al., 2011); (4) The sensitivity of the sensory systems — proprioception, vision and
vestibular — and their individual contribution to neuromuscular control (Peterka, 2002;

22



Time series Fourier Frequency

EEEE— . > )
Transformations Response Function

FRF from CoM angle to ankle torque
o —1072
Phase shift o
- T, 4
- g 10
Disturbance Z 6

CoMangle or
Ankle torque 180

=
Q
3 /wvw

0 -18
= 1
-002 'J‘V‘V‘\AW"\' 10 1P 10

2 Freq [Hz]
0'040 15 20
time [s]

Gain

_’I
_>I I

Disturbance [m] Ankle torque [Nm] CoM angle [deg]
=3 2

w

=)

Figure 2.2: Closed Loop System Identification Technique: measured time series are decomposed
in cycles (repetitions of the disturbance signal) and transformed to the frequency domain by means
of Fourier Transformation. Both CoM angle and corrective ankle torque are related to the
disturbance by determining the magnitude and phase for all frequencies, which results in the
Frequency Response Function of the neuromuscular controller.

Doumas and Krampe, 2010; Jeka et al., 2010; Pasma et al., 2012); (5) The effect of sensory
and motor noise on the reliability of the received information and the accuracy of the
generated muscle forces (van der Kooij and Peterka, 2011). To study all the effects within
the neuromuscular controller, CLSIT use specifically designed and externally applied
disturbances; either mechanical (support surface motion or pushes having impact on the
human body) or sensory (providing or abandoning inputs to the sensory systems)
(Fitzpatrick et al., 1996; van der Kooij et al., 2005; van Asseldonk et al., 2006; Kiemel et al.,
2008, 2011).

External Disturbances and Frequency Response Functions

The externally applied disturbances are specifically designed as humans respond differently
to either fast (high frequency) or slow (low frequency) disturbances. Therefore the external
disturbances in CLSIT include a wide range of frequencies in order to capture the human
responses in one measurement that may last several minutes (van der Kooij et al., 2005).
Furthermore, the disturbance signals are unpredictable as humans typically adjust to
predictable disturbances and their responses may habituate (Keshner et al., 1987; Bloem et
al., 1998). All disturbances are submaximal to measure standing balance and prevent
intentional loss of standing balance and falls.

Humans can either suppress or enhance disturbances and respond directly or with a certain
delay. The differences between the response and the disturbance in means of amplitude
and time can be displayed — termed Frequency Response Function (FRF) — which consists of
two parts, a magnitude and a phase curve, respectively (Mergner et al., 2005). Figure 2.2
shows an example of a FRF estimation where a disturbance (support surface translation)
evokes a body lean (CoM angle), which the neuromuscular controller counteracts by
producing ankle torque. Note that for higher frequencies the magnitude increases, meaning
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more corrective ankle torque is produced — compared to lower frequencies — to compensate
for the body lean. The phase is slightly negative for higher frequencies, meaning the
response lags behind the perturbation; a reaction takes place instead of anticipation to the
disturbance. These FRFs can be compared between or within subjects to track changes in
balance control across different mechanical and sensory stimulus conditions. However, an
additional step is needed to translate the FRFs to physiologically interpretable parameters,
termed parameter estimation.

Parameter estimation

The above described FRF shows the behaviour of the system, but does not reveal which
physiological mechanisms are underlying the system. Therefore, each subsystem of standing
balance control (Figure 2.1) can be described by a mathematical formula with parameters
describing the physics. It is then possible to use this formula in a computational model, and
to compare the model outcomes with experimental data from humans, which may give
physiological meanings to the outcomes. These parameter values can be compared within
and between a group of healthy young subjects and a group of elderly.

2.4 Application of system identification

In summary, CLSIT is required to unravel cause and effects by applying specific external
disturbances to study the dynamic behaviour of the neuromuscular controller. By parameter
estimation one can quantify the contents in the black-box of balance control. Information
can be drawn from application of either mechanical disturbances or sensory disturbances.
Mechanical disturbances are especially helpful in estimating the underlying balance
strategies of the neuromuscular controller. Sensory disturbances allow estimating the quality
of the sensory systems and their contribution to the neuromuscular control.

Mechanical disturbances

Mechanical disturbances are often aimed to identify deteriorations in the nervous system
part of the control and in the strategies used. Figure 2.1 shows the simplest representation
of the human body biomechanics, which is a single inverted pendulum with lumped legs
pivoting about the ankle joints (which actually reflects moderate body sway in the sagittal
plane quite well). However, humans have two legs and it has been shown that it is possible
to identify the contribution of each leg in generating muscle forces, depending on the
weight distribution (van Asseldonk et al., 2006). This is done by estimating the FRFs of the
left and right leg, i.e. the contribution of each leg to standing balance. In healthy humans,
the weight distribution between the legs directly corresponds to the relative contribution of
each leg to standing balance. However, asymmetries are recognized in patients with
hemispheric stroke (van Asseldonk et al., 2006) and Parkinson’s Disease (van der Kooij et
al., 2007; Geurts et al., 2011). These patients sometimes bear most of the body weight on
one leg, although the other leg contributes most to balance control. Balance asymmetry is
difficult to detect with the bare clinical eye or to quantify with traditional posturography (van
der Kooij et al., 2007) as these tests do not measure the differences between the legs in
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maintaining standing balance. Furthermore, with mechanical disturbances the quality of
inter-segmental coordination can be assessed, i.e. the contributions of several joints to
standing balance (Boonstra et al., 2013). Humans use their ankle joints to maintain standing
balance, but may also involve the hips, especially when disturbances are large or fast
(Horak and Nashner, 1986). The body biomechanics is then represented in the model by a
double inverted pendulum with a leg segment and a Head-Arms-Trunk segment. To be able
to use the CLSIT method, two independent mechanical disturbances are needed, one for
each segment (Boonstra et al., 2013) (for example a support-surface movement and a force
at the hip level). The FRF description of the neuromuscular controller is now expanded to
four terms. There are two direct terms, covering the FRFs from ankle angle to ankle torque
and from hip angle to hip torque. These direct terms quantify the ankle and hip
contributions to balance control. Furthermore, there are two indirect terms, which cover the
FRFs from ankle angle to hip torque and from hip angle to ankle torque and reflect the
inter-segmental couplings (Boonstra et al., 2013). Furthermore, mechanical disturbances
can be applied to identify motor system impairments. By using the CLSIT method, the
separate contribution of the intrinsic muscle properties (passive control) and the neural
components (active control) in the generation of muscle force can be studied (Kiemel et al.,
2008, 2011).

Sensory Disturbances

Sensory disturbances are used to quantify the visual, proprioceptive and vestibular
contributions to maintain standing balance. The relative contribution of each sensory system
in a given balancing task can be expressed by sensory weighting factors in the model.
Humans are able to change these weights, for example either using a specific sensory
system more (up-weighting) or less (down-weighting) (Peterka, 2002).

Visual information can be disturbed by visual scene rotations. It has been found that
subjects effectively adapt to scene rotation by down-weighting the disturbed visual
information and up-weighting information from the proprioception and the vestibular organ
(Peterka, 2002; Goodworth and Peterka, 2012). Vestibular loss patients appear to depend
foremost on visual and proprioceptive information and are less able to re-weight their
sensory information (Peterka, 2002). They use other strategies to maintain standing
balance, which cannot prevent, however, that they are more prone to falls in case the
proprioceptive or visual information is unreliable or conflicting. Support surface rotation
around the ankle axis has been used to specifically evoke proprioceptive responses
(Schouten et al.,, 2011; Pasma et al., 2012). Using such an approach for each leg
individually, asymmetries in sensory reweighting between the legs can be detected (Pasma
et al., 2012). The vestibular system can be disturbed selectively by galvanic stimulation of
the labyrinths, which allows studying sensory reweighting of the vestibular input with
respect to vision or proprioceptive information (Cenciarini and Peterka, 2006). Finally, the
CLSIT method allows to estimate the effect of sensory and motor noise on the reliability of
the obtained human data (van der Kooij and de Vlugt, 2007; van der Kooij and Peterka,
2011).
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2.5 Conclusion on clinical relevance

Early detection of causal relations in the pathogenesis of impaired standing balance as is
possible with CLSIT allows for timely diagnosis and tailored therapy. CLSIT has therefore a
high potential to improve (cost) effectiveness in geriatric care. Bringing new techniques like
CLSIT under the attention of clinicians and future care planners allows for acceptance and
evaluation of their potential without unnecessary delays. Firstly, CLSIT is able to detect
deteriorations in the neural system. It has been shown that abnormal multi-segmental
postural reflex patterns and inter-limb couplings may contribute to falls (Marigold and Eng,
2006). Secondly, CLSIT is able to identify sensory deteriorations. For example, sensory
receptors may degrade and thereby become severely affected by noise, which makes the
measurement of sensory functions in elderly and patient populations a relevant issue
(Cohen et al., 1996). Finally, CLSIT is able to estimate deteriorations in the motor system
using parameter estimation, and it allows estimating the relative contribution of the intrinsic
muscle properties to the generation of muscle force in comparison to the active contribution
through reflexes.

Currently, the ultimate goal in assessing balance is to detect elderly who are at risk of falls,
which then allows for timely and targeted therapeutic interventions and/or rehabilitation. At
present, fall history is still the only and best predictor of future falls (Ganz et al., 2007). In
order to bring the CLSIT method into clinics, it is necessary to prove clinical effectiveness.
This includes sensitivity and specificity analysis between a healthy young population, a
healthy elderly population, and an elderly population with a known deterioration of a specific
underlying system, in which the long-term outcome ends in falling. Additionally the test-
retest ability of CLSIT must be determined and compared to existing clinical balance tests.
Evaluation of cost-effectiveness and long term benefits for the patient in terms of quality of
life should be an inherent part of the evaluation process.

Future investigations also have to consider the effect of adaption in standing balance, which
so far in this paper was not considered in relation to the CLSIT method. It is known that
humans constantly tend to adapt to changing environments and tasks. If such adaptations
occur abnormally slow, subjects are more likely to fall (Doumas and Krampe, 2010). Future
studies that use the CLSIT method must be expanded to cover this important aspect of
standing balance. The CLSIT method then will represent a powerful clinical tool to detect
causal relations for the identification of impaired standing balance at an early stage. This is
the base for designing prevention strategies and the development of targeted interventions
to reduce the consequences of deteriorated balance in the elderly population. Cost
effectiveness of measures to prevent falls and reducing and/or delaying nursing home
admissions is obvious but remains an important aspect of evaluation of the merits of
introducing new approaches in healthcare.
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Chapter 3

Comparison of closed loop system identification
methods to quantify multi-joint human balance
control

D. Engelhart, T.A. Boonstra, R.G.K.M. Aarts, A.C. Schouten and H. van der Kooij.
Submitted

Abstract

The incidence of impaired balance control and falls increases with age and disease and has
a significant impact on daily life. Detection of early-stage balance impairments is difficult as
many intermingled mechanisms contribute to balance control. Current clinical balance tests
are unable to quantify these underlying mechanisms, and it is therefore difficult to provide
targeted interventions to prevent falling. System identification techniques in combination
with external disturbances may provide a way to detect impairments of the underlying
mechanisms. This is especially challenging when studying multi-joint coordination, i.e. the
contribution of both the ankles and hips to balance control. With model simulations we
compared various existing non-parametric and parametric system identification techniques
in combination with external disturbances and evaluated their performance. All methods are
considered multi-segmental (both the ankles and the hips contribute to maintaining balance)
closed-loop balance control. Validation of the techniques was based on the prediction of
time series and frequency domain data. Parametric system identification could not be
applied in a straightforward manner in human balance control due to assumed model
structure and biological noise in the system. Although the time series were estimated
reliably, the dynamics in the frequency domain were not correctly estimated. Non-
parametric system identification techniques did estimate the underlying dynamics of balance
control reliably in both time and frequency domain. The choice of the external disturbance
signal is a trade-off between frequency resolution and measurement time and thus depends
on the specific research question. With this overview of the applicability as well as the
(dis)advantages of the various system identification techniques, we can work toward the
application of system identification techniques in a clinical setting.
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3.1 Introduction

Maintaining a stable upright posture is a complex task. The body is inherently unstable due
to the gravitational pull, and it would fall without stabilizing control. The central nervous
system (CNS) stabilizes the body by integrating sensory feedback signals to determine the
appropriate response, which is sent to the muscles and results in corrective joint torques to
keep the body upright (Peterka, 2003). How the stabilizing mechanism of the CNS regulates
balance can be investigated by estimating the dynamics of the so-called neuromuscular
controller that outputs corrective joint torques as a response to body sway (Engelhart et al.,
2014).

With aging or due to a disease, sensory systems or the neuromuscular controller can
deteriorate and as a result, balance control problems can arise (Pasma et al., 2014b). For
example, the elderly often have difficulties maintaining balance during daily life activities,
and this impaired balance is a strong risk factor for falls (Rubenstein, 2006; Muir et al.,
2010). About 28-35 percent of people aged over 65, fall each year and this incidence
increases with age (WHO, 2007). To determine who is at risk of falling, clinicians use clinical
balance tests (e.g. Berg Balance Scale (Berg et al., 1989)) and posturography measures
(e.g., sensory organization test (Cohen et al., 1996)). These tests assess the ability to
maintain standing balance and the quality of balance by measuring the body sway.
However, these tests do not determine the contribution and quality of the underlying
mechanisms (Engelhart et al., 2014; Pasma et al., 2014b). In addition, it is currently not
possible to determine who has an increased risk of falling in the next year (Ganz et al.,
2007; Laessoe et al., 2007; Visser et al., 2008). Therefore, it is difficult to provide targeted
interventions to decrease fall incidence. In other words, there is a clear (clinical) need to be
able to a) identify people with an increased fall risk, b) evaluate targeted interventions, and
c) improve our overall understanding of the pathophysiology of balance-control impairments
(Visser et al., 2008; Kingma et al., 2011; Sibley et al., 2013).

Estimation of the neuromuscular controller dynamics is difficult. As in a closed-loop feedback
system (such as balance control) it is hard to disentangle cause and effect. That is, without
externally applied disturbances, it is difficult to determine if, for example, changes in muscle
activity result in changes in muscle force that will affect body sway, or that the opposite is
true, i.e. changes in body sway are detected by sensors and transmitted to the nervous
system that excites the muscle groups reflected in changes in the muscles’
electromyography (EMG). Furthermore, standing balance is regulated around the ankles and
hips, and multi-joint coordination must be provided. Movements of one segment influence
movements of the other segment (Horak and Nashner, 1986; Park et al., 2004), resulting in
additional interactions.

System identification techniques in combination with specifically designed external
disturbances provide a way to disentangle cause and effect in balance control. Therefore,
our group (van der Kooij et al., 2005, 2007; van Asseldonk et al., 2006; Boonstra et al.,
2014b; Engelhart et al., 2014; Pasma et al., 2014b) and other groups (Johansson et al.,
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2001; Peterka, 2002; Kim et al., 2009, 2012; Jeka et al., 2010; Mergner, 2010; Goodworth
and Peterka, 2012) have developed and evaluated novel quantitative balance-control
assessment methods based on system identification techniques to better understand the
balance-control system, with the ultimate goal to improve clinical decision making. As the
balance control system is dynamic (i.e. its response is described as a function of time),
system identification techniques can be used to determine the underlying structures of the
system by unravelling cause-and-effect relations in multi-joint coordination. The field of
system identification is very broad, with many approaches and various techniques and
methods. It is far from trivial to compare the methods reported in literature, as there are
always differences in experimental design and the results are presented in different ways. If
meaningful interpretation and comparisons are to be derived from balance-control
experiments in different labs, there is a clear need for standardized protocols (Visser et al.,
2008).

In this paper we compare different multivariable system identification techniques, as applied
in literature, and evaluate the effects of various disturbance types and analysis methods,
using model simulations. The advantage of model simulations is that all methods were
validated based on one system from which all dynamics are known. We focused on methods
that approached the human balance-control system as a double-inverted pendulum, pivoting
at the ankles and hips in the anterior-posterior direction. This is contrary to many other
methods that have approached the balance-control system as an inverted pendulum, with
only an ankle joint. Our approach was chosen because recent studies have shown that
differences between e.g. Parkinson’s disease patients and the elderly (Boonstra et al.,
2014a) and between the elderly and young (Accornero et al., 1997; Hsu et al., 2013) were
the most pronounced in multi-segmental balance-control coordination.

Here, we give an overview of the applicability and (dis)advantages of various system
identification techniques, which will aid toward the use of standardized measurement
protocols to access balance control with system identification techniques in a clinical setting.

3.2 Methods

This section describes the general goal of system identification in human balance control,
i.e. estimating the dynamics of the neuromuscular controller. By simulating a two-segmental
balance-control model that contains the dynamics of the underlying physiology, various
system identification techniques were presented, validated, and compared.

Modelling of human balance control

Figure 3.1 shows a model of human balance control, in which the underlying physiology is
described by various underlying mechanisms. When only considering anterior-posterior
movement, the body dynamics can be regarded as a double-inverted pendulum, consisting
of two segments; the lumped legs and the head-arms-trunk (hat) segment pivot around the
ankle and hip joint respectively. Internal disturbances (biological noise in muscles, sensory
organs, and the nervous system) and external disturbances (pushes and pulls on the human
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body and the pull of gravity) drive the system away from equilibrium. Maintaining standing
balance is a feedback system, i.e. a closed-loop system. The sensory systems (visual,
vestibular, and proprioceptive) give information about the body position and velocity relative
to the environment. These signals are processed and integrated by the CNS and fed back
(with a neural transport delay) to the muscles. Corrective joint torques result from the
activation of muscles (reflexive dynamics), together with intrinsic properties of the muscle-
skeletal system (intrinsic dynamics). The entire neuromuscular controller describes how
balance is regulated and is the system of interest in this study. This neuromuscular
controller has separate feedback paths for the leg and hat segment and is therefore a
multiple-input-multiple-output (MIMO) system.
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Figure 3.1: Simple representation of the human balance control system. The human body is
represented by a double inverted pendulum, with a leg and a hat-arms-trunk (hat) segment. The
neuromuscular controller generates corrective joint torques (Tgn, Thip) to regulate balance over
time, by intrinsic dynamics (H,) together with time delayed (Hr,) reflexive activation (H,, H,) of
muscles. For system identification purposes the body is disturbed by two external force
disturbances at the hip and shoulder level, and body sway and ground reaction forces are
measured.
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System identification approach

External disturbances

Describing the dynamics of a (MIMO) system requires knowledge of the inputs and outputs
of the system of interest. Here, the inputs of the neuromuscular controller are the leg and
hat segment angles and the outputs are the corrective ankle and hip joint torques. In
addition, an independent disturbance for each degree of freedom in the system is required
(Pintelon and Schoukens, 2012). In this study we are interested in the contribution of the
ankles and hip joints in balance control and therefore two disturbances must be applied.
Applying only one disturbance can give erroneous results (Boonstra et al., 2013), as
responses remain intertwined. There exist various choices where to apply the two external
disturbances (Fujisawa et al., 2005; Kiemel et al., 2011; Boonstra et al., 2013), as long as
they generate sufficient responses around each degree of freedom in the system. In this
study, continuous push and pull disturbances were applied at the level of the hip and
between the shoulder blades (Engelhart et al., in press), see Figure 3.1.

The external disturbances for system identification purposes are specifically designed as
humans respond differently to fast or slow disturbances. The dynamic behaviour of interest
typically extents from 0.01 Hz to frequencies up until 4 to 5 Hz (van der Kooij and de Vlugt,
2007). Therefore, the external disturbances are broadband and excite the system in the
region of interest. Furthermore, humans typically adjust to predictable disturbances and
their responses may habituate. Therefore, the disturbances are unpredictable. Finally, the
disturbances are submaximal. Therefore general stance behaviour is identified without
making people step or fall. Various designs of such disturbance signals are described in the
next paragraph.

Frequency Response Functions

All system identification techniques presented here assume linear and time-invariant (LTI)
human behaviour. This implies that the system does not change over the course of the
experiment and that participants do not change strategy (e.g. switch from responding stiff
to slack); i.e. the behaviour does not change over time. Furthermore, when the participant
is disturbed with a periodic signal, he/she will show periodic responses and the responses
scale proportionally with the disturbances.

In such a LTI system, the human responses contain the same frequencies as the
disturbances and the behaviour of the system can be described in the frequency domain by
a Frequency Response Function (FRF). The FRF consists of complex numbers, which can be
expressed in a magnitude and phase. The entire dynamic behaviour is displayed with a
magnitude and phase plot that describes the differences in amplitude and timing
respectively, between the inputs and outputs of a system as a function of frequency (f).

To be more specific, the FRF of the neuromuscular controller (H.(f)) describes the dynamic
relation, in the frequency domain, between the corrective joint torques (Tgp, Thip) due to
deviations in the segment angles (6.4, 6n4¢) and consists of four terms:
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There are two direct terms covering the FRFs from leg angle to ankle torque (Hc,glegmnk)

and from hat angle to hip torque (H,, ). Furthermore, there are two indirect terms,

Onat2Thip
which cover the FRFs from leg angle to hip torque (Hg,,2r,,,) and from hat angle to ankle
torque (Hcg, .o, ) Which reflect the inter-segmental coupling between the segments
(Boonstra et al., 2013).

Disturbance signals

There are various design options for external disturbance signals. For system identification
purposes, the disturbance signal should be sufficiently rich (power at many frequencies) and
unpredictable to prevent a contribution of anticipation to the postural response. For proper
application in the MIMO case, all the disturbance signals must be independent. Previous
model simulations showed that disturbance signals with a flat power spectrum gave the best
results, i.e. the lowest signal to noise ratio over the frequency range of interest (Boonstra et
al., 2013).

Here, we focus on two main categories of disturbance signals, multisine and filtered noise.
These two signals were commonly used in balance-control experiments where mechanical
disturbances were applied (Engelhart et al., in press; de Vlugt et al., 2006; Kiemel et al.,
2011; Boonstra et al., 2014a). To make a fair comparison between the multisine and filtered
noise signals, the frequency content of both signals was comparable. Furthermore, the root
mean square (RMS) of the disturbances was the same to ensure equal energy was added to
the system. Finally the amount of data was kept comparable between the signals (aiming
for a measurement time of three minutes). Various designs of multisine and filtered noise
signals were used in the simulations, as described below and shown in Figure 3.2.

Multisine

Multisine signals consist of a sum of sinusoids, hence, the signals only contain power at
specific frequencies. When each harmonic fits exactly an integer number of times in the
multisine signal, leakage in the frequency domain analysis can be prevented. This is assured
by only including harmonics with frequencies equal to an integer multiple of the frequency
resolution. As the frequency resolution is the inverse of the period of the multisine signal,
the lowest frequency of interest is therefore directly related to the measurement time. To
apply multisine signals for MIMO application, two multisine signals can have equal frequency
content, but in this case the signals are not independent. To create the independent signals
for each input, the experiment is repeated with two different combinations of the multisine
(Pintelon and Schoukens 2001).

In this study, a random phase multisine signal with a period of 20 seconds was generated,
in which a total of 27 frequencies were logarithmically spaced in a frequency band of 0.05
and 5 Hz. Here, the multisine signals were repeated five times, resulting in a trial length of
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100 seconds. In the first trial, both inputs were excited with the same multisine, while in the
second trial the sign of the second input was changed. This resulted in a total measurement
time of 200 seconds, approximately three minutes.

Zippered Multisine

Another possibility is to design two multisine signals with one excited frequency only
appearing in one signal. The input signals are chosen such that each disturbance contains a
number of excited frequencies at an interleaved frequency grid, termed a zippered multisine
(Pintelon and Schoukens, 2012). The advantage compared to a multisine disturbance is that
a zippered multisine fully characterizes a MIMO system from a single experiment. To
characterize a closed-loop system with zippered multisine requires interpolation to the full
frequency grid, which is described in the data analysis section.

In this study, a zippered multisine disturbance was generated in which a total of 27
frequencies were logarithmically spaced in a band between 0.05 and 5 Hz. From each set of
three odd harmonics, one was randomly assigned to the first disturbance, one was
randomly assigned to the second disturbance, and the third one was not excited. The
zippered multisine had a period of 20 s and were repeated nine times, leading to a
measurement time of 180 s.

Filtered noise

White noise consists of all frequencies with equal power and is a representation of a purely
stochastic process. As each value is uncorrelated to the other values, two white noise
disturbances are naturally independent.

In this study, two filtered noise signals of 180 seconds were generated comparable to
(Kiemel et al., 2011). Two white noise signals were passed through a first-order high-pass
filter with a cut-off frequency of 0.05 Hz and an eight-order Butterworth low-pass filter with
a cut-off frequency of 5 Hz. The power spectral density was computed using Welch’s
method with a 20-second (comparable to the length of the multisine signal) Hanning
window and 50 percent overlap. This created a flat power spectrum comparable to the
multisine signals. The filtered noise signals had a length of 180 seconds.

Cyclic filtered noise

It is also possible to generate cyclic filtered noise as input signals to allow for averaging in
time over the sequences to reduce noise. Two filtered noises of 20 seconds were generated,
similar as described above. The signals were repeated nine times, leading to a measurement
time of 180 s.

33



Multisine 1 Multisine 2 Zippered multisine 1 Zippered multisine 2
1
1
2 Z
o @
S 0 o
2 s °
w
= 5
o 10 20 [ 10 20 0 10 20 10 20
Time [s] Time [s] Time [s] Time [s]
| LA IE S e s wosme
=0 — 10"
N o o 0 0eesemm semsemee N
T [ — B
z Zz
it S 0
g 2
a Q.
3
10 o
10" 10° 10" 10" 10° 10' 10" 10° 10' 10" 10° 10'
Frequency [Hz] Frequency [Hz] Frequency [Hz] Frequency [Hz]
Filtered noise 1 Filtered noise 2 Cyclic filtered noise 1 Cydlic filtered noise 2
1
1
z z
g g,
2 2
. -1
o 10 20 =10 20 0 10 20 0 10 20
Time [s] Time [s] Time [s] Time [s]
— 10" — 10’ .
N N L . .
N T . .. g
& o o 8, L) o o Y
RN | e =
o "'m 0, L 4 a 10 . 0 o Sk '-'T
. . S
2 d O A X R
10° i H 10° . 8 . té
T g d g g T g o . ; . ,
10 10 10 10 10 10 10 10 10 10 10 10

Frequency [Hz]

Frequency [Hz]

Frequency [Hz]

Frequency [Hz]

Figure 3.2: Various disturbance signals for MIMO system identification. In the top rows the time
series and in the bottom rows the power spectral densities (PSD). The filtered noise has a length of
180 seconds, but for comparison with the other signals, only 20 seconds are shown. The PSD of the
filtered noise is smoothened by welch averaging, with a 20 seconds Hanning window, with 50%
overlap.
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Model simulations

Model simulations were performed on the two-segment human balance control model.
(Matlab Simulink (The MathWorks, Natick, MA)) with a leg and hat segment, and a
neuromuscular controller as shown in Figure 3.1. The model was based on a previous study
(Boonstra et al., 2013) and is extensively described in the Appendix. Two external force
disturbances with a peak-to-peak amplitude of 80 N were applied at the level of the hip and
the shoulders in five simulated trials of 180 seconds, in which the disturbance signals
varied:

1a) Two multisine disturbances with equal frequency content.

1b) Disturbance signals as in trial 1, in which the sign of one perturbation is reversed
2) Zippered multisine disturbance

3) Filtered noise disturbance

4)  Cyclic filtered noise disturbance

These simulations rendered the time series of the segment angles and joint torques at a
sample frequency of 1 kHz, which were processed in Matlab (The MathWorks, Natick, MA).
To make the model simulations realistic and to compare them to experimental
measurements, additional noise was included. Biological noise originates from inaccuracies
in the sensory systems and the motor system. This biological noise is believed to be of pink
origin, meaning the power spectral density (power per frequency (f)) is inversely

proportional to the frequency (fia). In our simulations, pink noise with a = 1.2, was added to

the system, such that during quiet stance the sway angle (remnant sway) was comparable
to data of standing balance (van der Kooij and Peterka, 2011). Furthermore, measuring
human responses, includes measurement noise due to the equipment. This was modelled as
a zero mean white noise source (variance of 1 * 107¢) added to the states (segment angles
and angular velocities), and to the ankle and hip joint torques.

Table 3.1: Various system identification techniques with corresponding disturbance signals. Some
methods perform well with a specific disturbance signal (indicated by a V), as the performance with
another disturbance signal is poor (indicated by a x)

Multisine Filtered noise

Non-parametric system identification techniques

1) Two experiments (2EXP) v X
2) Interpolation (INT) v X
3) Partial coherence (PC) X v
Parametric system identification techniques

4) Multiple least square (MLSQ) v v
5) Optimization (OPTIM) v v
6) Autoregressive-moving-average model with v v

exogenous inputs (ARMAX)
7) Predictor based subspace identification (PBSID) v v
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Data analysis

Based on the applied disturbances and the rendered segment angles and joint torques,
various system identification techniques were used to analyze the simulated data and
estimate the dynamic behaviour of the neuromuscular controller. The methods are divided
in two main categories: non-parametric system identification techniques and parametric
system identification techniques (Table 3.1). Please note that the use of methods and
disturbance signals is intertwined. Also note that although the model is simulated in
continuous time, the system identification techniques are based on sampled data and
therefore the analysis is time discrete. The performance of the methods was evaluated
based on validation criteria in the time and frequency domain, as described at the end of
this section.

Non parametric system identification techniques

Non-parametric system identification techniques express the system behaviour in the
frequency domain by means of an FRF, without a priori knowledge of the system. To extract
the neuromuscular controller properties from the closed loop system, the Joint-Input-
Output-Method is applied (van der Kooij et al., 2005). The closed-loop is opened by relating
the signals in the loop to the external disturbances. The FRF of the neuromuscular controller
(H.(f)) is described by:

He(f) = =Sar()(Sae (N ™! 3.2

In which S, and S,, are the cross-spectral density (CSD) matrices between the external
disturbances (d(f)) to the segment angles (6(f)) and joint torques (T (f)). The methods as
described below, differ in the applied external disturbance signal and thereby the method of
calculating the CSD matrices.

Method 1: Two experiments (2EXP)

This method is based on previous studies (Pintelon and Schoukens, 2012; Boonstra et al.,
2013, 2014b), where the external disturbance signals are multisine disturbances. The
disturbance signals were applied in two experiments, in which the sign of the disturbance is
reversed in the second experiment, compared to the first experiment.

The time series of the disturbance signals, segment angles and joint torques
(d(t),0(t), T(t)) were segmented in 10 repetitive cycles of the disturbance signal (two
experiments with five cycles). The segmented time series were averaged to reduce noise,
prior to analysis. Subsequently, data was transformed to the frequency domain by a fast
Fourier transformation (d(f),6(f),T(f)) and the CSD matrices from the external
disturbances to the segment angles (S;4(f)) and joint torques (Syr(f)) were calculated. The
FRF of the neuromuscular controller (H.(f)) resulted from equation (3.2).

Method 2: Interpolation (INT)

This method is based on a previous studies (Pintelon and Schoukens, 2012; Engelhart et al.,
2014), where the external disturbance signals are zippered multisine. The time series of the
disturbance signals, segment angles and joint torques (d(t), 8(t), T(t)) were segmented in
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nine repetitive cycles of the disturbance signal. Subsequently, data was transformed to the
frequency domain by a fast Fourier transformation. The Fourier coefficients of the
disturbances, angles and torques (d(f),6(f), T(f)) were averaged in the frequency domain
to reduce noise, prior to analysis. Calculating the CSD matrices (Sq9(f)), Sar(f)), requires
that the matrix components are known at all excited frequencies, which is untrue for the
zippered multisine, as both input signals contain different frequencies. Therefore, the
complex numbers of the cross spectral densities were interpolated in terms of magnitude
and phase.

Consequently, all matrix components for the full range of excited frequencies in the zippered
multisine were obtained and it was possible to identify the neuromuscular controller (H.(f))
using equation 3.2.

An additional advantage of using multisine, is that the assumption of linearity can be tested.
As only random odd harmonics are excited, even nonlinearities become visible when there is
power at the even frequencies, while the odd non-excited frequencies can be used to detect
and quantify the power level of the odd nonlinearities. For model simulations, the outcomes
are trivial (as the equations of motion are linearized), but for experiments one can obtain
additional information about the reliability of the FRF.

Method 3: Partial Coherence (PC)

This method is based on previous studies (Perreault et al., 1999; de Viugt et al., 2003,
2006; Kiemel et al., 2011), where the external disturbance signals are filtered noise. The
time series of the disturbance signals, segment angles, and joint torques (d(t), 6(t), T(t))
were transformed to the frequency domain by a fast Fourier transformation
d(),6(), T(f)). Because both filtered noise disturbances contain equal frequency content
(matrix division is possible) and they are naturally uncorrelated, elicited responses can be
related to either disturbance. The CSD matrices (Su0(f)), Sqr(f)) were computed using
Welch’s method with 20 s Hanning windows and 50 percent overlap among nine frequency
bands. Consequently, the FRF of the neuromuscular controller (H.(f)) was calculated with
equation 3.2.

Parametric system identification techniques

Parametric system identification techniques express the behaviour of a system in a model
with a limited number of parameters. The behaviour of a system is described by a
mathematical function, relating signals with respect to time. Often a priori assumptions
about the order of the system and the model structure are required. Method 4 and 5 as
described below only estimate the dynamic behaviour of the system, while methods 6 and 7
also give an estimation of the noise in the system.
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Method 4: Multiple Least Squares (MLSQ)

Early studies (Barin, 1989; Winter et al., 2001) used a multiple least squares algorithm to
compute a feedback gain matrix (K), which describes the relation between the states (x(t))
of the human balance control system and the corrective joint torques (T(t)) in the time
domain.

T(t) = —Kx(t)
rgleg(t)]
Tonk(] _ [k ki dig dip Qhat(t) 3.3
Thip (£) T ko kg dyy dzz][gzeg(t)
Onat (£)

The feedback gain matrix K was found by a least square estimation:
K= —TXT(xx7)~! 3.4

where X and T are matrices in which each row corresponds to a state or a corrective joint
torque, respectively, and each column corresponds to a time sample. The feedback gain
matrix K was used to determine the FRF of the neuromuscular controller; H.(f) is quantified
as a combination of stiffness (k) and damping (d) values

ank (f) Hleg (f)

Thm (f) ghath) 3.5
kiy + dig % j2rf kit dyp * j2nf '
kaoy + day *j2nf  kgp + dyy * j21f

—Hc[
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In which j2rf expresses the relation between the angles and angular velocities in the
frequency domain.

In this study, we applied both multisine as well as filtered noise disturbances, to excite the
system. The time series of the states, i.e. segment angles and angular velocities (6(t), 6(t))
and the joint torques (T'(t)) were segmented in nine repetitive cycles of the disturbance
signal. The segmented time series were averaged to reduce noise, prior to analysis.

Method 5: Optimization (OPTIM)

In a more recent study (Park et al., 2004), an optimization algorithm was used for
estimating the feedback gain matrix K. Equation 3.6 shows that different from the multiple
least squares method, the states (x(t), segment angles, and angular velocities) were
simulated (in continuous time) based on knowledge of the biomechanics of the human
(assumed to be a double-inverted pendulum (2IP) and captured in an A,;» and B,;, matrix),
the estimated K matrix, and the applied disturbances (matrix W). Consequently, the
corrective joint torques were derived from the states and the estimated K matrix. The
optimal feedback gain matrix K was based on the lowest error between the estimated and
true states and torques.
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In this study, we applied both multisine as well as filtered noise disturbances to excite the
system. The time series of the states, i.e. segment angles and angular velocities (8(t), 6(t))
and joint torques (T(t)) were segmented in nine repetitive cycles of the disturbance signal.
The segmented time series were averaged to reduce noise, prior to analysis. The
optimization algorithm was repeated 10 times using initial guesses (random values within
bounds) for K, to check for local minima in the optimization. If a minimum was found
repeatedly, a global minimum was assumed and the corresponding K matrix was
implemented in equation 3.5 to estimate the neuromuscular controller H.(f).

Method 6: Autoregressive—moving-average model with exogenous inputs (ARMAX)

Another commonly used group of parametric system identification techniques are prediction
error methods (PEM). In PEM methods, the output of the system as obtained from
measurements is compared to the output as predicted by the model. The difference
between the two is termed the prediction error and indicates how well the model represents
the data. The model includes parameters that describe the system behaviour, and
additionally includes parameters that describe the noise in the system. Various model
structures have different parameterization of the system and noise model (Ljung, 1999). In
a previous study (Fujisawa et al.,, 2005), an ARMAX model was used to model balance
control, in which output y(¢t) is related to the input u(t) and noise e(t):

Az Dy(®) = Bz Hu(t) + C(z He(t) 3.7

In which z=1 is the shift operator to describe past discrete time samples. The A and B
polynomial matrices describe the estimation of the system, how u (the segment angles) are
related to y (the joint torques), depending on a number of parameters (order of the
system). Increasing the number of parameters will improve estimation, as the estimated
structure better compares to the data. However, a large number of parameters increases
the computational burden and possibly does not further reduce the prediction error. A trade-
off between the lowest number of parameters and a low prediction error must be made,
which is often expressed in the Akaike’s Information Criterion (Ljung, 1999).

The validity of the estimation (consistency) can be determined by residuals analysis. The
residuals are the remaining errors between the real model and the identified model. When
the autocorrelation of the residuals represents white noise, this is an indication that the
noise dynamics are fully captured. The cross-correlation between the inputs and residuals
indicates whether or not the system model is captured. An advantage of these residual tests
is that the accuracy of a model is determined by only using the available data. Residual
outcomes directly explain whether the identified model can represent the system dynamics
within specified confidence levels.
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In this study, we applied both multisine and filtered noise disturbances. As we are dealing
with a MIMO and closed-loop system, first a consistent ARMAX model was estimated for the
relation between the disturbances and torques, resulting in H,;(f). Subsequently a
consistent ARMAX model was estimated for the relation between the disturbances and
angles, resulting in Hyg(f). The obtained models are divided resulting in an estimation of
the neuromuscular controller properties, comparable to equation 3.2.

Method 7: Predictor Based Subspace Identification (PBSID)
In the predictor based subspace identification method (Ljung, 1999) (van Wingerden,
2008), the LTI system is considered in state space:

x(t +t5) = Agsx(t) + Bgsu(t) + Kgse(t)

Y(8) = Cosx(t) + Dogti(t) + e(t) 38

with a sample time t, and where x(t), u(t), y(t) are the state, input and output vectors as
functions of time, respectively. The vector e(t) denotes the zero mean white noise sources.
The state space matrices Ags, B, Css, Dgs, K a@re the system, input, output, direct feed-
through, and observer matrices. The goal of the PBSID method is: Given the input sequence
u(t) (the two disturbances) and output sequence y(t) (ankle and hip angles and corrective
torques), find all the state space matrices of the system up to a global similarity
transformation. If the states x(t) were known, the solution would be straight forward:
compute C and D with linear regression, reconstruct the noise e(t), and compute Ag, B, K
with linear regression. However, the problem is to find the states. An essential step in
subspace identification is to reconstruct the (extended) observability matrix (I') from input
and output data (Verhaegen, 2007).

CSS

CSSASS

"= 3.9

n-1
CSSASS

A system is said to be observable if the states of the system can be inferred through linear
combinations of the system outputs. This means that from knowledge of the system's
outputs it is possible to determine the behaviour of the entire system. The system is
observable when the rank of this matrix equals the amount of states (n), which gives the
order of the system. A singular value decomposition can be used for order determination.
Once the rank and the observability matrix are known, the A, and C,, matrix can be
determined as matrix C,, equals the first rows (dependent on the number of outputs) of the
observability matrix and A, can be determined from the rest. Additionally, the states and
the noise contributions can be estimated, together with the B, and D, matrices with linear
regression.

Due to the state-space description of the system, the method can implicitly handle MIMO
systems, and common structures between disturbances, segment angles and corrective
torques are incorporated. Also as advantage comparable to PEM methods, determination of
the system order was incorporated in the algorithm and no a priori assumptions about the
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model structure were needed. The estimates for both H,;(f) and Huy(f) were therefore
found in just one identification step, with the disturbances expressed as two inputs and the
segment angles and corrective joint torques as four outputs.
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Based on the transfer function matrices for both H, and Hyg, the neuromuscular controller
can be obtained using equation 3.2. In this study, we applied both multisine as well as
filtered noise disturbances.

Validation Criteria
To quantify how well the obtained neuromuscular controller descriptions represent the true
system, we have used validation criteria for both the time and frequency domain.

Goodness of fit (GOF)

Based on simulated data, the theoretical FRF of the neuromuscular controller can be
compared with the identified FRF of the system identification method. This goodness of fit
(GOF) is determined by an approximation of the integral of the object value (OV) via the
trapezoidal method:

1 % V(D +OV(+ D,

F =
GO >

n f 3.11

£=0.05
For each frequency in the disturbance signal the OV is calculates as the logarithmic absolute
and squared difference between the estimated neuromuscular controller FRF (H.(f)) and
the theoretical FRF (H.(f)).

oV = [In(H(f)) = In (ﬁc(f))|2 3.12

A low GOF indicates a good fit. As the disturbance signals contain a different amount of
frequencies (i.e., multisine n, = 27, zippered multisine n; = 18, filtered noise ny = 100) the
GOF is normalized with respect to the number of frequencies.

Variance Accounted For (VAF)

Once a parametric estimate of the system is available, the behaviour of the neuromuscular
controller can be used to predict the outputs of the system by simulating the model using
the corresponding inputs. The percentage of Variance Accounted For (VAF) represents the
quality of the identified model by comparing the measured output (y(t)) with the simulated
output (9(t)) of the identified model (6) in the time domain. The VAF of two equal signals
will be 100 percent. If they differ, the VAF will be lower (Verhaegen, 2007).
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var (y(t)-9(t))

VAF((©),9(D) = (1 = "5 « 100% 3.13

In case of a non-parametric estimate, the Fourier components of the open loop transfer
functions S,;r(f) and Sz (f) were multiplied with the Fourier components of the
disturbances. The inverse Fourier transform of this product, results in the outputs of the
system; the angles or torques respectively. Comparing these ‘simulated’ outputs to the
measured outputs gives the VAF. In case of cyclic disturbances (multisine and zippered
multisine signals), this measure describes how each cycle deviates from the mean over
cycles, which is comparable to a Noise-to-Signal-Ratio.

Measurement time

In balance control experiments it is advantageous to have short experimental measurement
times. Especially in impaired standing balance, subjects become easily fatigued, which
induces time variant behaviour. Therefore the amount of measurement time, i.e. amount of
data needed for identification is also a validation factor and was studied by using various
simulation times.

3.3 Results

Non parametric system identification techniques

Non-parametric spectral-system identification techniques were especially designed for the
estimation of system dynamics in the frequency domain. Figure 3.3 shows that with non-
parametric system- identification techniques, the neuromuscular controller dynamics were
estimated well. Hence, for all methods and various external disturbance signals, the
estimated dynamics were close to the theoretical FRF.

Table 3.2 gives an overview of the validation criteria for the various methods. In the
frequency domain, the fits were all good, as can be seen from the relatively low GOF values.
The GOF value for the 2EXP method was lowest, followed by the PC method, and the INT
method had the highest GOF value. In the time domain, the VAF values were high for all
methods. The 2EXP and INT method had a slightly higher VAF than the PC method.

The amount of measurement time was kept similar between the non-parametric system
identification techniques. Exciting the system with multisine signals had the advantage that
in case this periodic signal was repeated during the experiment (which we did), averaging
over the successive repetitions decreased the noise. This potentially reduced the amount of
data that was needed to obtain a reliable non-parametric estimate of the neuromuscular
controller. Increasing the amount of repetitive cycles of a multisine signal decreased the
GOF, i.e. the FRF resembled the theoretical one better. The GOF did not decrease with
increased measurement time for the zippered multisine, possibly due to the interpolation of
the zippered multisine which induces and error. Averaging over more cyclic filtered noise
repetitions decreased noise in the system and estimated the FRF better; however the effect
was less than for the multisine. Segmenting a filtered noise signal in more segments and
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apply smoothing using a Hanning window to compute the CSD also reduced noise and gave
a better estimation. However, the drawback was that it also influenced the lowest
frequency, which you could identify.

Parametric system identification techniques

Parametric-system identification techniques were especially designed for the estimation of
system dynamics in the time domain. Figure 3.4 shows the simulated and identified time
series for all the parametric methods. The identified time series were comparable to the
simulated time series, indicating a good fit. Table 3.2 shows the VAF values were all high
(>85%), indicating a good estimation of the system dynamics in the time domain. The VAF
values for the filtered noise disturbances were slightly higher compared to the application of
multisine disturbances.

However, when the estimated model was evaluated in the frequency domain, the methods
performed less, as can be seen from the relatively high GOF values. The estimated
dynamics deviated from the theoretical FRF of the neuromuscular controller. Figure 3.4
clearly shows the mismatch between the theoretical and estimated FRF.

Comparable to the non-parametric system identification techniques, the amount of
measurement time was kept similar between the parametric system identification
techniques. Again, applying a periodic signal (such as a multisine) improved the estimation
of the mean responses as noise was averaged out. The feedback gains or estimated model
were therefore a more reliable representation of the system. However, in parametric
models, the estimated model depended much more on the model structure and the order
than on the amount of available data.
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Time domain estimation

Frequency domain estimation
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Figure 3.3: Non parametric system identification of the neuromuscular controller in time domain
(left) and frequency domain (right) based on simulated data. For the time domain estimation, the
simulated time series are shown in black and the estimated time series are shown in grey. For the
frequency domain estimation, the theoretical FRF of the model is shown by the black solid line and
the estimated FRF on the excited frequencies is shown by the grey circles.
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Figure 3.4: Parametric system identification of the neuromuscular controller in time domain (left)
and frequency domain (right) based on simulated data. For the MLSQ and OPTIM, multisine signals
were used and for the ARMAX and PBSID method, filtered noise signals were used. For the time
domain estimation, the simulated time series are shown in black and the estimated time series are
shown in grey. For the frequency domain estimation, the theoretical FRF of the model is shown by
the black solid line and the estimated FRF on the excited frequencies is shown by the grey circles.
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Table 3.2: Validation of the system identification techniques, based on model simulations

Multisine
GOF VAF [%]

O1eg2Tank  Onat2Tank  O1eg2Thip  Onae2Thip Oeg  Ohat  Tank  Thp
2EXP 0.07 0.23 0.09 0.03 97 97 98 99
INT 4.64 4.09 2.73 1.54 98 99 99 99
PC - - - - - - - -
MLSQ 2.81 4.81 13.34 0.84 - - 98 92
OPTIM 8.56 53.85 138.82 63.49 94 90 96 88
ARMAX 6.48 18.32 11.06 6.39 94 98 93 85
PBSID 2.37 2.23 10.24 0.51 0 0 0 0

Filtered noise
GOF VAF [%]

0 leg 2Tank  Onat2Tank 91@9 2Thip Onat2 Thip 91@9 Onat Tonk Thip
2EXP - - - - - - - -
INT - - - - - - - -
PC 0.09 1.52 0.61 0.04 83 90 89 93
MLSQ 2.99 4.67 9.39 1.04 - - 98 93
OPTIM 203.46 105.62 461.22 284.61 89 83 71 60
ARMAX 5.88 16.86 9.52 4.92 91 96 93 91
PBSID 2.05 2.49 34.6 0.61 0 0 0 26
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3.4 Discussion

Based on model simulations, we evaluated various MIMO closed-loop system identification
techniques in combination with external disturbance signals. Results indicated that non-
parametric techniques with multisine disturbances gave the most accurate estimation in the
time (highest variance accounted for) and frequency (lowest goodness of fit) domain of the
neuromuscular controller mechanisms. The use of zippered multisine had the advantage
that only one experiment had to be performed, in contrast with the multisine disturbance,
which required two experiments. Parametric system identification techniques did not
estimate all the underlying neuromuscular controller dynamics. Although the time series
were estimated reliably, the dynamics in the frequency domain were not fully captured.

Evaluation of system identification techniques

We evaluated seven methods to estimate the dynamics of the MIMO neuromuscular
controller. The methods were divided in two main approaches: 1) non-parametric system
identification techniques, and 2) parametric system identification techniques. We evaluated
all methods with simulated data using three quantitative evaluation criteria: variance
accounted for (VAF), goodness of fit (GOF) and measurement time.

Non-parametric system identification techniques estimated the dynamics of the
neuromuscular controller well for various disturbance signals

Non-parametric spectral techniques can be applied in combination with various disturbance
signals, as long as they contained multiple frequencies in the range of interest and the
signals were sufficiently exciting the system. A drawback of the 2EXP method is that two
experiments are required to estimate the neuromuscular controller dynamics. This inherently
assumes that the system dynamics remain equal over the two experiments, which is not
always the case (e.g. humans get fatigued, which changes their behaviour or strategy). A
drawback of the INT method is the interpolation of the frequency grid, which possibly
induces an error in the FRF, in case the excited frequencies are further apart. The choice of
disturbance signal depends on the application, and all signals have advantages and
disadvantages. We elaborated on this further in the section about disturbance signal choice.

Parametric system identification techniques were difficult to apply in human
balance control, due to the assumed model structure and biological noise in the
system

Parametric system identification techniques estimate a structure through excited
frequencies; our results showed that this worked best when all frequencies in the range of
interest were excited, i.e. filtered noise signals. Nevertheless, the methods performed well
while using multisine signals with many excited frequencies. Four parametric system
identification techniques were used to analyse the data, of which two were based on
estimation of a feedback gain matrix using multiple least squares and optimization
techniques.
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Multiple least squares and optimization techniques

The MLSQ and OPIM techniques have been applied previously to estimate the general
control mechanisms in balance control (Barin, 1989; Winter et al., 2001). These studies
showed that the postural feedback gains scaled with the disturbance magnitude and type
(Park et al., 2004), and changed with age (Speers et al., 2002). In our study, model
simulations showed that the MLSQ and OPTIM methods yielded erroneous results in
estimating the dynamics of the neuromuscular controller. This effect was expressed the
most in the frequency response functions at the higher frequencies, whereas the time
domain fits were quite good. This misfitting in the frequency domain was probably due to
the fact that the feedback gain matrix assumed that the underlying mechanisms of the
neuromuscular controller consisted of springs and dampers. This is, however a
simplification; the model neuromuscular controller also included time delays and muscle-
activation dynamics, which were not captured in these estimation methods.

Prediction Error Methods

Furthermore, we have evaluated a Prediction Error Method (ARMAX) and a Predictor-Based
Subspace Identification (PBSID) method. A disadvantage of parametric methods in general
is that @ model structure was assumed and a specific order was estimated and both the
estimation of the order and the model structure can be wrong. For example, an ARMAX
model has a dependent structure for the noise and system model (Ljung, 1999). If the
estimation of the noise model is incorrect, this affects the estimation of the system model.
For example, the biological pink noise in our system does not match the assumed linear
noise model. Furthermore, the division of two parametric estimates (which both contain
errors) can give inaccurate results, as the errors are present in the closed-loop estimation.
Therefore, it is important to check the residuals of the estimation to verify the correctness of
the system and noise model.

ARMAX models have been applied in a previous study (Fujisawa et al., 2005), identifying the
MIMO neuromuscular postural control mechanisms. However, the excited frequencies only
extended until 0.83 Hz. From our model simulations it was seen that the dynamics of
balance control extended to approximately 4 Hz and therefore in this study, we used a
broadband disturbance signal.

Predictor Based Subspace Identification

The advantage of the PBSID method is that the MIMO neuromuscular controller was
estimated in one identification step, without dividing two parametric estimates, reducing the
errors in the estimation. A disadvantage of subspace methods is that they were designed to
estimate the model structure for the case that all noise sources acting on the system are
white. However, biological noise (internal disturbances from the sensory and the motor
system) is thought to be of pink noise origin (van der Kooij and Peterka, 2011), which has
the highest power in the low frequencies. As we are dealing with this biological noise in the
feedback mechanism, obtaining a correct estimation can be a challenge. Nevertheless,
subspace identification might be a field of further research, as it allows for the studying
variation over time (see the section about time invariance).
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Multisine are an optimal choice of disturbance signals

We used four different disturbance signals (multisine, zippered multisine, filtered noise, and
cyclic filtered noise) and evaluated their effectiveness. Below we discuss why multisine are
the optimal choice of disturbance signal.

First, compared to filtered noise signals, multisine disturbances have no leakage errors as
each harmonic fits exactly an integer number of times in the multisine signal (Pintelon and
Schoukens, 2012). In case of leakage, power has leaked out to other frequency bins, which
affects the FRF estimate. Secondly, averaging over the repetitive cycles of the disturbance
signal reduces noise. Therefore the noise-to-signal ratio (NSR) of the multisine signal is
lower than the NSR of the filtered noise disturbances. Finally, exciting fewer frequencies
improves NSR further, as there is only (and therefore increased) power at the frequencies of
interest. Hence, multisine disturbances have higher NSR compared to filtered noise, and this
effect is even stronger when using a zippered multisine.

Furthermore, there is a difference in frequency resolution between the signals. If you are
dividing the frequencies over multiple disturbances, thereby creating a zippered multisine,
the frequency resolution drops. Therefore, a drawback of multisine disturbances, and even
more in zippered multisine disturbances, is that only specific frequencies are excited, making
it insensitive to what happens between those frequencies; hence very narrow resonance
peaks can be missed.

An advantage of the zippered multisine is that only one experimental trial was needed,
which reduced the measurement time by two compared to the multisine method.

In sum, the choice of the “optimal” multisine signal is a trade-off between frequency
resolution and measurement time and thus depends on the specific research question or
assessment goal.

Application of system identification techniques
This paragraph describes various challenges, limitations, and future perspectives, to
implement system identification techniques in a clinical setting.

Assuming time invariance and linear behaviour
The system identification techniques assume that human balance control is linear and time
invariant (LTI), but in real life, human balance control is highly non-linear and changes over
time. With the right experiment and using small disturbance amplitudes, human stance
behaviour can be assumed linear around the point of equilibrium (upright stance). However,
the parts that compose the neuromuscular controller show time-varying behaviour, as
changing muscle activation is required for various tasks (de Vlugt et al., 2002; Ludvig et al.,
2011) and postural responses typically adapt or habituate when perturbations have various
directions and sizes (Keshner et al., 1987; Bloem et al., 1998; Klomp et al., 2014). For
example, subjects effectively adapt their sway response in a changing environment by
down-weighting the unreliable sensory information and up-weighting the other information
sources (Goodworth and Peterka, 2012). Other studies (van Asseldonk et al., 2006;
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Boonstra et al., 2014a, 2014b) showed that in stroke and PD patients, the contribution in
balance control between the two legs can be asymmetrical. Posing more weight on the
affected leg can alter the controller properties between the legs to remain in an upright
stance (Pasma et al., 2012). Finally, there exist changes over time due to performance
limitations, like fatigue.

In model simulations, the LTI behaviour is guaranteed, but interpretation of the outcomes in
human experiments must be done carefully. In an experiment, the LTI assumption applies
to normal subjects using small perturbations applied in the sagittal plane, which somewhat
limits the applicability of the model and methods. When a subject changes its balance
control response during the course of the experiment, e.g., from responding stiff to slack,
this will lead to an inaccuracy in the estimated FRFs (the estimation will be an average of
the stiff and slack dynamic behaviour). It is therefore important to instruct participants in a
standardized way and check linearity and time invariance of the responses.

Challenges

With age and disease (e.g., Parkinson’s disease) specific problems present in multi-
segmental balance control. However, a drawback of analysing a system with two segments
is that two perturbations are needed to be able to determine balance control parameters. In
this paper we have focused solely on mechanical disturbances, which are often aimed to
identify deteriorations in the nervous system part of the control and in the strategies used
(ankle or hip strategy). In addition, sensory disturbances can be used to quantify the visual,
proprioceptive, and vestibular contributions to maintain standing balance (Peterka, 2002;
Jeka et al., 2006; Pasma et al., 2012).

Another aspect that is not captured so far is the influence of deteriorated cognitive control
on the balance control behaviour, which is especially an issue in stroke survivors, the
elderly, and PD patients (Teasdale and Simoneau, 2001; Doumas et al., 2009; Ambrose et
al., 2013; Stijntjes et al., 2015). This effect could be assessed by having participants
perform a dual task while maintaining their balance.

Future perspectives to get the methods to the clinic

In our opinion, system identification techniques could add to the currently used repertoire of
balance tests in the clinic by providing a quantitative estimate of the balance control system.
However, the methods need to be developed further before they can be used. That is, to
bring the system- identification method into clinics, it is first necessary to prove clinical
usefulness. Hence, the reliability, sensitivity, and specificity of system identification
techniques must be determined and compared to existing clinical balance tests.
Subsequently, the ultimate proof is to select a random subject from a healthy young
population, a healthy elderly population, and a population with a known deterioration of a
specific underlying system and apply system identification techniques to trace from which
group this subject was selected.
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Acceptance of these system identification techniques in the clinical field will be challenging
as the frequency response functions (FRF) are not directly related to the mechanisms
involved in balance control. The FRF shows the behaviour of the system, but does not reveal
which physiological mechanisms are underlying the neuromuscular controller. Hence, by
fitting a model to the estimated FRF, the outcome measures are now specific parameters
with a physiological meaning and the changes in FRF can be related to changes in stiffness
or time delays. A prerequisite for reliable physiological parameters is a reliable FRF, which is
not self-evident as we have shown in this study.

Finally, it needs to be determined whether the proposed methods are more effective than
the current clinical practice: Evaluation of cost-effectiveness and long-term benefits for the
patient in terms of quality of life should be an inherent part of the evaluation process.

3.5 Conclusion

System identification is the art and science of building mathematical models of dynamical
systems (Ljung, 2010). In this paper we showed the “science,” e.g. the basic principles of
various system identification techniques and the “art,” e.g. system identification techniques
aimed at application of multi-segmental and closed-loop balance control. Model simulations
showed that non-parametric system identification techniques are favourable over parametric
estimates in identification of the neuromuscular controller in standing balance. Both
multisine signals and filtered noise signals can be used to estimate these dynamics reliably,
in which multisine signals have the advantage to excite specific frequencies of interest and
therefore have a better NSR. By this overview of the applicability, advantages and
disadvantages of the various currently available system identification techniques, a step is
made toward applying system identification techniques to detect age and disease-related
changes in balance control.

3.6 Appendix: Standing balance control model

To validate the MIMO and closed loop system identification techniques, the underlying
mechanisms of standing balance control were described in a model structure. Figure 3.1
presents a simplified model of standing balance control, expressed in a plant (i.e. the
biomechanics of the human body) and a neuromuscular controller. Each system was
described by a mathematical formula (transfer function) with parameters describing the

physiology.

Plant: Biomechanics of the human body

The rigid body dynamics are represented by a double inverted pendulum with the sum of
corrective joint torques (T, and Ty;,) and external force disturbances (Force; and Force,)
as input, and the segment angles (6.4 and 6,,) as output. The equations of motion of this
double inverted pendulum were derived with the TMT method (Schwab, 1998). The
equations of motion were linearized with a Taylor approximation and rewritten in state
space (Boonstra et al., 2013).
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Neuromuscular controller: Intrinsic feedback

The controller is partly based on intrinsic feedback, describing the muscle and tendon
dynamics together with the soft tissue properties. These viscous-elastic properties are
modelled by a spring (stiffness K) in series with a damper (D), acting on the states; i.e. the
segment angles and angular velocities. Intrinsic properties are sometimes called passive
properties. Although the name “passive” suggests otherwise, this feedback mechanism can
be modulated by co-activation of antagonistic muscle groups and therefore the parameters
of stiffness and damping can vary. The transfer function is described by:

H, = K, + Dys 3.14

In whichs is the Laplace operator. The ankles and hips were assumed to have different
passive properties (H;,‘"",H;,”p)

Neuromuscular controller: Reflexive feedback

Intrinsic feedback alone is not sufficient to maintain balance. Therefore, the central nervous
system (CNS) continuously generates motor commands to compensate for the unstable
body dynamics, which is called reflexive feedback control and results in phasic muscle
activation. Information to the CNS originates from noisy data (modelled by pink biological
noise) from the proprioceptive, visual and vestibular system.

Reflexive feedback (H,) was represented by a matrix with stiffness and damping terms,
relating the joint torques to the segment angles and angular velocities. This resulted in four
transfer functions.
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Reflexive control is delayed due to sensory transduction, transmission, and processing,
resulting in a lumped time delay (sum of neural conduction time (transport delay), an
electromechanical delay (to activate the muscles), and the processing time of sensory
information). Furthermore, the conversion from motor control signals to muscle force is
represented by the muscle-activation dynamics. The time delay (z;) and activation dynamics
(H,.¢) can be represented by the following transfer functions:

—T4S

o2 3.16
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In which w and g the natural frequency and relative damping of the muscle activation
dynamics. For both the ankle and hip joint, different values were chosen
(HEB*, Hy, HGR Hagt).
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The entire neuromuscular controller (H,) can be expressed in four transfer functions:
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Parameter settings

Parameters for the plant and controller need to be set in order for the model to work (Table
3.3). Parameters for body segments are mass, length, height of the CoM above the lower
end of the segments and the moment of inertia about the lower end of the segment. When
simulating at a multi-segmented model, the equations of motion in the plant are separated
for a lower segment (legs) with a torque around the ankle and an upper segment (hat) with
a torque around the hip. The two joints have different controller properties; intrinsic
properties and also the time delays and activation dynamics were different between the
segments. These parameters are described by Kiemel et al (Kiemel 2011). In all simulations,
the data were collected with a sample frequency of 1 kHz.

Table 3.3: Parameter settings for the model simulations

Body parameter value Lower segment Upper segment
(legs) (HAT)
Mass [kg] 20.70 48.00
Length [m] 0.83 -
Height of the CoM above lower end [m] 0.52 0.30
Moment of inertia [kg m?] 6.57 7.07
Disturbance height relative to CoM [m] 0.40 0.44
Intrinsic feedback
Intrinsic stiffness [Nm/rad] 286.00 149.00
Intrinsic damping [Nms/rad] 65.60 24.80
Reflexive feedback
Transport delay [s] 0.06 0.04
Angular eigen frequency [rad/s] 9.90 12.10
Damping fraction [-] 1.50 1.65
Neural controller K [Nm/rad] D [Nms/rad]
01eg2Tank 567.16 236.80
Orat2Tank 291.82 108.91
0109 2Thip 153.38 107.08
Onat 2Thip 159.94 105.88
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Chapter 4

Assessment of multi-joint coordination and
adaptation in standing balance: A novel device and
system identification technique

Denise Engelhart, Alfred C. Schouten, Ronald G.K.M. Aarts, and Herman van der Kooij.
ITEEE TNSRE, 2014 Nov 20, epub ahead of print

Abstract

The ankles and hips play an important role in maintaining standing balance and the
coordination between joints adapts with task and conditions, like the disturbance magnitude
and type, and changes with age. Assessment of multi- joint coordination requires the
application of multiple continuous and independent disturbances and closed loop system
identification techniques (CLSIT). This paper presents a novel device, the double inverted
pendulum perturbator (DIPP), which can apply disturbing forces at the hip level and
between the shoulder blades. In addition to the disturbances, the device can provide force
fields to study adaptation of multi-joint coordination. The performance of the DIPP and a
novel CLSIT was assessed by identifying a system with known mechanical properties and
model simulations. A double inverted pendulum was successfully identified, while force fields
were able to keep the pendulum upright. The estimated dynamics were similar as the
theoretical derived dynamics. The DIPP has a sufficient bandwidth of 7 Hz to identify multi-
joint coordination dynamics. An experiment with human subjects where a stabilizing force
field was rendered at the hip (1500 N/m), showed that subjects adapt by lowering their
control actions around the ankles. The stiffness from upper and lower segment motion to
ankle torque dropped with 30% and 48% respectively. Our methods allow to study
(pathological) changes in multi-joint coordination as well as adaptive capacity to maintain
standing balance.
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4.1 Introduction

Balance in daily life is constantly challenged by both external forces, such as gravity and
pushes, and by internal disturbances such as noisy sensory signals and motor commands,
and movements of limbs involved in other motor tasks. To prevent falling, the
neuromuscular controller generates corrective joint torques to keep the body upright, based
on proprioceptive, vestibular and visual feedback (Peterka, 2003). During stance, balance is
mainly regulated by the ankle and hip joints, which involves multi-joint coordination. Multi-
joint coordination in stance is usually expressed in terms of the ankle strategy and hip
strategy, which are defined as movements in these joints (Horak and Nashner, 1986; Creath
et al., 2005). However, the observed movements are caused by both corrective joint torques
and by the internal and external disturbances. To identify the neuromuscular controller,
closed loop system identification techniques (CLSIT) (van der Kooij et al., 2005; Engelhart et
al., 2014) can be applied to reveal the causal relation from movements of the lumped legs
and head-arms-trunk (hat), to corrective joint torques in the ankle and hip.

When becoming older, multi-joint coordination changes (Accornero et al., 1997; Gariépy et
al., 2008). To maintain standing balance in various situations, postural responses must
adapt with task, magnitude and type of external disturbance (Alexandrov et al., 2001b; Park
et al., 2004; Kim et al., 2012). Studies in the upper and lower extremities showed that the
neuromuscular controller also adapted when external force fields were applied (Shadmehr
and Mussa-Ivaldi, 1994; Burdet et al., 2001; Noél et al., 2008; van Asseldonk et al., 2009).
How multi-joint coordination in stance depends on such force fields, may provide insight in
the adaptive capacity to maintain standing balance. To our best knowledge the use of
external force fields has not been applied in balance control during stance.

The application of CLSIT to study both multi-joint coordination and adaptation during
stance, requires an independent disturbance for each input of the neuromuscular controller
(Pintelon and Schoukens, 2012). In this specific case, the inputs are the segment angles of
the leg and hat, and therefore two independent disturbances must be applied that
continuously challenge the balance control system (de Vlugt et al., 2003; Pintelon and
Schoukens, 2012; Boonstra et al., 2013). Several studies do not apply disturbances at all
(Kuo et al., 1998; Alexandrov et al., 2001b; Speers et al., 2002), or only one disturbance
(Park et al., 2004; Alexandrov et al., 2005; Kim et al., 2009, 2012; Goodworth and Peterka,
2012), which could lead to incorrect identification of the neuromuscular controller (Boonstra
et al., 2013). Only a few studies investigated the multivariate nature of balance control by
applying two disturbances (Fujisawa et al., 2005; Kiemel et al., 2011; Boonstra et al., 2013).

Researchers used custom built apparatuses to apply these two disturbances at various
places on the human body. The study of Fujisawa et al (Fujisawa et al., 2005) described an
apparatus in which disturbance signals were applied to the lumbar level (L1) and to the
legs about 3 cm below the hip joint. The body segments were linked to a stepping motor
through an elastic string, which pulled the trunk forward and the legs backward. Disturbing
the human body in a specific direction is predictable and possibly does not capture full
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neuromuscular control dynamics. Kiemel et al (Kiemel et al., 2011) applied two mechanical
disturbances to the subject from behind, at waist and shoulder level. Both disturbances
were applied by a spring with one end attached to a waist/shoulder strap worn by the
subject and the other end attached to a linear motor placed directly behind the subject.
However, a spring can only pull the body, thereby only provoking corrective joint torques in
one direction. Boonstra et al (Boonstra et al., 2013) applied disturbances by support surface
translation with a movable platform and an actuated backboard at the level of the hips. The
actuated backboard was able to apply perturbing torques in both the anterior and posterior
direction at the sacrum. A drawback of the experimental set-up lies with the platform
disturbance. Accelerations of the movable platform disturb the human body, but the directly
following accelerations in the opposite direction can have a stabilizing effect (van Asseldonk
et al., 2007).

Most multi-joint coordination studies also have some limitations of the CLSIT approach,
mainly due to their choice of disturbance signal. In the study of Fujisawa (Fujisawa et al.,
2005) the bandwidth of the disturbances was only 0.83 Hz, whereas to the dynamics of the
human body extents until approximately 4 Hz (van der Kooij and de Vlugt, 2007). Human
experiments are limited in measurement time as subjects become fatigued. It is
advantageous to use a periodic disturbance signal and to apply this signal multiple times.
Averaging over the periods leads to a reduction of noise. In the case of Kiemel (Kiemel et
al., 2011), white noise disturbances were applied that are not periodic. This resulted in long
measurement times, as averaging over experiments was performed. The method of
Boonstra (Boonstra et al.,, 2013) applied periodic multisine signals. However, the two
disturbances have equal frequency content and to make the disturbances independent, two
experiments were needed with different sets of disturbances.

This paper describes the Double Inverted Pendulum Perturbator (DIPP), a novel force-
controlled manipulator to assess multi-joint coordination during standing balance. Two
independent manipulators can push and pull the subject at hip and shoulder level with a
bandwidth of 7 Hz, which is sufficient to identify the neuromuscular controller. In addition to
the disturbances, the device can provide force fields which possibly evokes adaptation. To
study both multi-joint coordination and adaptation we present a CLSIT approach, that offers
the advantages of the periodic multisine signals and needs only a single experiment.
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4.2 Methods

This section first describes the design and control of the DIPP. Secondly, the CLSIT
algorithm is presented. To technically validate the apparatus, a double inverted pendulum
(2IP) was attached to the DIPP and external force fields were applied to keep the 2IP
upright. Validity of the CLSIT is proven by model simulations and by comparing the
identified 2IP dynamics to theoretical 2IP dynamics. Finally, the application of the DIPP and
the CLSIT is demonstrated by identifying multi-joint coordination in humans and adaptation
of multi-joint coordination to external force fields.

Apparatus

Design

The DIPP is a custom made (ForceLink B.V., The Netherlands) device to apply forces at the
pelvis and between the shoulder blades (Figure 4.1). Each manipulator was actuated by a
rotating electromotor (ABI; type LSH050-4-60-320) with an amplifier (LTI type CDE300).
The motor drives a metal rod through a thin steel wire connected to both ends of the rod.

—— Rod

A Mass

| O  Hingejoint

Figure 4.1: Left: Double Inverted Pendulum Perturbator (DIPP) with a subject standing on a force
plate (A) and attached to the manipulators at shoulder and hip level (B). For safety, a harness is
attached to the pyramidal construction (C) and an emergency button is mounted on the frame (D).
Right: an ideal physical model of a double inverted pendulum (2IP) connected to the DIPP. Masses
are attached to two beams, creating a leg and a hat segment, pivoting around hinge joints (ankle and
hip). The 2IP is kept upright by external force fields. The 2IP model also applies to standing balance
in humans, where internal torques (T, Thi,) are generated to keep the human body upright.
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The wire winds around a drum that was connected to the motor axis and thereby
transformed motor rotation to rod translation (1 full rotation equals 0.1 m translation). The
subject was strapped to the rods via a board with memory foam, which molded quickly to
the shape of the body and allowed pushing and pulling the subject. Both manipulators
(including the motors) were adjustable in height such that the rod was aligned at the
subject’s hip and shoulder level. For testing purposes, the setup can also be used to stabilize
and identify a mechanical double inverted pendulum (2IP). The motors were controlled
using a PC with a PCI-card (National Instruments; NI PCI- 6229) running xPC-target (The
Mathworks, MA) at 10 kHz.

Load cells (Zemic Europe; type BG3-C3-100kg-6B) were placed between the rod and the
board to measure the force exerted on the subject. Two draw-wire potentiometers
(Sentech; type Celesto SP2-25) were attached to the end of the rod and measured the
displacement. The pretension of 0.02N in the draw-wire was negligible and did not influence
rod or body movement. The subject stood on a dual force plate (AMTI; Watertown USA),
measuring the ground reaction forces and torques in six degrees of freedom. A safety
harness prevented the subject from falling.

Control

The manipulators were force controlled such that force disturbances and force fields could
be implemented. Force disturbances are pushes and pulls on the human body, required for
system identification purposes. Force fields refer to altered dynamics of the DIPP, and
possibly evoke adaptation of multi-joint coordination. Subjects experience force fields as
being attached to e.g. a spring, altering the dynamical interaction with the environment.
Figure 4.2 shows the general control scheme of the DIPP.

In the motor controller, the velocities of the manipulators were controlled by velocity servos.
The velocity servos were tuned in the amplifiers of the motors and the proportional and
integral (PI) values were set such that sufficient bandwidth of around 40Hz was obtained.
The motors were tuned without a human connected, but including the metal rod and load
cell.

To apply force disturbances, the pelvis and shoulder manipulators were controlled
independently. In Figure 4.2 the settings for the shoulder are indicated with subscript s and
the settings of the pelvis are indicated with subscript p. In order to drive the plant (human
or 2IP) with forces, the motor controller input is the difference between the reference forces
(F. Fp) and the measured forces (F;, F,) from the load cells. A proportional controller
(P;, P,) converts this force difference into the velocity input (v,,v,,,) of the velocity servo.
The proportional gain was determined from the Ziegler-Nichols rules in closed loop. A
human subject was attached to the device and the gain was increased until the measured
force signal started to oscillate. Half of this gain value resulted in a proportional gain of
0.005 m/Ns, for both the shoulder and pelvis manipulator and remained fixed for all
subjects and measurements. The velocity servo, rotates with a certain speed (v, v,) and
results in translation of the rod (x;, x,).
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A) General Control Scheme
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Figure 4.2: A) General control scheme of the DIPP. Force reference signals (F., F,), result from
external disturbances (Fy;, F,,) and added stiffness (Fys, Fy,). The forces are controlled by means of a
P controller. The velocity servo interacts with a motor load, resulting in a forces (F;, F,) applied to the

plant. The plant can either be a double inverted pendulum (2IP) or the human body. B) In case of a
human plant, an internal neuromuscular controller regulates the upright position of the rigid body
dynamics (comparable to a 2IP). Ground reaction forces are measured with a force plate from which
joint torques (Tunk, Thip) are calculated with inverse dynamics. In addition, segment angles (6.4, 0pq¢)
are calculated from the displacement measured with the potentiometers.

Force fields were implemented in the controller as virtual springs, written with a stiffness
matrix K:

Fip (£) __[kkl’ kSZP] [xp(t) = —Kx(t) 4.1
p2s

Fes(®] ks 1lxs(8)
The rod translations were converted to a (virtual) spring force (Fyy, Fys) using the K matrix.
The stiffness can be either set directly (diagonal terms) from the shoulder position to the
shoulder force (ks) or from the pelvis position to the pelvis force (k,). Furthermore,
interaction was possible by indirect stiffness (off-diagonal terms) from position of the pelvis
to the shoulder force (k,,;) and vice versa (ks,,). In this paper, only direct stiffness was
applied.
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Safety

Safety was implemented at three levels to assure safety of the subjects; a software,
electronic and hardware level. For each level, the safety bounds become more restrictive.
Software limits were set in xPC target, which restricts the magnitude of the position and the
force signals to £0.2 m and 55 N, respectively. Furthermore, the velocity was limited to
+0.45 m/s. Finally power was limited to 15 J/s, as force applied at large velocity can also be
harmful. Within the electronic circuit of the velocity servo, the maximum speed was limited
to 300 rpm (equivalent to £0.5 m/s). The maximum torque was limited to 0.95 Nm (=
60N). As ultimate safety, some hardware restrictions exist. The maximum movement of the
rod was limited by its length of 0.7 m. An emergency button - in reach of both the subject
and the experimenter - interrupts the power supply when pressed, and the subject wore a
safety harness to prevent falling.

Data recording and processing

During all measurements, motor reference velocities, forces from the load cells, and
movement of the rods were recorded at 1 kHz and stored on a PC for further processing.
The leg and hat segment angles of the subject or 2IP with respect to the upright position
were calculated using the rod positions and goniometric rules. In case of the human subject,
the forces and torques from the dual force plate were recorded and the ankle and hip
torque were calculated from the force plate data, with inverse dynamics (Schwab, 1998).

Closed Loop System Identification Technique

A closed-loop system identification technique (CLSIT) was used to separately estimate the
dynamics of any subsystem in the motor controller and the plant (van der Kooij et al., 2005;
Pintelon and Schoukens, 2012). Here, a CLSIT is presented, using the advantages of
periodic multisine. So called ‘zippered’ multisine are applied, in which the disturbances have
separate frequency content. Only one measurement trial is needed as the disturbance
signals are naturally independent.

Disturbance signals

For controller tuning, multisine disturbances of 20 s were applied with in a range from 0.05 -
10Hz. Only the odd harmonics were excited, and the frequencies were linearly spaced. The
disturbances were repeated 18 times giving 6 minutes of data. In the identification
experiments of the 2IP and the human, multisine disturbances of 20 s, in which the odd
harmonics are logarithmically distributed, were applied in a range from 0.05 — 5 Hz . From
each set of 3 odd harmonics, one was randomly assigned to the pelvis disturbance, one was
randomly assigned to the shoulder disturbance and the third one was not used.
Consequently, the shoulder and pelvis disturbances were independent. The disturbances
were repeated 9 times. In all measurements, the first repetition cycle was discarded to
remove possible transient effects.
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Algorithm

The estimated dynamics in a closed loop were expressed by means of a frequency response
function (FRF) (de Vlugt et al., 2003). The FRF displays the differences between the
responses and the disturbances in means of amplitude and time, given in a magnitude and
a phase curve, respectively. In general form the FRF is given by:

H(f) = Say()Sau(H ™ 4.2

In which f are the frequencies in the disturbance signal and S;,(f) and S4,(f) are the
cross spectral density matrices between the external disturbances (d) and the input (u) and
the output (y) signals of H respectively.

Say(f) = [5(113/1 N Sdlyz(f)] 4.3

Sd2y1 (f) Sd2y2 Qc)

Sdlul (f) Sdluz (f)
SdZul (f) Sd2u2 (f)

To obtain these matrices, the recordings were segmented in the repetitions of the
disturbance signals and consecutively transformed to the frequency domain. The required
cross spectral densities were calculated and averaged to reduce noise. Figure 4.3 shows
that inverting the Sg, (f) matrix and multiplying it with the S,, (f)matrix requires that the
matrix components are known at all excited frequencies, which is untrue for the zippered
multisine, as both input signals contain different frequencies.

Seuh) = | 4.4

Therefore, the complex numbers of the cross spectral densities were interpolated in terms
of magnitude and phase, to obtain all matrix components for the full range of excited
frequencies in the zippered multisine. The FRFs were only evaluated at the frequencies
where the disturbance signals contained power.

To validate the performance and validity of the DIPP and CLSIT, the FRF of the force loop
and the plant (2IP) were estimated by:

Hforce(f) = SdF(f)SdFr(f)_l 4.5

leant(f) = de(f)SdF(f)_l 4.6

To estimate the dynamic behaviour of the human neuromuscular controller, the FRF from
segment angles (0) to joint torques (T) was obtained.

Hnmc(f) = _SdT(f)SdH (f)_l 4.7
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Design of zippered multisine Frequency Response Function Interpolation of spectral densities
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Figure 4.3: Left: Design of a zippered multisine in which the odd harmonics (multiples of the base
frequency 0.05 Hz) are distributed over the pelvis (grey) and shoulder (black) grid. Middle: The
spectral densities are only known on either the frequencies of the pelvis or shoulder disturbance.
Right: Obtaining all matrix components requires interpolation of the magnitude and phase. An example
is shown here for the 2IP.

In addition to the FRF, the coherence was estimated, which indicates the amount of random
variation in each Fourier component of the signal. The squared coherence was calculated
from the disturbances to the ankle and hip angles and torques.

Yae (F)* = 1Sao (F)I1*[Saa (f)See (F)] 1 4.8
Yar(F)? = 1Sar (NI12[Saa (F)Srr(HI 4.9

The squared coherence has a value between 0 and 1. The closer the value reaches 1, the
lower the noise level and the more the system behaviour can be considered time invariant.

Performance of the device

To test the performance of the DIPP, a double inverted pendulum (2IP) with known
dynamics was build. The 2IP (Figure 4.1) consisted of two beams (both 3 kg), with two
attached masses (both 5 kg), connected by hinge joints. Additional parameters for the 2IP
are given in Table 4.1. The pelvis manipulator was attached to the lower segment and the
shoulder manipulator was attached to the upper segment at the level of the weights. To
counter the effects of gravity and keep the 2IP upright, force fields were applied as stiffness
of 1500 N/m.

The performance of the DIPP is described by the force loop. Hyoc. Was determined in an
experimental setting where the 2IP or a human subject were attached to the DIPP. Ideally,
the magnitude of the force loop equals 1; then the disturbance forces are sufficiently
applied to the plant. The bandwidth of the force loop was defined as the lowest frequency
where the magnitude decreased by 3 dB, corresponding to a magnitude of 0.7.
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Table 4.1: Parameter Values for the Double Inverted Pendulum

Parameter Description Value
lieg Length of the leg segment 1.06 m
Lhat Length of the hat segment 0.80 m
R, Height of the pelvis manipulator with respect to the ankle hinge joint 0.75m
Ry Height of the shoulder manipulator with respect to the hip hinge joint 0.33m
Myeq Mass of the leg segment 8.00 kg
Mpqr Mass of the hat segment 8.00 kg
dieg Distance of the center of mass with respect to the ankle hinge joint 0.67 m
dpat Distance of the center of mass with respect to the hip hinge joint 0.36 m
Jieg Inertia of the leg segment 0.37 kgm?
Jhat Inertia of the hat segment 0.17 kgm?

Validity of the CLSIT

The validity of the CLSIT was verified in two cases. First, the dynamics of the 2IP (Hy;qy)
were estimated and compared to the theoretical FRF. The linearized equations of motion of
the 2IP were derived (Schwab, 1998) and implemented in Matlab symbolic toolbox. The
inputs were the applied force disturbances and the outputs were the segment
displacements.

Secondly, in case of a human subject, the plant not only consists of rigid body dynamics
similar as the 2IP, but also has an internal neuromuscular controller (Figure 4.2b) (van der
Kooij et al., 2005). The properties of this neuromuscular controller are unknown and can
adapt to various tasks and conditions. To demonstrate that the CLSIT is valid to identify the
dynamics of the neuromuscular controller, a computational model of the human rigid body
dynamics and neuromuscular controller was used. Time series of angles and joint torques
were generated by computer simulations. Based on these time series CLSIT was applied to
estimate the FRF of the neuromuscular controller (H,,,.) and compared to the theoretical
FRF of the model. The model is described in detail in the Appendix.

Adaptation of balance control

5 healthy young volunteers (3 male / 2 female, 24 + 2 years old, 83 + 19 kg) participated in
an experiment and their neuromuscular controller (H,,,,,.) was identified with and without a
force field. In the experiments with a force field, a stiffness of k, = 1500 N/m was rendered
at the pelvis. The order of the experiments with and without force field were randomized
per subject. We hypothesized that application of a stabilizing force field would lead to
downscaling of postural responses. We expect that subjects adapt their postural response
mainly for low frequencies (<1 Hz), where the stiffness manifests. The average magnitude
of the neuromuscular controller for this frequency range was calculated and termed
effective stiffness. A paired t-test was performed on the effective stiffness to test the effect
of a stabilizing force field.
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4.3 Results

Performance of the device

As both manipulators are similar, only the results of the shoulder manipulator are presented.
The magnitude of the force loop for both the 2IP and the human is close to unity up to the
bandwidth of approximately 7 Hz (Figure 4.4). This is sufficient to estimate the behaviour of
the human neuromuscular controller, as we only excite the system (and thereby identify the
dynamics) with frequencies below 5 Hz.

Validity of the CLSIT

First, the validity of the CLSIT was verified by identification of a double inverted pendulum
(2IP). Using a virtual stiffness to keep the 2IP upright and by application of two
disturbances, the dynamic behaviour of the 2IP was derived. Figure 4.5 shows that the
identification closely resembles the theoretical FRF of the 2IP, which shows the validity of
the CLSIT, also when external force fields were simultaneously applied.

Secondly, the validity of the CLSIT to identify the human neuromuscular controller was
verified using numerical model simulations, in which the plant not only consisted of rigid
body dynamics, but also of a neuromuscular controller. Similar DIPP motor settings and
disturbances were used as in the 2IP experiments. Figure 4.6 shows that the estimated and
theoretical FRF of the neuromuscular control are identical, which shows the validity of the
CLSIT to identify the neuromuscular controller.

Adaptation of balance control

Experimental data is shown in Figure 4.7. Humans responded similar over the 9 periods in
the disturbances and time series were averaged over periods. The coherences were all
above 0.8 in each subject, for all responses. This indicates that the noise level is reasonable
low and subjects behave relatively time invariant.

Figure 4.8 shows the estimated FRF of the neuromuscular controller. The magnitude of the
neuromuscular controller of the ankle was highest for low frequencies and decreased above
2 Hz. The magnitude of the neuromuscular controller of the hip torque was roughly constant
over frequencies and increased above 2 Hz. The phases of all neuromuscular controller FRFs
decreased with frequency, indicating the presence of a neural time delay. Effective stiffness
around the ankle torque was found significantly lower in the force field condition; 8)g2Tank
(30% decrease, p= 0.001) and 6y,,:2T.nk (48% decrease, p=0.008). Rendered stiffness at
the hip did not change the effective stiffness around the hip torque (8,¢52Ty;,, p= 0.55;
Bhat2Thip , P=0.22).
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Figure 4.4: Frequency response function of the force loop when a 2IP (solid gray line) or a typical
subject is attached (dashed black line). Data was averaged over 17 repetitive cycles of the disturbance
signal. The bandwidth of 7 Hz is indicated with the vertical line.
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Figure 4.5: Identification of the dynamics of the
2IP. The FRF consists of four terms, two direct
terms from pelvis force to pelvis position (F,2X,)
and from shoulder force to shoulder position
(F,2X,), and two indirect terms from pelvis force to
shoulder position (F,2X,) and from shoulder force
to pelvis position (F;2X,). The theoretical FRF is
given by the solid gray line. The identified FRF is
given by the dashed black line.
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Figure 4.7: Experimental data from a typical subject, in which two disturbances were applied without
additional force field. Upper part: the time series of the manipulator forces (F;, F,) with the corresponding
power spectral density. Lower part: the human leg and hat angles (6,4, 6,,) and ankle and hip torque
(Tank> Tnip), With corresponding coherences. Data was averaged over 8 repetitive cycles of the
disturbance signal.
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Although few subjects were included in this study, application of external force fields at the
hip showed that subjects adapted by lowering their control action at the ankle. With the
force fields subjects were externally stabilized, reducing the required balance maintenance.

4.4 Discussion

The neuromuscular control properties in multi-joint balance control are described by the
dynamic relations between stabilizing ankle and hip torques as a response to movement of
the legs and hat. As there is interaction between the segments, such a relation can only be
established by applying two independent disturbances in combination with closed loop
system identification techniques (CLSIT). Our aim was to develop a device which allows to
investigate multi-joint coordination in standing balance and adaptation of the neuromuscular
control mechanisms. We also presented a CLSIT based on zippered multisine, to study both
multi-joint coordination and adaptation, with shorter measurement time compared to
previously used techniques.

Apparatus

In standing balance control, force disturbances are common in daily life situations. Subjects
can actively control their upright position to maintain stance, in the presence of the pull of
gravity and internal and external disturbances.

To identify multi-joint coordination, for each degree of freedom, an additional disturbance is
required, which is not acknowledged in all studies. The DIPP can apply two independent
push and pull disturbances with frequencies up to 7 Hz, which is sufficient to capture the
neuromuscular controller dynamics of the ankle and the hips in the sagittal plane, which are
present until approximately 4 Hz.

A unique feature of the DIPP is the ability to apply force fields, simultaneous with the force
disturbances. Virtual springs can be applied with varying stiffness to induce adaptation of
multi-joint coordination.

CLSIT

Force disturbances involve interaction between the subject and the DIPP, creating a closed
loop system. Therefore, system identification techniques which incorporates this closed loop
are required. The use of standard open-loop algorithms in closed loop, introduce bias in the
estimates (van der Kooij et al., 2005). There are multiple available methods, which properly
use two disturbances and closed loop system identification techniques (CLSIT) (Fujisawa et
al., 2005; Kiemel et al., 2011; Boonstra et al., 2013), but they differ from the presented
method in this paper. The study of Fujisawa applies a parametric CSLIT. Parametric
estimates can separate noise from the system, but requires knowledge about the underlying
system structure. The other methods are non-parametric, which do not require prior
knowledge about the system. The study of Kiemel applies white noise signals, which
requires more data to reduce noise and for each experimental condition, 12 trials of 250
seconds each are recorded. To reduce the measurement time, period multisine signals can
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be applied. Having power at specific frequencies increases the participant’s responses and
thereby decreases measurement time. In the method of Boonstra and colleagues, the same
frequency grid is applied in each disturbance signal. To make the signals independent, two
experiments are performed. In the first experiment, both inputs are excited with the same
excitation, while in the second experiment the sign of the second input is changed. Our
method only requires one experiment, as both disturbances have a different frequency grid.
A disadvantage of this method is reduced frequency resolution in the disturbances.
Interpolation to the full frequency grid makes it possible to apply CLSIT.

In general, the obtained FRFs are in the same range as other studies. In the study of
Fujisawa, comparison is only possible for low frequencies as very low bandwidth
disturbances (0.83 Hz) were applied. However, applying disturbances with a different set-
up, at different application locations or by using different signals could have elicited different
responses (Kim et al., 2012).

Application
The DIPP allows to study multi-joint coordination in standing balance, as well as adaptation
to external force fields.

Ageing is associated with impaired balance and falls (Pasma et al., 2014b). Previous studies
show that elderly have altered strategies to maintain standing balance compared to young
adults. Previous studies show that elderly exhibit higher cross-correlation between the upper
and lower body movements in quiet stance, indicating decreased variability between the two
body segments (Accornero et al., 1997; Gariépy et al., 2008), which possibly indicates that
elderly are stiffer than young adults (Gariépy et al., 2008). Identifying the underlying cause
of impaired balance is difficult, as the neuromuscular controller is known to have substantial
redundancy at the joint, muscle and neural levels (Hsu et al., 2013). Understanding the
quality and contribution of the underlying mechanisms in standing balance would aid to
detect individuals with a high risk of falling and would help to set up targeted interventions.
By applying two independent force disturbances at the hip and shoulder using the DIPP and
applying CLSIT, multi-joint coordination in standing balance can be quantified. Differences
between elderly and young subjects in neuromuscular control properties of the ankle and
the hips can possibly explain altered balance control mechanisms.

Poor adaptation to changing environments also increases fall risk. To study adaptation in
multi-joint coordination, the DIPP allows to apply external force fields, manipulating the
movements around the ankles and hips. How multi-joint coordination in standing depends
on such force fields, possibly shows adaptive capacity to maintain standing balance. In this
study, spring stiffness (i.e. force fields) acts as a stabilizing force and experimental pilot
data suggests that subjects downscale their postural responses. The magnitude of the
neuromuscular controller, expressed by the effective stiffness, decreased around the ankle
joint for added force fields.
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4.5 Conclusion

In this paper a double inverted pendulum perturbator (DIPP) and a closed loop system
identification technique (CLSIT) were presented to study multi-joint coordination during
stance. A human experiment was performed showing adaptation of multi-joint
neuromuscular control properties to force fields. Our methods allow to study pathological
changes in multi-joint coordination as well as adaptive capacity to maintain standing
balance. In different populations e.g. elderly with impaired balance, Parkinson’s disease
patients or stroke subjects, changes can be detected in the sensory systems, nervous
system deteriorations, motor system deteriorations or a combination of these factors.

4.6 Appendix

This section describes the human balance control model (Figure 4.9), as it was used in the
computer simulations. The model consist of rigid body dynamics and a neuromuscular
controller.
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Figure 4.9: Simplified representation of standing balance control

Rigid Body Dynamics

The rigid body dynamics are described by a double inverted pendulum (2IP). The inputs are
the corrective joint torques resulting from the neuromuscular controller and the external
force disturbances. The output are the angles of the leg and hat. The equations of motion of
this 2IP can be described with the TMT method (Schwab, 1998). The equations of motion
are linearized with a Taylor approximation and rewritten in state space.

x =Ax + Bu

y =Cx+Du 4.10
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With x= 6}¢g,0nae, éleg, Ohae, the systems states (segment angles and angular velocities). The
inputs u of the system are the applied force disturbances. The outputs y are the segment
displacements.

Neuromuscular controller: Passive feedback

The neuromuscular controller is partly based on intrinsic feedback, describing the muscle
and tendon dynamics together with the soft tissue properties. These viscous-elastic
properties were modelled by a spring (stiffness K) in series with a damper (D), acting on the
states; the joint angles and angular velocities. Although the name ‘passive’ suggest
otherwise, these passive feedback mechanisms can be modulated by co-activation of
antagonistic muscle groups and therefore the parameters of stiffness and damping can vary.
The transfer function is described by:

H, =K + Ds 411

Neuromuscular controller: Active feedback

Passive feedback alone is not sufficient to maintain the body in the upright position.
Therefore, the Central Nervous System (CNS) continuously generates motor commands to
compensate for the unstable body dynamics, which is called active feedback control and
results in phasic muscle activation. Information to the CNS originates from noisy sensory
data, which makes control challenging. For simulations, the neural controller was
represented as an LQR controller (Kuo, 2005), where the motor command is dependent of
the positions and velocities of the body-segments (states). To deal with the noise
information, this controller uses an internal, forward model of body and sensory dynamics to
predict sensory output. Feedback gains (Kgs) for stabilizing the body are determined by
minimizing a parameterized objective function which is subject to the systems dynamics.

%ps = Axps + BUcontrot 4.12

In case of a discrete-time state-space model with states xgs, the feedback control signal
(ucontrol) becomes:

Ucontrol = —KpsXps 4.13

In which Ky is a 2x4 matrix, with gains from the 4 states (xgs) to the 2 motor commands
(uconeror) @s outputs. Therefore, Hy influences both ankle and hip joints.

eleg
[Tank]z _ k11 kiz kiz o Kea]| Opge 4.14
Thip ka1 kaz kazs ksl |Wieg .
What

Neural control is delayed due to sensory transduction, transmission and processing,
resulting in a time delay. Furthermore, the conversion from motor control signals to muscle
force is represented by the muscle activation dynamics.

71



The time delay (H;p) and activation dynamics (H,.;) can be represented by the following
transfer functions:

Hpp = e~ 4.15

o w? 4.16
act ™ $2 4 2Bws + w?

In which 1, is the transport delay, w and B the eigen-frequency and relative damping of the
muscle activation dynamics.

The entire neuromuscular controller (H,,,.) can be expressed in four transfer functions:

Tank O1eg2T,
— — ygank leg4” ank yrank ryank
Hnmc,eleHZTank - ) — 4p + HN(; HTD Hact
leg
Tank 6
_ _ hat2Tank ;yank ryank
Hnmc,ehatZTank - 0 - HNC HTD Hact
hat
Thip hip 4.17

_ — 1,01eg2Thip , hip
Hnmc,ezegZTmp - 0, - HNC HTD Hact
e,

_ Thip

__ ship Onat2Thip ; hip ; hip
Hnmc,ehazZTmp o - Hp + HNC Hyp Hyct

hat

Parameter settings

Parameters for the plant and neuromuscular controller need to be set in the model.
Parameters for body segments are mass, length, height of the body Centre of Mass (CoM)
above the lower end of the segments and the moment of inertia around the lower end of
the segment. When simulating a multi-segmented model, the equations of motion in the
plant were separated for a lower segment (legs) with a torque around the ankle and an
upper segment (hat) with a torque around the hip. The two joints have different controller
properties; intrinsic properties and also the time delays and activation dynamics were
altered between the segments. These parameters are described by two prior studies(Kiemel
et al., 2011; Boonstra et al., 2013). Time delays are based on literature describing long-
latency responses of the upper and lower body (Nashner, 1976; Matthews, 1991; Henry et
al., 1998; Safavynia and Ting, 2013). All model simulations were performed in Matlab
Simulink, with a sample frequency of 100 Hz.
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Table 4.2: Parameter Values for the Double Inverted Pendulum

leg segment hat segment
Body parameter value
Mass [kg] 20.70 48.00
Length [m] 0.83 -
Height of the CoM above lower end [m] 0.52 0.30
Moment of inertia [kg m?] 6.57 7.07
Disturbance height relative to CoM [m] 0.40 0.44
Passive feedback
Intrinsic stiffness [Nm/rad] 286.00 149.00
Intrinsic damping [Nms/rad] 65.60 24.80
Active feedback
Transport delay [s] 0.10 0.08
Angular eigen frequency [rad/s] 9.90 12.10
Damping fraction [-] 1.50 1.65
Neural controller [Nl:rl:/gl!: d] An?:::;}lgg;:lty
B1eg2Tank 608.33 249.89
Ohat2Tank 305.96 114.55
B1eg2 Thip 154.43 108.05

Onat2Thip 163.16 106.71
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Chapter 5

Adaptation of multi-joint coordination during
standing balance in healthy young and healthy old
individuals

D. Engelhart, J.H. Pasma, A.C. Schouten, R.G.K.M. Aarts, C.G.M. Meskers, A.B. Maier, H.
van der Kooij. Submitted

Abstract

Standing balance requires multi-joint coordination between the ankles and hips. We
investigated how humans adapt their multi-joint coordination to adjust to various conditions
and prevent from falling and whether this differed with age. Fifteen healthy young
participants between 20-30 years of age and 14 healthy elderly above 70 years of age
participated in the study. Balance was disturbed by push/pull rods, applying two continuous
and independent force disturbances at the level of the hip and between the shoulder blades.
In addition, external force fields were applied, represented by an external stiffness at the
hip, either stabilizing or destabilizing the participants’ balance. Multivariate closed-loop
system identification techniques were used to obtain a description of the neuromuscular
control mechanisms by quantifying the corrective joint torques as a response to body sway,
represented by Frequency Response Functions (FRFs). Model fits on the FRFs resulted in an
estimation of time delays, intrinsic stiffness, reflexive stiffness, and reflexive damping, both
of the ankle and hip joint. The elderly generated similar corrective joint torques but had
reduced body sway compared to the younger participants, which corresponded to the
increased FRF magnitude with age. When a stabilizing or destabilizing external force field
was applied at the hip, both young and elderly participants adapted their multi-joint
coordination by lowering or respectively increasing their neuromuscular control actions
around the ankles, expressed in a change of FRF magnitude. However, the elderly adapted
less compared to the young participants. Model fits on the FRFs showed that although the
elderly and the young participants had comparable reflexive stiffness and reflexive damping,
the elderly adapted their reflexive stiffness around the ankle joint less. Furthermore, the
elderly showed higher intrinsic stiffness of the ankle, together with higher time delays of the
hip. These results imply that elderly were stiffer and were less able to adapt to external
force fields. These age-related differences in adaptation of multi-joint coordination may
underlie increased risk of falling with ageing.
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5.1 Introduction

Ageing is associated with impaired balance and falls (Rubenstein, 2006; Muir et al., 2010;
Pasma et al., 2014b). To maintain balance, several underlying systems work together. One
of the mechanisms to maintain balance is to alter the coordination of postural responses,
i.e. multi-joint coordination, which is often explored by analyzing ankle strategies and hip
strategies (Horak and Nashner, 1986), describing the movement in these joints.
Coordination of movements around the ankle and hip joints depends on the amount of
external disturbances — such as gravity and pushes having impact on the body — and on the
support surface conditions (Horak and Nashner, 1986; Creath et al., 2005; Fujisawa et al.,
2005). Adaptability of multi-joint coordination is an essential feature of standing balance
control in order to adjust to various conditions.

Previous studies showed that the elderly tend to have altered multi-joint coordination to
maintain standing balance compared to young individuals. The elderly exhibited higher
cross-correlation between the upper and lower body in quiet stance, indicating that the
displacements of the two body segments were less independent (Accornero et al., 1997;
Gariépy et al., 2008). In addition, the elderly had a less-flexible joint coordination pattern to
compensate for externally applied balance disturbances (Hsu et al., 2013). This possibly
indicates that the elderly used less hip strategy and behaved more rigidly.

Various underlying mechanisms have been put forth as contributing factors of altered multi-
joint coordination in the elderly. Some studies indicated that the elderly increase their
reflexive stiffness around the ankle joint when they are exposed to altered sensory
information (Amiridis et al., 2003; Benjuya et al., 2004), while other studies found altered
intrinsic properties of muscles and tendons having impact on stiffness in the elderly
(Kearney et al., 1997; Ishida et al., 2008; Cenciarini, 2010).

Detecting the underlying mechanisms of altered multi-joint coordination in standing balance
is complex, as there exists substantial redundancy at the joint, muscle, and neural levels
(Hsu et al., 2013). Multiple sensory systems contribute to balance control, i.e. the
proprioceptive, visual and vestibular system. The sensory signals are integrated and
processed by the central nervous system and are then used to generate corrective joint
torques by precise muscle-activation patterns. Due to this redundancy, cause and effect
remain unclear; increased stiffness can be due to altered intrinsic muscle properties or
increased reflex activity, or it might be a compensation strategy and a result of the fact that
the elderly change their dynamic behaviour to maintain stability. Multivariate closed-loop
system identification techniques (CLSIT) (Boonstra et al., 2013; Engelhart et al., 2014) are
required to unravel cause and effects. Applying multiple and specifically designed external
disturbances on the human body allows the study of multi-joint coordination in standing
balance. Multi-joint coordination is expressed in the generation of corrective joint torques as
a response to body movement; i.e. the dynamic behaviour of the neuromuscular controller.

With system identification techniques, we investigated the underlying mechanisms of multi-
joint coordination in standing balance in healthy young and healthy elderly. Furthermore, we
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investigated the adaptation to externally applied force fields. Studies in the upper and lower
extremities showed that postural responses adapted when external force fields were applied
(Shadmehr and Mussa-Ivaldi, 1994; Burdet et al., 2001; Franklin et al., 2003; van Asseldonk
et al., 2009). In standing balance studies, it was shown that the elderly possesses the ability
to adapt to external disturbances, although to a lesser degree than the young (Pavol et al.,
2002; Ooteghem et al., 2009). Therefore, we hypothesize that a stabilizing force field will
downscale the postural responses and that this effect is more pronounced in the young than
the elderly, indicating the elderly are less adaptive. In addition to existing studies,
identification of the underlying mechanisms that change multi-joint coordination with age,
could provide insight into factors influencing the risk of falling in the elderly (Engelhart et
al., 2014). Adequate treatment of balance disorders requires unraveling the underlying
primary causes and applied (adaptive) strategies.

5.2 Methods

Participants

Fifteen healthy young (age range 20-30 years) and 14 healthy elderly individuals (age range
70-79 years) participated in the study (Table 5.1). Participants were excluded when they: 1)
were in a dependent living situation; 2) were unable to walk a distance of 250 m; 3)
presented co-morbidity (dementia, neurologic disorders, metabolic diseases, rheumatic
diseases; heart failure; severe chronic obstructive pulmonary disease; 4) used medication
with an influence on balance control (immunosuppressive drugs, insulin, anticoagulation); 5)
were immobilized for one week during the last three months or 6) had orthopedic surgery
during the last two years with unresolved pain or functional limitation.

To illustrate the state of health of the study population, several outcome parameters were
measured. Cognition was assessed using the Mini-Mental State Examination (MMSE)
(Folstein et al., 1975) and participants with a score lower than 26 points were not included.
Physical functioning was assessed by handgrip strength and the Short Physical Performance
Battery (SPPB) (Guralnik et al., 1994). Walking speed was obtained from the four meter
walking test of the SPPB. The total amount of medication was obtained by questioning the
participants.

The study was performed according to the principles of the Declaration of Helsinki and was
approved by the Medical Ethics Committee of Medisch Spectrum Twente, Enschede, the
Netherlands. All participants gave written informed consent before participating in the study.
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Table 5.1: Participant characteristics. All parameters are presented as mean with standard deviation
unless indicated otherwise. Abbreviations: IQR, interquartile range; MMSE, Mini-Mental State
Examination; SPPB, Short Physical Performance Battery.

Young (n=15) Elderly (n=14)

General characteristics

Age, years 25.9 (2.8) 74.4 (3.5)
Women (n, %) 8 (53) 6 (43)
Weight, kg 71.7 (10.4) 78.7 (10.6)
Height, m 1.80 (0.09) 1.72 (0.08)
Health characteristics

Number of medication, median (IQR) 0(0) 2 (0-5)
MMSE, points; median (IQR) 30 (29-30) 29 (26-30)
Physical functioning

Handgrip strength, kg 50.8 (16.75) 36.7 (7.8)
Gait speed, m/s 1.07 (0.16) 1.07 (0.15)
SPPB score, points; median (IQR) 12 (11-12) 12 (10-12)

Apparatus

Multi-joint coordination was investigated using a custom made device (Motekforce Link,
Culemborg, The Netherlands), the Double Inverted Pendulum Perturbator (DIPP) (Engelhart
et al., in press). The DIPP consists of two manipulators and applies forces using push/pull
rods at hip and shoulder level (Figure 5.1). Both manipulators were adjustable in height to
align the rods to the participant’s hip and shoulder level. The manipulators were force
controlled such that force disturbances and force fields could be simultaneously applied.
Force disturbances are pushes and pulls on the human body, required for identification of
the neuromuscular controller. Force fields were applied at hip level to evoke adaptation of
multi-joint coordination. Participants experienced the force fields as if they were attached to
a spring with varying stiffness, pushing or pulling them back to an equilibrium position.
During the experiments, participants wore a safety harness to prevent falling. The harness
did not constrain movements or provide support in any way.

Disturbance signals

The force disturbances were unpredictable and continuous multisine signals in a range from
0.05 — 5 Hz (Figure 5.2). The shoulder and pelvis disturbances were zippered multisine
(Pintelon and Schoukens, 2012), such that each disturbance contained nine excited
frequencies at an interleaved frequency grid. Both multisine signals had a period of 20
seconds, and were repeated nine times over a time course of three minutes. Disturbances
had a peak-to-peak amplitude of 80 N.
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Figure 5.1: Double Inverted Pendulum Perturbator (DIPP) with a subject standing on a force plate
(A) and attached to two manipulators at shoulder and hip level (B). Both manipulators are adjustable
in height and driven by an electromotor, pushing and pulling the subject. Body kinematics are
measured by potentiometers attached to the rod (C). A safety harness is attached to the pyramidal
construction (D) and an emergency button is mounted on the frame (E).
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Figure 5.2: Time series of the applied force disturbances at the pelvis and between the shoulder
blades, with the corresponding Power Spectral Density (PSD). The force disturbances are zippered
multisine, as the excited frequencies (indicated with circles) are independent.
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Procedures

Participants were attached to the DIPP and stood with eyes open, without shoes, and their
arms folded across their chest. Participants were instructed to maintain a normal upright
stance position. Force disturbances at the hip and shoulder were applied simultaneously.
External force fields were applied only at the level of the hip. The (spring) stiffness of the
force field was set such that it compensated partially for the gravitational stiffness around
the participant’s ankle joint, and was normalized to mg! (in which m is the mass of the
participant, g the gravitational acceleration and [ the height of the CoM (Center of Mass),
estimated by 0.575*length of the participant).

Within the five experimental trials, a fixed stiffness level was set, expressed in a percentage
of full compensation. One baseline trial was recorded without force field (0%). Three force
fields were stabilizing the human body (20%, 50%, and 80%), one force field destabilized
the human body (-20%). All trials were randomized, and participants were allowed to rest
between trials according to their needs. Prior to the experiments, participants were allowed
to get familiarized with the disturbances according to their individual needs. In case of the
five force fields trials, participants were allowed to familiarize approximately 10 seconds
before recording the data. This excluded any transient effects in the responses.

Recordings

Body kinematics were measured using two draw-wire potentiometers (Celesto SP2-25,
Celesto, Chatsworth, CA, United States), which were attached to the end of the push/pull
rods and measured the displacement of the participant’s upper and lower body segments. A
dual-force plate (AMTI; Watertown, USA), measured the ground reaction forces and torques
in six degrees of freedom under each foot. All signals were recorded with a sample
frequency of 1000 Hz and processed in Matlab (The MathWorks, Natick, MA, United States).

Data analysis

To study the age-related changes in adaptation of multi-joint coordination, different data-
analysis methods were used. In various studies (Horak and Nashner, 1986; Creath et al.,
2005), multi-joint postural control is described by the ankle and hip strategy, which are
defined as movements around the ankle and hip joints. Therefore, sway and torque
responses of young and elderly participants were compared, expressed by the Root Mean
Square (RMS). The RMS gives an indication of the effective amplitude, instead of a
maximum, yielding a representative value for the response amplitudes. Secondly, covariance
descriptors (Kuo et al., 1998) resulted from a kinematic analysis, which included postural
coordination between the ankle and hip joints. To include multi-segmental influences in
postural control (Boonstra et al., 2013), system identification techniques were used, which
resulted in Frequency Response Functions (FRFs). The FRFs describe the relationship
between the torques and the angles as a response to the disturbances only, i.e. inter-
segmental coordination of the neuromuscular controller is identified. Finally, to find
physiologically relevant parameters that describe the underlying mechanisms of multi-joint
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coordination, a model was fit on the FRF. This resulted in an estimate of time delays and
parameters describing intrinsic and reflexive feedback properties.

Preprocessing

All signals were filtered with a phase preserving fourth-order Butterworth filter, with a cutoff
frequency of 10 Hz. The ankle and hip angle were calculated with goniometric rules from
the recorded upper and lower body displacements and the participant’s dimensions. The hip
angle was described as the angle of the upper body with respect to the longitudinal axis of
the upper leg. From the force plate data, the total ankle and hip torques were calculated
with inverse dynamics (Winter, 1990; Schwab, 1998). Data were segmented in 20 s periods
of the disturbance signals, yielding nine data blocks per trial. From each data block, the
mean and trends were removed. The responses were averaged over the nine data blocks for
each condition and participant and used for further analysis.

Root Mean Square and Covariance descriptor
A description of the response amplitude of the ankle and hip angle and the ankle and hip
torque was given by the Root Mean Square (RMS).

To represent the upper and lower body movement and their coupling, the two-by-two
covariance matrix of the ankle and hip angle was used (Kuo et al., 1998).

Q = cov(B) = #Z(Qi -0)(6; —6)" 5.1
=1

In which 9; is the i time sample of the vector containing the ankle and hip angles. The
diagonal terms of the covariance matrix represent the variances of the ankle and hip angle.
The off-diagonal terms represent the inter-segmental coupling between the ankle and hip.

The covariance matrix may be described by an ellipse (Kuo et al., 1998; Speers et al.,
2002). The extent of the ellipse along the horizontal and vertical axes is proportional to the
RMS motion of the ankle and hip, respectively. The eigenvalues of the covariance matrix, 1,
and 1,, describe the squared lengths of the major and minor ellipse axes, respectively. The
long axis of the ellipse (1,) represents the amount of hip strategy utilized by the participant,
while the minor axis of the ellipse (1,) is an approximate indicator of the amount of CoM
movement. The eigenvector with the largest eigenvalue was used to calculate the
orientation angle (a) of the ellipse. The angle quantifies the direction of the relationship
between the ankle and hip angles.

Frequency response functions

The dynamical properties of the neuromuscular controller were quantified in the frequency
domain by Frequency Response Function (FRFs). The FRFs consist of two parts: a
magnitude and a phase, describing the relationship between disturbances and the responses
in terms of magnitude and time, respectively. Using closed-loop system identification
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techniques (Engelhart et al., in press; van der Kooij et al., 2005), the FRFs of the
neuromuscular controller (H,) are computed from the experimental data, according to:

He = =Sar(Sqe) ™" 5.2

In which S; and S,;e are the cross-spectral density matrices between the external
disturbances (d) to the corrective ankle and hip torques (T) and the ankle and hip angles
(8), respectively, resulting in a two-by-two FRF matrix (H.). Inverting the S;5 matrix and
multiplying it with the S;; matrix requires that the matrix components are known at all
excited frequencies, which is untrue for the zippered multisine, as both disturbance signals
contain different frequencies. Therefore, the complex numbers of the cross-spectral
densities were interpolated in terms of magnitude and phase, to obtain all matrix
components for the full range of excited frequencies in the zippered multisine. The FRFs
were only evaluated at the frequencies where the disturbance signals contained power. The
FRFs were normalized by the mass and length of the participants to compensate for
differences in the participants’ mass and pendulum length, which influences the FRFs.

H. consists of two direct terms, covering the FRFs from ankle angle to ankle torque
(He,0,,,27.,,,) @nd from hip angle to hip torque (Hc,ghipzmp). These direct terms quantify the

ankle and hip contributions to balance control. Furthermore, there are two indirect terms,
which cover the FRFs from ankle angle to hip torque (Hc,gankmip) and from hip angle to

ankle torque (H,, k) and reflect the intersegmental coupling (Boonstra et al., 2013).

Ohip2Tyy,
Model description

A FRF describes the behaviour of the system, but it does not reveal which physiological
mechanisms are underlying the system. To relate the changes in behaviour to the changes
in the underlying physiology, a model of the neuromuscular controller was fitted on the FRFs
(Figure 5.3).

The neuromuscular controller stabilizes the human body by generation of joint torques. The
corrective joint torques around the ankles and hips result from intrinsic feedback together
with delayed neural feedback. Each system in the neuromuscular controller was described
by a mathematical formula (i.e. transfer function) with parameters describing the
physiology. This resulted in a model for the four terms of the neuromuscular controller:

— yank ank2Tank ryank
HcleankZTank - Hp + Hr HTD
_ g7hip2T gnk ryankhip
HC,ghipZTank - HT HTD

H _ HankZThipHankhip 5.3
C'GanRZThip - r TD

_ ghip hip2Thip ;  hip
HC.GhipZThip = Hp + H, Hpp
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The transfer function of intrinsic feedback (H,) describes the muscle and tendon dynamics

together with the soft tissue properties. Intrinsic feedback is described for each joint by only
stiffness (H, = K,). Intrinsic dynamics only exists directly at joint level, i.e. the direct terms

of the neuromuscular controller, with different values for the ankle and hips (Hg"",Hl'jip).

In the transfer function of the lumped time delay (Hyp = e~ %@%), 1, represents the sum of
neural conduction time (transport delay), an electromechanical delay (to activate the
muscles), and the processing time of sensory information. A separate lumped delay was
introduced for each path length the sensory information travels, e.g. the direct terms of the
neuromuscular controller had separate delays (H%{;",H%") and the indirect terms of the FRF
had equal delays (Hr"").

The transfer function of reflexive feedback (H,) was represented by a matrix with stiffness
and damping terms, relating the joint torques to the ankle and hip angles and angular
velocities. This resulted in four transfer functions.

External Disturbances

Neuromuscular Controller Force2 Mww
Forcel

Intrinsic dynamic]
hip (Hp)

Plant:
W~ ) Double inverted
Thip pendulum
o —
hip
Force2 '

_>O Reflexive Control Time delay ree. ¢hat

_ —t \

(HY) (Hro)

d)ank f
- ) ¢Ieg
CJ P | R
4 Y Tank
(3 0O
Intrinsic dynamic]
ankle (Hp) dhip

W~

Figure 5.3: Schematics of the human balance control system. The human body is represented as a
double inverted pendulum, with disturbances acting at the hip and shoulder level. The model of the
neuromuscular controller was used for parameter estimation. The inputs are the leg and hip angle
(Bani, Bnip) and the outputs the corrective joint torques (Ty,k, Thip)- Intrinsic dynamics were modelled
as a spring, and were different for the ankle and hip joints. Reflexive control and time delay dynamics
were MIMO transfer functions (shown as dotted boxes), in which interaction existed between the
ankle and hip joint signals.
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ank2Tgnk _
Hr — Bank2Tgni + DankZTankS

hip2Tank _
H, = Knip2Tane T DhipaT gnicS 54
ank2Tpip _ .
Hr - KankZThip + DankZThipS
hipZTm'p _
H, = Knipary, + Dhip2r,y,S

The model had a total of 13 physiologically interpretable parameters. Table 5.2 shows the
model parameters and how they are estimated, as is outlined next.

Model fitting

The transfer functions from the model were fitted onto the experimental FRFs using a
nonlinear least-squares optimization algorithm. The algorithm searches for a parameter set
that minimizes the objective function (J; ¢, ).

Jire= [l (HesGom) - n (Rea0)| N

4 18

SSE = Z Z Jis,

i=1k=1

The logarithmic difference between the FRF (H,) based on the calculated parameter vector
(p) and the estimated FRF (H,) obtained from experimental data was summed over the
frequencies (fi, k = 1:18) and the different terms of the FRFs (H;, i = 1:4), resulting in an
SSE (sum squared error). The objective function is chosen such that there is more emphasis
on the low frequencies (ﬁ), where stiffness typically manifests. In addition, a relative

error is calculated for all frequencies on a logarithmic scale.

The optimization algorithm was run 20 times with random initial conditions to assure a
global minimum was found. The best parameter set was obtained from the fit with the
lowest SSE value. In addition, the goodness of fit (GOF) describes how well the data
compare to the estimation with the parameter set and is expressed as:

Y HeFp) A0

GOF, =1-—
¢ SA Gl

* 100% 5.6

The models were fitted for each participant on all five experimental trials simultaneously. To
limit the number of parameter combinations in the fit, lumped time delays and intrinsic
feedback were constant over trials in which force field levels were varied. The lumped time
delays of the indirect terms were calculated as the averages of the direct terms. Reflexive
feedback was variable over trials as it was assumed that subjects alter their control action
when they are exposed to a force field.
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Table 5.2: Overview of the parameters as used in the model fits. The parameters were fit to the five
force field conditions simultaneously and for each subject individually. Time delay and intrinsic
feedback parameters were kept constant over the five conditions, while the values for the reflexive
feedback parameters varied over the conditions. The time delay for ankle-hip and vice versa, were
calculated as the average of the time delay ankle and time delay hip.

Parameter Unit Varied over conditions
Time delay
Ankle 749k s No
Hip TP s No
Ankle-Hip and vice versa 7,4nkhip s -
Intrinsic feedback
Stiffness ankle Kk Nm/rad No
Stiffness hip K;”” Nm/rad No
Reflexive feedback
Stiffness Ank2Tank KankaT gny Nm/rad Yes
Stiffness Hip2Tank Khip2T ymi Nm/rad Yes
Stiffness Ank2Thip Kankary, Nm/rad Yes
Stiffness Hip2Thip Khip2ryy, Nm/rad Yes
Damping Ank2Tank DankcaT g Nms/rad Yes
Damping Hip2Tank DhipaT gnk Nms/rad Yes
Damping Ank2Thip Dankatyy, Nms/rad Yes
Damping Hip2Thip Dhip2rs Nms/rad Yes
Statistical analysis

The characteristics of the participants were represented by mean and standard deviation in
case of a Gaussian distribution. Else, median, and inter quartile range or number and
percentage were presented. To test significant differences between groups, an independent
two-sided t-test was performed. In case of the non-normal distributed values, a Mann-
Whitney U test was performed.

To test significant differences in RMS and covariance descriptors between age and force
field levels, linear mixed models were used. Age and force field level were fixed effects. To
account for the repeated measurements, participant intercept was included as a random
effect. In addition, interaction effects between age and force field levels were studied.

For statistical analysis of the FRFs, the magnitude of each FRF was logarithmically
transformed to make the data normally distributed. Subsequently the magnitudes were
averaged within three frequency bands (<1 Hz, 1-2.5 Hz and 2.6-5 Hz). The lowest
frequencies generally describe the stiffness properties of the system, whereas the
magnitude at middle and high frequencies is shaped by damping and mass (inertia),
respectively. Linear mixed models were used to test significant differences in FRFs between
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age and force field levels for each frequency band. Age group, force field level, and
frequency band were fixed effects and participant intercept was a random effect. In
addition, interaction effects between age group and force field level were studied.

To test significant differences of the estimated model parameters that were constant over
trials, an independent two-sided t-test was performed, as there can only be an effect of age
and not of force field level. To test significant differences between age and different force
field levels in the estimated model parameters that were allowed to vary over trials, linear
mixed models were used. Age group and force field level were fixed effects, and participant
intercept was a random effect. In addition, interaction effects between age and force field
level were studied.

For all tests, the significance level (a) was set at 0.05. All analyses were performed with
SPSS version 22.0 (SPSS, Chicago, IL).

5.3 Results

Characteristics of the group of healthy young and healthy old participants are presented in
Table 5.1 to illustrate the health of the study population The elderly used more medication
(p=0.001), had lower MMSE score (p=0.023), and lower handgrip strength (p=0.014)
compared with the young participants. All subjects were able to maintain balance during the
disturbances and the force field trials.

Root mean Square

Figure 5.4 shows the joint angles and torques of a representative young and elderly
participant, in case only the force disturbances were applied without an external force field.
Figure 5.5 shows the RMS of the ankle and hip angle and the ankle and hip torque. The
elderly had smaller ankle (p=0.001) and hip (p=0.003) angles than the young participants.
The exerted ankle and hip torques were not found to be significantly different between the
two groups.

For every 10% increase in external force field, the postural responses decreased, namely
the ankle angle with -0.02 deg (p<0.001), the hip angle with -0.03 deg (p<0.001), the
ankle torque with -0.7 Nm (p<0.001) and the hip torque with -0.07 Nm (p<0.001).

An interaction effect was found between age and force field level; with increasing force field
level, the decrease in ankle (p=0.007) and hip (p=0.004) angle was less in the elderly than
the observed decrease in young participants. No interaction effect was found between age
and force field level for the ankle and hip torque. The elderly adapted their torques to
different force field levels compared to the young participants.
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Figure 5.4: Joint angles and joint torques in response to the applied disturbances of a representative
young (left) and elderly (right) participant in the baseline trial without force field (0%). The average
over the nine disturbance cycles is indicated with the black line; the grey area represents the standard
deviation.
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Figure 5.5: Root Mean Square (RMS) values of the joint angles and torques, for young and elderly
participants per force field level represented by mean and standard deviation. The asterisks represent
significant differences with age (*), force field (**) or the interaction between age and force field
(k%K)
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Figure 5.6: Covariance descriptor of the young and elderly participants per force field level.
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Covariance Descriptor

Figure 5.6 shows the covariance descriptor for the young and elderly participants for the
different force field levels. The length of the ellipse major axis was lower in the elderly
compared to the young participants (p=0.013). No differences were found for the minor
axis or the orientation of the ellipse between the young and elderly.

When applying a stiffer force field, the orientation of the ellipse increased and the
covariance descriptors decreased. For every 10% increase in force field, the values altered;
A (-0.013, p<0.001), 1, (-0.001, p<0.001) and « (0.002 rad, p<0.001).

An interaction effect between age and force field level was found; the decrease of 1, was
less in the elderly compared to the young (p=0.01). No interaction effect was found
between age and force field level for the 1, and «; the elderly adjusted these values
compared to the young participants.

Frequency Response Functions
Figure 5.7 shows the neuromuscular controller FRF (H,) of the young and elderly in the
baseline trial, when only disturbances were applied without external stiffness (0%).

There was a main effect of age, as the magnitude of H.g_ ,o7,,,

for the lowest (p=0.002) and midrange (p<0.001) frequencies. For the other terms, the
magnitude was higher in the elderly in the midrange frequencies of Heg,,2T gt (p=0.001)

and H,
frequency bands for He 0,271 and no differences were found for the high-frequency range

was higher in the elderly

Banic2Thip (p=0.006). No significant differences with age were found in any of the

of the neuromuscular controller.

When applying a force field, the FRF magnitude changed (Figure 5.8). With increasing force
field, the FRF magnitudes became lower for the entire frequency range in Heg_ or,.,
(p<0.001, for all frequency bands) and He 0,027 g (p<0.001, for all frequency bands). A

significant decrease of FRF magnitude was also found for the lowest and midrange
frequencies in He,i2Thiy (p<0.005, for both frequency bands) and the midrange

frequencies of H,, (p<0.016).

ghipZThip

An interaction effect between age and force field level was found for the low and midrange
frequencies in H. 4 p=0.027 and p=0.008) and He 0,127 g (p=0.026 and p=0.002).

Elderly participants reduced the FRF magnitude around the ankle less compared to young
participants. The FRF magnitude around the hips was adjusted comparable in both groups.
For example, the magnitude of H.g_ .7, for the lowest frequencies in young participants
was decreased by 21% for the stiffest force field (80%), whereas for the elderly it was
decreased by 14%. For the destabilizing force field (-20%), postural responses increased
28% in young, whereas for the elderly they were only increased by 8%.

ank2T ank (
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Figure 5.7: Baseline differences in Frequency Response Function (FRF) between young (black) and
elderly (grey) participants, where only the two disturbances were applied, without additional force
fields (0%), represented by mean and standard deviation. The FRF consists of four terms, two direct
terms from ankle angle to ankle torque (0gn,2T4nk) and from hip angle to hip torque (84, 2Th;p),
and two indirect terms from hip angle to ankle torque (8p;2T,nk), and from ankle angle to hip
torque (Ounk2Thip). The asterisk represent the frequency bins in which there is a significant

difference with age (*).
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Figure 5.8: Adaptation of Frequency Response Function (FRF) magnitude in the young (upper part)
and elderly (lower part) participants. For each force field level the mean is shown. For displaying
reasons only the standard deviation was shown for the baseline trial. Standard deviations of the other
force field levels were comparable to the baseline trials. The asterisks represent the frequency bins in
which there are significant differences with force field (**) or the interaction between age and force
field (***).
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Model parameters

The average GOF (and standard deviation) over force field levels for each FRF term
(He,0,2T arier He 0127 gt Hcleankzmpand Hc,empzrmp) was for the young (81 (14)%, 70
(18)%, 50 (23)% and 75 (17)%) and for the elderly (75 (13)%, 70 (13)%, 63 (20)% and
82 (14)%). Similar GOF values were obtained for the young and elderly. Different GOF
values were found between conditions, e.g. some of the conditions had higher GOF values,
and thereby were fit better than others. Furthermore, the GOF values of the direct FRF

terms were higher than those of the indirect terms and the GOF values of H.g,, o1, Was

lowest. The goodness of fit is also displayed in Figure 5.9, which shows the estimated FRFs
together with the model fit for a representative participant.

Figure 5.10 shows the estimated parameters for the young and elderly participants. The
elderly had larger lumped time delays for the hips (p<0.001) compared to the young
participants. The lumped time delays of the ankle were not found to be significantly
different between age groups. Furthermore, the intrinsic ankle stiffness (p=0.007) was
higher in elderly, but no significant differences were found for the intrinsic hip stiffness.
None of the reflexive stiffness and damping terms were found significantly different between
young and elderly.

When increasing the force field level in both groups, all reflex stiffness and damping values
decreased (p<0.04). An interaction effect was found between age and force field level only
for Kankar,,, (P=0.04). The elderly reduced their reflexive stiffness around the ankle joint

less for increasing force fields compared to the young.
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Figure 5.9: Frequency Response Functions (FRFs) based on measured data (black dots) and model

fits (grey line) of a representative healthy young subject for the baseline trial (0%).
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Figure 5.10: Estimated parameters represented by mean and standard deviation (error bars), for
young and old participants per force field level. Panel A) shows the estimated time delays, B) the
intrinsic properties, C) the reflexive stiffness and D) the reflexive damping. The asterisks represent

significant differences with age (*), force field (**) or the interaction between age and force field

5.4 Discussion

The results of this study show age-related differences in multi-joint coordination. The elderly
swayed less than the young participants, and the elderly showed a reduced hip strategy. As
the corrective joint torques were not significantly different between age groups, the FRF
magnitude was higher in the elderly. The relationship between the corrective joint torques
to compensate for the body sway was increased, i.e. the elderly exhibit a higher stiffness.
Parameter estimation showed that the elderly have higher intrinsic stiffness around the
ankle joint. When an external force field was applied, both age groups lowered their
postural responses, expressed as lower FRF magnitude around the ankle. However, the
elderly adapted their postural responses less compared to the young participants. Parameter
estimation showed that adaptation was due to adjustment of their reflexes, both stiffness
and damping, with level of force field.
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Participant Characteristics

Based on the inclusion criteria, all young and elderly participants were characterized as
healthy. None of the young participants were taking medication. The elderly used
medication, but none of the medication had a known influence on balance control.
Comparison between young and elderly participants showed a significant lower MMSE score
in the elderly. It is known that cognitive processing has an influence on the control of
balance (Teasdale and Simoneau, 2001; Doumas et al., 2009; Ambrose et al., 2013;
Stijntjes et al., 2015), e.g. low cognitive function increases the risk of imbalance. Although
all of the elderly were characterized as healthy with normal cognitive function, the lower
MMSE score might have influenced the results. None of the participants reported fear of
falling or fatigue during the experiment.

Root Mean Square and Covariance Descriptor

Results show that the elderly swayed less when being disturbed by forces at the hip and
shoulder, compared to the young participants. These results were in contrast with multiple
studies of quiet stance, showing that body sway increased with age (Abrahamova and
Hlavacka, 2008; Demura et al., 2008; Pasma et al., 2014a). In our study, the balance
control system was externally disturbed. Humans altered their feedback gains to correct for
these disturbances, i.e. the amount of joint torque relative to the amount of joint motion
was adjusted. To be more specific, with increasing force field level, the feedback gains were
reduced. In quiet stance, the balance control system is mainly influenced by internal
disturbances, such as sensory and motor noise, which cannot be corrected for. Altering
feedback gains during quiet stance would amplify the internal disturbances, which increases
body sway (Speers et al., 2002). This explains why in quiet stance, the elderly sway more
and that it is possible that in perturbed stance the elderly sway less.

Covariance descriptors were used to describe not only whether the application of force fields
resulted in changes of sway, but also in postural coordination. Eigenvectors and eigenvalues
were used to describe independent combinations of joint movements, defined by principle
component analysis (Kuo et al., 1998; Alexandrov et al., 2001a; Hsu et al., 2007). From the
covariance matrix of the ankle and hip angle, the first component 1; may be interpreted as
double-inverted pendulum behaviour and quantifies the amount of hip strategy. Our results
show that 2, is smaller in the elderly, indicating they have less hip strategy and behave
more like a single inverted pendulum. The second component 1, was not found to be
significantly different between age groups, indicating the control of the CoM was similar. In
a previous study (Hsu et al., 2013) where external disturbances (platform translations) were
applied, the elderly exhibited a more rigid stance and a decreased variance between the
joints was found, while the CoM excursion was not significantly different between the
groups, which is in accordance with our findings.

When a stabilizing force field was applied, a decrease of both 1, and A, was found as
maintaining standing balance became easier. The combination of opposing ankle and hip
motion was reduced, and a reduction was found in the combination of movement
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dominated more by the ankle. The negative relation remained; a positive ankle angle was
accompanied with negative hip angle. There was an interaction effect between age and
force field level. The elderly adapted their hip strategy less than young participants. This
might be explained by the fact that the 1, was lower in elderly at baseline. The elderly
adapted their control of CoM similar to the young.

Frequency Response Functions

In this study we used system identification techniques to solely identify the neuromuscular
control mechanisms from the closed-loop feedback system, i.e. the corrective joint torques
as a response to body movement around the joints. The neuromuscular controller dynamics
and the coordination between joints has frequency specific effects, which were shown in
FRFs. Compared to RMS values and covariance descriptors, the FRF is possibly a more
sensitive measure. When analyzing the joint angles, it contains not only a sway response
due to the disturbance, but the subject's own spontaneous sway (remnant sway due to e.g.
motor and sensory noise) is also captured. RMS measures and covariance descriptors do not
therefore distinguish between responses due to the disturbances and spontaneous sway.
The FRF describes only the angles and corresponding corrective joint torques as a response
to the disturbances, i.e. changes in the neuromuscular controller only.

In the elderly, the RMS values of the joint angles were lower and the joint torques were
comparable to young adults. These results were also seen in higher FRF magnitude of
elderly, at the lowest frequencies of the direct ankle term. Stiffness is assumed to dominate
the magnitude of the FRFs in the low-frequency range, indicating that the elderly have
higher ankle joint stiffness. When the pull of gravity is compensated for by an external force
field, the elderly adapted their FRF magnitudes around the ankle less compared to young.
These age-related differences in adaptation to force field levels were also found in the RMS
outcomes and the covariance descriptors.

In addition to the adaptation at the lowest frequency range, also in the midrange
frequencies significant differences were found between force field conditions. The midrange
frequencies are believed to be most affected by damping properties. No significant
differences were found between force fields conditions at high frequencies, which was
consistent with our expectations. The FRF magnitude at high frequencies is generally
shaped by the mass properties of the participants, which were not significantly different
between young and elderly (Table 5.1).

Model parameters
Estimating model parameters on the FRF reveals the underlying mechanisms of the
neuromuscular controller. The elderly exhibit a larger intrinsic stiffness of the ankle
compared to the young, which is in concordance with our expectations following the results
of the FRFs. Reflexive stiffness was not found to be significantly different between the age
groups. When the force field level was increased, both the young and elderly reduced their
reflexive stiffness and damping. However, the reflexive feedback gains around the ankle
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joint were reduced less in elderly compared to young participants. These results might
indicate that the elderly were stiffer, but they were able to adapt their postural responses.

The body is mostly represented as an inverted pendulum, based on body rotation around
the ankle joint. Our study includes a hip joint, which might result in different values of the
estimated parameters compared to other studies. Kiemel et al. (Kiemel et al., 2008)
estimated intrinsic joint parameters of both the ankles and hips using system identification
techniques based on electromyography (EMG) signals and joint angles, when healthy young
subjects were faced with visual scene disturbances. The intrinsic stiffness of the ankle and
hips were found to be 293 Nm/rad and 95 Nm/rad, respectively. Cenciarini et al. (Cenciarini,
2010) found intrinsic ankle stiffness of 157 and 99 Nm/rad for the young and elderly,
respectively, when exposed to support surface tilts. The estimated stiffness values in this
study are in the same range as the other two studies; however in our study the elderly
exhibit larger intrinsic ankle stiffness compared to the young.

Estimated reflexive stiffness and damping of the ankle in the current study are within the
ranges earlier found in the literature varying from 898 - 1500 Nm/rad and from 288 - 480
Nms/rad (Peterka, 2002; Mahboobin et al., 2005; Cenciarini, 2010; Davidson et al., 2011).
Those studies showed that the elderly exhibit higher reflex gains compared to young, which
was consistent with our findings. Upper body stiffness and damping was found in healthy
young subjects between 100-300 Nm/rad and 20-60 Nms/rad (Goodworth and Peterka,
2012). These values were similar to our results.

The time delays as estimated in this study consisted of processing time, electromechanical
delay, and neural conduction time. Previous studies in which the human body is represented
as an inverted pendulum, found a time delay of approximately 172 ms, which was not
significantly different between the young and elderly (Cenciarini, 2010). Other studies found
time delays in the range of 100-200 ms (Peterka, 2002; Mahboobin, 2007; Davidson et al.,
2011), and the elderly exhibited significantly higher delays, compared to the young
(Davidson et al., 2011). This compares to our results.

Clinical implications

In this study we used system identification techniques to quantify age-related differences in
adaptation of multi-joint coordination. With current clinical balance tests, the cause of
altered balance control with age remains largely unknown (Visser et al., 2008; Pasma et al.,
2014b) as it remains unclear if changes in balance control are due to a primary cause or an
adaptive strategy. For example, if the elderly show more rigid behaviour, this can be due to
increased intrinsic muscle stiffness or due to increased reflexive stiffness. With system
identification techniques and parameter estimation, the contribution of the underlying
mechanisms can be unraveled, as the balance control mechanism is expressed in
physiologically relevant parameters (Engelhart et al., 2014). Our findings suggest that multi-
joint coordination is altered in the elderly, with increased intrinsic stiffness, which
contributed to reduced adaptive capacities. Identification of the mechanisms that contribute

96



to altered postural responses in the elderly provides insight into the factors influencing the
risk of falling and can help to develop targeted interventions and reduce the risk of falling.

Limitations of study

With system identification techniques, we have derived parameters of the neuromuscular
controller in multi-segmental balance control. Nevertheless, the results might be influenced
by various factors. First, the control scheme of the neuromuscular controller may not be an
adequate representation of actual postural control, and it may not describe all age-related
changes in standing balance. We assumed that the states of the human body (joint angles
and angular velocities) were fully known and the sensory information was “perfect”.
However, with age, the sensory systems might become impaired (Sturnieks et al., 2008).
Furthermore, we did not model the integration of sensory information, i.e. the process of
sensory reweighting (Peterka and Loughlin, 2004; Mahboobin et al., 2009). Therefore, age-
related changes in the quality of sensory information and sensory reweighting capacities
were not studied.

Second, estimation of model parameters based on experimental data is a constant trade-off
between a good model fit and the least amount of parameters. Increasing the number of
parameters improves the fit; however the physiological interpretation becomes difficult. Two
aspects are important when interpreting a parameter set obtained from a model fit on
experimental data. The first is independency, i.e. when two parameters give similar
contributions to the FRF, redundancy exists, which hampers the physiological interpretation.
Secondly, identifiability, meaning that a parameter has to contribute to the FRF within the
excited frequency band in order to assure that the influence of that parameter can be
detected. The goal of model fitting is to find the most compact model with parameters that
are both independent and identifiable.

During the process of model fitting, various combinations of parameter sets were estimated
and validated, based on previously used models in literature (Kiemel et al., 2008;
Goodworth and Peterka, 2012). In our fitting procedure, the intrinsic damping properties
and the activation dynamics (mapping of EMG signals to joint torques) were found
unidentifiable. Muscle-activation dynamics did not influence the magnitude of the FRF in the
frequency range the data was obtained (0.05-5Hz). However, the FRF phase was affected.
Interaction existed with the lumped delays, which also shaped the FRF phase, which
resulted in poorly interpretable values. We therefore decided not to include the muscle-
activation dynamics in the model, and we described all phase changes to the lumped delays
(which represents the sum of transport delay, the processing time of sensory information
and an electromechanical delay). Interaction also existed in the direct terms of the FRF

(Hep2ry, @Nd Heg, or, ), between the intrinsic stiffness, the reflexive stiffness, and the
lumped delay. The FRF magnitude displayed the sum of the stiffness values. The identified
FRF phase was somewhere between the phase of 0 (due to the intrinsic stiffness) and the

phase due to the lumped delay. The result is that only the product of reflexive stiffness and
time delay was identifiable. To solve the redundancy among the three parameters, we
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assumed two of the three interacting parameters to remain constant over the five
experimental conditions. The changes in intrinsic properties and lumped delays were
expected to be much smaller than the changes in reflexive properties (Peterka, 2002;
Cenciarini, 2010). Therefore, the intrinsic properties and lumped delays were averaged over
conditions, and the reflexive stiffness was left to vary over conditions.

However, the assumption of average intrinsic stiffness over the experimental conditions
might have influenced our results. Intrinsic stiffness scales with the contraction level of the
muscles, which is influenced by co-contraction or other external factors (such as a force
field) (Ludvig et al., 2011). With increasing force field levels, the pull of gravity on the
participants’ CoM was reduced, and this possibly also reduced the activation level of the
muscles as control of balance became easier. With decreased muscle activation, the intrinsic
stiffness will also decrease. Due to our assumption, variations in intrinsic stiffness were now
captured in the reflexive stiffness values.

As mentioned before, the lumped delay in the model was estimated from the FRF phase,
which resulted from the contribution of intrinsic stiffness (which acts without a delay and
has a phase shift of zero) and reflexive stiffness (which acts with a delay and induced a
negative phase shift). If there was an increased contribution of corrective torque due to
intrinsic properties compared with reflexive feedback, the estimated lumped delay might
appear to decrease (Peterka, 2002). Therefore the lumped delay parameter in the model
can be better thought of as an “effective delay” rather than as a parameter representing
actual delays in neural processing, transmission, and muscle activation. In case one is
interested in the separate contribution of the transport delay, the electromechanical delay
and the processing time in the lumped delay, electromyography measures can be of
additional value.

5.5 Conclusion

In this study we used novel system identification techniques to derive a description of the
neuromuscular control mechanisms in multi-joint balance control, by applying force
disturbances at the level of the hip and between the shoulder blades. Adaptation of multi-
joint coordination was induced by external force fields, represented as virtual springs at the
pelvis with various stiffness levels. Our results demonstrate that humans adapt to force
fields by altering their postural responses, i.e. reflexive stiffness and damping. However,
elderly adapted their reflexive stiffness around the ankle less compared to young
participants. Furthermore, elderly had higher intrinsic ankle stiffness and larger lumped time
delays of the hip. As adaptability of multi-joint coordination is an essential feature of
standing balance control, in order to adjust to various conditions, this may underlie
increased risk of falls with ageing.
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Chapter 6

Reliability of system identification techniques to
assess standing balance in healthy elderly

J.H. Pasma*, D. Engelhart*, A.B. Maier, R.G.K.M. Aarts, J.M.A. van Gerven, J.H. Arendzen,
A.C. Schouten, C.G.M. Meskers, H. van der Kooij. *Both authors contributed equally

Abstract

System identification techniques have the potential to assess standing balance. By applying
well-known disturbances, the contribution of the underlying systems in standing balance can
be identified. In this study, we investigated the reliability of standing balance parameters
obtained with multivariate closed loop system identification techniques.

Twelve healthy elderly participated in this study. Balance tests were performed twice a day
during three days. First, body sway was tested using posturography during 2 minutes of
standing with eyes closed. The Balance test Room (BalRoom) was used to apply four
disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual
system, and two mechanical disturbances applied at the leg and trunk segment. Using
system identification techniques, sensitivity functions to the sensory disturbances and the
neuromuscular controller were estimated. Systematic errors were assessed using linear
mixed models, including trial and day and their interaction as fixed effects and participant
intercept as random effect. Reliability was assessed using the generalizability theory, which
allows for computing indexes of dependability (ID), standard error of the measurement
(SEM) and minimal detectable change (MDC). To test validity, the BalRoom test was
performed with increasing disturbance amplitude of the proprioceptive disturbance.

Results showed a systematic error between the first and second trial in the parameters
describing the sensitivity functions. No systematic error was found in the neuromuscular
controller and body sway. The reliability of the BalRoom parameters and body sway were
moderate to excellent when the results of two trials on three days were averaged. To reach
an excellent reliability of the BalRoom on one day, at least ten trials must be averaged.
When the disturbance amplitude was increased, sensitivity functions to the proprioceptive
disturbance decreased, whereas the sensitivity functions to the visual disturbances
increased, which supports the validity of the method.

This study shows the possibility to use of system identification techniques to assess standing
balance in elderly. As a systematic error was shown between the first and second trial on
one day, it is concluded that assessment of steady state balance needs a training session

and at least ten trials on one day to reach an excellent reliability.
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6.1 Introduction

Impaired standing balance is a significant problem in elderly (Jonsson et al., 2004; Lin and
Bhattacharyya, 2012) and is one of the main risk factors and causes of falling (Rubenstein,
2006; Muir et al., 2010). Falls often result in serious injuries, and also in death (Cummings
et al., 1985). In standing balance, several underlying systems (i.e. muscles, neural system
and sensory systems) interact, which results in a closed loop system in which cause and
effect are interrelated (Engelhart et al., 2014). The underlying systems deteriorate with age
and are influenced by diseases and medication use (Horak et al., 1989; Manchester et al.,
1989; Konrad et al., 1999; Sturnieks et al., 2008). Due to redundancy, these systems can
compensate for each other’s deterioration. Therefore, the underlying cause of impaired
standing balance is difficult to detect and hence, to intervene with targeted therapies
(Pasma et al., 2014b).

Current clinical balance tests do not take aforementioned cause and effect relations and
redundancy of standing balance into account and therefore cannot detect the underlying
cause of impaired standing balance (Pasma et al., 2014b). Previous research showed that
system identification techniques are useful to assess the underlying systems of standing
balance, in which the response to well-known disturbances are assessed (Engelhart et al.,
date unknown; Peterka, 2002; Cenciarini, 2010; Pasma et al., 2012; Boonstra et al., 2013).
A clear advantage is that this method takes into account the cause and effect relation and
separates the contribution of the underlying systems. This gives the opportunity to improve
diagnosis of impaired balance and, eventually, to prevent falling by targeted interventions
(Engelhart et al., 2014). Before introducing the method into clinical practice for diagnosing
or monitoring treatment of impaired balance, it is important to assess the reliability of this
technique and compare it with posturography, which is yet unknown.

In this study we investigated the reliability of standing balance parameters obtained with
four disturbances applied simultaneously and system identification techniques to assess
standing balance in healthy elderly and compared this with a parameter obtained with
posturography, namely body sway. We used the generalizability theory (G theory)
(Shavelson and Webb, 1991), which takes into account both systematic and random
measurement errors. Furthermore, recommendations will be given for study designs to
reduce the measurement errors and therefore improve the reliability.

6.2 Materials and methods

Participants

Twelve healthy elderly aged 70 years or older participated in this study. Participants were
recruited from the database of the Center of Human Drug Research, Leiden, the
Netherlands, and the MyoAge study database of the Leiden University Medical Center,
Leiden, the Netherlands. Participants were screened before entry to the study. Participants
were excluded in case of low cognitive function (Mini Mental State Examination (MMSE)
score < 26 (Folstein et al., 1975)), presence of clinical significant morbidity (haematological,
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renal, endocrine, pulmonary, gastrointestinal, cardiovascular, hepatic, psychiatric,
neurological, musculoskeletal or allergic disorders), presence of orthostatic hypotension and
use of medication. This study was approved by the Medical Ethics Committee of the Leiden
University Medical Center, Leiden, the Netherlands, and was performed according to the
principles of the Declaration of Helsinki and the International Conference on
Harmonization/Good Clinical Practice (ICH/GCP). All participants gave written informed
consent before entry to the study.

Participant characteristics

Prior to participation, a screening procedure was performed. Medical history was recorded
including general questions about smoking, alcohol use, medication use and information on
diseases. Anthropometric data included height and body composition measured with a
bioelectrical impedance analysis (BIA, InBody 720, Biospace Co., Ltd, Seoul, Korea).
Cognitive function was assessed with the MMSE (Folstein et al., 1975). Orthostatic
hypotension was assessed by measuring blood pressure after at least 5 minutes in supine
position and 3 minutes after postural change to standing position. Handgrip strength was
measured using the Jamar dynamometer handle (Jamar, Sammons Preston Inc,
Bolingbrook, IL, USA). Physical functioning was measured with the Short Physical
Performance Battery (SPPB) (Guralnik et al., 1994). Walking speed was determined by a 4
meter walking test at normal pace, as part of the SPPB.

Apparatus

Standing balance was assessed using the Balance test Room (BalRoom), a custom-made
device applying specifically designed disturbances during stance (Motekforce Link,
Culemborg, the Netherlands, and University of Twente, Enschede, the Netherlands) (Figure
6.1). The BalRoom consists of three separated modules. The first module consists of two
support surfaces (SS), which are independently actuated and rotate around the ankles
(Schouten et al., 2011). By rotation of the SS around the ankle axis the proprioceptive
information of the ankle is disturbed. The second module is a visual scene (VS) in front of
the participant, which rotates around the ankle axes. Rotating the VS around the ankle axis
results in a disturbance of the visual information. The third module consists of two rods
applying forces at hip and shoulder level (FH and FS, respectively) resulting in movements
around the ankle and hip joint. These disturbances are used to investigate the contribution
of the ankles and hips and their coupling to standing balance (Engelhart et al., date
unknown). All disturbances can be applied simultaneously. The body sway was measured in
a single plane using a string potentiometer (Celesco SP2-50, Celesco, Chatsworth, CA,
United States), which integrates the amplitude of unidirectional body movement transferred
through a string attached to the waist of the participant.
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7
Figure 6.1: Schematic set up of the Balance test Room consisting of three modules; 1) a visual scene
to apply disturbances to the visual system (VS rotation), 2) support surfaces to apply disturbances to
the proprioceptive system (SS rotation), and 3) two rods to apply mechanical disturbances by giving
pushes and pulls at hip and shoulder level (FH and FS).
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Figure 6.2: Normalized time signals and frequency spectra of the disturbances of the support surface
(SS) rotation, the visual scene (VS) rotation and the rods applying forces at hip and shoulder level (FH
(grey) and FS (black), respectively).
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Disturbance signals

All disturbances were multisine signals with a unique combination of frequencies (Figure
6.2). All excited frequencies were multiples of the frequency 0.0625 Hz resulting in a
disturbance period of 16 s. The SS rotated following a continuous position disturbance signal
with increasing zero-to-peak amplitude over trials, i.e. 0.02, 0.03 and 0.04 radians, and a
flat velocity spectrum with frequencies between 0.125 and 6.9375 Hz. The VS rotated
following a continuous position disturbance signal with constant zero-to-peak amplitude of
0.03 radians over trials and a flat velocity spectrum with frequencies between 0.0625 and 1
Hz. The FH and FS disturbances are independent continuous force disturbance signals with
constant zero-to-peak amplitude of 30 Newton over trials consisting of frequency contents
between 0.75 and 7 Hz. All disturbances were repeated eight times resulting in a total
duration of 128 seconds.

Procedure

During the screening visit for inclusion up to 21 days before the start of the study, each
participant had a training session to familiarize with the BalRoom test and disturbances and
with the body sway test. No data were recorded. During the study, the tests were
performed during three sessions separated by one week, allowing assessment of
intersession variability. Per session the tests were performed twice separated by one hour,
allowing assessment of intrasession variability. During all tests the participant wore
comfortable flat shoes. During the BalRoom test, the participant was instructed to stand
with the arms resting along the body, with both feet in place on the support surfaces. The
two sensory (SS and VS) and mechanical (FH and FS) disturbances were applied
simultaneously. Each test consisted of three conditions with increasing disturbance
amplitude of the SS rotation (i.e. 0.02, 0.03 and 0.04 radians), while the amplitudes of the
VS, FH and FS disturbances remained constant. The three conditions were presented in
random order. Before recording each condition the participant was allowed about 10
seconds to get accustomed to the disturbances. Between conditions, the participant was
offered ample resting time depending on individual needs. The participant wore a safety
harness to prevent falling, which did not constrained movement nor provided support or
orientation information. During the body sway test, the participant was asked to stand still
and comfortable for a period of 2 minutes, with the feet approximately 10 cm apart and the
hands in a relaxed position along the body and eyes closed.

Data recording and processing

The actual angles of SS rotation (i.e. motor angles), applied forces at hip and shoulder level
(FH and FS) and the applied torques to the SS (i.e. motor torques) were available for
measurement. Lower and upper body segmental movements were measured in anterior-
posterior direction using two draw wire potentiometers (Celesco SP2-50, Celesco,
Chatsworth, CA, United States) at a sample frequency of 1000 Hz. The potentiometers were
connected to the hip and the shoulders by magnets and straps. The motor angles, segment
angles, motor torques and applied FH and FS forces, were recorded using a Matlab interface

with a sample frequency of 1000 Hz. Data analysis was performed with Matlab (The
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MathWorks, Natick, MA, United States). The leg and hip angle were calculated using
goniometry and using the segment movement of the lower and upper body (Winter et al.,
1990). The ankle torque was obtained by subtracting the contribution of the mass and
inertia of the support surfaces from the recorded motor torques. The hip torque was
obtained using the applied FH and FS forces and leg and hip angles using inverse dynamics
(Winter et al., 1990). The time series were segmented into eight data blocks of 16 seconds
(i.e. the period of the disturbance signal).

Data analysis

To indicate the effect of the disturbances on the ankle torque, hip torque and joint angles,
Frequency Response Functions (FRFs) were estimated. The time series of the disturbances,
ankle torque, hip torque, leg and hip angle were transformed to the frequency domain. The
periodic part of the frequency coefficients was determined by averaging over the data
blocks. The Power Spectral Densities (PSD) and Cross Spectral Densities (CSD) were
computed to calculate the FRFs (van der Kooij et al., 2005). For each disturbance, only the
excited frequencies were analyzed.

Sensitivity functions

The sensitivity functions of the ankle torque, hip torque, leg angle and hip angle to the SS
rotation and the VS rotation were estimated using the indirect approach using equation 6.1
(Peterka, 2002; van der Kooij et al., 2005).

15.(f) = Dy (f) [Pga(H]? 6.1

In which @, , represents the CSD of the disturbance (d) (i.e. SS rotation or VS rotation) and
x, which represents the ankle torque (T,), hip torque (T}), leg angle (6,), or hip angle (6;),
and @, , the PSD of the disturbance. This results in 8 FRFs; 1) SS rotation to ankle torque
(*Sr,), 2) SS rotation to hip torque (*S7,), 3) SS rotation to leg angle (**Sy;), and 4) SS
rotation to hip angle (*S,,), and 5) to 8) the VS rotation to each torque and angle
(St St ¥Sg1, V°Sen ). Each FRF is represented by a magnitude and phase representing
the ratio between the input and output and the relative timing both as function of
frequency. The magnitude of the sensitivity function of the ankle and hip torque is
normalized to the gravitational stiffness (mgl.,y). The average magnitude on the low
frequencies (<0.375Hz and <0.1875Hz, for SS and VS respectively) and the phase on higher
frequencies (0.68Hz and 0.375Hz, for SS and VS respectively) are the parameters of
interest. Different values of frequencies were used for SS and VS due to differences in
frequency content. They represent the sensitivity to the disturbances and the time lag
between the disturbance and the reaction of the body, respectively, resulting in 16
parameters.
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Neuromuscular controllers

The neuromuscular controller is the link between the sensory systems and the muscles,
where the sensory information is combined and muscle commands are generated to keep
the body in upright position. The multi-input-multi-output (MIMO) approach was used to
estimate the ankle and hip controller according to the method described by Engelhart et al.
(2014) and equation 6.2 (Engelhart et al., date unknown).

He (f) = =@ () [P 6.2

In which @4 and &, 4 are the CSD matrices between the external disturbance (d) (i.e. FH
and FS)) and the corrective ankle and hip torques (T) and the leg and hip angles (B)
resulting in a two-by-two FRF matrix (H.). This results in 4 FRFs; 1) ankle torque to ankle
angle (Hygz91), 2) ankle torque to hip angle (Hrqz0n), 3) hip torque to hip angle (Hrnzon),
and 4) hip torque to ankle angle (Hypz0;).- The magnitude is normalized to the gravitational
stiffness (mglc,y)-The average magnitude on the low frequencies (<1Hz) and the phase on
higher frequencies (2.3Hz) are the parameters of interest and represent the normalized
effective stiffness and the time lag between the torques and angles, resulting in 8
parameters (Engelhart et al., date unknown).

Body sway
The body sway (xBS) was measured over 2 minutes. The movement of the body was
expressed as millimeters of sway.

Statistical analysis

The characteristics of the participants were represented by mean and standard deviation in
case of a Gaussian distribution. Else, median and inter quartile range or number and
percentage were presented. The parameters obtained with system identification techniques
(i.e. sensitivity and time lag of the sensitivity functions, and normalized effective stiffness
and time lag of the neuromuscular controller) and body sway are given as mean and
standard deviation.

Reliability was assessed using the G theory in three steps (Shavelson and Webb, 1991).
First, systematic errors were identified using linear mixed models with trial (intrasession),
day (intersession) and their interaction as fixed effects and participant intercept as random
effect. The various sources of measurement errors were assessed using a random effects
repeated measures analysis of variance (ANOVA) including participant, trial, day and their
interactions. This resulted in the variance of the participants (g,°), the variance of the trials
(f), the variance of the day (0,7, the variance of their interactions (0,7, 0,7 and 0;7) and
the variance of the residual (apm/ez). All were presented as percentages of the total variance.
Negative variance components were set to zero. The sources of variance were used to
calculate the index of dependability (ID), the standard error of the measurement (SEM) and
the minimal detectable change (MDC) using equation 6.3 (Shavelson and Webb, 1991; de
Vet et al., 2006). In which, r;is the number of trials and n7,the number of days.
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Comparable with an intraclass correlation coefficient (ICC), the ID ranges between 0 and 1
and can be interpreted as; ID < 0.40 represents poor reliability, 0.40 < ID < 0.75
represents moderate reliability, and ID > 0.75 represents excellent reliability (Fleiss, 1986).
The SEM indicates the absolute reliability and is represented by an absolute value and a
percentage of the overall mean. The MDC shows which effect (e.g. treatment effect) can be
detected with the parameters of interest and therefore indicates the clinical relevance. A low
SEM and MDC are indicative of a reliable and clinical relevant parameter.

Second, a decision study was performed in which the effect of different measurement
protocols on the reliability was investigated. Aforementioned equations show that increasing
the number of trials or number of days results in an increase of ID and a decrease of SEM
and MDC, i.e. an improvement of reliability. In the decision study, the number of trials was
varied between 1 and 40 trials and the number of days between 1 and 3. Per number of
days, the number of trials needed to reach an excellent reliability was determined in this
group of healthy elderly (ID > 0.75).

Third, a validity study was performed to assess whether differences in the sensitivity
functions represented by the sensitivity and time lag due to increasing disturbance
amplitude of the SS rotation could be detected. A linear mixed model was constructed with
disturbance amplitude as fixed effect and participant intercept as random effect.

Statistical analysis was performed with SPSS version 20 (SPSS Inc., Chicago, USA). Graphs
were made with Matlab (The MathWorks, Natick, MA, United States).
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6.3 Results

Participant characteristics

Table 6.1 presents the characteristics of the healthy old participants. Figure 6.3, Figure 6.4
and Figure 6.5 displays the FRFs of the sensitivity functions to the SS rotations and the VS
rotations, and of the neuromuscular controller.

Systematic errors

Table 6.2 reports the systematic errors. No systematic errors were found for the body sway
(xss). The sensitivity functions show both a main effect of trial and day. Overall, the
sensitivity to the SS rotation was lower during the first trial compared with the second trial
in the sensitivity functions (i.e. =S, *°Sz and *°S7,) and it was lower during the first day
compared to the second and third day (for *°S, and *°S7,). The sensitivity function to the
VS rotation shows the opposite result; the sensitivity of the first trial was higher compared
with the second trial for all sensitivity functions (**Sg,, **Sa “°Sr, and °Sy.). Furthermore,
the time lags of some sensitivity functions (i.e. *°Sy,, and *°S) were higher in the first trial
compared with the second trial. The time lags of ““Sr, and Sy, were also lower during the
first day compared with the third day.

The normalized effective stiffness estimated using the FS and FH disturbances showed an
effect of the trial; one component of the neuromuscular controller (Hg7,) was lower during
the first trial compared with the second trial. No effect of trial and day was found for the
time lags of all components of the neuromuscular controller.

Table 6.1: Participant characteristics. All parameters are presented as mean with standard deviation
unless indicated otherwise. BMI: body mass index, MMSE: Mini Mental State Examination, SPPB: Short
Physical Performance Battery, IQR: inter quartile range.

All (n=12)
Age, years 73.3(3.4)
Men (n, %) 6 (50)
Anthropometry
Weight, kg 72.2(9.1)
Height, m 1.70 (0.08)
BMI, kg/m? 24.9 (2.4)
Health characteristics
Number of medication, median (IQR) 0 (0-0)
MMSE, points; median (IQR) 29 (28-30)
Physical functioning
Handgrip strength, kg 34.7 (8.6)
Gait speed, m/s 1.28 (0.16)
SPPB, points; median (IQR) 11 (10-12)
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Variance components

Table 6.3 shows the magnitude of the variance components as percentage of the total
variance. Variance of the participant (g,,) was on average 20.8% and varied between 0.0%
and 87.3%. The contribution of the trial variance (o) was on average 6.6% and varied
between 0.0% and 28.8%. The contribution of the day variance (o) was on average 2.5%
and varied between 0.0% and 12.5%.

The error variance related to the interactions between the participant and trial (g,),
between participant and day (0,4,) and between trial and day (o) were low; on average
they were 4.3%, 13.4 % and 4.4%, respectively.

The largest proportion of measurement variability was due to the participant variability (apz)
and the other interactions combined with the residual error (aptd/ez) contributing on average
48.0% ranging from 7.2% to 80.8%.

Reliability

Table 6.4 presents the results of the reliability measures. In this study design, the ID of 4
out of 25 parameters was higher than 0.75 and in 12 out of 25 parameters ID was between
0.40 and 0.75. The SEM and SEM % were inverse related with the ID. Furthermore, the
MDC was lower with increased ID. To reach an ID of 0.75, for 32% (8/25) of the
parameters at least ten trials are needed to average over one day. Increasing the number of
days resulted in less trials needed per day to reach an ID higher than 0.75.

Validity

Table 6.5 presents the results of the validity study. The mean and standard deviation of the
parameters of the second trial at the first day are given for each condition. All sensitivities to
the SS rotation decreased with increasing disturbance amplitude and all sensitivities to the
VS rotation increased with increasing disturbance amplitude. No significant differences were
found for the time lag of the sensitivities to the SS rotation and VS rotation. No significant
differences were found between the conditions for the parameters describing the
neuromuscular controller.
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Figure 6.3: Average sensitivity functions of the ankle torque (*°Sr), hip torque (*Sr), leg angle
(**Ss) and hip angle (*°Sa) to the rotation of the support surfaces per day per trial (trial 1 in black and

trial 2 in grey) are presented by mean and standard error, only magnitude is shown.
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Figure 6.4: Average sensitivity functions of the ankle torque (*°Sr,), hip torque (**Sy), leg angle
(**S,) and hip angle (Sg,) to the rotation of the visual scene per day per trial (trial 1 in black and trial
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2 in grey) are presented by mean and standard error, only magnitude is shown.
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Figure 6.5: Average Frequency Response Functions of the neuromuscular controller (i.e. Hazrs, Hopora
Haizrn, Henzrs) per day per trial (trial 1 in black and trial 2 in grey) are presented by mean and standard
error, only magnitude is shown.
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Table 6.2: Systematic errors of all parameters using linear mixed model with day, trial and their
interaction as fixed effect and subject intercept as random effect. Significant differences identified in

bold. n.s. : not significant.

p-value Post hoc analyse
Mean SD trial (t) day (d) txd trial day

Body sway
Xss, MM 330.53 139.12  0.18 0.47 0.29 - -
Sensitivity
functions
Sensitivity
g, . .

o 1.05 038  0.005 019 0.008 'TDE(};I 11 a<”dTr2iaI ,
Sl 0.65 0.17 <0.001 0.05 0.076 Triall<Trial2 -
*Sra 0.99 0.27  0.001 0.007 0.38 Trial 1 < Trial2 Day 1 < Day 3
558, :

™ 0.18 0.05 066  0.001 0.011 _'?%31 < Trial 2 aDr?é’; < Day 2
¥ San 0.78 0.29  0.012 0.55 0.39 Triall>Trial2 -
Y Sal 0.61 0.20  0.026 0.43 0.89 Triall> Trial2 -
¥ Sr 0.84 0.28  0.001 0.35 0.85 Triall> Trial2 -
S 0.13 0.06  0.001 0.66 0.26 Trial 1 > Trial2 -
Time lag
** Sar, deg 118.42 22.60 0.16 0.68 030 - -
*Say deg -92.34 27.47 0.069 0.83 0.11 - -
=g, : -

rar deg 1776 1671 037 0075 0.020 ?ﬁ;l 11>Tria| X
*Sr, deg -42.72 24.36 0.91 0.21 020 - -
Y Sen, deg 64.75  102.49 0.22 0.53 0.56 - -
¥ Sor deg -97.26 3496  0.003 0.17 0.24 Trial1 > Trial2 -
¥ Sy deg 39.19 23.81 0.15 0.031 0.070 - Day 1 < Day 3
S, deg -14.07 46.08 0.84 0.025 0.54 - Day 1 < Day 3
Neuromuscular controller
Normalized effective stiffness
Hanzra 0.70 0.33 0.93 0.83 0.96 - -
Hanzrn 0.21 0.10 0.085 0.022 0.12 - Day 1> Day 2
Hazra 3.70 1.30 0.83 0.21 0.86 - -
Haizmn 0.36 0.21 0.015 0.75 0.85 Trial1 <Trial2 -
Time lag
Henzradeg  -109.72 61.91 0.72 0.21 0.25 - -
Hanzrrydeg 96.07 31.93 0.42 0.10 073 - -
Haorey deg  -112.58 38.74 0.83 0.47 0.80 - -
Har, deg 117.88 28.01 0.48 0.34 0.86 - -
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Table 6.3: Relative magnitude of the variance components obtained with the G-study for all
parameters obtained with system identification techniques.

participant trial day pxt, pxd, txd, pxtxd, e,
(p), % ®, % (d), % % % % %
Body sway
Xgs; MM 87.3 0.2 0.0 0.0 4.7 0.5 7.2
Sensitivity functions
Sensitivity
*Son 24.9 5.5 0.0 3.1 8.7 20.7 37.1
Sy 11.0 28.8 0.0 4.7 9.4 9.8 36.5
S 19.6 15.5 6.7 0.0 11.0 2.2 44.9
S 11.2 0.0 12.5 4.0 23.2 16.9 32.1
Y Son 26.0 10.1 0.3 0.0 0.0 0.0 63.6
Y Sar 0.0 16.2 0.0 22.2 6.7 0.0 54.9
S 0.0 23.7 3.5 19.3 17.2 0.0 36.2
S 39.1 16.7 0.0 0.0 5.9 3.6 34.8
Time lag
S Sen 27.7 1.6 0.0 1.4 0.0 6.3 63.0
Sy 6.9 6.4 0.0 0.0 0.0 5.9 80.8
S 18.9 0.0 0.0 6.0 12.8 17.2 45.1
S 29.6 0.0 0.0 0.0 9.4 6.0 55.0
Y Sen 7.5 5.4 6.0 13.5 14.3 0.0 53.3
Y Sar 3.9 16.0 0.0 12.7 21.3 4.2 41.9
S 41.8 0.0 2.3 0.0 0.0 5.1 50.9
S 20.3 0.0 10.0 0.2 11.9 0.8 56.8
Neuromuscular controller
Normalized effective stiffness
Henzra 48.1 1.2 1.8 0.0 0.0 0.0 48.9
Hapzrn 34.6 1.7 2.5 0.0 4.7 5.0 51.5
Haora 48.9 1.0 3.4 0.0 0.0 0.0 46.8
Haion 21.7 9.0 2.4 0.0 0.0 0.0 66.9
Time lag
Henzra 18.4 0.0 0.0 0.0 33.5 0.3 47.8
Hopzrn 7.8 0.0 6.0 7.9 55.3 1.2 21.7
Heizra 19.0 0.0 0.0 4.9 25.2 0.0 50.9
Haizrn 13.4 0.0 1.4 4.2 50.1 0.5 30.3
Mean 20.8 6.6 2.5 4.3 134 4.4 48.0
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Table 6.4: Reliability statistics of the sensitivity functions and neuromuscular controller.
Abbreviations: ID, Index of Dependability (>0.75 identified in bold); SEM, Standard Error of
Measurement; MDC, Minimal Detectable Change.

# trials / 1 # trials / 2 days # trials / 3 day

day >0.75 >0.75

D SEM SEM% MDC >0.75
Body sway
xss mm 097 2501 757  69.32 1 1 1
Sensitivity functions
Sensitivity
55 Sen 0.60 0.17 16.23 0.47 >40 6 3
55y 0.28 0.10 15.25 0.27 >40 >40 32
S, 0.48 0.13 13.45 0.37 >40 22 6
5Sm, 0.34  0.03 14.86 0.07 >40 >40 >40
S Son 0.62 0.13 17.14 0.37 8 4 3
Sy 0.00 0.12 19.97 0.34 >40 >40 >40
S, 0.00 0.19 22.41 0.52 >40 >40 >40
S 0.70  0.03 19.85 0.07 5 2 2
Time lag
**Sery deg 0.68 8.94 7.55  24.78 7 4 3
%S, deg 0.28 14.78 16.01  40.97 36 18 12
%55, deg 0.52 7.42 41,79  20.57 >40 >40 11
%Sm, deg  0.69  9.58 22.42  26.55 >40 6 3
Y5 Sn deg 0.23 59.54 91.95 165.03 >40 >40 >40
S, deg 0.12 19.85 20.41  55.03 >40 >40 >40
“S.,deg  0.81  8.39 21.41  23.26 4 2 2
“Sy, deg  0.54 19.82 140.83  54.92 >40 37 7
Neuromuscular controller
Normalized effective stiffness
Hepora 0.84 0.13 18.01 0.35 2 2
Hepzrm 0.73 0.04 18.07 0.11 8 3 2
Haizra 0.84 0.48 12.89 1.32 3 2 1
Haizrn 0.57 0.12 32.21 0.32 10 5 4
Time lag
Hopor deg  0.49  29.55 26,93  81.90 >40 >40 >40
Hopory deg 0.22  16.64 17.33  46.14 >40 >40 >40
Hgzr deg 0.50  17.55 15.59  48.64 >40 >40 >40
Hgzrmy deg 0.35  13.97 11.85 38.72 >40 >40 >40
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Table 6.5: Mean and standard deviation of the parameters describing the sensitivity functions and the
neuromuscular controller corresponding to three conditions with increasing disturbance amplitude,
combined with statistical results.

0.02 rad 0.03 rad 0.04 rad p-value

Mean Ssb Mean SsD Mean sD
Sensitivity functions
Sensitivity
*Saon 1.13 0.31 0.94 0.41 0.82 0.24 0.003
> Sar 0.73 0.14 0.58 0.13 0.48 0.09 <0.001
*Sra 1.08 0.21 0.93 0.20 0.75 0.13  <0.001
*Sm 0.19 0.05 0.18 0.05 0.15 0.03 0.001
¥ Sen 0.73 0.22 0.82 0.28 0.93 0.27 0.18
Y Sal 0.58 0.14 0.63 0.16 0.77 0.28 0.079
" Sra 0.73 0.25 0.90 0.23 1.04 0.39 0.044
S, 0.12 0.04 0.14 0.05 0.17 0.07 0.015
Time lag
** S, deg 11474  19.76 11447 2132 115.66  19.37 0.98
*Sar deg -98.15  24.46 -105.43  20.26 9220  30.52 0.42
%S deg 16.34  11.98 15.39 8.90 22.39  12.54 0.094
*Smy deg -37.66  32.00 4171 12.53 41,50  15.35 0.81
¥ Some deg 52.80 117.92 23.45 140.10 94,19  42.41 0.32
¥ Sar deg -96.04 3173 -105.29  44.74 -102.27  19.63 0.80
¥ Sy deg 43.44  25.46 36.72  27.95 40.84  18.80 0.73
S, deg -0.46  32.38 9.24  31.00 9.29  24.15 0.33
Neuromuscular controller
Normalized effective stiffness
Hanzra 0.70 0.26 0.80 0.49 0.75 0.28 0.61
Hanzrn 0.18 0.05 0.20 0.08 0.19 0.11 0.74
Hazrs 3.70 1.21 3.93 1.60 3.93 1.03 0.80
Haizmn 0.42 0.25 0.39 0.22 0.29 0.15 0.29
Time lag
Hanzray deg -89.99  73.93 -76.50  66.69 -78.23  78.66 0.89
Henory deg 102,46 39.66 119.09  44.69 119.24  36.63 0.42
Hazry deg  -110.27  58.82 -86.77  37.46 -108.93  48.49 0.28
Heizr, deg 123.08  36.14 136.45 31.24 138.22  29.81 0.37
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6.4 Discussion

In this study, we assessed the reliability of a comprehensive set of parameters obtained
with four disturbances applied simultaneously and (MIMO closed loop) system identification
techniques describing standing balance in a group of healthy elderly. Results were obtained
by measuring standing balance twice during three days. A distinction was made between
systematic and random errors. The results showed a systematic error between the first and
second trial with the BalRoom on one day, which was not found using body sway
measurements. The reliability ranged from moderate to excellent when averaging two trials
on three days. This is the first study that investigated the reliability of system identification
techniques to assess standing balance in healthy elderly.

Systematic errors

In general, the sensitivity to the SS rotation was lower in the first trial compared with the
second trial, while the sensitivity to the VS rotation was higher in the first trial compared to
the second trial. These results are confirmed by the variance component of the trial (/)
and day (o); a high variance component of trial and day indicates a systematic error.
Previous studies using system identification techniques also showed a systematic error
between the first and second trial or between days. These differences were explained by
motor learning, changes in posture or stretching of the joints (Reeves et al., 2014; Lariviere
et al., 2015; Popovich et al., 2015). In contrast, in a previous study no learning effects were
found. These results might be due to the practice session all participants performed prior to
participation in this study (Hendershot et al., 2012).

In this study, the differences between the first trial compared with the second trial (i.e. a
lower sensitivity to proprioception and a higher sensitivity to vision during the first trial)
could be explained by a difference in strategy used to maintain standing balance or
familiarization during the test. According to the sensory reweighting hypothesis, sensory
information is weighted based on reliability; the weight of the proprioception increased at
the cost of a decrease of the weight of the other sensory information (Peterka, 2002). As
the sensitivity to the disturbances represents the contribution of the proprioceptive and
visual information, the sensitivity to the SS rotation increases, while the sensitivity to the VS
rotation decreases. The combination of mechanical disturbances with sensory disturbances
of the visual and proprioceptive information could have resulted in a longer adaptation time
or a redundancy of applied strategies to withstand the disturbances. However, comparable
systematic errors within a day were found in healthy elderly (unpublished data) in a
previous study using only SS rotation to disturb proprioceptive information (Pasma et al.
submitted), which suggest that the longer adaptation time is not due to the combination of
multiple disturbances. In contrast, no systematic errors were found in healthy young adults
(unpublished data). This is an indication of increased adaptation time in elderly compared
with young adults. When a steady state of standing balance is to be assessed, a
familiarization trial is needed on the same day to overcome the systematic error between
trials. Excluding the first trial of each day resulted in less systematic errors between days.

116



Reliability

The variance component of the participant (g,°) corresponds to the ICC when both r,and 7,
are equal to one. The reliability of the parameters ranged from poor to moderate. To
increase reliability of steady state balance assessment, multiple trials on more than one day
have to be performed. The ID values indicate that performing two trials on three days
results in a reliability ranging from moderate to excellent needed to discriminate between
healthy old individuals. A high residual variance (apm,ez) component indicates that a majority
of the measurement error is random or can be attributed to error sources not identified in
the study.

In this study, relative low SEM% were found (<20%), which is comparable with other
studies using system identification techniques (Lariviere et al., 2015). A low SEM% indicates
that the parameter could detect changes over time within the same participant (e.g. effects
of intervention or changes in conditions). However, the SEM values depend on the number
of trials performed on the number of days. The MDC values are in the same order as in a
previous study using only SS rotation in healthy elderly (unpublished data) and indicates
which change in the parameters can be minimally detected, when comparing groups or
within the same participant. It is difficult to interpret the MDC results of new parameters. To
get more feeling for this measure and to get more insight in the clinical relevance, it is
recommended to assess standing balance using system identification techniques in several
groups of elderly with a large variance in impaired balance severity and clinical phenotypes
(de Vet et al., 2006).

The results showed that at least 10 trials on one day are needed to reach an excellent
reliability for steady state balance assessment in almost one third of the parameters. In this
study, averaging trials across days seems to be more effective than averaging more trials
per day. These results are consistent with the variance component of interaction; the
variance component of participant x day (Updz) is much higher than the variance component
of participant x trial (g,7). This means that the parameters for each participant were more
affected by between day than within day sources of error, relative to the other participants.
These results are in accordance with previous studies; Lariviere et al. (2015) also showed
that one till ten trials were needed to assess an excellent reliability for parameters obtained
with system identification techniques (Lariviere et al., 2015). A lower reliability seems to be
a general feature of position stabilization task in contrast to tracking tasks (Popovich et al.,
2015).

Validity

The validity study showed that differences could be detected within participants by changing
the experimental condition. It was possible to detect changes over conditions using one
trial. Increasing the disturbance amplitude of the SS rotation resulted in a decreased
sensitivity to the SS rotation and an increased sensitivity to the VS rotation. This result was
expected according to the sensory reweighting hypothesis, as mentioned before. Our
findings are therefore also in line with previous studies investigating sensory reweighting
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during standing balance using system identification techniques (Peterka, 2002; Pasma et al.,
2012). No changes were found in the neuromuscular controller by increasing the
disturbance amplitude of the SS rotation. This is following our expectations, as changes in
sensory information does not influence the stiffness and damping of the neuromuscular
controller. These results are also in accordance with a previous study, in which we showed
that the neuromuscular controller did not change with increasing disturbance amplitude of
the SS rotation (Pasma et al., 2012).

System identification techniques compared to posturography

System identification techniques are a new engineering approach to assess standing
balance. In contrast with posturography, a general used technique to assess standing
balance, it is possible to detect underlying systems and used strategies in standing balance
(Engelhart et al., 2014; Pasma et al., 2014b). In this study, we assessed standing balance
with both system identification techniques and posturography (i.e. body sway). Compared to
system identification techniques, no systematic errors and a higher reliability were found for
posturography.

In comparison with our results of system identification techniques, studies investigating the
reliability of the Sensory Organization Test (SOT) showed a learning effect in healthy young
due to changes in postural strategies or through reweighting of sensory information.
Remarkably, this learning effect was only present in more demanding test conditions
(Wrisley et al., 2007). Studies investigating the reliability of Center of Pressure (CoP)
parameters did not find systematic errors (Ageberg et al., 2003; Moghadam et al., 2011),
which is comparable with our results of the body sway, but in contrast with the system
identification techniques results. This could be explained by the influence of used strategies
to maintain balance on the parameters. CoP parameters only describe objectively standing
balance, while system identification techniques also describe the underlying changes.
Therefore, changes in strategies between trials will not be detected by CoP parameters and
do not influence the reliability of CoP parameters.

The reliability of the SOT was moderate in noninstitutionalized old adults when 2 sessions of
the test were performed 1 week apart. To improve the reliability of the computer-generated
scores of the SOT, a modification of the scoring system was recommended (Ford-Smith et
al., 1995). The reliability of CoP parameters depends on the test condition, study design,
study population and therapeutic interventions (Ruhe et al., 2010). To reach an excellent
reliability of CoP parameters, the duration of the trial must be minimal 90 seconds, must by
three to five times repeated and must be measured with eyes closed and on a firm surface
(Ruhe et al., 2010). Santos et al. (2007) showed that at least 7 repetitions must be
performed to reach an excellent reliability for CoP parameters (Santos et al., 2008). This is
comparable with our study, in which measurements of approximately two minutes were
used to assess standing balance and must be repeated ten times to reach an excellent
reliability. The found relative low SEM% (<20%) are comparable with other studies using
CoP parameters (Santos et al., 2008).
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Clinical recommendations

First, the results indicated that there is a systematic error between the first trial and the
second trial. This could be due to changes in used strategies to maintain standing balance
and time needed to reach a steady state. Therefore, to assess steady state balance we
recommend to perform one familiarization trial on each day. As in this study only two trials
were performed per day, it was not possible to assess the number of trials needed to reach
an excellent reliability when omitting the first trial from analysis. Second, results showed
that averaging over days is more effective than averaging within days. However, in clinical
practice it is not feasible to measure on more than one day. Performing multiple
measurements on one day could be hampered by fatigue or boredom of the participant,
which has to be taken into account.

As mentioned before, systematic errors might be due to more time needed for reaching a
steady state balance or a redundancy of applied strategies. This implies that parameters
obtained with system identification techniques are sensitive for detection of adaptation
strategies. Besides steady state balance, adaptation strategy and adaptation time may have
clinical meaning and need further exploration. System identification techniques are sensitive
tools to assess the duration of adaptation of sensory reweighting (Asslander and Peterka,
2014) in contrast to e.g. CoP measurement.

Strengths and limitations

The strength of this study is the selection of healthy old participants, resulting in a well
phenotyped group. However, this also affects ICC and ID. Low variability within the
participants (i.e. a homogeneous population) results in lower ICC and ID values and
therefore lower relative reliabilities (Keating and Matyas, 1998; Weir, 2005). SEM(%) and
MDC are measures of absolute reliability and important measures when interpreting results
of repeated measures effects of intervention. Another strength of this study is the set up
with exactly one week between sessions. A limitation of this study is the relative low number
of participants. As only two trials per day were performed, reliability within a day could not
be assessed excluding the first (familiarization) trial.

6.5 Conclusion

This study investigated the reliability of a comprehensive set of parameters obtained with
system identification techniques to assess standing balance in a population of healthy
elderly. Systematic errors were present between trials showing sensitivity of parameters
obtained with system identification techniques for detection of adaptation strategies. To
assess steady state balance a training session is recommended. As only a single trial per day
resulted in poor to moderate reliability, it is recommended to perform more trials on
separate days. Within the present framework, acceptable reliability of steady state balance
assessment could be achieved by measuring and averaging at least ten trials on the same
day.
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Chapter 7

General Discussion

Balance control involves the contribution of neural, muscular and sensory systems, which
work together via complex feedback pathways in a closed loop. With age or disease, the
underlying systems in balance control can deteriorate; e.g. muscle strength decreases, the
sensory systems become less accurate, the processing time of sensory information increases
and the neural conduction time increases (Rubenstein, 2006; Sturnieks et al., 2008). To
maintain balance in various situations and to prevent falling, the underlying systems can
compensate for each other’s deterioration; i.e. there exists some redundancy within the
closed loop system of balance control. However, when the deterioration in the underlying
system is too severe, or when the systems which could compensate are also affected,
impaired balance tends to become symptomatic and the risk of falling increases (Muir et al.,
2010). In Europe, approximately 30% of people over 65 years of age fall each year.
Between 20% and 30% of those who fall suffer from injuries that reduce mobility and
independence - such as hip fractures (1-2%), other fractures (3—5%) or head injuries
(5%) (NVGK, 2004) - and increase the risk of premature death (WHO, 2007).

This thesis contributes to the large societal problem of balance impairment and associated
falls. The general goal was to create further insight in the (patho-)physiology of standing
balance control in elderly. To prescribe targeted therapy on an individual level to reduce the
consequences of falls (Engelhart et al., 2014; Pasma et al., 2014b), it is first important to
detect the primarily deteriorated underlying system and the possible compensation
strategies that are at work. In this thesis, a novel experimental set-up and data-analysis
method was introduced to assess the contribution of the underlying mechanisms in standing
balance control. With this experimental approach age-related changes in standing balance
control were quantified and the approach for application in clinical practice was validated. In
this discussion, the major objectives of the thesis are summarized and discussed.
Furthermore, some implications and directions for future research are described together

with a long term perspective of balance control studies and its clinical application.
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7.1 Assessing the contribution of the underlying mechanisms

in standing balance control

If one investigates balance control and ignores the closed-loop property of balance control,
cause and effect relations remain unclear and the contribution and quality of the underlying
systems are almost impossible to detect, especially when someone uses compensation
strategies. Chapter 2 describes that clinical balance tests are unable to reveal how well the
underlying systems in balance control are functioning, they have little influence on clinical
decision making and prescribing targeted therapy to reduce the consequences of impaired
balance (Visser et al., 2008; Pasma et al., 2014b). Therefore, the first research objective of
the thesis was to develop novel and improved experimental techniques to assess the
contribution of the underlying mechanisms in standing balance control. The neuromuscular
controller describes the continuous and closed-loop mechanism of how balance is regulated,
and was the system of main interest throughout this thesis. A novel control-engineering
approach was introduced, termed system identification techniques. In combination with a
specifically designed experimental set-up; i.e. the BalRoom, it became possible to identify
the dynamics of the neuromuscular controller, which gives the opportunity to detect
changes in balance control with age or disease.

System identification techniques to unravel balance control

As the field of system identification is very broad there are differences in experimental
design, use of disturbance signals and the applied methods. Therefore, in Chapter 3, various
existing system identification methods were compared, based on model simulations. Model
simulations have the advantage that the outcome of various methods can easily be
compared to the known theoretical dynamics of the simulated system. Results indicated that
non-parametric system identification techniques estimated the dynamics of the
neuromuscular controller reliably, whereas parametric system identification techniques in
general resulted in a poor estimation. A disadvantage of parametric methods is that a model
structure is assumed to describe the data and the noise properties that influence the
system. If the underlying dynamics of the system or noise cannot be described by this
model structure, this yields erroneous results. Non-parametric methods estimate the system
dynamics without any a priori assumptions about the underlying structure. The external
disturbance signals are best chosen to be multisine signals, in favour over noise
disturbances, as this resulted in the lowest Noise to Signal Ratio and specific frequencies of
interest can be excited. The outcomes of the study in Chapter 3 resulted in an applicable
system identification technique with which it became possible to reliably identify the
underlying mechanisms (i.e. the neuromuscular controller dynamics) in standing balance
control.

Therefore, in the following chapters of this thesis, non-parametric system identification
techniques in combination with multisine disturbances were used to identify the dynamics of
the neuromuscular controller, which was expressed in Frequency Response Functions
(FRFs). Results in Chapter 4-6 show that the FRFs reliably describe the dynamics of the
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neuromuscular controller, and are sensitive enough to detect changes with age or condition;
e.g. humans adapt their postural responses to external force fields (Chapter 4), elderly
adapt their postural responses less to external force fields compared to young (Chapter 5),
and with an increasing disturbance of proprioceptive information, humans lower their
reliance on proprioceptive information and increase their reliance on visual information
(Chapter 6).

To reveal which mechanisms are underlying the neuromuscular controller dynamics, a
parametric model was introduced in Chapter 5, which was fitted onto the obtained FRFs.
The outcome measures of the model fits are now specific parameters which allows
physiological interpretation. A prerequisite for the reliable estimation of model parameters is
a reliable FRF (i.e. obtained non-parametrically with multisine disturbances). Nevertheless,
compared to the parametric-system identification methods, interpretation of the model
parameters must be done carefully. It is important to keep in mind that a balance must be
found between the amount of parameters and the goodness of the model fit. Few
parameters result in poorer fits, however the variance within the parameters is lower and
therefore the estimated parameters are more accurate. Vice versa, a large amount of
parameters improves the goodness of the model fit, but can result in a less accurate
estimation due to higher variance within the parameters; i.e. some of the parameters may
not provide interpretable information about the system. With the model fits, age related
differences in intrinsic properties and time delays were found; i.e. elderly had higher
intrinsic stiffness of the ankle joint and larger time delays of the hip, compared to young
participants. The parameter values corresponded to other studies, which used similar model
fitting approaches (Peterka, 2002; Mahboobin et al., 2005; Cenciarini, 2010; Davidson et al.,
2011).

In Chapter 6, model parameter estimation on the data obtained with the BalRoom, required
the development of extended parametric models, including multi-joint feedback paths and
integration of sensory information (Peterka, 2002; Pasma et al., 2015). The best model with
the right amount of parameters has yet to be investigated. Therefore only non-parametric
parameters which describe balance control were used, such as the average magnitude at
low frequencies and the phase shift on high frequencies.

The BalRoom creates the possibility to investigate multivariate balance control
System identification approaches requires dedicated experiments, with specifically designed
equipment to apply external disturbances on specific places of the human body. In Chapter
4, the Double Inverted Pendulum Perturbator (DIPP) was developed to apply well known
force disturbances at the level of the hip and between the shoulder blades, which made it
possible to study the contribution of the ankles and hips in balance control; i.e. multi-joint
coordination. The application of external force fields (implemented as virtual springs in the
controller) allowed to study adaptation of multi-joint coordination, by external
(de)stabilization of the participants’ balance.

123



All young and elderly participants were able to maintain balance in all experimental
conditions, using equal disturbance amplitudes. The ability to maintain balance must be
further studied in a population with impaired balance; e.g. Parkinson’s disease patients,
which are known to have asymmetrical balance responses (Boonstra et al., 2014a). The
amplitude of the disturbances must be low enough to be able to maintain standing balance
(this requires submaximal disturbance amplitudes), but high enough to detect a response
and to apply system identification techniques.

To obtain more insight in the use of sensory information, two sensory disturbances were
added to the force disturbances in Chapter 6. A proprioceptive disturbance was applied with
the Bilateral Ankle Perturbator (BAP), which created support surface rotations around the
ankle joints. A visual disturbance was applied by rotation of the visual scene, using the
VIsual Perturbator (VIP). The integration of all three devices resulted in the BalRoom, in
which the two force disturbances and the two sensory disturbances were applied
simultaneously (Figure 7.1). This protocol was tested in a population of healthy elderly. All
healthy elderly were able to maintain standing balance in all conditions. However, compared
to application of only force disturbances in Chapter 5, the amplitude of the disturbances in
the BalRoom protocol was lower. Adding multiple disturbances, reduces the amplitude
someone can withstand while keeping their feet in place. Nevertheless, the disturbance
amplitudes were sufficient to detect responses and to apply system identification
techniques.

The BalRoom is a unique device, able to apply multiple disturbances to challenge the
balance control system. As the disturbances have separate frequency content, the human
responses can be related to each disturbance. Within one measurement, the neuromuscular
controller properties can be studied, separating the contribution of proprioceptive
information, visual information and the control of the ankle and hip joint. The DIPP was
validated in a study detecting age related differences in multi-joint coordination (Chapter 5).
The BAP was validated prior to the BalRoom project, in a study detecting changes in sensory
weighting and reweighting of proprioceptive information between the left and right leg
(Pasma et al., 2012) and with age and disease (Pasma et al., 2015). The BalRoom was
validated so far based on a population of healthy elderly (Chapter 6). More evidence is
needed for using the BalRoom, based on a comparison between young and healthy elderly
and an elderly population with a specific disease or with impaired balance, which is
eleborated on further in this discussion.

7.2 Quantifying age related changes in balance control

The second research objective of the thesis was to quantify age related changes in balance
control. Recent studies have shown that differences between young and elderly were the
most pronounced in multi-segmental balance control coordination (Accornero et al., 1997;
Hsu et al., 2013); i.e. involving the contribution of the ankles and hips in balance control.
Within the clinical practice and research field, various approaches exist to detect balance
control differences with age. An easy approach is to use questionnaires about fall history
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and balance impairments. However, the self-reported problems with balance control are
often biased, as people tend to forget when they have fallen or under-estimate the risk of
impaired balance (Bean et al., 2011). Another recent study showed that the ability to
maintain standing balance in side-by-side stance with eyes closed is a useful clinical
measure to detect impaired standing balance in elderly (Pasma et al., 2014a). This method
is a very easily applicable clinical measure, as it does not require any equipment and it is not
time consuming.

Other clinical balance tests are used to measure the quality of standing balance in clinical
practice, often looking at Centre of Pressure movements (CoP) derived from standing under
various conditions on a force plate (Winter et al., 1990; Visser et al., 2008; Ruhe et al.,
2010; Kingma et al., 2011; Pasma et al., 2014a). The CoP movement describes the quality
of balance control by representing the quality of all systems together, which hampers the
interpretation of CoP movements as cause and effect relations remain unclear. The ability to
maintain balance is influenced by various factors; e.g. muscle characteristics, cognition,
blood pressure regulation and the quality of the sensory systems. Deterioration in one
system can be compensated by one of the other systems and it is therefore difficult to draw
conclusions about the primary impaired system.

Age related changes in balance control might become more apparent when the difficulty of
the test condition is increased. With increasing difficulty of the condition, the balance control
system fails at some point, depending on the quality of the underlying systems and the use
of compensation mechanisms. It might be a useful measure to therefore evaluate
compensatory stepping responses. A larger number of steps to recover from a perturbation
identifies people with impaired balance, which are more prone to falls (Nonnekes et al.,
2013). Other age related differences are delayed reaction times, smaller step lengths, lower
step velocities and lower joint torques of the stepping leg after foot contact (Weerdesteyn et
al., 2012). Impaired balance control can also become apparent during gait. Gait
characteristics extracted from trunk acceleration during daily-life gait are associated with fall
history and can be complementary to current clinical tests, such as questionnaires (Rispens
et al., 2015). Accelerometer measurements during daily life activities have the advantage
that laboratory-based gait and balance assessments can be reduced.

Although these techniques are easy to apply in clinical practice, they lack in acquiring
information about the deterioration of the underlying systems involved in balance control
and they often do not include multi-joint coordination (Chapter 2). System identification
techniques allow to study age related changes in balance control, detecting the contribution
and quality of the underlying mechanisms.
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The Double Inverted Pendulum
Perturbator (DIPP)

The Balance Test Room (BalRoom)

The Visual Perturbator (VIP)

Figure 7.1: Experimental setup of the BalRoom, consisting of three devices; the DIPP, BAP and VIP.
The BalRoom makes it possible to identify the contribution of the ankles and hips in balance control,
together with the contribution of proprioceptive and visual information.
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In Chapter 5, system identification techniques were applied to investigate how humans
adapt their multi-joint coordination to adjust to external (de)stabilizing force fields and
whether this differed with age. Results showed that elderly generated similar corrective joint
torques but had reduced body sway compared to young participants; suggesting that elderly
were stiffer. When a stabilizing or destabilizing external force field was applied at the hip,
both young and elderly participants adapted their multi-joint coordination by lowering or
respectively increasing their neuromuscular control actions around the ankles; expressed in
a change of FRF magnitude. However, elderly adapted less compared to young participants.
Model fits on the FRFs showed that elderly had comparable reflexive stiffness and reflexive
damping to the young. However, elderly had higher intrinsic stiffness properties of the
ankles their time delays around the hip were increased. With the current clinical balance
tests, it was not possible to distinguish cause and effect relations in a closed loop and the
contribution of the underlying systems involved in standing balance. With the system
identification approach it now became possible to quantify age-related changes in balance
control, including differences in multi-joint coordination.

The age related differences in Chapter 5 result from a population of healthy elderly. More
evidence is needed by detecting changes in elderly with a known deterioration in balance
control. Another study performed within the BalRoom project shows that with the Bilateral
Ankle Perturbator (BAP), it is possible to distinguish underlying changes in the use of
proprioceptive information within an elderly population with cataract, polyneuropathy and
impaired balance (Pasma et al., 2015). Another study using system identification approach
shows that it possible to detect asymmetries in balance control, in a population of
Parkinson’s’ disease patients and age matched controls (Boonstra et al., 2014a). The
ultimate proof to validated the use of system identification techniques to detect age related
changes in balance control, is to select a random subject from a healthy young population, a
healthy elderly population, and a population with a known deterioration of a specific
underlying system and trace from which group this subject was selected. Clustering of
phenotypes allows to study the sensitivity of system identification methods to detect specific
deteriorations in balance control.

7.3 The application of system identification techniques in a

clinical setting

The third and final research objective of the thesis was to validate the use of system
identification techniques for clinical application. Before introducing the method into clinical
practice for diagnosing or monitoring treatment of impaired balance, it is important to
assess the reliability of this technique and compare it with current clinical balance measures.
In Chapter 6, the reliability of standing balance parameters was studied, with all BalRoom
disturbances applied simultaneously (i.e. two force disturbances at the hip and shoulder and
two sensory disturbances of proprioceptive and visual information) and using system
identification techniques to assess standing balance in healthy elderly. The balance
parameters were non-parametrically obtained values from the FRF, representing the mean
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magnitude at low frequencies and the phase shift at high frequencies. The reliability was
compared with a parameter that represented the amount of body sway, often looked at in
clinical balance tests. Results were obtained by measuring balance parameters twice during
three days.

A systematic error was found in the balance parameters; i.e. parameters differed between
the first and second trial on one day. Therefore, when steady state balance control is to be
assessed with system identification techniques, a familiarization trial is needed on the same
day to overcome the systematic error between trials. Although the parameters were reliable;
i.e. changes over time could be detected within the same participant (e.g. effects of
intervention or changes in conditions), results showed that at least 10 trials on one day
were needed to reach an excellent reliability for steady state balance assessment. As one
trial lasted approximately 2 minutes, 20 minutes of data were required to assess balance
control within one experimental condition. When measuring on multiple days, less trials per
day were needed to reach an excellent reliability.

Aiming for excellent reliability poses restrictions on clinical application. There is limited time
in clinical practice and it therefore preferable to perform all measurement trial on the same
day. In Chapter 6, we studied sensory reweighting of proprioceptive information in three
experimental conditions (support surface rotations). To reach an excellent reliability,
approximately 60 minutes of data must be recorded. Fatigue and boredom of the
participants may now play an important role, which hampers clinical implementation.

Compared to system identification techniques, no systematic errors and a higher reliability
were found for the body sway parameter. However, the body sway parameters only
describes standing balance objectively, while system identification techniques also describe
the underlying changes. Therefore, the use of system identification techniques has added
value over current clinical balance measures, such as body sway. Possibly, the best of two
worlds can be combined; body sway measures can first detect impaired balance control, and
with the use of system identification techniques the underlying cause can be detected.

7.4 Future directions

Towards targeted interventions of impaired balance

In future studies it is important to expand the reliability studies from FRFs to estimated
model parameters. This might indicate the accuracy of the model structure of the
neuromuscular controller and the minimal detectable change of the parameters.
Furthermore, a next step is to relate the estimated parameters to treatment options, to
validate if targeted interventions can be set up based on the outcomes of the system
identification techniques. So far, the BalRoom and system identification techniques give
more insight in the underlying physiology of balance control and the changes with age.
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Development of time-varying system identification techniques

The system identification methods used throughout this thesis, assume that underlying
dynamics of the neuromuscular controller behaves linearly and time invariant (the behaviour
is not altered over time). With the right experiment and small disturbance amplitudes,
human stance behaviour can be assumed linear around the point of equilibrium (upright
stance) and with short measurement times (which reduces fatigue), time invariant
behaviour can be assumed. Therefore the LTI (linear and time-invariant) system
identification techniques, as were used in this thesis give reliable estimates of the
neuromuscular controller dynamics.

However, the parts that compose the neuro-musculoskeletal system show a time-varying
behaviour, as changing muscle activation is required for various tasks (de Viugt et al.,
2002), (Ludvig et al., 2011). Furthermore, postural responses typically adapt or habituate
when perturbations have various directions and sizes (Keshner et al., 1987; Bloem et al.,
1998). Finally, there are changes due to performance limitations, like fatigue. In sum,
humans adapt their behaviour in time, indicating that balance control is anticipative, which
challenges the assumptions of linearity and time invariance. With age or disease, a slower
adaptation to changing environmental conditions increases the risk of falling.

Experimental studies also report on this time-varying behaviour. One study (Goodworth and
Peterka, 2012) found that subjects effectively adapt their sway response in a changing
environment, by down-weighting the unreliable sensory information and up-weighting the
other information sources. This down-weighting occurs faster than up-weighting as
unreliable information is more threatening for balance control and therefore adaptability of
sensory reweighting is of interest. The speed of reweighting is functionally important
because failure to adjust rapidly enough can result in instability and falls when subjects
either fail to generate sufficient corrective torque to resist gravity or generate too much
torque resulting in resonant behaviour (Asslander and Peterka, 2014). Another study (van
Asseldonk et al., 2006) shows that in stroke patients, the contribution in balance control
between the two legs can be asymmetrical. Posing more weight on the affected leg can
alter the controller properties between the legs to remain an upright stance.

These studies showed variation in control behaviour between changing environments or
operation points, when the experimental outcomes are averaged over multiple trails.
Nevertheless, the response to very first and fully unpracticed trials may provide useful
insights into the mechanisms associated with truly unexpected adaptations. We thereby gain
more understanding about the underlying mechanisms in human balance control, compared
to actions that happen in everyday tasks. To study this variation in time and to identify the
changes in human balance control behaviour, time-varying system identification techniques
are needed. As the current LTI techniques as were used in this thesis, requires an average
over ten trials to obtain excellent reliability, detecting time varying behaviour is challenging.
It possibly requires many transitions between conditions, increasing measurement time and
fatigue of the participants.
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Future perspectives of the BalRoom

In addition to reliable system identification methods, accurate application of external
disturbances is important to obtain an estimate of the neuromuscular controller dynamics.
The Balance Test Room (BalRoom) was developed modularly, to test if the application of
individual disturbances resulted in the desired outcome measures. Subsequently, the
modules were combined to study the application of simultaneous disturbances on the
balance control system. The BalRoom device as it exists now poses restrictions on the
clinical applicability. Although the BalRoom is a stand-alone device, the integration of the
equipment can be improved. The BalRoom is extremely large and cannot easily be
transferred between rooms within or between clinics. Further development should focus on
integration of the three modules, reducing the size and making it transferable at an
affordable price. Additionally to the existing hardware, it is recommended to include
electromyography (EMG) measurements to obtain a reliable estimate of the contraction level
of the muscles (in addition to measuring joint torques). Furthermore, one can include
galvanic stimulation to study the quality and integration of all three sensory systems. Finally,
adding a cognitive task can expand the current BalRoom to include cognitive influences on
balance control.

Using the BalRoom and system identification techniques as a diagnostic tool, can help to
detect impaired balance and ultimately reduce the consequences of falls in the elderly.
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Summary

Humans are able to maintain balance in many daily life activities and under numerous
environmental conditions. However, bipedal stance is inherently unstable and without a
stabilizing control mechanism we would fall. Control of balance comprises a complex
interplay of various underlying systems (i.e. the sensory systems, the motor system, and the
nervous system), which together form the neuromuscular controller. With age, the
underlying systems of the neuromuscular controller can deteriorate, which increases the risk
of falling and especially the consequences of a fall become more severe. The general goal of
this thesis is to create further insight in the (patho)physiology of standing balance control in
elderly, by specifically developing novel and improved experimental techniques to assess the
contribution of the underlying mechanisms in standing balance control.

Chapter 2 describes that available clinical balance tests determine the patient's ability to
maintain standing balance under defined test conditions and aim to describe the current
state of this ability. However, these tests are unable to reveal how well the neuromuscular
controller is functioning and the tests have little influence on clinical decision making.
Especially detection of early-stage balance control deterioration is difficult, because the
balance control system is redundant and elderly may use compensation strategies; i.e.
cause and effect relations are unclear. There is a clear need for new methods to identify the
underlying mechanisms and compensation strategies. System identification techniques in
combination with specifically designed external disturbances, may provide a way to
disentangle cause and effect in balance control. By externally exciting the system with a
unique input that is not related to the internal signals of the system, creates a causal
relation between the external disturbances and output signals. By appropriate analysis,
specific parts of the system can be identified; e.g. the neuromuscular controller dynamics
under various conditions. Furthermore, a mathematical model of balance control (consisting
of physiologically relevant parameters) can be fitted to the acquired data. These parameters
can be compared between groups, individuals or conditions.

Differences between young and elderly often become more pronounced in multi-segmental
balance control; i.e. studying the coordination between the ankles and hip joints in balance
control. The application of system identification techniques in human balance control is
challenging when considering multi-segmental balance control, in which the human body is
modeled as a double inverted pendulum; i.e. a multiple-input-multiple-output (MIMO)
system. The system must be externally excited with an independent disturbance for each
degree of freedom in the MIMO system. In this thesis, force disturbances were applied at
the hips and between the shoulder blades. As the field of system identification is very broad,
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with many approaches and various techniques and methods, it is far from trivial to compare
the methods reported in literature, as there are always differences in experimental design,
use of external disturbance signals and the results are presented in different ways.

Therefore, in Chapter 3, various existing MIMO non-parametric and parametric system
identification techniques were compared, in combination with multiple designs of external
force disturbances at the hips and between the shoulder blades. Comparison was based on
model simulations; i.e. by simulating a two segmental balance control model that contains
the dynamics of the underlying physiology, and applying force disturbances on the hips and
between the shoulder blades. Validation of the techniques was based on the estimation of
the neuromuscular controller dynamics in the time and frequency domain. Results indicated
that non-parametric techniques with multisine disturbances gave the most accurate
estimation of the neuromuscular controller mechanisms in both the time domain and
frequency domain. Based on these outcomes, this system identification approach was
applied in the experimental studies in Chapter 4 and Chapter 5.

In Chapter 4, a novel device was presented - the double inverted pendulum perturbator
(DIPP) - which can apply disturbing forces at the hip level and between the shoulder
blades. In addition to the disturbances, the device can provide force fields to study
adaptation of multi-joint coordination. The performance of the DIPP and validation of the
system identification approach was assessed by first identifying a system with known
mechanical properties. A double inverted pendulum was successfully identified, while force
fields were able to keep the pendulum upright. An experiment with healthy young subjects
where a stabilizing force field was rendered at the hip, showed that humans adapted their
balance control responses, by lowering their control actions around the ankles. These results
imply that the DIPP in combination with system identification methods allows to study
(pathological) changes in multi-joint coordination as well as adaptive capacity to maintain
standing balance.

In Chapter 5, age-related changes in multi-joint balance control were studied within a
population of healthy young and healthy elderly participants. Adaptation capacities were
studied with external force fields, represented by an external stiffness at the hip, either
stabilizing or destabilizing the participants’ balance. Frequency Response Functions (FRFs)
quantified the corrective joint torques as a response to body sway, from which a description
of the neuromuscular control mechanisms was established. Elderly showed an increased FRF
magnitude compared to young participants, suggesting that elderly were stiffer. When a
stabilizing or destabilizing external force field was applied at the hip, both young and elderly
participants adapted their multi-joint coordination by lowering or respectively increasing
their neuromuscular control actions around the ankles; expressed in a change of FRF
magnitude. However, elderly adapted less compared to young participants. Model fits
showed that elderly had comparable reflexive stiffness and reflexive damping properties to
the young, but they adapted their reflexive stiffness around the ankle joint less.
Furthermore, elderly showed higher intrinsic stiffness of the ankle, together with higher time
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delays of the hip. These age related differences in adaptation of multi-joint coordination
may underlie increased risk of falling with ageing.

These results show that system identification techniques can assess age related changes in
standing balance control. However, before introducing the method into clinical practice for
diagnosing or monitoring treatment of impaired balance, it is important to assess the
reliability of this technique and compare it with current clinical balance measures. In
addition to the force disturbances at the hip and between the shoulder blades, two sensory
disturbances were applied on the proprioceptive system and the visual system. This allowed
not only to study multi-segmental balance control, but also the participants’ reliance on
sensory information (sensory reweighting).

In Chapter 6, the reliability of standing balance parameters was studied, when multiple
disturbances were applied simultaneously (i.e. two mechanical disturbances at the hip and
shoulder and two sensory disturbances of proprioceptive and visual information) and with
system identification techniques to assess standing balance in healthy elderly. The reliability
was compared with a parameter that represents the amount of body sway, often looked at
in clinical balance tests. Results were obtained by measuring balance parameters twice
during three days.

A systematic error was found in the sensitivity functions, obtained with system identification
techniques, as the balance parameters differed between the first and second trial on one
day. No systematic error was found in the neuromuscular controller parameters. Therefore,
when a steady state of standing balance is to be assessed with system identification
techniques, a familiarization trial is needed on the same day to overcome the systematic
error between trials. The balance parameters are reliable; i.e. the parameter could detect
changes over time within the same participant (e.g. effects of intervention or changes in
conditions). The results showed that at least 10 trials on one day are needed to reach an
excellent reliability for steady state balance assessment. No systematic errors and a higher
reliability was found for the body sway parameter. However, the body sway parameters only
describes standing balance objectively, while system identification techniques also describe
the underlying changes. Therefore, the use of system identification techniques can have
added value over current clinical balance measures, such as body sway.

This thesis shows that the application of external disturbances in combination with system
identification techniques give more insight in the underlying physiology of balance control
and the changes with age. Using the techniques as a diagnostic tool, can help to detect
impaired balance and ultimately reduce the consequences of falls in the elderly.
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Samenvatting

In het dagelijks leven handhaven mensen hun balans tijdens het uitvoeren van verschillende
taken en onder verschillende omstandigheden. De zwaartekracht trekt voortdurend aan het
lichaam, waardoor er een constante instabiele situatie ontstaat. Zonder een goed
regelmechanisme zouden we vallen. Bij balanshandhaving zijn meerdere onderliggende
systemen betrokken, zoals de sensorische systemen, de spieren en het zenuwstelsel. Deze
systemen vormen samen een complex regelmechanisme die het lichaam rechtop houdt; dit
wordt de neuromusculaire regelaar genoemd. Door het verouderingsproces kunnen de
onderliggende systemen van de neuromusculaire regelaar in kwaliteit achteruit gaan,
waardoor het risico op vallen toeneemt en vooral de gevolgen van een val groter worden.
Het doel van dit proefschrift is om inzicht te krijgen in de (pathologische) fysiologie van
balanshandhaving bij ouderen, door het ontwikkelen van nieuwe en verbeterde
experimentele technieken die de bijdrage van de onderliggende systemen in
balanshandhaving kunnen beschrijven.

Hoofdstuk 2 beschrijft dat de huidige klinische balans maten weliswaar testen of een patiént
onder verschillende omstandigheden in staat is rechtop te blijven staan, maar er wordt geen
onderscheid gemaakt in de kwaliteit en bijdrage van de onderliggende systemen van de
neuromusculaire regelaar. Deze testen hebben weinig tot geen invlioed op het voorschrijven
van een doelgerichte behandeling. Het is voornamelijk lastig om problemen met de
balanshandhaving in een vroeg stadium te detecteren, omdat ouderen om rechtop te blijven
staan vaak compensatie strategieén gebruiken; daardoor zijn oorzaak en gevolg niet
duidelijk. Nieuwe onderzoeksmethodes zijn nodig die zowel de kwaliteit van de
onderliggende systemen als de aanwezige compensatie strategieén in kaart kunnen
brengen. Systeem identificatie technieken in combinatie met extern aangebrachte
verstoringen, kunnen de mogelijkheid bieden om de oorzaak en gevolg relaties bij
balanshandhaving te ontrafelen. Door het menselijke balanssysteem te verstoren met een
uniek signaal, dat niet gerelateerd is aan de interne signalen van het systeem, ontstaat een
causale relatie tussen de extern aangebrachte verstoringen en de menselijke reacties.
Hierdoor is het mogelij)k om, met de juiste analyse methodes, specifieke delen van het
regelmechanisme van de balanshandhaving te identificeren; zoals het gedrag van de
neuromusculaire regelaar tijdens verschillende experimentele condities. Vervolgens kan er
een model van balans handhaving (bestaande uit fysiologische relevante parameters) gefit
worden op de verkregen data. Deze parameters kunnen dan vergeleken worden tussen
groepen, individuen of condities.
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Verschillen tussen jongeren en ouderen komen vaak beter naar voren als er gekeken wordt
naar de coordinatie tussen het enkel en heup gewricht; ofwel multi-segmentale
balanshandhaving. Het toepassen van systeem identificatie technieken op multi-segmentale
balanshandhaving biedt een aantal uitdagingen. De mens wordt allereerst voorgesteld als
een dubbele omgekeerde slinger. Dit resulteert in een systeem met meerdere ingangen en
meerdere uitgangen (MIMO systeem). Voor elke ingang moet er een aparte externe
verstoring worden aangebracht om het gehele systeem goed te kunnen identificeren. In dit
proefschrift zijn krachtsverstoringen gebruikt op de heup en tussen de schouderbladen.
Verder is het onderzoeksgebied van systeem identificatie erg breed. Het is niet eenvoudig
om deze methodes met elkaar te vergelijken op basis van literatuur onderzoek, omdat de
studies verschillend in de opzet van de experimenten, het gebruik van de externe
verstoorsignalen, en de resultaten zijn vaak op verschillende manieren gepresenteerd.

Daarom zijn in Hoofdstuk 3, verschillende MIMO niet-parametrische en parametrische
systeem identificatie technieken met elkaar vergeleken, in combinatie met het gebruik van
verschillende externe verstoorsignalen op de heup en tussen de schouderbladen. De
vergelijking is gebaseerd op model simulaties, waarbij het menselijke balans systeem is
gesimuleerd als een dubbele omgekeerde slinger die gebalanceerd wordt door een
neuromusculaire regelaar. De onderliggende dynamica komt overeen met fysiologische
waardes en er worden krachtsverstoringen aangebracht op de heup en tussen de schouder
bladen. Validatie van de systeem identificatie technieken is gebaseerd op een schatting van
de neuromusculaire regelaar dynamica in het tijd domein en in het frequentie domein.
Resultaten laten zien dat de beste schatting verkregen wordt met niet-parametrische
systeem identificatie technieken in combinatie met multisinus verstoringen. Gebaseerd op
deze uitkomsten, zijn de systeem identificatie technieken toegepast in de studies van
Hoofdstuk 4 en Hoofdstuk 5.

Hoofdstuk 4 introduceert een nieuw apparaat — de dubbele omgekeerde slinger verstoorder
(double inverted pendulum perturbator, afgekort DIPP) — die krachtsverstoringen kan
aanbieden op de heup en tussen de schouder bladen. Naast de externe verstoringen, kan
het apparaat ook krachtvelden aanbieden, waarmee het mogelijk is om het
aanpassingsvermogen van multi-segmentale balanshandhaving te onderzoeken. De
prestaties van het apparaat en de validatie van de systeem identificatie techniek is eerst
onderzocht door het identificeren van de dynamica van een bekend systeem. Een dubbele
omgekeerde slinger is succesvol geidentificeerd, terwijl de krachtvelden de slinger in
evenwicht hielden. Een experiment met gezonde jongeren laat zien, wanneer er een
krachtveld op de heup aangebracht wordt, dat mensen hun balanshandhaving aanpasten.
De regelactie rondom het enkel gewricht werd minder. Deze resultaten laten zien dat de
DIPP samen met het gebruik van systeem identificatie technieken het mogelijk maakt om
(patho)fysiologische veranderingen in multi-segmentale balanshandhaving te onderzoeken.
Daarnaast kan het aanpassingsvermogen in balanshandhaving bestudeerd worden.

In Hoofdstuk 5 zijn binnen een populatie van gezonde jongeren en gezonde ouderen,
veranderingen door leeftijld in de multi-segmentale balanshandhaving onderzocht.
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Aanpassingsvermogen wordt bestudeerd met behulp van externe krachtvelden (een externe
stijfheid op de heup), die de balans stabiliseerde, of destabiliseerde. Frequentie Responsie
Functies (FRFs) geven de relatie weer tussen de corrigerende gewrichtsmomenten als een
reactie op lichaamsbewegingen, wat resulteerde in een identificatie van de dynamica van de
neuromusculaire regelaar. Ouderen hadden een hogere FRF magnitude vergeleken met
jongeren, wat suggereert dat ouderen stijver zijn. Wanneer er een stabiliserend of
destabiliserend krachtveld werd aangeboden op de heup, pasten zowel de jongeren als de
ouderen hun balanshandhaving hierop aan. De neuromusculaire regelaar acties rond de
enkel werden verhoogd of verlaagd, wat te zien was in de verandering van FRF magnitude.
Echter, ouderen pasten zich minder aan op de krachtvelden dan de jongeren. Model fits op
de FRF lieten zien dat ouderen vergelijkbare reflexieve stijfheid en demping eigenschappen
hadden vergeleken met de jongeren, maar dat zijn hun reflexieve stijfheid rond de enkel
minder aanpasten. Daarnaast hadden ouderen een hogere intrinsieke stijfheid van de enkel
en hogere tijdsvertraging van de heup. Deze veranderingen met leeftijd in het
aanpassingsvermogen van multi-segmentale balanshandhaving, kunnen ten grondslag
liggen aan het toegenomen valrisico bij ouderen.

Bovenstaande resultaten impliceren dat het mogelijk is om verschillen te detecteren in
balanshandhaving met leeftijd, door gebruik te maken van systeem identificatie technieken.
Desalniettemin, voordat de technieken geimplementeerd kunnen worden in de klinische
praktijk als diagnostisch middel of voor het monitoren van het effect van behandeling, is het
noodzakelijk de betrouwbaarheid van de techniek te onderzoeken. Deze betrouwbaarheid
kan dan vergeleken worden met bestaande klinische balans maten. Naast de
krachtverstoringen op de heup en tussen de schouderbladen, zijn twee sensorische
verstoringen aangebracht op het proprioceptieve en visuele systeem. Hiermee werd het niet
alleen mogelijk om multi-segmentale balanshandhaving te onderzoeken, maar ook de
betrouwbaarheid en gebruik van sensorische informatie (sensorische herweging).

In Hoofdstuk 6 is de betrouwbaarheid van balans parameters onderzocht, wanneer er
meerdere verstoringen tegelijk werden aangebracht (twee krachtverstoringen op de heup en
tussen de schouderbladen, en twee sensorische verstoringen van de proprioceptie en de
visus) en in combinatie met systeem identificatie technieken. Balanshandhaving werd
onderzocht in een populatie van gezonde ouderen. De betrouwbaarheid werd vergeleken
met een parameter die vaak als klinische maat gebruikt wordt, namelijk de lichaamszwaai.
Betrouwbaarheid is bepaald op basis van twee metingen op drie dagen.

De balans parameters die verkregen zijn met systeem identificatie technieken op basis van
de sensorische verstoringen bevatten een systematische fout. De parameters verschillen
tussen de eerste en tweede meting op een dag. In de neuromusculaire regelaar parameters
(gebaseerd op de krachtverstoringen) is geen systematische fout aanwezig. Om
systematische fouten te voorkomen, kan een gewenningsmeting worden uitgevoerd aan het
begin van een dag. De balans parameters zijn betrouwbaar, wat betekent dat er verschillen
binnen de proefpersoon gedetecteerd kunnen worden (bijvoorbeeld het effect van
interventies of verschillende experimentele condities). Resultaten laten zien dat minimaal 10

149



metingen op een dag nodig zijn om een uitstekende betrouwbaarheid te krijgen. De
lichaamszwaai parameter bevat geen systematische fout en heeft daarnaast ook een hogere
betrouwbaarheid. Desalniettemin, beschrijft de lichaamszwaai parameter geen
onderliggende veranderingen van de neuromusculaire regelaar en kan het gebruik van
systeem identificatie technieken een toegevoegde waarde hebben over bestaande klinische
balans maten.

In dit proefschrift is beschreven dat het gebruik van systeemidentificatie technieken, in
combinatie met externe verstoringen meer inzicht geven in de onderliggende fysiologie van
balanshandhaving en de verschillen die kunnen ontstaan door ouderdom. Het gebruik van
de technieken als een diagnostisch middel, kan helpen om verminderde balanshandhaving
te detecteren en uiteindelijk de gevolgen van vallen te verkleinen.
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