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Summary

Aluminium extrusion is a forming process used to produce pro�les. A large variety

of pro�les can be made by pressing a billet of hot aluminium through a hole that

closely resembles the required cross-section of the pro�le. At the present time, design

of extrusion dies and operation in extrusion companies is primarily based on trial and

error. The experience of the die designer, the press operator and the die corrector

to a large extent determine the performance of the process. In order to improve the

performance, it is necessary to have more knowledge about the extrusion process.

Numerical simulations can be a valuable tool in obtaining such knowledge.

In this thesis some new developments in the simulation of aluminium extrusion with

the �nite element method are reported. The subject matter is presented in four chap-

ters, which have also been submitted as articles for publication elsewhere. Attention

is focussed on the following three topics:

� Modelling the bearing area.

� Experimental veri�cation of the simulations.

� Development of a practical method for the simulation of arbitrary pro�les.

In the simulation of extrusion, it is common to use a viscoplastic constitutive model to

describe the material behaviour and thus neglect the elastic properties of the material.

The reason for this is that the elastic deformations are small compared to the very

large plastic deformations that occur during the process. However, inside a parallel

bearing channel, the deformations of the material are minimal and elastic e�ects do

have a signi�cant e�ect on the results.

To investigate the phenomena that occur in the bearing area, detailed 2D simulations

of the aluminium 
ow in this area are performed. With these simulations, the e�ect of
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material behaviour, friction and bearing geometry is investigated. From the results,

it can be concluded that elastic e�ects play an important role in parallel bearings.

It is also demonstrated that the resistance in parallel bearings is very sensitive to

small changes in bearing geometry and process conditions. This explains the unpre-

dictable behaviour of extrusion dies observed in practise. To avoid this unpredictable

behaviour a new design approach is suggested.

Experimental veri�cation of the numerical results is provided by comparing simula-

tions to laboratory scale extrusion experiments. The numerical simulations are per-

formed with a general solute-dependent elasto-viscoplastic constitutive model based

on the Sellars-Tegart law. The parameters for this model are determined with com-

pression tests. The extrusion trials are performed isothermally. The results of the

numerical simulations showed good agreement with the experimental results.

The application of the numerical simulations in the extrusion industry is limited be-

cause of the complexity of these simulations. To overcome this obstacle, a practical

method is developed which can be used for the simulation of arbitrary pro�les. An

equivalent bearing model is developed to model the resistance in the bearing area,

without using a large number of elements. To avoid the time-consuming and complex

work necessary for the development of the FEM model for a particular die, a spe-

cialised pre-processor is developed. This pre-processor provides a direct link between

the die design in the CAD system Pro/Engineer and the simulations in the FEM code

DiekA.

The simulations can be used in practise to investigate particular aspects of the ex-

trusion process. The simulations have already been used successfully to improve the

cross-sectional shape of legs used in porthole dies and to develop a design rule which

can be used to determine the bearing geometry in order to obtain a uniform exit

velocity of the pro�le. In principle, the simulations can also be used directly in the

design process to improve the design of speci�c dies.
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Chapter 1

Introduction

Aluminium extrusion is a forming process used to produce long, straight aluminium

products, called pro�les. A large variety of pro�les can be produced by pressing

a billet of hot aluminium through a die ori�ce which closely resembles the desired

cross-section of the pro�le. In the industrial application of the extrusion process, die

design and process control are mainly based on empirical knowledge. This empirical

knowledge is not well documented and is to a large extent only accessible through the

experience of die designers, die correctors and press operators. Because of this the

performance of the extrusion process is mainly determined by the subjective in
uences

of these people.

In recent years a trend can be observed towards a more objective documentation

of the empirical knowledge available at extrusion companies. The development of

automated design applications or expert systems can be seen as a part of this trend.

These systems require the explicit formulations of design rules. To formulate such

rules more knowledge of the mechanics behind the extrusion process is required. The

�nite element method (FEM) can be a valuable tool in obtaining such knowledge,

providing insight into the process that cannot easily be obtained in any other way.

The work presented in this thesis is focussed on the development of numerical simu-

lation tools for the extrusion process. This work is part of a larger research project

which includes the following elements:

� Development of a semi-automatic die design application. The objective of this

application is to reduce the subjective in
uences of the die designer on the design

process and to signi�cantly reduce the time required for the design.

� Development of numerical tools to simulate the extrusion process. The objective

of this is to increase the knowledge of the extrusion process and to obtain

objective design rules for extrusion dies.

1



sink-in

bearing

die plate

ram

billet

container

profile

Figure 1.1: The extrusion process.

Figure 1.2: Examples of pro�les (left: 
at pro�les; right: hollow pro�les).

� Collection of empirical data on the extrusion process and veri�cation of the

design rules by means of experiments conducted in an industrial setting.

1.1 Aluminium extrusion

The work presented in this thesis is primarily aimed at the development of simulations

tools for the direct extrusion process. An illustration is given in Figure 1.1. The direct

extrusion process consists of the following steps. First, a preheated aluminium billet is

loaded into the container. A ram presses this billet through a die, producing a pro�le

with a cross-section determined by the shape of the die ori�ce. When the billet is

almost completely extruded, the ram and container are retracted and the remaining

part of the billet is sheared o�. Then a new billet is inserted and the cycle is repeated.

A distinction must be made between the extrusion of solid pro�les and the extrusion

of hollow pro�les, examples which are given in Figure 1.2. Solid pro�les are generally

2
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Figure 1.3: Extrusion of a hollow pro�le.

produced with a die that consists of only one part (
at die). Hollow pro�les are

produced with a porthole die, which consists of two parts, a mandrel to de�ne the

inner geometry of the pro�le and a die plate which de�nes the outer geometry. This

is illustrated in Figure 1.3. In porthole dies, the aluminium 
ow is split by legs, which

support the core. The material 
ows between the legs, through the feeder holes, and

welds together in the welding chamber.

In the industrial application of extrusion, optimisation of process conditions is fo-

cussed on achieving the maximum extrusion speed, for which the quality require-

ments imposed on the product are still satis�ed. The process window is limited by

two factors, the maximum extrusion load and the maximum exit temperature (see

Figure 1.4). The maximum extrusion load is either imposed by the strength of the

die or by the maximum capacity of the extrusion press. The extrusion load can be

lowered by increasing the initial temperature of the billet. However, this is limited by

the maximum exit temperature of the material. When this temperature gets too high,

surface defects or even melting of the material can occur. So basically optimisation of

the process comes down to choosing an optimum initial temperature. In practise it is

not possible to achieve the optimised process conditions, because of the variation in

temperature which occurs during the extrusion cycle and between di�erent dies. As a

result, the process has to be operated under conditions which are below the optimum.

In the design of extrusion dies, a major challenge is to obtain a uniform exit velocity

over the entire cross-section of the pro�le. When pro�le thickness varies or when the

material 
ow to part of the pro�le is restricted by the die, the exit velocity tends to

be non-uniform. This is even more complex for dies that contain multiple openings,

because not only the exit velocity within the pro�le, but also the velocity between
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Figure 1.4: Optimisation of process conditions.

the pro�les must be balanced. Several possibilities exist to control the exit velocity.

The most direct in
uence is obtained at the bearing area. But exit velocity can also

be controlled by an appropriate design of welding chamber and feeder holes.

At the moment, the design of extrusion dies is primarily based on the experience

of the designer. When the die is manufactured, it is �rst tested in a trial pressing.

Often a distorted or curved pro�le is produced during this trial pressing, caused by

an unbalance in the exit velocity of the pro�le. If this is the case, the die is corrected

in order to obtain a uniform exit velocity. After the correction, a new trial pressing

is performed until the pro�le satis�es the requirements. At that point the die is used

in production. During the production phase of a die, wear and plastic deformation

occur. This requires additional corrections to the die and eventually causes the end

of its lifespan.

The goal of the simulation tools developed here is to reduce the problems encountered

in extrusion practise. The most important problem is the unpredictable behaviour of

extrusion dies, which necessitates trial pressing and correction of most extrusion dies.

A second problem is the lack of knowledge about the exact mechanics of the process.

This complicates optimisation of the process conditions and hinders innovation in die

design.
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1.2 Numerical simulations of aluminium extrusion

The knowledge available on the extrusion process has been gathered primarily by

experimental work and analytical calculations [1, 2]. It is only during the last 10 years

that numerical simulations of aluminium extrusion have been reported in literature.

This is largely due to the high computational demands that are associated with this

kind of simulations. Early work was mainly concerned with 2D extrusion problems [3,

4, 5] or simple 3D geometries with low extrusion ratios [6, 7, 8]. With the increase

of computer power more complex extrusion problems have been modelled. Simple

porthole dies have been modelled in 3D by Tong [9] and by Mooi [10]. For these kinds

of extrusion problems, pre-processing issues start to emerge. For the simulation of

more complex pro�les it is essential to automate large parts of the pre-processing. Van

Rens [11] developed a meshing algorithm speci�cally aimed at the geometry associated

with extrusion of thin-walled sections, enabling simulations of this type of pro�les.

In the present work a number of developments in the numerical simulation of extrusion

are reported. Attention is focussed on the following three subject areas:

� Modelling of the bearing area. This area is considered to be the most important

area in the extrusion process, since most deformation occurs here. It is also

the most diÆcult area to model in a FEM simulation because of its small scale

compared to the rest of the process.

� Experimental veri�cation of the numerical model.

� Development of a practical method for the simulation of the extrusion of complex

pro�les.

1.3 Overview of this thesis

This thesis consists of four main chapters, based on papers which have been submitted

for publication elsewhere. As a consequence of presenting the material in this form,

some of the subject matter is repeated. Material covered in preceding chapters is

indicated with a vertical line in the left margin. Below, an overview is presented of

the four papers and how they relate to the subject of this thesis.
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Chapter 2: Adaptive return mapping algorithms for J2 elasto-

visco-plastic 
ow [12]

In simulations of aluminium extrusion, it is common to use a viscoplastic constitutive

model and thus neglect the elastic properties of the material. To investigate whether

this assumption is justi�ed, simulations are performed with an elasto-viscoplastic

model. This resulted in the development of a new method for modelling elasto-plastic

and elasto-viscoplastic behaviour. This method can be considered a mix between

an elasto-plastic and rigid-plastic model [13]. Subsequently, an elasto-viscoplastic

model was developed which uses a new type of integration algorithm to calculate the

incremental stress update. This algorithm is presented in Chapter 2.

The subject of this chapter is not directly related to aluminium extrusion simula-

tions, since the method can be used to model general J2 elasto-(visco)plastic material

behaviour. However, the algorithm is suitable to describe the characteristics of hot

aluminium alloys. The article also introduces a very straightforward method in which

rate dependent behaviour can be introduced into the constitutive equations.

Chapter 3: Elasto-viscoplastic FEM simulations of the alu-

minium 
ow in the bearing area for extrusion of thin-walled

sections [14]

The bearing area is the most diÆcult area to model in the extrusion process. In this

article the characteristics of the aluminium 
ow in the bearing area are investigated.

To this end a detailed 2D model of the bearing area is constructed. The in
uence

of the elastic behaviour of aluminium in the bearing channel is investigated. This

requires a modi�cation to the Sellars-Tegart law, in order to include an elastic region

in the constitutive behaviour.

The model is also used to investigate the in
uence of a number of design parameters.

The results of these simulations show that in parallel bearings sudden changes in

contact behaviour can occur. This makes the resistance in this type of bearing very

sensitive to small changes in the geometry and in the extrusion conditions. This

is considered to be the primary reason for the unpredictable behaviour of extrusion

dies found in practise. To avoid this unpredictable behaviour, an alternative design

approach for the bearing is suggested.
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Chapter 4: Comparison of experimental AA6063 extrusion tri-

als to 3D numerical simulations, using a general solute-depen-

dent constitutive model. [15]

To assess the reliability of the simulations, it is important to have a good experimental

veri�cation of the numerical results. In Chapter 4, laboratory scale extrusion exper-

iments are compared to numerical simulations. It is shown that a good agreement

between experimental and numerical results can be obtained under well controlled

experimental conditions and under the condition that an accurate description of the

material properties is available. Small di�erences that still exist between numerical

and experimental results can be attributed to the lack of material data for high strain

rates and to dynamic precipitation that occurs under speci�c conditions.

Chapter 5: FEM simulations of the extrusion of complex thin-

walled aluminium sections. [16]

In this chapter, attention is focussed on the development of a practical method for

simulations of the extrusion of pro�les with arbitrary cross-sections. To avoid exces-

sive detail in the bearing area, an equivalent bearing model is developed [17]. With

this model it is possible to describe the resistance of the bearing channel without

using a very large number of elements.

To avoid time-consuming work in the development of the FEM model, a specialised

pre-processor is developed. This pre-processor is implemented in the 3D CAD appli-

cation Pro-Engineer, providing a direct coupling between the design process and the

FEM simulations. This pre-processor automatically generates the FEM model for a

speci�c die with minimal e�ort on the part of the user, drastically reducing the time

necessary for pre-processing. A simulation for a complex extrusion die is used as an

example to show the current capabilities of the proposed method.

Additional work

In Appendix A, an overview of the theoretical background of the simulations is pre-

sented. Work of a more practical nature has also been published [18, 19]. In these

papers, it is demonstrated how the results of the simulations can be used to improve

the design of dies and to develop design rules.
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Chapter 2

Adaptive return mapping

algorithms for J2

elasto-viscoplastic 
ow

J. Lof and A. H. van den Boogaard

Abstract

In this paper a new class of integration algorithms for elasto-viscoplastic constitutive

equations is proposed. It is based on the generalised trapezoidal rule, which is a

weighted combination of the start and end of the increment. But instead of taking

constant weights, the weights are a function of the plastic multiplier. In this way

the magnitude of the plastic strain increment determines the way the integration is

performed. The stress update and consistent tangent are derived for the case of J2


ow. Several candidates within the class of adaptive return mapping algorithms are

investigated. It is shown numerically that some of the proposed algorithms are more

accurate than commonly used algorithms such as mean normal and radial return.
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2.1 Introduction

A time-continuous model normally forms the basis for the constitutive equations in

any numerical method for modelling elasto-viscoplastic material behaviour. In this

time-continuous model the relation between stresses and strains in the inelastic do-

main is de�ned in a rate formulation. In a numerical solution procedure it becomes

necessary to integrate the constitutive equations to obtain an incremental formula-

tion. It is recognized that return mapping algorithms, like the generalised trapezoidal

rule and the generalised midpoint rule are the most eÆcient for large scale inelastic

computations. The accuracy and stability of these methods was analysed by Ortiz

and Popov in their renowned paper [1].

Within the family of return mapping algorithms, the Euler backward integration, for

J2 
ow also referred to as radial return method is the most popular. This method

was �rst introduced by Wilkins [2] and further generalised later [3, 4]. Other return

mapping algorithm include the trapezoidal rule, which is also known as the mean

normal method [5], the closest point procedure [6] and the steepest decent method [7,

8]. As an alternative to return mapping algorithms, substepping algorithms can be

used for the integration of the constitutive relations [9, 10]. A comparison between the

return mapping and the substepping approach was made by Potts and Ganendra [11].

In the work presented in this paper, a generalised trapezoidal rule is used to integrate

the constitutive relations. In other words, the integral is approximated by a weighted

combination of the direction at the start and the end of the increment. Hu�etink

et al. [12] proposed a model in which the constant weights of the generalised trape-

zoidal rule are replaced by weights dependent on the plastic multiplier. In this way an

elastoplastic model was derived that degenerates to the rigid plastic model for large

strain increments. In the present paper a class of adaptive return mapping algorithms

is proposed which is also based on weights that are dependent on the plastic multi-

plier. The adaptive algorithm presented here is di�erent from the one proposed by

Hu�etink et al. because it consistently takes into account the elasticity in the model.

Thus it does not degenerate to the rigid plastic model for large strain increments. For

J2 
ow, the adaptive algorithm provides a very robust and accurate procedure. In

principal the approach can also be applied to other plasticity models. However for

models other than J2, the complexity increases dramatically, limiting the practical

applicability to J2 
ow. A general formulation of the adaptive algorithm is presented

for elasto-viscoplastic J2 
ow. This makes the proposed algorithm very suitable for

(hot) bulk metal forming simulations.

12



In Section 2.2 a time-continuous constitutive model is presented that can be used

to model elastoplastic and elasto-viscoplastic material behaviour. Rate dependent

material behaviour is often introduced by so-called overstress models, such as the

Perzyna model [13] or the Duvaut-Lions model [14]. In these models the stress is

allowed to be outside the yield surface. The part of the stress that is outside the

yield surface (called the overstress) determines the viscoplastic strain rate. Simo

and Hughes [15] give a thorough treatment on this subject and on the subject of

return mapping algorithms. Wang [16] suggested to introduce viscoplastic behaviour

by de�ning a 'yield' function which is rate dependent. This approach is adopted

in the present paper and elaborated. It is shown that this results in an incremental

formulation that is similar to the standard rate independent model with the exception

that a time parameter is introduced into the incremental algorithm.

In Section 2.3 the time-continuous constitutive equations are integrated to derive

an incremental formulation for the case of associative J2 
ow. The stress update

algorithm and the consistent tangent modulus are derived for the general case that

the interpolation factor is a function of the plastic multiplier. Since the algorithm

is proposed for large strain increments, the algorithm must be applicable to large

deformation analysis. Objective integration can be obtained by using a corotational

formulation [17]. For simplicity, the algorithm is derived for in�nitesimal deformations

only.

In Section 2.4 some suitable functions for the integration weights are discussed. Here

it is demonstrated that for the case of J2 
ow there is an obvious candidate which

is not available for other plasticity models. In Section 2.5 the accuracy of the pro-

posed adaptive return mapping algorithms are compared to standard return mapping

algorithms, such as the radial return method and the mean normal method. It is

shown that some members of the class of adaptive algorithms are more accurate than

standard algorithms such as radial return. The proposed algorithm shows an inter-

esting similarity to the rigid plastic formulation for large strain increments. This is

discussed in Section 2.6. In this section the algorithm is also compared with the mixed

elastoplastic / rigid plastic model proposed by Hu�etink et al..
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2.2 Time-continuous model

In this section a set of constitutive equations is presented that can be used to char-

acterise a wide set of elasto-viscoplastic materials [18]. For simplicity only isotropic

material behaviour is considered here. The equations are presented in rate form, with

a superposed dot denoting a derivative with respect to time.

_" = _"e + _"vp (2.1)

_� = E : ( _"� _"vp) (2.2)

_"vp = _�
@Q

@�
(2.3)

g = g (�; �; _�) (2.4)

_� � 0 ; _�g = 0 ; g � 0 (2.5)

� Equation 2.1 is the rate form of the strain decomposition. The total strain "

is assumed to be the sum of an elastic part "e and a (visco)plastic part "vp.

Because the model presented here can be used to model rate dependent and

rate independent behaviour, the inelastic part of the strain tensor is referred to

as the plastic strain. For rate dependent plasticity this should be interpreted as

viscoplastic strain.

� Equation 2.2 represents the linear elastic relation between the Cauchy stress �

and the elastic strain. The elastic behaviour is de�ned by the 4th-order tensor E

representing the generalised Hooke's law.

� Equation 2.3 is the evolution law (
ow rule) for the plastic strain rate. Q is a

plastic potential which de�nes the direction of the plastic strain rate. _� is the

plastic multiplier which is used to scale the plastic strain rate.

� Equation 2.4 represents the limit function g. This function describes the be-

haviour of the material in the plastic domain. It can be interpreted as a general-

isation of the yield function from rate independent to rate dependent materials.

The model is limited to isotropic material behaviour, dependent on the equiva-

lent plastic strain and the equivalent plastic strain rate, de�ned by:

_� =

q
2
3
_"vp : _"vp (2.6)

� Equations 2.5 are the Kuhn-Tucker loading-unloading conditions.
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2.2.1 Limit function

The speci�c constitutive behaviour of the material is de�ned in (2.4) as a relation

between the stress and the equivalent plastic strain and the equivalent plastic strain

rate. In the case of a standard rate independent plasticity model, the plastic strain

rate is removed and the limit function is equal to the yield function, which states that

the e�ective stress � is equal to the yield stress �y:

g = f (�; �) = � � �y (�) (2.7)

When introducing rate dependent behaviour in the constitutive models, often a Perzy-

na-type model is used [13, 16, 19]. This model allows the stress to be outside the yield

surface. The distance between the yield surface and the actual stress determines the

evolution of the viscoplastic strain rate. This model can be described by de�ning the

limit function as:

g
�
�; �; _�

�
= 
� (� � �y (�))� _� (2.8)

In which 
 is a 
uidity parameter and � is an arbitrary positive function. The plastic

multiplier _� is used as a measure for the plastic strain rate. In this paper a di�erent

approach is used, the relation between stress, strain and strain rate is directly given

by the limit function. The limit function can be interpreted as a rate dependent yield

function, which states that in the plastic region the e�ective stress � must be equal

to the 
ow stress �f :

g (�; �; _�) = � � �f (�; _�) (2.9)

This way of de�ning the material behaviour is especially suitable for simulations of

hot metal forming. At high temperatures, rate dependent e�ects become important

in metals. The material laws that describe these e�ects are often written as a relation

between e�ective stress and equivalent plastic strain and equivalent plastic strain rate,

which can be directly used in (2.9). Examples of such models are the Norton-Ho�

law which is a generalisation of the power law and the Sellars-Tegart law which can

be used to describe the behaviour of hot aluminium alloys [20]. Hot metals can in

general be described quite well by a J2 
ow rule.

2.3 Time discretisation

The rate formulation for the constitutive equations presented in Section 2.2 cannot be

directly applied in a �nite element model. To obtain an incremental formulation the
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evolution law (2.3) has to be integrated over a �nite time interval [tn; tn+1]. Using a

generalised trapezoidal rule [1] this results in:

�"vp =

Z
tn+1

tn

_�
@Q

@�
dt � ��

 
(1� �)

�
@Q

@�

�
n

+ �

�
@Q

@�

�
n+1

!
(2.10)

Generalising the notion of associative plasticity to viscoplasticity for J2 
ow the vis-

coplastic potential Q can be replaced by the limit function g. Di�erentiating g with

respect to the stress, yields that the direction of the plastic strain is in the direction

of the deviatoric stress. And hence the derivative in (2.10) can be replaced by the

deviatoric stress s. Equations 2.1 to 2.5 can be written in incremental form as:

�" = �"e +�"vp (2.11)

�� = E : (�"��"vp) (2.12)

�"vp = �� ((1� �) sn + �sn+1) = ��s� (2.13)

gn+1 =

q
3
2
sn+1 : sn+1 � �f (�n+1; _�n+1) (2.14)

�� � 0 ; ��gn+1 = 0 ; gn+1 � 0 (2.15)

Here the deviatoric stress tensor s� is introduced to denote the direction of the plastic

strain during the increment. Note that the value of � determines the direction of s�.

The values of the state variables �n+1 and _�n+1 at the end of the increment are

de�ned as:

�� =

q
2
3
�"vp : �"vp = ��

q
2
3
s� : s� (2.16)

�n+1 = �n +�� (2.17)

_�n+1 =
��

�t
(2.18)

From the above equations it becomes apparent that there is no fundamental di�erence

between the incremental formulation of rate dependent and independent constitutive

behaviour. Both the equivalent plastic strain and equivalent plastic strain rate are

calculated from the equivalent plastic strain increment. The only di�erence is the
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Figure 2.1: Return mapping algorithm in �-plane.

introduction of the constant time increment �t, which introduces a time scale in the

constitutive model.

Depending on the value of the interpolation factor �, di�erent return mapping algo-

rithms are obtained. Taking � = 1
2
coincides with the trapezoidal rule (mean normal),

� = 1 results in Euler backward integration (radial return). Hu�etink et al. [12] sug-

gested to take � as a function of the plastic multiplier in order to obtain an algorithm

that is a mix between an elastoplastic and a rigid plastic method. This suggestion is

elaborated in this paper to de�ne a class of adaptive integration algorithms for elasto-

viscoplastic materials. In the next section, the stress update algorithm is derived for

this class of algorithms.

2.3.1 Stress update algorithm

In a �nite element application the constitutive equations are normally solved as a

strain driven problem. From an estimate of the total strain increment �rst an elastic

trial stress is calculated. If this trial stress satis�es the Kuhn-Tucker conditions it

is assumed to be the actual stress and the material is in the elastic state. If the

Kuhn-Tucker conditions are not satis�ed by the elastic trial stress, the material is in

the plastic domain. In this case the stress is calculated by enforcing the condition

gn+1 = 0, as illustrated in Figure 2.1. When evaluating the deviatoric part of the
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stress and strain only, this can be written as:

sn+1 = sn + 2G (�e���s�) (2.19)

gn+1 =

q
3
2
sn+1 : sn+1 � �f (�n+1; _�n+1) = 0 (2.20)

With G the shear modulus and �e the deviatoric part of the total strain increment.

On substituting (2.19) together with the de�nition of the state variables (2.16-2.18)

into (2.20), a scalar equation for �� is obtained. Depending on the type of con-

stitutive model, sometimes an explicit expression for �� can be found. However, in

general �� has to be determined iteratively. A Newton-Raphson method can be used

to this end, but as illustrated in Appendix A, the derivative of g with respect to ��

is very expensive to compute. A much more eÆcient iterative procedure in this case

is the secant method, which requires only the evaluation of g and not its derivative.

Obtaining a eÆcient global iteration process requires the derivation of the consistent

tangent matrix. The consistent tangent follows from the linearisation of the stress

update algorithm (2.19, 2.20). The consistent tangent for the adaptive return mapping

algorithm is derived in Appendix B.

2.4 Candidate functions for � (��)

The integration algorithm as proposed in this paper requires a function which relates

the interpolation weight � to the plastic multiplier ��. Some restrictions have to be

made on this function. Because � weights between the start and end of the increment,

it is bounded between 0 and 1. From the work of Ortiz and Popov [1] it is known that

for J2 
ow and perfect plasticity, the generalized trapezoidal rule is unconditionally

stable for � � 1
2
. For values of � < 1

2
it is possible that the return mapping fails to

intersect the limit surface gn+1 = 0, as illustrated in Figure 2.2. The lower limit for �

is de�ned by the point where the return mapping direction s� is tangent to the limit

surface.

To derive an expression for the lower limit of � as a function of ��, one should consider

that normally the return mapping actually has two solutions, indicated with ��1 and

��2 in Figure 2.2. At the point at which the return mapping is tangent to the

limit surface, the return mapping only has one solution, indicated with ��c. For

perfect plasticity the solution of the return mapping can be calculated explicitly by
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Figure 2.2: Three situations for the return mapping: two intersections points; tangent

to gn = 0; no intersection.

substituting (2.13) and (2.19) into (2.20). After some manipulation, the following

expression can be derived:

2
3
�2
f
G (2�� 1)��2 +

�
2
3
�2
f
+ 2G(1� �)�e : sn

�
��� (G�e+ sn) : �e = 0

(2.21)

This is a quadratic equation in �� for which the solution is known explicitly. From

Figure 2.2 it can be seen that the most critical direction for the strain increment is

tangent to gn = 0 at sn. For these strain increments, the contraction �e : sn is equal

to zero. The solution of (2.21) is then given by:

�� =

�1� 1
2

r
2
3
�2
f

�
2
3
�2
f
+ (2�� 1) 4G2�et : �et

�
2G (2�� 1)

(2.22)

From this equation it can be seen that for � � 1
2
indeed there are always two solutions.

For � < 1
2
, the critical value of the plastic multiplier ��c is determined by the

condition that the discriminant equals zero. In that situation we have:

��c =
�1

2G (2�� 1)
(2.23)

For the return mapping to have a solution we must require �� � ��c, which yields

the following condition for �:

2� � 1� 1

2G��
(2.24)
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Figure 2.3: C0-continuous candidates for �.

In Figure 2.3 the values of � in which the return mapping algorithm has a solution

is indicated (white area). In order to obtain a suitable function �, the following

consideration is made. In the stress update (2.19), the new stress depends on the

initial stress and the plastic strain increment. For large strain increments it can be

argued that the in
uence of the initial stress sn vanishes. This can be achieved by

taking � as (indicated in Figure 2.3):

� = 1� 1

2G��
(2.25)

With this choice for � the stress update (2.19) reduces to:

sn+1 =
�e

��
(2.26)

It must be noted here that the elimination of the initial stress sn by a scalar � is only

possible for J2 
ow. For more general plasticity models it is necessary to use a fourth

order tensor for � in order to eliminate the initial stress. This drastically increases

the complexity of the model.

The above choice for � (2.25) is obviously not suitable for small strain increments

because the value of � becomes negative. For low values of �� the value of � can be

bounded to a minimum value �0.

� = max

�
�0; 1� 1

2G��

�
; 0 � �0 � 1 (2.27)
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At the transition between the constant �0 and the function de�ned by (2.25), the

derivative of � is not de�ned. This means that a consistent tangent cannot be com-

puted at that point. In the practical application of the algorithm it does not pose

a problem to use either the derivative of � to the left or the right of the transition

point.

Another possible function for � is illustrated in Figure 2.4. To preserve C1-continuity

at the transition, for low values of ��, � is taken as a linear function, tangent to

the function proposed in (2.25). Such a function is completely de�ned by choosing a

value �0 at �� = 0:

� = max

 
�0 +

(1� �0)
2

2
G��; 1� 1

2G��

!
; 0 � �0 � 1 (2.28)

With this choice for � a consistent tangent can be computed for every value of ��.
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Figure 2.5: �-plane indicating deviatoric stress and strain increments.

2.5 Iso-error maps

To evaluate the accuracy of the proposed algorithm a comparison is made with stan-

dard integration algorithms. This comparison is performed for perfect plasticity, but

the results are typical for more complex strain and strain rate dependent constitutive

models.

In Figure 2.5 the initial stress sn is plotted in the �-plane. From this initial state a

prescribed deviatoric strain increment �e is applied. Depending on the integration

algorithm a new stress sn+1 is calculated somewhere on the yield surface. This stress

can be characterised by the angle �. The exact solution for the angle � is known

from [3]. The error (in degrees) that is made by the return mapping algorithm is

plotted in iso-error maps (Figures 2.6-2.8), in which the axis represent the radial and

the tangential components of the strain increment �e.

In case of hardening and especially strain rate dependent behaviour, an accurate

prediction of the equivalent plastic strain increment is important. The accuracy in �

is an indication of the error in the direction of the stress, whereas the accuracy in ��

indicates the error in the magnitude of the stress by (2.9). Iso-error maps for �� (%)

are also presented in Figures 2.6-2.8.
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2.5.1 Discussion of the iso-error maps

In Figure 2.6 the iso-error maps for the return mapping algorithm with constant �

are plotted. The �gure includes iso-error maps for Euler forward integration (� = 0),

the mean normal method (� = 1
2
), the radial return method (� = 1) and also for

the case that � = 3
4
. It is clear that the explicit Euler forward algorithm is only

suitable for very small strain increments. The mean normal method is the only

return mapping algorithm that is second order accurate. However, it is demonstrated

in Figure 2.6 that for large strain increments the accuracy reduces dramatically. For

the remaining two algorithms (� = 3
4
and � = 1), the accuracy is reasonable. For

small strain increments, the algorithm with � = 3
4
shows a good accuracy, however,

for larger strain increments, the error increases. Radial return is the only algorithm

that approaches the exact solution when the increments approach in�nity.

In Figure 2.7, the iso-error maps for two of the adaptive return mapping algorithms

are presented. Both algorithms are based on � de�ned by (2.27) with constant values

of �0 =
1
2
and �0 =

3
4
. The value �0 =

1
2
is chosen because it is the only choice which

gives a second order accurate integration for small values of the strain increment.

However by numerical experimentation it turned out that a value �0 = 3
4
resulted

in the lowest maximum error. It is apparent that for large strain increments, the

solution approaches the exact solution much faster than the radial return algorithm.

This indicates that the choice to eliminate the initial stress sn from the stress update,

results in a very accurate algorithm for large strain increments. The dotted circle

represents the transition between the two parts of the algorithm. Inside this circle

the iso-error maps are equal to the corresponding maps in Figure 2.6. The algorithm

with �0 = 3
4
shows an overall better accuracy than the return mapping algorithm

with constant �. It combines the high accuracy of a constant value of � = 3
4
for small

strain increments and the high accuracy of (2.25) at high strain increments.

In Figure 2.8 the iso-error maps of the C1-continuous adaptive return mapping al-

gorithms de�ned by (2.28) are plotted. Two maps are plotted with starting val-

ues �0 =
1
2
and �0 =

2
3
. Again �0 =

1
2
was used as a starting value, it turned out

that �0 =
2
3
produced the best results. Outside the dotted circle the plots are iden-

tical to those of Figure 2.7. But in contrast to the maps in Figure 2.7, the iso-error

contours are smooth on the transition. This is due to the C1-continuity of �. Espe-

cially the second plot with �0 =
2
3
shows signi�cantly increased accuracy compared to

standard algorithms such as radial return. The maximum error reduces from around

12Æ to approximately 1.5Æ.

26



5 100

5

10

2 e /G� �t y

2
e

/
G

�
�

r
y iso-error map for 


rigid plastic

1

1020

0.1

0.01

0.001

5 100

5

10

2 e /G� �t y

2
e

/
G

�
�

r
y iso-error map for �

rigid plastic

-5%

-10%

-20%-30%

-1%

-0.1%

Figure 2.9: Iso-error maps for the rigid plastic model.

2.6 Connection to rigid plastic model

For large strain rates, the adaptive return mapping algorithm shows an interesting

similarity to the rigid plastic formulation. In a rigid plastic model (also referred to as


ow formulation) the elastic behaviour of the material is neglected. The deviatoric

part of this model can be characterised by the following incremental formulation:

sn+1 =
�e

�

(2.29)

gn+1 (�; _�) = 0 (2.30)

Where �
 is a scaling parameter like the plastic multiplier, that is solved by en-

forcing (2.30). This formulation is very similar to the stress update for large strain

increments (2.26) of the model proposed in this paper. The mixed elastoplastic / rigid

plastic model proposed by Hu�etink et al. [12] takes advantage of this similarity by

replacing the elastoplastic model by a rigid plastic model for large strain increments.

The di�erence in the stress update for large strain rates in the adaptive algorithm

compared to the rigid plastic model and also to the mixed elastoplastic / rigid plastic

model is the evaluation of the equivalent plastic strain and equivalent plastic strain

rate. In the model proposed in this paper, the equivalent plastic strain and the

equivalent plastic strain rate are updated by taking the plastic part of the total strain

increment only (2.16). In the rigid plastic model they are determined based on the

total strain increment:

�� =

q
2
3
�e : �e (2.31)
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Figure 2.10: Iso-error maps for the mixed elastoplastic / rigid plastic model.

So the essential di�erence between the two models is that in the rigid plastic model

the contribution of elastic strain is neglected in the evolution of the state variables.

In Figure 2.9 and 2.10, iso-error maps are presented for the rigid plastic and the mixed

elastoplastic / rigid plastic model. In these maps it is apparent that the rigid plastic

and the mixed model shows the same accuracy for the stress in the case of large

strain increments, as the adaptive return mapping presented in this paper. The rigid

plastic model shows a very large error for small strain increments because the elastic

part of the strain is neglected. This problem is partly solved in the mixed model. It

could be improved even more by increasing the radius at which the transition between

elastoplastic and rigid plastic occurs. However, the problem with the mixed model is

that a discontinuity occurs in the equivalent plastic strain increment at the transition

between the two parts of the model. The reason for this is that the contribution of the

elastic strain is neglected in the rigid plastic part of the model. The discontinuity in

equivalent plastic strain increment potentially results in a discontinuity in the stress

when hardening or strain rate dependent behaviour is modelled. This may lead to

convergence problems in the global equilibrium iterations.
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2.7 Concluding remarks

In this paper a class of adaptive return mapping algorithms is proposed, in which the

weights of the time integration are a function of the plastic multiplier. The algorithm

is applicable to both rate independent and rate dependent 
ow. It is shown that for

the incremental algorithm, there is no fundamental di�erence between rate dependent

and rate independent plasticity.

For large values of the plastic multiplier (i.e. large plastic increments) an obvious can-

didate function for � is presented which approaches the exact solution much faster

then the commonly used radial return method. For small values of the plastic multi-

plier, several candidate functions for � are investigated. The accuracy of the proposed

models was illustrated with iso-error maps. It is shown with these maps that some

of the adaptive algorithms improve the accuracy of the return mapping considerably.

The proposed method shows a similarity to the rigid plastic and the mixed elastoplas-

tic / rigid plastic model but it does not neglect the elastic contribution to the strain

and it does not show the bad accuracy of the rigid plastic model in the case of small

strain increments.
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Appendix A - Iterative stress update

If the material is in the plastic state, the stress and plastic strain are determined

by solving (2.19, 2.20). This can be done by eliminating the deviatoric stress sn+1

from (2.20) which leaves a scalar expression g (��) = 0. This can be solved iteratively

by several methods. Very eÆcient in this case is the secant method because it does

not require the derivative of g with respect to ��. Also a Newton-Raphson method

can be used:

��i+1 = ��i � gi

dg

d��

i
(2.32)

For the sake of completeness the derivative in the above expression is derived below.

dg

d��
=

@g

@sn+1

dsn+1

d��
+
@g

@�

d�n+1

d��
+
@g

@ _�

d _�n+1

d��
(2.33)

@g

@sn+1
=

3
2
sn+1q

3
2
sn+1 : sn+1

(2.34)

@g

@�
= �d�f

d�
(2.35)

@g

@ _�
= �d�f

d _�
(2.36)

dsn+1

d��
= �2G (sn + 2G��e)

(1 + 2G���)
2

+
4G2�� (��sn ��e)

(1 + 2G���)
2

d�

d��
(2.37)
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d�

d��
= 2

3

q
3
2
s� : s�

+��
�sn+1 : sn+1 + (1� 2�) sn : sn+1 � (1� �) sn : snq

3
2
s� : s�

d�

d��

+ ���
(1� �) sn + �sn+1q

3
2
s� : s�

dsn+1

d��

(2.38)

d _�

d��
=

1

�t

d�

d��
(2.39)

Appendix B - Consistent tangent matrix

Obtaining an eÆcient global iteration process requires the derivation of the consistent

tangent matrix. The consistent tangent follows from the linearisation of the stress

update algorithm (2.19, 2.20):

de =

�
1 + 2G���

2G

�
I4 : ds

+

��
�+��

d�

d�

�
sn+1 �

�
(1� �)���

d�

d�

�
sn

�
d�

(2.40)

dg =

0
@ 3

2
sn+1q

3
2
sn+1 : sn+1

� h
���s�q
3
2
s� : s�

1
A : ds

�
0
@h

0
@q 2

3
s� : s� +

��s� : (sn+1 � sn)q
3
2
s� : s�

d�

d�

1
A
1
Ad� = 0

(2.41)

With I4 the fourth order unity tensor and the viscoplastic modulus h de�ned as:

h =
@�f

@��
=

@�f

@�
+

1

�t

@�f

@ _�
(2.42)

Eliminating d� from these equations results in the following expression for the devi-

atoric part of the tangent modulus:

ds =

�
D+

D : uv : D

A� v : D : u

�
: d" (2.43)

With:

D =

�
2G

1 + 2G���

�
I4 (2.44)
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u =

��
�+��

d�

d�

�
sn+1 �

�
(1� �)���

d�

d�

�
sn

�
(2.45)

v =

0
@ 3

2
sq

3
2
sn+1 : sn+1

� h
���s�q
3
2
s� : s�

1
A (2.46)

A = �
0
@h

0
@q 2

3
s� : s� +

��s� : (sn+1 � sn)q
3
2
s� : s�

d�

d�

1
A
1
A (2.47)
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Chapter 3

Elasto-viscoplastic FEM

simulations of the aluminium


ow in the bearing area for

extrusion of thin-walled

sections

J. Lof

Abstract

The use of the Finite Element Method (FEM) is becoming increasingly important in

the understanding of processes that occur during aluminium extrusion. The bear-

ing area is one of the most diÆcult areas to model in a numerical simulation. To

investigate the phenomena that occur in the bearing, detailed 2D simulations of the

aluminium 
ow are presented in this paper. In the simulations the e�ects of material

behaviour, friction coeÆcient, bearing length and bearing angle are investigated. It

is demonstrated that elastic e�ects play an important role when the aluminium 
ows

through the bearing channel. To accurately model this e�ect an elasto-viscoplastic

constitutive model is necessary. It is observed that the resistance in a parallel bearing

can be very sensitive to small changes in bearing geometry. This can explain the

unpredictable behaviour of extrusion dies observed in practise. A design approach is

suggested that reduces the sensitivity of the bearing.
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3.1 Introduction

Aluminium extrusion is a forming process used to produce pro�les. A large variety

of pro�les can be made by pressing a billet of hot aluminium through a hole that

closely resembles the required cross-section of the pro�le. To obtain an acceptable

product it is important that the exit velocity of the pro�le is uniform over the entire

cross-section. Expected di�erences in exit velocity are compensated for by locally

adjusting the bearing geometry to increase or decrease the resistance in the bearing

channel. Currently this is often done by trial and error.

In the design of extrusion dies, it is a major challenge to get the dies right �rst time.

To do this, the processes that occur inside the die must be understood. It is very

diÆcult to perform measurements inside a die, therefore numerical simulations are

necessary to gain more insight into the extrusion process. A widely used method to

simulate forming processes is the Finite Element Method (FEM), which can also be

applied to extrusion.

In the past, numerical simulations of extrusion have been limited to relatively simple

geometries and low extrusion ratios, because of computational restrictions [1, 2]. Re-

cently attention has shifted to extrusion of more complex thin-walled sections [3, 4, 5].

For the simulation of extrusion of thin-walled sections, accurate modelling of the bear-

ing and the area just in front of the bearing constitutes a major challenge. In this

area, high deformations and deformation gradients occur. In addition, somewhere in

or just in front of the bearing a transition between sticking and slipping friction oc-

curs [6]. To better understand the processes that occur in the bearing area, a detailed

2D model is developed. With this model the e�ects of bearing geometry, material

behaviour and friction coeÆcient are investigated. The results of this model can also

be used to construct a less detailed model that can be used in simulations of the entire

process, this aspect is described in other publications [7, 8, 9].

When modelling the extrusion process with a FEM code, it is common to use a vis-

coplastic constitutive model. This kind of model neglects the elastic behaviour of the

material. However when the material enters the bearing channel, plastic deformations

are minimal and elastic e�ects have a signi�cant in
uence on the material behaviour.

To investigate the in
uence of these elastic e�ects in the bearing area, simulations are

performed with and without taking into account the elastic e�ects. In Section 3.2 this

is discussed in more detail. In Section 3.3, the numerical model of the bearing area is

discussed. In Section 3.4 the results of the simulations are presented. The practical

implications of these results are discussed in Section 3.5.
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3.2 Material modelling

Hot aluminium has a rate dependent or viscoplastic behaviour. In the �rst part of this

section constitutive equations that can be used to model hot aluminium are derived.

These equations relate the Cauchy stress tensor � to the strain increment �". Firstly,

a viscoplastic model is derived. In this model, the elastic contribution is neglected.

Secondly, an elasto-viscoplastic model is derived, which includes elastic e�ects.

In simulations of extrusion it is common to use a viscoplastic model and neglect the

elasticity of the material. The reason for this is that the elastic deformations are

small compared to the very large plastic deformations that occur during the process.

However, in some areas of the process the elasticity is of interest. Especially inside

the bearing channel the deformations of the material are very small and elastic e�ects

are dominant. The processes which occur inside and just in front of the bearing,

to a large extent determine the local exit velocity of the pro�le and the extrusion

pressure. Therefore it is important to have an accurate model of the bearing area

which incorporates elastic e�ects.

Since large deformations occur just in front of the bearing, the constitutive model

should be applicable to large deformation analysis. Objective integration is obtained

by using a corotational formulation [10]. For simplicity, the constitutive model is

derived for in�nitesimal deformations only.

3.2.1 Time continuous constitutive equations

To begin with, a set of constitutive equations is given used to characterize elasto-

viscoplastic materials. The Von Mises criterion is used to de�ne the e�ective stress �

(J2 
ow). The equations are presented in rate form, with a superposed dot denoting

a derivative with respect to time.

_" = _"e + _"vp (3.1)

_� = E : ( _"� _"vp) (3.2)

_"vp = _�s (3.3)

g (�; �; _�) = � � �f (�; _�) (3.4)

_� � 0 ; _�g = 0 ; g � 0 (3.5)
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� Equation 3.1 is the rate form of the strain decomposition. The total strain " is

assumed to be the sum of an elastic part "e and viscoplastic part "vp.

� Equation 3.2 is the linear elastic relation between the Cauchy stress � and the

elastic strain in rate form. The elastic modulus E is a 4th order tensor based

on the scalar values of the Young's modulus E and Poisson's ratio �.

� Equation 3.3 is the evolution law (
ow rule) for the viscoplastic strain rate.

Extending the notion of associative plasticity to viscoplasticity, the viscoplastic

strain is assumed to be in the direction of the deviatoric stress. The viscoplastic

multiplier _� is used to scale the viscoplastic strain rate. The deviatoric stress s

is de�ned by:

� = s� pI ; p = �1
3
tr (�) (3.6)

� Equation 3.4 gives the limit function. This function describes the rate dependent

behaviour of the material in the plastic domain. It can be interpreted as a

generalisation of the Von Mises yield function from rate independent plasticity

to rate dependent plasticity. The Von Mises stress is given by:

� =

q
3
2
s : s (3.7)

The 
ow stress �f is a function of the state variables � and _�, respectively the

equivalent viscoplastic strain and equivalent viscoplastic strain rate. They are

de�ned by:

_� =

q
2
3
_"vp : _"vp (3.8)

� Equations 3.5 are the Kuhn-Tucker loading-unloading conditions. The material

can be in two states. Firstly the elastic state for which the plastic multiplier _� is

equal to zero and the limit function is lower or equal to zero. Secondly the plastic

state, for which the plastic multiplier is larger than zero and the limit function

is equal to zero. On the boundary between these two states, the viscoplastic

strain rate and the limit function are equal to zero. At this boundary, the limit

function corresponds to the yield function used in rate independent plasticity.

3.2.2 Viscoplastic constitutive equations

The model presented in this subsection is based on the assumption that the plastic

strain increment is much larger than the elastic increment. Therefore the elastic part
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can be neglected. The plastic strain increment now equals the total strain increment.

Plastic incompressibility is enforced by an augmented penalty method. This augmen-

tation requires an incremental procedure. To obtain this the time continuous model

is integrated over a time increment [tn; tn+1] with a Euler backward algorithm. The

total strain increment is split into a deviatoric part and a volumetric part:

�" = �e+�"volI (3.9)

With the assumption that the deviatoric strain equals the plastic strain, (3.2-3.5) can

be written as:

�e = ��sn+1 (3.10)

gn+1 = 0 (3.11)

The deviatoric stress follows directly from (3.10), with the viscoplastic multiplier ��

eliminated by enforcing (3.11):

sn+1 =
2
3
�f (�n+1; _�n+1)

�e

�eq
(3.12)

Here �eq is the equivalent strain given by:

�eq =

q
2
3
�e : �e (3.13)

The hydrostatic part of the stress tensor is determined by the plastic incompressibility

condition. An augmented penalty method is used to enforce this condition:

pn+1 = pn � Cb�"
vol (3.14)

Where Cb is the bulk modulus. An advantage of this augmented penalty method is

that no extremely high penalty factor is required to avoid loss of material. With this

formulation it is possible to use an elastic compressibility for the volumetric strain

when using an elastic bulk modulus. Nearly incompressible behaviour is obtained by

setting the bulk modulus to a very high value.

Combining the deviatoric and hydrostatic part, the following relation between stress

and strain increment is obtained:

�n+1 =
2
3
�f (�n+1; _�n+1)

�e

�eq
+ (Cbtr (�")� pn) I (3.15)
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The state variables � and _� are estimated from the equivalent strain increment:

�n+1 = �n +�eq (3.16)

_�n+1 =
�eq

�t
(3.17)

The viscoplastic model is very suitable for calculations where large plastic deforma-

tions occur. However, in most processes there are also areas with very little or no

plastic deformation. In these areas the equivalent strain increment will be equal or

almost equal to zero. This will cause (3.15) to become singular. This problem can be

solved by giving the equivalent strain increment a small minimum value. The result-

ing stresses and strains in these areas will not be correct. An indication of the error

that occurs is given in [11]. Often the results in areas with no plastic deformation are

of little interest and a viscoplastic model is suÆcient to obtain the desired results.

3.2.3 Elasto-viscoplastic constitutive equations

In an elasto-viscoplastic model the viscoplastic strain increment does not follow di-

rectly from the total strain increment. To obtain an expression for the viscoplastic

strain increment the evolution law (3.3) has to be integrated over the time inter-

val [tn; tn+1]. Using a Euler backward (radial return) integration algorithm, this

results in the following set of equations:

�" = �"e +�"vp (3.18)

��n+1 = E : (�"��"vp) (3.19)

�"vp = ��sn+1 (3.20)

gn+1 = �n+1 � �f (�n+1; _�n+1) (3.21)

�� � 0 ; ��gn+1 = 0 ; gn+1 � 0 (3.22)
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Table 3.1: Constitutive parameters for AA6063 alloy.

parameter min used max

elastic properties: E (MPa) 40000

(T = 773 K) � 0:35

plastic properties: _�0 (1=s) 0:001 0:005 0:01

sm (MPa) 25 25 76

m 2:4 5:4 6:0

A (1=s) 109 6 � 109 1012

Q (J/mol) 1:3 � 105 1:4 � 105 1:8 � 105
R (J/molK) 8:314

The state variables are de�ned as:

�n+1 = �n +

q
2
3
�"vp : �"vp (3.23)

_�n+1 =

q
2
3
�"vp : �"vp

�t
(3.24)

The viscoplastic multiplier �� can be eliminated by enforcing the Kuhn-Tucker con-

ditions (3.22). In the elastic domain, the stresses can be calculated directly from the

total strain increment with (3.19). In the plastic domain the stresses are calculated

by solving gn+1 = 0.

3.2.4 Flow stress for aluminium alloys at elevated temperature

The actual behaviour of a speci�c aluminium alloy in the plastic domain is de�ned

by an expression for the 
ow stress. This describes the relation between the e�ective

stress, the equivalent viscoplastic strain and equivalent viscoplastic strain rate. In this

paper, the Sellars-Tegart law [12] is used to model the behaviour of the aluminium

alloy:

�f ( _�) = smarcsinh

 �
_�

A
exp

�
Q

RT

�� 1
m

!
(3.25)

It can be easily seen that for _� = 0 the 
ow stress is zero. Hence no elastic behaviour

can be modelled with this material law. However, from the literature it is known that
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Figure 3.1: In
uence of parameter _�0 on the 
ow stress.

even at elevated temperatures (673 K - 873 K) a small elastic region is present [13, 14].

To include such an elastic region a modi�ed Sellars-Tegart law is introduced:

�f ( _�; T ) = smarcsinh

 �
_�+ _�0 (T )

A
exp

�
Q

RT

�� 1
m

!
(3.26)

A temperature dependent parameter _�0 (T ) is added. In Figure 3.1 the in
uence of

this parameter on the 
ow stress is shown. Normally a small value of _�0 between 0.01

and 0.001 is suÆcient to obtain a realistic size of the elastic region.

Most experimental data obtained for speci�c aluminium alloys aims at describing

the 
ow stress as a function of the strain rate and sometimes the strain. Not much

attention is paid to the yield stress at high temperatures. In the simulations pre-

sented in this paper the modi�ed Sellars-Tegart law is used to describe the material

behaviour. The parameters for this model are �tted to data obtained experimentally

for an AA6063 aluminium alloy. They are based on unpublished work done at Kings

College (London). Other experimental data for the AA6063 alloy is published by

Akeret [15] or more recently by Langkruis [16]. In Table 3.1 an overview is given of

the parameter ranges found for this alloy.

Large di�erences can be observed between the di�erent experimental data. A number

of reasons can be suggested to account for these di�erences. Firstly, di�erent test-

ing methods are used to determine the parameters, namely torsion tests compared

to compression tests. Secondly, small variations in alloy composition are possible
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Figure 3.2: Bearing geometry for tube extrusion.

within the AA6063 norm. In addition to this, with the same composition, di�erent

material behaviour can occur because of variations in the solution state of the alloy

components [17]. Taking all this into consideration, it can be concluded that it is very

diÆcult to obtain reliable data for speci�c aluminium alloys.

3.3 Numerical modelling of the bearing area

To simulate the extrusion process an Arbitrary Lagrangian Eulerian (ALE) code,

DiekA, was used. This code was developed during the last �fteen years by Hu�etink

et al. [18, 19]. In the ALE method the mesh displacement can be controlled inde-

pendently from the material displacement. The method was �rst developed in 
uid

mechanics to model 
uid-structure interaction and to model the motion of free sur-

faces [20, 21]. Later it was introduced to solid mechanics where it is used to avoid

mesh distortion which occurs when modelling large deformations with a Lagrangian

description. In the bearing area of the extrusion process, very large deformations

occur. These can be modelled well with an ALE method.

Extrusion is not a stationary process, because of the cyclic loading of the billet. The

result is that the temperature in the bearing area varies during the process. Modelling

these changes would require a transient calculation of at least one extrusion cycle.

This is beyond the scope of this work. To study the processes in the bearing only a

stationary isothermal solution is investigated.
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Figure 3.3: FEM mesh for the bearing area.

3.3.1 FEM model for the bearing area

An extrusion die used for the extrusion of tubes is illustrated in Figure 3.2. In

this �gure also a detailed view of the bearing is presented. The geometry of the

bearing shown in the detailed view is used for the numerical model. The diameter

of the extruded tube is 80 mm and the wall thickness is about 2 mm. Some speci�c

bearing dimensions like the bearing length l and angle � will be varied. A simple pre-

processor was developed to automatically generate a FEM mesh based on the desired

dimensions of the bearing area. In Figure 3.3 this mesh is plotted. Axi-symmetrical

4-node elements are used to model the aluminium. A well-known problem with these

elements is that they have extreme sti�ness for incompressible plasticity. This is

often referred to as volume-locking. Selective reduced integration, also known as the

B-approach [22, 23], is used to prevent this.

During the extrusion process the normal pressure on the interface between aluminium

and die is so high that no slipping friction occurs. The aluminium sticks to the wall

throughout almost the entire die. At some point in the bearing area the pressure

decreases to the extent that the friction stresses become lower than the internal shear

strength of the aluminium and the material will slip along the die surface. To model

friction in the region where slip may occur contact elements are used (dotted boundary

in Figure 3.3). These elements are based on a penalty formulation [24]. A Coulomb

friction law is implemented in these elements. It is very diÆcult to determine the fric-

tion coeÆcient under extrusion conditions. Estimates in the literature vary between
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Figure 3.4: Control of the mesh on free surfaces inside the bearing channel.

0.1 [4] to values above 1 [25]. The in
uence of this parameter on the resistance in

the bearing is investigated. If no speci�c value of the friction coeÆcient is speci�ed,

a value � = 0:5 is used.

At the start of the simulation no normal stress is working at the wall inside the bearing

channel. Because of this no friction will occur at this wall. To initiate friction a small

pressure pc = 1:4 MPa, counteracting the 
ow of the aluminium is applied at the exit

of the bearing channel, as indicated in Figure 3.3. This pressure is applied for 1000

displacement increments and then removed. The next 9000 increments are performed

without this pressure. At that time approximately 15 mm of pro�le is extruded and

a stationary solution is obtained.

3.3.2 Controlling the mesh displacement

When a standard Updated Lagrangian method is used to control the mesh, extensive

distortion of the mesh occurs after each increment. This would make it necessary to

perform a re-meshing after each couple of increments. An alternative approach which

is often used in simulations of extrusion is the Eulerian method. With this method

the mesh is �xed at its location and the material 
ows through the mesh. No mesh

distortion occurs but it is diÆcult to model the free surface of the pro�le after it leaves

the bearing. With the ALE method it is possible to control the mesh displacement

independently of the material displacement.

In the simulations presented in this paper, the mesh inside the die and bearing channel

is �xed to its location, e�ectively a Eulerian method. To avoid material 
owing out of

the mesh at the free surfaces, a mixed Lagrangian Eulerian description is used. This

is illustrated in Figure 3.4. The nodes move with the material for the displacement

component normal to the surface. For the component parallel to the surface the nodes

do not move with the material. This description is used on the free surfaces, but also
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Figure 3.5: Pressure and Von Mises stress in the bearing area (l = 5 mm � = 0:5).

on the dotted boundaries indicated in Figure 3.3. This means that it is possible that

the material loses contact with the wall in the bearing channel. This happens for

instance when the bearing angle � is negative (relieved bearing), but it also occurs

under certain conditions in parallel bearings.

3.4 Results of the simulations

A large number of simulations were performed with the model discussed in the previ-

ous section. Simulations were carried out with both the viscoplastic and the elasto-

viscoplastic model. The in
uence of the friction coeÆcient has been studied as well

as the in
uence of the bearing length and the bearing angle.

In the �rst part of this section, some general results will be discussed. The simulations

presented here are done with the elasto-viscoplastic model. In the second part of this

section, a comparison is made between the viscoplastic and the elasto-viscoplastic

models. It is shown that the elastic e�ects have a signi�cant in
uence on the resistance

of the material in the bearing channel. The results presented in the �rst two parts of

this section are based on a parallel bearing channel. In the third part, the e�ect of

changes in the bearing angle are discussed.
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Table 3.2: Conversion of Von Mises stress to equivalent plastic strain rate according

to (3.26).

Von Mises stress eq. plastic strain

� (MPa) rate _� (1/s)

< 10:3 (elastic)

12.4 0.05

14.4 0.14

16.5 0.32

18.5 0.66

20.6 1.32

22.6 2.54

24.7 4.56

26.8 8.19

28.8 14.02

30.9 24.19

3.4.1 General results

To begin with, the results of a simulation with a parallel bearing (� = 0; l = 5 mm; t =

2 mm) are presented in Figure 3.5. This simulation was carried out using the elasto-

viscoplastic model. The yield stress of the aluminium is approximately 10.3 MPa, so

Von Mises stresses below this value indicate that the material is in the elastic domain.

This is the case in almost the entire bearing channel. For values of the Von Mises

stress above 10.3 MPa, the material is in the plastic domain. The Von Mises stress can

be directly related to an equivalent plastic strain rate by the modi�ed Sellars-Tegart

law (3.26). The equivalent values are listed in Table 3.2.

To compare the results of di�erent simulations, a measure for the resistance of the

bearing must be de�ned. The average pressure on the in
ow edge is taken as this

measure. This average pressure P is calculated by integrating over the dotted area S,

indicated in Figure 3.5:

P =
1

S

Z
s

pds (3.27)

In Figure 3.6 the in
uence of changes in the bearing length are plotted. As discussed

in Section 3.3.1, a small pressure pc is applied to the exit in the initial stage of the
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Figure 3.6: In
uence of bearing length on the resistance in the bearing channel (� =

0:5).

simulation. This pressure is necessary to initiate contact between the aluminium

and the wall of the bearing channel. After approximately 1.5 mm is extruded, this

pressure is removed while the simulations is continued. To illustrate the e�ect of pc,

simulations are also performed without this pressure. The results of these simulations

show that the bearing length has no e�ect on the resistance in the bearing channel,

indicating that there is no contact between the bearing wall and the aluminium. In

the case pc = 1:4 MPa, there is a transition between two states. For short bearing

lengths, there is no contact in the stationary solution of the simulation. For longer

bearings, there is contact.

So at a certain bearing length a bifurcation occurs. For longer bearings, two stable

solutions can be distinguished, one with and one without contact in the bearing. By

applying an initial pressure, the simulation is forced to the solution with contact.

Higher values of the pressure pc will not change the results. For lower values of pc

the transition to a solution with contact may not occur or occur at a higher value of

the bearing length.

For short bearing lengths, the solution with contact in the bearing is not stable and

will eventually move to a situation without contact. This e�ect is explained in more

detail with the help of Figure 3.7. Two zones (A and B) are indicated in this �gure. In

zone A stresses in the y-direction will be in tension (positive values). In this area the

material has the tendency to lose contact with the bearing wall, because the material
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is stretched in the y-direction. This tendency is counteracted by the pressure that

is built up inside the bearing channel by the friction forces at the wall (zone B). If

these friction forces are suÆcient, which is the case for long bearings, the contact will

remain. If the forces are too low, contact will be lost at zone A and eventually along

the entire bearing length.

3.4.2 In
uence of elastic material behaviour

To investigate the di�erence between the viscoplastic and the elasto-viscoplastic ma-

terial models, simulations with both models are made. In Figure 3.8 the results for

simulations with di�erent bearing lengths are shown. For the viscoplastic model, the

transition to a solution with contact comes at a much higher value of the bearing

length. The reason for this is that the pressure pc is too low to accumulate suÆcient

resistance in the bearing to force the simulation to the solution with contact. If pc is

increased to 2.3 MPa, the transition occurs at a lower value of l.

For the solution without contact, an average pressure of approximately 60 MPa is

calculated. This pressure is generated by the deformation that occurs before the ma-

terial enters the bearing channel. The elasto-viscoplastic and the viscoplastic models

show identical results for the solution without contact. The reason for this is that

the plastic deformations are high in the area in front of the bearing channel. Elastic

e�ects will have no signi�cant in
uence in this area. When contact occurs, the resis-

tance in the bearing channel is approximately 50% higher for the viscoplastic model
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compared to the elasto-viscoplastic model. This indicates that in the bearing channel,

the elastic e�ects do have a signi�cant in
uence.

In Figure 3.9 the in
uence of the friction coeÆcient on the resistance in the bearing is

illustrated. The same behaviour as observed in Figure 3.8 is apparent. The viscoplas-

tic simulations require a higher value of pc to force the simulation in the solution with

contact. For a higher friction coeÆcient, the bearing length at which the bifurcation

occurs is reduced. The reason for this is that a higher friction coeÆcient increases the

friction forces in zone B and thus the required bearing length to sustain a situation

with contact is reduced.

To clearly demonstrate the di�erence between the elasto-viscoplastic and the vis-

coplastic models, the velocity of the material in the bearing channel is plotted in

Figure 3.10. With the elasto-viscoplastic model, plastic deformation occurs only in

the �rst part of the channel. In the rest of the channel the material is in the elastic

domain. The simulation with the viscoplastic model shows a velocity gradient in the

entire bearing channel. The material in the centre of the channel has a higher veloc-

ity than the material at the wall. Because this velocity di�erence decreases as the

material moves through the bearing, material will 
ow from the centre to the wall.

This will increase the normal stresses and hence the friction forces at the wall.
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3.4.3 In
uence of the bearing angle

All previous simulations were carried out with a parallel bearing. However in practical

situations, the bearing angle can be changed by de
ections of the die. Sometimes

the bearing angle is intentionally changed to increase or decrease the resistance in

the bearing channel. The e�ect of the bearing angle on the average pressure P is

illustrated in Figure 3.11.

For simulations with a non-parallel bearing, contact is either forced by a choked

bearing (� > 0) or prevented by a relieved bearing (� < 0). The simulations predict

a very large increase in pressure from -0.01Æto +0.01Æ. In this range the solution

jumps from a situation without contact to a situation with contact. It is apparent

that the resistance of (almost) parallel bearings is very sensitive to small changes in

the bearing angle. This trend can also be observed in experimental results by Akeret

and Strehmel [26].

3.5 Discussion

In industrial extrusion of thin-walled sections, parallel bearings are often used. Ex-

pected di�erences in exit velocity of the pro�le are compensated for by varying the
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bearing length over the section. It is observed in practise that it is very diÆcult to

accurately predict the bearing length in order to obtain a good pro�le. As a result,

dies often do not produce the intended product. This is corrected by locally adjusting

the bearing geometry to increase or decrease the resistance in the bearing channel by

a trial and error process.

The unpredictability observed in practise can be explained very well by the results of

the simulations presented in this paper. From the results it is clear that for parallel

bearings, changes in bearing length or angle can result in abrupt changes in resistance

in the bearing channel. In practise additional factors have to be taken into account.

Forces that are exerted on the pro�le (for example by a puller or by gravity) and e�ects

of non-uniform velocity over the cross-section complicate the situation considerably.

However the general trends observed in the simulation still apply. The use of parallel

bearings is considered to be one of the most important factors contributing to the

unpredictability of the extrusion process. To remove this factor from the extrusion

process, either a choked or relieved bearing can be used. In both cases, the sensitivity

of the resistance in the bearing channel to small changes in the bearing geometry is

reduced signi�cantly.

In the opinion of the author, a relieved bearing is to be preferred rather then a choked

bearing since it greatly reduces the pressure necessary for the extrusion process. A

problem with this approach is that in a relieved bearing, the bearing length can no

longer be used to control the local velocity of the aluminium. In order to obtain a

uniform exit velocity for the entire section, it is necessary to adjust the resistance

locally. This can be done by adding a sink-in just in front of the bearing as illustrated

in Figure 3.12. The depth s and the o�set o of the sink-in can be used to control

the exit velocity. This approach has been tested in an industrial setting with very

encouraging results [27].
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3.6 Conclusion

In the aluminium extrusion process, the bearing area has a dominant in
uence on the

characteristics of the process. However, when making numerical simulations of the

extrusion process it is also the most complex part of the simulation. To accurately

predict the phenomena that occur in this area, a very detailed model is necessary.

2D simulations can give a basic understanding of the phenomena that occur in the

bearing area.

A numerical model of the bearing area for the extrusion of a tube is presented in this

paper. This model shows that there is hardly any plastic deformation in a parallel

bearing channel. Because of this, elastic e�ects have a dominant in
uence on the

bearing channel. This is demonstrated by comparing simulations with a viscoplastic

model and an elasto-viscoplastic model.

The e�ects of changes in bearing geometry are also investigated in this paper. It

is shown that for relatively short bearing lengths no contact occurs in the bearing

channel. For longer bearing lengths, two stable solutions occur, one with and one

without contact. By applying a force at the exit of the bearing, the solution can be

forced to one of the solutions. In practice, forces exerted on the pro�le will determine

whether or not contact occurs.

If the bearing angle is varied, the solution is either forced to contact (choked bearing)

or prevented from contact (relieved bearing). With a parallel bearing, the solution

can jump to either side. This makes the extrusion process very sensitive for variations

in the bearing angle. To avoid this sensitive behaviour a design approach is suggested

that uses a relieved bearing with a sink-in to control the local velocity of the material.
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Chapter 4

Comparison of experimental

AA6063 extrusion trials to 3D

numerical simulations, using a

general solute-dependent

constitutive model

J. van de Langkruis, J. Lof, W. H. Kool, S. van der Zwaag,

J. Hu�etink

Abstract

In this paper laboratory scale extrusion experiments carried out on AA6063 billets are

compared to numerical simulations. The numerical simulations are performed with a

general solute-dependent elasto-viscoplastic constitutive model based on a hyperbolic

sine law, allowing for the quanti�cation of pressure levels, strain rate and stresses.

The parameters for the material model were determined with compression tests. The

extrusion trials were performed isothermally at temperatures of 623 K and 723 K and

with two distinct material conditions. The results of the numerical simulations show

good agreement with the experimental results. It turns out that local high strain

rates (> 40 s�1) have a signi�cant in
uence on the extrusion pressure. However, ade-

quate test methods to provide constitutive data at these strain rates are very limited.

At high temperatures the di�erence between material conditions had a considerably

smaller in
uence on the extrusion experiments compared to the simulations. It is ar-

gued that this e�ect can be attributed to dynamic precipitation that occurred during

the experiments under high temperature, high strain rate conditions.

59



4.1 Introduction

Finite Element Modelling (FEM) represents a valuable tool for the optimisation of

the aluminium extrusion processes. The numerical model should take into account

the material conditions, and it should be able to model large deformations that occur

during extrusion. It also should be able to model elastic deformations when predicting

the frictional resistance in a parallel bearing channel or the stresses in the �nal pro�le.

Furthermore, the model should accurately describe the 
ow resistance of the alloy

during extrusion.

In FEM codes the 
ow resistance of the alloy is often described using a relatively

simple and easy-to-use empirical constitutive equation , such as the hyperbolic sine

law [1, 2, 3, 4] or the power law [1, 5, 6]. This law correlates local 
ow stress, equivalent

plastic strain, strain rate and temperature. The parameters of these constitutive equa-

tions are often valid only for a given composition and limited experimental regime,

and do not explicitly account for the metallurgical condition of the alloying elements

in the aluminium alloy. However, in industrial extrusion billets, the condition of alloy-

ing elements depends on billet homogenisation and preheating practice, and changes

dynamically during the extrusion process. These factors may signi�cantly a�ect the

extrusion pressure and mechanical properties of the extrudate. In previous work [2, 7]

the hyperbolic sine law was adapted to describe solution hardening by accounting for

the content of solute Mg and Si in the aluminium matrix. With this model, the e�ect

of solute Mg and Si on the hot 
ow resistance during plane strain compression was

modelled successfully.

In this paper a numerical analysis was made of a series of isothermal laboratory-scale

extrusion trials of aluminium AA6063 billets with varying contents of solute Mg and

Si. To this end the adapted hyperbolic sine law was implemented into the FEM code

DiekA. This code is specialised in the simulation of forming processes like rolling,

drawing, sheet metal forming and extrusion. The analysis comprised a quanti�cation

of absolute pressure levels, pressure drop along the length of the billet container,

solute e�ects, 
ow stress and strain rate levels.

4.2 Constitutive model

In this section the constitutive elasto-viscoplastic model is presented, which was im-

plemented into the FEM code. The Von Mises criterion was used to de�ne the e�ective
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stress. The equations are presented in an incremental formulation. This incremental

formulation is obtained by integrating the constitutive equations in rate form over a

time increment [tn; tn+1] with an implicit Euler backward integration algorithm [8, 9],

and results in:

�" = �"e +�"vp (4.1)

��n+1 = E : (�"��"vp) (4.2)

�"vp = ��sn+1 (4.3)

gn+1 (�n+1; �n+1; _�n+1) = �n+1 � �f (�n+1; _�n+1; T ) (4.4)

�� � 0 ; ��gn+1 = 0 ; gn+1 � 0 (4.5)

� Equation 4.1 is the incremental form of the strain decomposition. The total

strain increment tensor is assumed to be the sum of an elastic part �"e and a

viscoplastic part �"vp.

� Equation 4.2 represents the linear elastic relation between the Cauchy stress

tensor � and the elastic strain tensor. In this equation the elastic modulus

E is a fourth order tensor based on the constant scalar values of the Young's

modulus E and Poisson's ratio �, given in Table 4.1.

� Equation 4.3 is the evolution law (
ow rule) for the viscoplastic strain rate.

Extending the notion of associative plasticity to viscoplasticity, the viscoplastic

strain increment is assumed to be in the direction of the deviatoric stress. The

plastic multiplier �� is used to scale the viscoplastic strain rate. The deviatoric

stress s is de�ned by:

� = s� pI; p = �1
3
tr (�) (4.6)

with p the hydrostatic stress and I the second order unit tensor.

� Equation 4.4 gives the limit function. This function describes the rate dependent

behaviour of the material in the plastic domain. The e�ective stress is calculated

with the Von Mises criterion:

� =

q
3
2
s : s (4.7)
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The 
ow stress, �f , is a function of the state variables � and _�, representing the

equivalent plastic strain and equivalent plastic strain rate respectively. These

are de�ned by the following equations:

�n+1 = �n +

q
2
3
�"vp : �"vp (4.8)

_�n+1 =

q
2
3
�"vp : �"vp

�t
(4.9)

� Equations 4.5 are the Kuhn-Tucker loading-unloading conditions. The material

can be in two states. Firstly the elastic state for which the plastic multiplier is

zero and the limit function is lower than or equal to zero. Secondly the plastic

state, for which the plastic multiplier is larger than zero and the limit function

is zero.

The constitutive behaviour of the speci�c aluminium alloy is represented in (4.4)

by the 
ow stress. For the simulations presented in this work the relationship be-

tween �f , _� and T is given by a hyperbolic sine law [1]. This law is adapted for the

e�ect of solution hardening by Mg and Si atoms in the aluminium matrix as described

previously [2, 7]:

�f = smarcsinh

 �
Z

A

� 1
m

!

Z = ( _�+ _�0) exp

�
Q

RT

�

A = exp (K1) exp (�K2X)

X = 2 [Mg] + [Si]

(4.10)

Here sm and m are strain rate sensitivity parameters, assumed to be constant in the

experimental regime, Z is the Zener-Hollomon parameter, Q is the apparent acti-

vation energy of the deformation process during plastic 
ow, R is the universal gas

constant, T is the absolute temperature and A is a factor, depending explicitly on the

Mg and Si matrix solute content. The quantity X is the weighted solute content in

the aluminium matrix, K1 and K2 are experimentally determined model constants,

and [Mg] and [Si] are the solute contents of Mg and Si in the matrix. Because of

the high strains encountered in extrusion, strain hardening can be neglected [10].
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Table 4.1: Constitutive parameters of the adapted hyperbolic sine law.

elastic properties: E (MPa) 40000

� 0:35

constitutive par.: _�0 (s
�1) 0:005

sm (MPa) 30:9

m 4:49

K1 27:7

K2 (wt%
�1) 2:52

Q (J/mol) 1:58 � 105
R (J/molK) 8:134

Therefore the equivalent plastic strain is not included in the constitutive model and

thus (4.10) describes only the steady state behaviour of the material.

The values of parameters sm, m, Q, K1 and K2 were determined for the same al-

loy as used in this work independently from the extrusion trials, using plane strain

compression tests [2]. These tests were carried out at temperatures of 673 K - 773 K

and at strain rates up to 40 s�1. The parameter values are given in Table 4.1. The

constant _�0 is added to the equivalent strain rate in (4.10) to include an elastic region

in the material behaviour with a temperature-dependent elastic 
ow stress at zero

strain rate.

4.3 Experimental and numerical setup

The constitutive model described in the previous section was implemented in a �nite

element code. With this code, simulations were made of isothermal extrusion exper-

iments. The experimental and numerical setup of the extrusion trials is discussed in

this section.

4.3.1 Material preparation

A commercial aluminium AA6063 billet with a composition (wt%) Mg: 0.45, Si: 0.4,

Fe: 0.19, others < 0:05, Al: balance, was homogenised at 843 K for 4 hours, quenched

with forced air to room temperature and subsequently extruded to a rectangular

pro�le with dimensions 1000 � 1000 � 30 mm3. From this pro�le, 12 cylindrical billets
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Table 4.2: Solute contents for the various material conditions.

alloy condition [Mg]) [Si] X

(wt%) (wt%) (wt%)

WQ 0:45 0:4 1:3

�1 0:046 0:14 0:23

�2 0:24 0:25 0:73

with diameter 29 mm and length 70 mm were taken. The longitudinal direction of

the billets was in the same direction as that of the rectangular pro�le. The billets

were homogenised for 6 hours at 853 K and water quenched to room temperature

(WQ-condition). Subsequently, six billets were over-aged at 623 K (�1 condition), or

723 K (�2 condition) for 72 hours, three at each temperature, and water quenched

to create microstructures with equilibrium volume fraction of �-Mg2Si precipitates

corresponding to these temperatures. The matrix concentrations [Mg] and [Si] of the

WQ billets are taken identical to the nominal alloy content, whereas for the over-aged

billets they were calculated with the thermodynamic software package MTDATA [11].

The Mg and Si concentrations are listed in Table 4.2.

4.3.2 Extrusion trials

The billets were extruded isothermally to a rectangular strip of 1.5 mm � 7:5 mm on

a laboratory scale vertical 800 tons extrusion press, with a cylindrical billet container

of 70 mm � ?30 mm. The billet was inserted into the container, held for 10 minutes

to obtain a uniform temperature distribution in billet and container, and isothermally

extruded. The extrusion temperature is measured in the die, close to the die opening,

approximately 2 mm from the metal 
ow. The time constant of the temperature

measurement was estimated to be 2 s. Isothermal extrusion was accomplished by

adapting the extrusion speed to control the developed heat of deformation. To ensure

initiation of extrusion the billet preheat temperature was set to 15 K below the pre-set

extrusion temperature.

In Figure 4.1 a schematic display is given of the extrusion press. The die has a

relieved bearing, as sketched in the detailed view given in Figure 4.1b. A relieved

bearing minimises the e�ect of friction. The �gure also indicates the location of the

thermocouple.
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Figure 4.1: Schematic display of the miniature extrusion press; a) ram, container and

die; b) detailed display of the die.

The WQ-billets were extruded at 623 K and 723 K, the �1 billets at 623 K and

the �2 billets at 723 K. Although some degree of dynamic precipitation from the

supersaturated solid solution might occur during extrusion of the WQ billets at both

temperatures, the solute contents of the �1 and �2 billets are stable. During extrusion

the location of the ram, extrusion pressure and extrusion temperature were registered

using a multi-channel data-logger. Each extrusion test was carried out in triplicate.

The experimental accuracy of the extrusion pressure was estimated to be 20 MPa.

4.3.3 Numerical modelling

The simulations of the extrusion process were carried out with the �nite element

code DiekA. This is an Arbitrary Lagrangian Eulerian (ALE) code developed by

Hu�etink et al. [12]. The ALE method can be used to avoid mesh distortion, which

occurs when modelling large plastic deformations with a Lagrangian description. With

the ALE method the material and mesh displacements are de-coupled and can be

controlled independently. The ALE formulation is very suitable for modelling the

extrusion process. Inside the die, where high deformations occur, the mesh does

not change position. This is accomplished by choosing the mesh displacement equal

to zero (e�ectively a Eulerian description). On the other hand, when the material

leaves the die a free surface is formed. In the direction normal to this surface the

mesh displacement will be equal to the material displacement. In this way elastic

deformation of the pro�le due to residual stresses in the material can be modelled,

which is not possible when using a Eulerian description.
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Figure 4.2: Simulations are performed for indicated ram positions, located at 65 mm,

56 mm, 36 mm, 13 mm, 10 mm and 6 mm from the die plate.

Figure 4.3: Finite element mesh, indicating the re�nements near the container bound-

ary and the die.
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The extrusion process is not a stationary process, because of the cyclic loading of

the billets. To calculate the extrusion pressure as a function of the ram displacement

transient calculations should be performed. However this requires a very small time

step to ensure stability in the �ne mesh at the bearing, resulting in unacceptable

calculation times. To avoid these long calculation times the following approach was

adopted. For certain ram positions, illustrated in Figure 4.2, the stationary solution

of the problem was calculated, which requires only a limited number of increments,

and took about 5-10 minutes on a HP J5000 workstation.

In the simulations for each ram position the ram speed was determined from the

experimental data and applied to the back of the billet as a boundary condition. The

calculations were performed isothermally, with a temperature equal to the pre-set

die temperature in the experiment. A drawback of this procedure is the inability to

calculate an exact temperature distribution in the billet. However, since extrusion in

the experiments was carried out rather slowly (typical ram speeds < 1 mm/s), it was

assumed that the e�ects of local heating were not signi�cant.

The mesh used in the FEM model is illustrated in Figure 4.3. Only a quarter of

the experimental set-up is modelled because of symmetry. During the process most

deformation occurs in the area directly in front of the bearing. In the container

deformation occurs at the wall while at the centre the material moves as a plug.

These e�ects were taken into account during the construction of the mesh. In the

container a relatively coarse mesh was used, with smaller elements near the wall. In

the bearing area a �ne mesh was used.

At the interface between the die and the aluminium billet a Coulomb friction law is

applied with a friction coeÆcient of 0.25. In the simulations the value of the friction

coeÆcient has only a very limited in
uence on the results, because slipping friction

occurs only at the bearing and a relieved bearing was used. Inside the container a

stick condition was applied because the friction stresses are much larger than the

internal shear strength of aluminium. It must be emphasised that no parameter was

adjusted to �t the numerical results to the results of the experiments. The material

parameters were determined independently from the extrusion experiments and the

in
uence of the friction coeÆcient is too small to be used as a �tting parameter.
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4.4 Results

One of the main advantages of numerical simulations is that they o�er the opportunity

to observe e�ects that occur inside the process. These e�ects cannot be investigated

experimentally. The experimental results however serve as a link to the real pro-

cess and o�er a means of verifying the numerical result. In this section, both the

experimental and numerical results are discussed.

4.4.1 Laboratory scale extrusion

In Figures 4.4 and 4.5 the extrusion pressure, ram velocity and die temperature are

plotted as a function of the ram position. Ram position 0 corresponds to the ram

touching the die. The �gures indicate that, after a sharp increase of the extrusion

pressure during the upsetting of the billet, two stages can be discerned. Firstly

an initial stage is observed (ram position 64 - 48 mm), which is characterised by

a high extrusion pressure, a high, but rapidly decreasing ram velocity and a die-

temperature drop below the pre-set value. This initial stage lasts approximately 2 s.

After a pressure dip a second stage is observed (ram position 48 - 5 mm) at which

the pressure remains relatively low and the ram velocity is almost constant and an

order of magnitude lower than in the initial stage. During this stage, which lasts

approximately 60 s, extrusion proceeds isothermally. The pressure dip before the

second stage is an experimental artifact resulting from the ram velocity momentarily

dropping to zero when the temperature at the die overshoots the pre-set temperature

as a result of the added heat of deformation, see Figure 4.5.

In the extrusion pressure the following trends are observed. The extrusion pressure

of the WQ billets is higher than those of the over-aged billets �1 and �2, which

is attributed to the higher degree of solution hardening in the WQ billets. Also,

the extrusion pressures at 623 K are higher than at 723 K, due to the temperature

dependence of the deformation resistance. Furthermore, the relative di�erence in

extrusion pressure between the WQ and �1 condition at 623 K is higher than that

between the WQ and �2 condition at 723 K, which can be attributed partly to a higher

di�erence in solute content at 623 K, see Table 4.2. The small di�erence between the

WQ and �2 condition at 723 K will be discussed in Section 4.5.2.
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Figure 4.4: Extrusion pressure as a function of the ram position; a) WQ-condition,

623 K; b) �1-condition, 623 K; c) WQ-condition, 723 K; d) �2-condition, 723 K.
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Figure 4.5: Extrusion ram velocity together with the die temperature as a function

of the ram position for the �1-condition, extrusion temperature 623 K.
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Figure 4.6: Extrusion pressure as a function of the ram position at 623 K, including

the simulated curves (dashed lines; marks indicate actual simulations).

4.4.2 Numerical simulations

In Figures 4.6 and 4.7 the calculated and measured extrusion pressure curves are

plotted as a function of the ram position. The numerical pressures were calculated by

dividing the sum of the reaction forces at the ram by the area of the ram. It can be

observed that the calculated curves predict well the absolute pressure levels (typical

accuracy of 10 %), although in the initial stage the pressures are over-estimated,

and in the secondary stage they are somewhat underestimated. Furthermore, in the

secondary stage the pressure decrease with ram position is predicted accurately.

The trends with temperature are similar for both experiments and simulations. The

pressure di�erence resulting from the di�erent degrees of solution hardening of the WQ

and over-aged billets is predicted accurately at 623 K, but is somewhat overestimated

at 723 K.

In Figure 4.8 contour plots of extrusion pressure and Von Mises stress are given

for certain combinations of extrusion temperature, ram position, and pre-treatment

condition. The Von Mises stress contours in Figure 4.8 correspond to strain rate

contours, listed in Table 4.3. Two deformation zones can be clearly discerned:

� A plug 
ow zone in the container, characterised by a relatively thin layer of

large shear close to the container wall with strain rates up to 1.5 s�1 and a

large region with very low deformation rates (< 0:1 s�1) in the centre of the

container.
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Figure 4.7: Extrusion pressure as a function of the ram position at 723 K, including

the simulated curves (dashed lines; marks indicate actual simulations).

� A deformation zone near the die where the material 
ows to the die opening.

In this area the strain rates have values 10 s�1 and higher, up to 1000 s�1.

The Von Mises stress contours in Figures 4.8a and 4.8b indicate that the 
ow patterns

are similar at both temperatures, and that only the absolute 
ow stress and pressure

levels di�er. In the plug 
ow zone the pressure decreases linearly with decreasing

distance from the die, and the pressure drop at 623 K is approximately twice as large

as at 723 K. This di�erence is related partly to the di�erence in temperature and

partly to a higher ram speed at 623 K. Investigation of the resulting strain rates

indicate that ram velocity and strain rate are proportional. Furthermore, it can be

observed from the Von Mises stress contours that a small dead metal zone near the die

(right hand corner) has formed where the material is in the elastic state (< 19:25 MPa

at 623 K, < 10:21 MPa at 723 K).

4.5 Discussion

A good agreement exists between numerical calculations and experimental results with

respect to both absolute extrusion pressure levels and trends with solute content and

temperature. A similar agreement was reported in the limited number of comparable

studies found in the literature [13, 14, 15].

The calculations can be used to quantify the contributions of the plug 
ow zone and

the deformation zone near the die to the extrusion pressure. They also provide infor-
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Figure 4.8: Pressure(MPa) in upper graph and Von Mises stress contours(MPa) in

lower graph for; a) �1 billet at 623 K, initial stage (ram position 65 mm, ram speed

14.7 mm/s); b) �2 billet at 723 K, initial stage (ram position 65 mm, ram speed 6.7

mm/s); c) �2 billet at 723 K, second stage (ram position 13 mm, ram speed 0.87

mm/s).
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Table 4.3: Conversion of Von Mises stress into equivalent strain rate for the overaged

conditions at both extrusion temperatures.

Von Mises stress plastic strain rate plastic strain rate

(MPa) �1 623 K (s�1) �2 723 K (s�1)

10 (elastic) (elastic)

20 (elastic) 0.11

30 0.049 1.02

40 0.317 6.12

50 1.61 30.7

60 7.44 141

70 32.8 622

80 141 2680

90 602

100 2550

mation on 
ow stress values and strain rates encountered in the material. Di�erences

in temperature and material condition result in di�erent 
ow stress and extrusion

pressure values, but yield similar 
ow patterns. Finally, the development of a small

dead metal zone near the die could be followed.

However, some discrepancies can be distinguished between experiments and simu-

lations: In the simulations the pressure level in the secondary stage is somewhat

underestimated, and is somewhat overestimated in the initial stage. Also, the e�ect

of the di�erence in solution hardening is overestimated at 723 K. These discrepancies

will be discussed below, but it should be noted that during the initial stage extrusion

proceeds under unstable press conditions, which reduces the accuracy of the exper-

imental results at this stage. Additional e�ects, which are not accounted for in the

numerical model, such as friction between ram and container, may also result in dis-

crepancies between the pressure levels in experimental curves and those predicted by

the simulations.

4.5.1 Prediction of the pressure for the initial and secondary

stage of extrusion

It can be observed in Figure 4.6 and 4.7 that for all simulated cases the slopes of

the experimental and calculated results are in good agreement, indicating that the
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model predicts the material behaviour in the plug 
ow zone accurately. However,

in the secondary stage the absolute level of the calculated curves deviates from the

experimental results, which indicates that here the pressure calculated for the defor-

mation zone around the die is underestimated. In this area the generated pressure is

dominated by high strain rates.

As indicated in the description of the constitutive model the parameter set corre-

sponding to (4.10) was determined using plane strain compression tests for strain

rates up to 40 s�1, whereas in the deformation zone near the die the strain rate

reaches values up to 1000 s�1. It is therefore possible that at high strain rates the


ow stress values calculated with (4.10) may deviate from the 
ow stress of the real

material.

Furthermore, it has been reported that for strain rates of approximately 1000 s�1

the strain rate sensitivity of aluminium alloys begins to increase dramatically, which

could be caused by inertial e�ects [16, 17]. The increase of the strain rate sensitivity

near 1000 s�1 as well as the e�ect of the limited range of the compression tests when

extrapolating to strain rates > 40 s�1 may lead to an underestimation of the real 
ow

stress.

To illustrate this, in Figure 4.9 some calculated 
ow stress values are plotted as a func-

tion of ln ( _�) using the parameter values of Table 4.1, together with an alternative

parameter set with sm = 41:7 MPa and K1 = 29:7. Some experimental data points

are also plotted, with error bars indicating the experimental accuracy of 3 MPa. Both

parameter sets describe the experimental values within the bounds of experimental

accuracy, but the alternative parameter set yields 
ow stress values more than 10 %

higher at strain rates approaching 1000 s�1. When this second set is used in the

simulations, an extrusion pressure is calculated which describes the experimental re-

sults to within 5 %. This shows the signi�cance of having 
ow stress data available

covering rates of up to 1000 s�1.

The overestimation in the initial stage of extrusion can be explained by considering

that in the laboratory scale extrusion tests the ram velocities and thus the strain

rates are an order of magnitude higher than in the secondary stage. This results in a

relatively large area in the deformation zone with strain rates of 10 s�1 or higher, and

increased adiabatic heating. However, this cannot be registered by the thermocouple

since the time constant of the temperature measurement (�2 s) is similar to the

time length of the initial stage. This means that in the initial stage the extrusion

temperature in the experiment is probably higher than the pre-set value that was
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Figure 4.9: Experimental and calculated 
ow stress as a function of ln ( _�) the error

bars indicate the experimental accuracy of the compression test data.

used in the simulations. From Figure 4.4 it can be estimated that a temperature

increase of �30 K is suÆcient to explain the overestimation in the initial stage. This

temperature increase is realistic when the high ram velocity in the initial stage is

taken into account.

4.5.2 Overestimation of the solute e�ect on the pressure at

723 K

At 723 K the extrusion experiments showed a much smaller di�erence between the

pressure levels of the WQ and �2 condition than the simulations, whereas at 623 K

the di�erence was predicted accurately. Also, compression tests with these material

conditions showed a signi�cant solute e�ect at both 623 K and 723 K [2, 18]. It is

apparent that during extrusion at 723 K considerable softening of the WQ material

takes place. Because the foremost di�erence between the compression tests and the

extrusion trials is the di�erence in strain rates this softening is attributed to the high

strain rates in the deformation zone at the die. In this section possible high strain

rate/temperature e�ects are considered which could cause this softening e�ect of the

WQ condition.

Possible material e�ects which may occur during extrusion at high strain rates are

dynamic precipitation, dynamic recrystallisation, and strain localisation e�ects by the

formation of shear bands or local loss of coherency of the crystal structure. Dynamic

recrystallisation is strongest at high values of Z [10, 19], and hence a larger softening
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would be expected at 623 K than at 723 K, in contrast to the observations. Similar

considerations rule out strain localisation [10, 20, 21] as the pertinent mechanism.

Dynamic precipitation induces softening of the material as a result of the reduction

of the solute content by precipitation of alloying elements from the solid solution of

the matrix during deformation. This has been observed during hot deformation at

strain rates �1 s�1 of highly supersaturated alloys - AA2XXX and highly alloyed

AA6XXX - [22, 23]. The driving force for dynamic precipitation is the supersatura-

tion level of the solid solution, and therefore precipitation should be more probable

at 623 K than at 723 K, and for supersaturated material. However, at the high strain

rates encountered in extrusion the subgrain size of the dislocation cell structure be-

comes comparable to the di�usion length of the solute atoms. At this stage all solute

is within the range of the subgrain boundary, which acts as a nucleation site for dy-

namic precipitation, and the chance that alloying atoms reach a subgrain boundary

by di�usion increases with the temperature. The di�usion length lD, that solute can

travel to reach a nucleation site, is given by:

lD �
q
�Di (T0) tdef (4.11)

in which Di (T0) represents the di�usion coeÆcient of the solute element i in the

matrix at the process temperature T0 and tdef represents the time scale of the defor-

mation process. The temperature dependence of Di (T0) is given by:

Di (T0) = D0;i exp

��Qi

RT0

�
(4.12)

Here D0;i is a constant and Qi is the activation energy for di�usion of element i

in the matrix. Nes [24] showed that, using the principle of similitude observed by

Castro-Fernandez et al. [25], the subgrain size, Æ, can be related to the 
ow stress by:

Æ =
cGb

�f � �i
(4.13)

where c is a constant, G is the shear modulus, b is the length of the Burgers vector for

aluminium and �i represents frictional stress opposing the moving dislocation. The

probability that nuclei are formed or that pre-existing nuclei grow can be expected to

increase dramatically when the solute atoms can reach the surplus of nucleation sites

at the subgrain boundary within a time tdef . This occurs when:

lD

Æ
=

�f � �i

cGb

q
�Di (T0) tdef � 0:5 (4.14)

76



Table 4.4: Flow stress values and strain rates corresponding to lD=Æ = 0:5.

T (K) lD (m) �f (MPa) _� (s�1) lD=Æ > 0:5 in deformation zone

dynamic precipitation possible

623 2:5 � 10�8 286 1:2 � 1014 no

723 1:5 � 10�7 59 35 yes

773 3:2 � 10�7 36 4:8 yes

At temperatures of 623 K and higher DMg � DSi and the di�usion rate of Si is

the limiting factor for dynamic precipitation. For Si, D0 = 2:02 � 10�4 m2/s, Q =

136000 J/mol [26], and during hot deformation cGb � 13:6 MPa m [6, 24]. For �i a

value of 15 MPa was taken. The residence time of the material in the deformation

zone around the die where strain rates are 10 s�1 or higher was estimated to be tdef �
0:25 s. In Table 4.4 estimates are given of the 
ow stress and strain rate at which

the dimensionless number lD=Æ becomes 0.5 for a range of temperatures. The strain

rates were calculated from the �f values using (4.10). The trends in the values are

relatively insensitive to the precise value of �i.

It can be observed that at 623 K the strain rates needed for enhanced dynamic precip-

itation are out of the range typical for the deformation zone (10 s�1 � _� � 1000 s�1),

and dynamic precipitation is not possible. On the other hand at 723 K the deformation

zone has strain rates satisfying the condition lD=Æ > 0:5 and dynamic precipitation

is possible. Furthermore, it should be noted that the actual di�usion length during

hot deformation is not well known and may be larger than the di�usion length under

static conditions used here, because of an excess of vacancies and travelling disloca-

tions. Taking for instance a D0 value 7 times higher than the used value still does not

allow for dynamic precipitation at 623 K, and does allow for dynamic precipitation at

723 K. Considering the supersaturation of the WQ billets and a value of lD=Æ = 0:5

at 723 K, dynamic precipitation is adopted as the most likely explanation for the

softening of the WQ material during extrusion at 723 K.

4.5.3 Application of the model to industrial extrusion

Although the 
ow stress values and strain rates in industrial extrusion are similar to

those in the described trials, industrial extrusion distinguishes itself from the labora-

tory scale extrusion trials presented in this study in at least three important aspects:

it is non-isothermal, the condition of alloying elements in the alloy changes dynam-
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ically during the extrusion process and the geometrical length scales are a factor 10

larger.

The presented FEM code including the solute dependent material model can in prin-

ciple be applied for modelling non-isothermal extrusion when transient calculations

are performed. However, the complexity of the problem to be solved is limited by

the computational capacity available, and is strongly related to the complexity of the

geometry of the die and the mesh necessary to accurately discretise this geometry.

Furthermore, dynamic changes in the condition of Mg and Si take place and a�ect

solution hardening and the condition of Mg and Si after extrusion. These changes can

be simulated making use of recently developed models [27, 28, 29], which are capable

of describing particle dissolution during a speci�c temperature-time path. Using these

models a table can be generated which can be used to monitor the typical Mg2Si pre-

cipitate size and solute content during simulation of the extrusion process, and can

be incorporated into the solute-dependent material model. However, it should be

noted that the di�usion coeÆcients of solute Mg and Si during hot deformation of

aluminium are not well known. Further, dynamic precipitation is not likely to occur

during extrusion of AA6XXX alloys other than in very highly alloyed systems, be-

cause the solvus temperature is often exceeded by the extrusion temperatures in the

industry of about 773 K.

In principle the di�erence in scale of typical industrial and laboratory scale extrusion

presses need not cause complications. However, in a typical industrial extrusion press

the boundary conditions, for instance temperatures and heat 
ux at the ram, container

and die interface, are less well known than in laboratory scale tests, and additional

inaccuracies would seem unavoidable.

4.6 Conclusions

Numerical simulations were carried out on a series of isothermal laboratory scale ex-

trusion trials of aluminium AA6063 billets using the FEM code DiekA. The e�ect of

solution hardening by Mg and Si on the extrusion process was calculated by incorpo-

rating a hyperbolic sine law adapted for the e�ect of solution hardening by Mg and

Si. The absolute extrusion pressure levels and pressure decrease with ram position,

the 
ow stress values and the strain rates were investigated. To explain the observed

di�erences between simulations and experiments, the e�ects of adiabatic heating, dy-

namic recrystallisation, strain localisation and dynamic precipitation were considered.
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The following conclusions are drawn:

� The FEM code DiekA with the adapted hyperbolic sine provides a suitable

model for the simulation of isothermal extrusion, without using any �tting pa-

rameters. The model allows for the quanti�cation of pressure levels, pressure

drop along the billet length, solute e�ects, 
ow stress and strain rate levels.

� A good overall agreement was found between simulations and experiments.

� For an accurate description of the material behaviour of aluminium alloys un-

der hot extrusion conditions it is desirable to extend the range of strain rates

covered in the experimental determination of the material parameters to values

up to 1000 s�1.

� It is inferred that for supersaturated AA6063 dynamic precipitation at high

strain rates plays an important role in extrusion at 723 K. Dynamic precipitation

is absent at 623 K.

� The described approach can, in principle, be extended to industrial situations.
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Chapter 5

FEM simulations of the

extrusion of complex

thin-walled aluminium

sections

J. Lof and Y. Blokhuis

Abstract

The Finite Element Method can be used for the simulation of the extrusion process.

However, the application of this kind of simulation in the extrusion industry is limited

because of the complexity involved. In this paper a method is presented for the

simulation of the extrusion of complex pro�les, which can be used in an industrial

environment. To this end, the bearing area is modelled using an equivalent bearing

model. In this way it is possible to describe the resistance in the bearing without

using a large number of elements. To avoid the time-consuming and complex work

necessary for the development of the FEM model for a particular die, a specialised

pre-processor is developed. This pre-processor provides a direct link between the

die design in the CAD system Pro/Engineer and the simulations in the FEM code

DiekA. The method is demonstrated for a particular die and the results are compared

to results obtained in practise.
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5.1 Introduction

Aluminium extrusion is a forming process used to produce pro�les. A large variety

of pro�les can be made by pressing a billet of hot aluminium through a hole that

closely resembles the required cross-section of the pro�le. At present, the design of

extrusion dies and operation in extrusion companies is primarily based on trial and

error. The experience of the die designer, the press operator and the die corrector to

a large extent determine the performance of the extrusion die and the eÆciency of the

process. In order to improve the performance of dies, it is important to obtain more

knowledge on the processes that occur during extrusion. To obtain such knowledge,

numerical simulations can be a valuable tool. These simulations provide insight into

the process which cannot easily be obtained by other methods.

Performing simulations of the extrusion of complex pro�les still poses a major chal-

lenge. The problems encountered when modelling the bearing area are diÆcult to

solve. Furthermore, much e�ort has to be put into pre-processing when specialised

pre-processing tools are not available. This is an obstacle for the application of sim-

ulations in an industrial environment. The aim of this article is to present a method

that can be used to simulate the extrusion of complex thin-walled sections, which is

simple to use and delivers results fast.

In the past, simulations of extrusion have been limited to relatively simple geome-

tries and low extrusion ratios, because of computational restrictions [1, 2]. Recently

attention has shifted to extrusion of more complex thin-walled sections [3, 4]. In this

kind of simulation, pre-processing diÆculties start to emerge. Van Rens [5] devel-

oped a meshing algorithm speci�cally aimed at extrusion geometries to avoid these

diÆculties.

In simulations of extrusion of thin-walled sections, modelling the bearing area is com-

plicated. The scale of this area is small compared to the rest of the process, but the

deformations and velocities are very high. In order to accurately model this area, a

�ne mesh is necessary. This results in large calculation times and diÆculties with the

preparation of the mesh. By decreasing the number of elements in the bearing area,

the calculation time can be reduced signi�cantly. In the present paper, an equivalent

bearing model is used to model the bearing area [6]. This is a relatively coarse mesh

of the bearing which is constructed in such a way that it behaves similarly to a more

detailed reference model.

84



Even more important than the calculation time is the time required to develop the

numerical model for a speci�c die. Because of the complex geometry of extrusion dies,

the pre-processing time can easily exceed the calculation time by orders of magnitude

if pre-processing is done ineÆciently. To simplify pre-processing, an application is

developed in the CAD system Pro/Engineer, which is used to design the extrusion

dies. The application creates a FEM model for the simulation of the aluminium 
ow

and the deformation of the die, with minimal e�ort of the user, providing a direct

coupling between the design process in Pro/Engineer and the simulations in the FEM

code DiekA.

Details of the numerical method used for the simulation are presented in Section 5.2.

The constitutive model used to describe the behaviour of hot aluminium is discussed

in Section 5.3. The development of the equivalent bearing model is discussed in

Section 5.4. In Section 5.5, the pre-processing phase is discussed. To illustrate the

applicability of the method, a relatively complex porthole die is simulated as an

example. The results of this simulation are discussed in Section 5.6 and compared to

results obtained in practise.

5.2 Numerical model

To simulate the extrusion process an Arbitrary Lagrangian Eulerian (ALE) code,

DiekA, was used. This code has been developed during the last �fteen years by

Hu�etink et al. [7, 8, 9]. In the ALE method the mesh displacement can be controlled

independently from the material displacement. The method was �rst developed in


uid mechanics to model 
uid-structure interaction and to model the motion of free

surfaces [10, 11]. Later it was introduced to solid mechanics where it is used to avoid

mesh distortion which occurs when modelling large deformations with a Lagrangian

description. In the extrusion process, very large deformations occur. To avoid mesh

distortion, the mesh is �xed to its location, e�ectively a Eulerian description.

Extrusion is not a stationary process, because of the cyclic loading of the billet. Be-

sides the loading of the billet an irregular cycle of changing of dies occurs during pro-

duction. The result is a complex pattern of heating and cooling during the extrusion

process. The temperature changes in
uence the behaviour of the aluminium. To take

these changes into account, transient thermo-mechanical calculations are necessary.

However, this requires a large number of calculation steps, leading to unacceptable

calculation times. To avoid this, a stationary solution for the thermo-mechanical
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Table 5.1: Material parameters for AA6063 alloy.

parameter min used max

plastic properties: _�0 (1=s) 0:001 0:005 0:01

sm (MPa) 25 25 76

m 2:4 5:4 6:0

A (1=s) 109 6 � 109 1012

Q (J/mol) 1:3 � 105 1:4 � 105 1:8 � 105
R (J/molK) 8:314

problem can be calculated in a limited number of time increments. The stationary

temperature distribution gives an upper limit for the thermal problem. In reality

these temperatures are never reached. Often isothermal calculations are suÆcient

and the thermal aspects of the problem can be neglected altogether. Especially in

the case where the stresses in the die are concerned, isothermal calculations with a

temperature similar to that at the start of an extrusion cycle can be seen as a worst

case situation. In this paper only isothermal calculations are presented.

In order to avoid large calculation times the simulation of the aluminium 
ow and

the stress analysis of the die are performed separately. This is possible because the

deformations of the die are very small. Normally these deformations will not have

a signi�cant e�ect on the aluminium 
ow. In some cases, deformation of the die

can result in small de
ections of the bearing or misalignment of the two faces of the

bearing, which can a�ect the aluminium 
ow. These e�ects are not taken into account

in the simulations presented in this work.

5.3 Constitutive equations

Hot aluminium has rate dependent or viscoplastic behaviour. This behaviour can be

modelled with a viscoplastic model or with an elasto-viscoplastic model. In previous

work [12], the in
uence of the elasticity of the material is investigated. A more

elaborate description of the implementation of these constitutive models is also given

in this reference.

The constitutive behaviour of the speci�c aluminium alloy is represented by a relation

between the 
ow stress �f and the equivalent plastic strain _�. In this work a modi�ed
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Figure 5.1: The extrusion process.

Sellars-Tegart law [12] is used to describe the behaviour of the aluminium:

�f ( _�; T ) = smarcsinh

 �
_�+ _�0 (T )

A
exp

�
Q

RT

�� 1
m

!
(5.1)

In this equation R is the gas constant, T is the temperature and sm, A, Q and m are

parameters that are used to �t the 
ow stress to experimental data. A temperature

dependent parameter _�0 (T ) is added to the standard Sellars-Tegart law to include

an elastic region in the material law.

The parameters for this model are �tted to data obtained experimentally for an

AA6063 aluminium alloy. They are based on unpublished work done at Kings College

(London). Other experimental data for the AA6063 alloy was published by Akeret [13]

or more recently by Langkruis [14]. In Table 1 an overview is given of the parameter

ranges found for this alloy.

Large di�erences can be observed between the di�erent experimental data. A number

of reasons can be suggested to account for these di�erences. Firstly, di�erent testing

methods are used to determine the parameters, namely torsion tests as opposed to

compression tests. Secondly, small variations in alloy composition are possible within

the AA6063 norm. In addition to this, with the same composition, di�erent material

behaviour can occur because of variation in the solution state of alloy components [15].
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Figure 5.2: 2D reference model for plane strain extrusion.

5.4 Equivalent bearing model

In the extrusion process, the function of the bearing is to determine the cross-sectional

shape of the pro�le. With parallel bearings, the length of the bearing is used to control

the local exit velocity of the material. In previous work [12] it was concluded that the

resistance in parallel bearings is very sensitive to small changes in the bearing angle.

Because of this sensitivity it is impossible to predict the resistance in parallel bearings.

An alternative to parallel bearings was suggested, namely a relieved bearing with a

sink-in to control the exit velocity, as illustrated in Figure 5.1. This kind of bearing

gives more predictable results. An additional advantage is the reduced extrusion

pressure because of the relieved bearing. This approach was tested in practise with

very satisfying results. Therefore further developments in simulation techniques for

the bearing, presented in this paper, have focussed on simulating a relieved bearing.

To accurately describe the complex 
ow that occurs in and just in front of the bearing,

a very detailed model is necessary. This model requires a large number of elements,

resulting in unacceptable calculation times. An additional problem is that it is very

diÆcult to make an adequate mesh in the bearing area for complex pro�les. In order

to solve these problems, the equivalent bearing model was developed.

The basic idea behind the equivalent bearing model is the following. For the sim-

ulations of the extrusion process we are interested in the general behaviour of the

aluminium 
ow, for example the loads that are imposed on the die and the velocities

of the aluminium. It is not necessary to obtain the stresses and strains in the bearing

area very accurately. A model is needed for the bearing, which accurately describes

the resistance against 
ow through the bearing, but it does not have to give detailed
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results in this area. To achieve this, a very coarse mesh is used to model the bear-

ing. This model is constructed such, that it gives the same 
ow resistance as a more

detailed reference model. This reference model will be discussed �rst, followed by a

description of the equivalent bearing model.

5.4.1 Reference model

In Figure 5.2, the reference model is illustrated. It represents a 2D plane strain

extrusion problem based on the geometry presented in Figure 5.1. The entrance of

the bearing channel is modelled with a small rounding with a radius of 0.1 mm which

complies to the bearings used in practise. Symmetry conditions are applied at the

bottom of the mesh. The model consists of 4 node elements with selective reduced

integration, also referred to as the B-approach [16, 17], to prevent volume locking.

Friction is modelled along the dotted boundaries with a Coulomb friction law (friction

coeÆcient � = 0:5). Since the normal stresses are high on this boundary, a stick

condition applies. In the bearing channel, no friction occurs because the bearing

is relieved. Only in the rounding at the start of the bearing does slipping friction

actually occur. Since this area is small, the friction coeÆcient has almost no in
uence

on the results.

A number of simulations were carried out with this model, varying extrusion speed

and pro�le thickness. The results of these simulations are compared with the results of

the equivalent bearing model in order to verify the accuracy of the equivalent model.

5.4.2 Construction of equivalent bearing model

The development of the equivalent bearing model was inspired by the following de-

mands: the model should have fewer degrees of freedom compared to the detailed

model, it should be easy and fast to mesh even for complex shapes of the section and

its accuracy should not be reduced too much compared to the detailed model.

In order to reduce the number of degrees of freedom, the model should have sig-

ni�cantly fewer elements in the bearing area. To simplify meshing it is convenient

to use an automatic meshing algorithm. For the complex geometry associated with

extrusion, these algorithms are only available for tetrahedron elements. Since linear

tetrahedron elements are unsuitable for plastic 
ow calculations, quadratic elements

are used. To avoid volume locking, selective reduced integration is used. A 3D mesh
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Figure 5.3: Equivalent bearing model for comparison with plane strain reference model

and exploded view of the parts necessary for the construction of the triple nodes.
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Figure 5.4: Triple node construction to model the corner of the bearing (left: locking

corner node; middle: triple node construction; right: resulting displacement �eld).
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is constructed corresponding to the 2D plane strain reference model. This model is

illustrated in Figure 5.3.

The radius in front of the bearing cannot be modelled in the equivalent model, because

this would signi�cantly increase the number of elements in the bearing. Instead

a sharp corner is modelled. However such a sharp corner exhibits locking e�ects,

because of the boundary conditions on the perpendicular surfaces. This is illustrated

in Figure 5.4 on the left. When only a limited number of elements are present in the

bearing, this locking will a�ect the resistance in the bearing, e�ectively blocking a

signi�cant part of it. To avoid this a so-called triple node is used. The node at the

corner is replaced by three separate nodes connected to the elements as illustrated

in Figure 5.4 in the middle. The degrees of freedom of these nodes are connected to

each other as indicated. The resulting displacement �eld is indicated on the right in

Figure 5.4.

To obtain a mesh in 3D, similar in con�guration to the mesh in Figure 5.4, it is

convenient to separate the bearing geometry into three di�erent parts as illustrated

in Figure 5.3. The automatic meshing algorithm will create elements that conform

to the boundaries of these parts. The nodes on the corner edge at the start of the

bearing are split into three nodes. Then each node is reconnected to the elements in

one of the three parts. Subsequently, the connections between the degrees of freedom

of the nodes are generated.

5.4.3 Evaluating the results of the equivalent bearing model

To compare the equivalent bearing model to the 2D reference model a number of

simulations have been performed varying the extrusion speed and pro�le thickness.

In Figure 5.5, the pressure distribution in the reference model and the equivalent

model are compared. They clearly show that a good agreement exist between the

two models. Other results such as velocities and plastic strain rates give similar

agreement.

In Figure 5.6 two graphs illustrating the average pressure on the in
ow surface are

plotted. In the left graph, the extrusion speed is varied and on the right, the pro�le

thickness. Both graphs show that the pressure build-up in the equivalent model is

slightly lower compared to the reference model. This is caused by the triple nodes

which show a little less resistance to the 
ow compared to the rounded corner in the

reference model. Since the di�erence is not very large it is accepted.
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Figure 5.5: Pressure (MPa) in plane strain extrusion (left: reference model; right:

equivalent bearing model).
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Figure 5.7: Model of extrusion of U-shaped pro�le (left: reference model; right: equiv-

alent bearing model).

165

150

135

165

150

135
120120 105 105

Figure 5.8: Pressure (MPa) for extrusion of U-shaped pro�le (left: reference model;

right: equivalent bearing model).
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Figure 5.9: Example of a complex extrusion die.

A more complex comparison is performed to check the equivalent bearing model in

a more realistic extrusion problem. Figure 5.7 illustrates both the reference model

and the equivalent bearing model for the extrusion of a U-shaped pro�le (Figure 5.1).

Only half is modelled because of symmetry. Again a relieved bearing is modelled.

The reference model is based on a 2D cross-section which is extended to 3D along

the path of the pro�le. It consists of 8 node brick elements with selective reduced

integration to prevent volume locking. Boundary conditions are similar to the 2D

plain strain model.

The results of the U-pro�le are illustrated in Figure 5.8. Again, the pressure in the

equivalent bearing model is slightly underestimated compared to the reference model.

Near the bearing the results of the equivalent model are not very smooth due to

the coarse mesh in this area and the random orientation of the elements. Taking al

things into consideration, it is concluded that the equivalent bearing model is accurate

enough to provide an alternative way of modelling the bearing in simulations of the

entire extrusion process.
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Figure 5.10: Aluminium geometry associated with the die from Figure 5.9.

5.5 Pre-processing

In simulations of extrusion, it is vital to have an eÆcient pre-processing method

because of the complex shapes of extrusion dies. In Figure 5.9 a typical extrusion die

is illustrated. It is a four-hole die used to produce the pro�le illustrated in Figure 5.10.

The die is relatively complex, because of the multiple hollows in the pro�le and the

variation in wall thickness. This die will be used as an example to illustrate the

current capabilities in the area of extrusion simulations.

For simulation purposes it is necessary to have a completely de�ned 3D model of the

geometry of the die and of the aluminium inside the die. When the die is designed

using a 3D CAD system, the geometry created in the CAD system can be used for

the generation of the FEM mesh. For the simulations presented here, the geometry

of the die was obtained from the die producer. The geometry was made in the

CAD application Pro/Engineer. The geometry of the aluminium can be derived

easily by subtracting the geometry of the die from a solid cylindrical object. For

the construction of the triple nodes, two parts, representing the pro�le, are separated

from the geometry of the aluminium. The geometry of the aluminium is illustrated

in Figure 5.10.
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With the geometry of the model completely de�ned, the generation of the FEM

model can start. This pre-processing for the aluminium 
ow simulation consists of

the following steps:

� Meshing of the aluminium geometry.

� Applying boundary conditions on aluminium:

{ Prescribed displacement on the aluminium billet.

{ Symmetry conditions on the aluminium.

{ Stick conditions on the aluminium-die interface.

� Construction of triple nodes (illustrated in Figure 5.4):

{ Splitting corner nodes in three separate nodes.

{ Reconnecting the elements to the appropriate nodes.

{ Applying appropriate connections between nodal degrees of freedom.

For the stress analysis of the die, the following pre-processing steps must be carried

out:

� Meshing of the die geometry.

� Applying boundary conditions on die:

{ Reaction forces on the aluminium-die interface (obtained from the results

of the aluminium 
ow simulation).

{ Symmetry conditions on the die.

{ Support conditions on the die.

For meshing of complex 3D shapes adequate algorithms are available in most pre-

processing applications. Since the aluminium simulation is separated from the die

deformation calculation, both models could be constructed separately. However since

the loads on the die are determined from the aluminium 
ow calculation, it is conve-

nient when the mesh of die and aluminium are equal on the interface. In that case, the

reaction forces calculated in the aluminium 
ow simulation can be directly applied to

the die. To obtain a mesh that is equal on the interface, meshing of the geometry of

aluminium and die is performed simultaneously. Meshing is performed in the CAD

system Pro/Engineer which has a built-in meshing function. To obtain a suitable
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Figure 5.11: Finite element mesh of the aluminium geometry.

mesh, a local element size has to be applied at critical locations like the bearing area.

This requires some trial and error and an experienced operator. In Figure 5.11 the

mesh for the aluminium domain is illustrated.

Application of the boundary conditions to the FEM mesh is done manually in most

pre-processing applications. However in the case of a complex extrusion die, the

number of faces on which boundary conditions have to be applied is very high. In

the example used here, the aluminium-die interface consists of approximately 200 sur-

faces. Applying a stick condition to all of these surfaces is a very time-consuming task.

Manual construction of the triple nodes is even more diÆcult and time-consuming.

To avoid this manual work, a specialised pre-processor was developed to automati-

cally generate both the boundary conditions and the triple nodes. This pre-processor

was developed within the Pro/Engineer CAD system. It provides a direct coupling

between the geometry construction in Pro/Engineer and the simulations in the FEM

code DiekA.

Summarizing it can be concluded that for generating a FEM model for a complex

extrusion die like the one illustrated in Figure 5.9 it is essential to construct specialised

tools that are able to do much of the manual pre-processing tasks. With these tools,

pre-processing can be performed in a very eÆcient way without the risk of making

errors. In the application developed for the simulations presented here the only task

for the user is to apply local element sizes on critical areas of the geometry and to

judge whether the automatically generated mesh is adequate for the simulation.
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Figure 5.12: Pressure distribution on cross-section of the aluminium (MPa).
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Figure 5.13: E�ective stress on cross-section of the aluminium (MPa).
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5.6 Results of the simulations

The simulation of the aluminium 
ow still takes a relatively long time. On a HP

J5600 workstation it takes about 10 hours to obtain a stationary solution for the

model described above. With the results of this model, the forces on the die can be

applied and a stress analysis of the die can be made. Since this is a linear elastic or

a simple elasto-plastic calculation it requires considerably less time (approximately

30 minutes). First the results of the 
ow simulation will be discussed. In the second

part of this section the results of the stress analysis are shown.

5.6.1 Flow simulation

A large variety of results can be obtained from the aluminium 
ow calculation. These

include the velocities, stresses, equivalent plastic strain rate and reaction forces. The

reaction forces are used in the stress analysis of the die. Also interesting are the

velocities and the pressure distribution in the aluminium. The pressure on a cross-

section through the die is shown in Figure 5.12. It clearly shows the pressure build-up

from the bearing through the feeder holes to the billet. The e�ective stress (Von Mises)

is shown in Figure 5.13. The e�ective stress is related directly to the plastic strain

rate through (5.1).

To judge whether this die will perform adequately in practise, it is important to see

the exit velocity of the pro�le over the cross-section of the pro�le, as illustrated in

Figure 5.14. The results of the simulation represent the velocities at the start of the

extrusion process. They give an indication of how the nose-end of the pro�le will look.

From this �gure it is clear that the thin middle part has a relative low exit velocity

compared to the thicker parts. Based on these results the design of the bearing area

can be modi�ed to compensate for this velocity di�erence.

It is diÆcult to obtain a good experimental veri�cation of the numerical results.

However a rough comparison with the actual exit velocity can be obtained by looking

at the nose-end of the pro�le. This nose-end is shown in Figure 5.15. The �gure clearly

shows that the distribution in exit velocity is comparable with the calculated result.

A more elaborate experimental veri�cation of the simulations was performed for a

simple rectangular pro�le [15]. This veri�cation showed a good agreement between

experimental and numerical results.
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Figure 5.15: Nose-end of the pro�le.
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Figure 5.16: E�ective stress in the mandrel and die plate (MPa).

5.6.2 Stress analysis

When the reaction forces on the aluminium-die interface are applied to the die, stresses

in the die can be calculated. In Figure 5.16 the Von Mises stress on the mandrel and

die plate are plotted. From these results it is clear that the legs are confronted with

the highest stresses. Research aimed at improvement of the strength and sti�ness of

the die should be focussed on the design of the legs. Optimisation of the design of

the legs was performed based on a simpler porthole die discussed elsewhere [18].

5.7 Discussion and concluding remarks

It is demonstrated that simulations of complex extrusion dies are feasible. It is dif-

�cult to estimate the accuracy of these calculations because it is nearly impossible

to perform accurate measurements on the extrusion process in practise. However the

results show good agreement with overall process characteristics like total extrusion

pressure and exit velocity.

Two practical applications for the simulations can be considered. First of all, the

simulations can be used to increase the general knowledge of the extrusion process

and to derive design rules that can be used in practise. A second application is to use
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the simulations directly in the design process of speci�c dies in order to improve the

performance of these dies.

Design rules can be derived based on parameter studies on speci�c parts of the die

design. This kind of approach has already been used successfully for the optimization

of the shape of the legs used in porthole dies. At the moment, the in
uence of the

dimensions of the core, the welding chamber and the legs on the exit velocity of the

pro�le is investigated. The objective of this study is to derive general design rules for

the design of porthole dies. This application of the simulations looks very promising

and has the potential to improve the performance of extrusion dies considerably.

The direct application of simulations in the design process requires fast and robust

simulation techniques. The simulations presented here have the ability to improve on

the performance of dies and to reduce the number of trial pressings, but they still

require considerable e�ort and a skilled user.
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Chapter 6

Concluding remarks

In this �nal chapter, a re
ection on the work presented in this thesis will be given.

As stated in the introduction, the aim of this work is not only to develop numerical

tools for the simulation of extrusion, but also to use these tools to increase knowl-

edge of the extrusion process. In the �rst section of this chapter an overview of the

developments in the area of numerical modelling is given. Some recommendations for

further development are also discussed in this section. The practical application of

the work is discussed in Section 6.2.

6.1 Current state of modelling

In this thesis some developments in the techniques used for the simulation of alu-

minium extrusion are presented. The work is mainly focussed on the following three

areas: the simulation of the aluminium 
ow through the bearing area, the veri�cation

of extrusion simulations to experimental results and the development of a practical

method to make simulations for complex sections. In Sections 6.1.1 to 6.1.3, the result

of this work is brie
y summarized. The �nal result of this work is a method to make

simulations of the extrusion process for arbitrary sections. However in these simula-

tions, not all aspects which play a role in the extrusion process are included, this is

discussed in Section 6.1.4. Recommendations for further developments are given in

Section 6.1.5.

6.1.1 Modelling the aluminium 
ow in the bearing area

The bearing area has a dominant in
uence on the characteristics of the extrusion

process. However when making numerical simulations, it is also the most complex
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part to model. To get a basic understanding of the phenomena that occur in the

bearing, a detailed 2D model is developed. With this model, the in
uences of the

elastic material behaviour, of friction and of the bearing geometry are investigated.

The results of this model lead to one important conclusion. The resistance in a

parallel bearing channel is very sensitive to small changes in bearing geometry and

process conditions. This conclusion has two far-reaching consequences: �rstly, it is

impossible to accurately predict the behaviour of a parallel bearing channel with

numerical simulations and secondly, the behaviour of a parallel bearing in practise

will be very unpredictable. The practical implications of this result will be discussed

in more detail in Section 6.2. For the development of the simulation tools, the result

is that attention is shifted from the simulation of parallel bearings to the simulation

of relieved bearings.

6.1.2 Experimental veri�cation of extrusion simulations

It is very diÆcult to verify the simulations of extrusion with experimental results,

because of a number of reasons: First of all, it is necessary to have an accurate

description of the material behaviour taking into account the solution state of the alloy

components. Secondly, the experimental conditions have to be controlled precisely

and modelled accurately in the simulation.

In order to obtain experimental veri�cation of the numerical model, simulations were

made of extrusion experiments conducted at Delft University of Technology. The nu-

merical and experimental results of these extrusion experiments showed good agree-

ment. The di�erences that exist can be attributed to the lack of material data for high

strain rates and to dynamic precipitation that occurs under speci�c conditions. It is

concluded that in principle simulation are suÆciently accuracy to provide quantita-

tive information about the extrusion process. However in the industrial application of

extrusion, only limited knowledge of, and control over, the exact process and material

conditions is available. Consequently, it is not possible to obtain similar accuracy as

found in the results presented in Chapter 4. Therefore it is concluded that the re-

sults of the simulations should be used mainly as qualitative indicators of the actual

phenomena.
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6.1.3 Development of an eÆcient method for the simulation

of the extrusion process

For the simulation of complex sections, one of the most diÆcult problems is the

creation of the FEM model. Not only meshing the complex geometries associated

with extrusion, but also application of the boundary conditions can be a very time-

consuming task when done ineÆciently.

In Chapter 5 it was demonstrated that it is possible to make simulations of the

extrusion of complex sections, without much e�ort. The bearing area is modelled with

an equivalent bearing model. This model reduces the complexity of the FEM model

in the bearing area considerably. The result of this is that both the calculation time

and the meshing diÆculties are reduced signi�cantly. To minimize the manual work, a

specialized pre-processor was developed within the CAD system Pro/Engineer. This

pre-processor provides a direct link between the die design process in Pro/Engineer

and the simulations in the FEM code DiekA.

The results of the model provide clear insight into the stresses and strain rates that

occur within the aluminium during extrusion. It also provides a clear picture of

the velocity of the material inside the die. Separate from the 
ow simulation, the

deformation and stresses of the die can be calculated.

6.1.4 Limitations of the FEM model

The extrusion process is a transient process, because of the cyclic loading of the billet

and the changing o� the dies. Transient e�ects include the loading of an empty die,

the reduction in billet length and the heating and cooling of the material during a

billet cycle. To accurately model all these e�ects, transient calculations are necessary.

However these kinds of calculations require unacceptably long calculation times. As an

alternative, a stationary extrusion process can be simulated. The stationary solution

gives the extrusion load at a certain billet length and it provides an upper limit for

the temperature distribution.

In the simulations presented in this thesis, the stationary solution is not calculated

directly, but by an incremental approach. Approximately 30 to 50 time increments

are necessary to obtain a stationary solution. The result of this is that the eÆciency of

the calculation is less than optimal. This is especially the case for thermo-mechanical

calculations. Therefore, the simulations have been limited to isothermal problems.
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During the extrusion process, the temperature of the aluminium increases approx-

imately 50Æ to 100Æ. A signi�cant portion of this heating takes place inside the

container. The rest occurs when the material 
ows through the die. Because the

thermal conductivity in aluminium is high, it is expected that localised heating is

limited. A signi�cant increase in temperature is only expected in areas with extreme

strain rates, such as the bearing. Since the material description is also unreliable in

this area, because of the lack of experimentally determined material data for high

strain rates, the results in this area should be considered with some reservation.

Furthermore, there are some limitations related to the pre-processing application. At

present it is impossible to make a simulation in which the die deformation and 
ow

simulation are coupled. It is also not possible to model the deformation of the pro�le

after it leaves the die. However, the pre-processor can be extended to include these

options.

6.1.5 Recommendations for further development

To enhance the possibilities of the simulation and to reduce the calculation time it is

necessary to directly solve the stationary solution of the problem. In principle this is

possible within the FEM application DiekA. However, very bad convergence behaviour

is observed when this is attempted. The reason for this is the ill-conditioned system,

resulting from a penalty approach to enforce plastic incompressibility in combination

with the use of iterative solvers. Further research should focus on this point, because it

has the potential to signi�cantly reduce the calculation times of the 
ow simulations.

In addition to this, it also makes the solution of the thermo-mechanical problem and

the coupled aluminium 
ow - die deformation problem a lot more eÆcient.

If it turns out to be impossible to calculate the solution of the stationary problem

directly, the thermal problem and the aluminium 
ow - die deformation problem

could be solved decoupled from the 
ow problem. This might be a very eÆcient way

to obtain a solution even compared with the direct calculation the stationary solution

of the coupled problem.

Further development to the pre-processor in Pro/Engineer are necessary to include die

deformation and pro�le deformation in the 
ow simulations. More attention could also

be given to the meshing algorithm. At the moment the standard meshing algorithm

of Pro/Engineer is used. While this gives good results, it still requires the manual

application of element sizes in critical areas of the geometry.
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Figure 6.1: New optimised process conditions.

To obtain more quantitative results, it is necessary to know the process and material

conditions more accurately. Especially the thermal aspects of the process and the

mechanical properties of the extrudate at high strain rates have to be described well

in order to obtain accurate results.

6.2 Application to extrusion practise

In the introduction of this thesis, a number of problems encountered in extrusion

practise were identi�ed. A major problem is the number of trial pressings that are

necessary before dies can be used in practise. Another problem is the lack of knowl-

edge, complicating the optimisation of the process conditions. In this section the

advancements that have been made in solving these problems are discussed.

In Chapter 3, the reason for the unpredictable behaviour of extrusion dies was iden-

ti�ed. It turns out that the use of parallel bearings, which is common in extrusion, is

the cause of this behaviour. As an alternative for parallel bearings, it is suggested to

use a relieved bearing. To control the exit velocity, a small sink-in can be placed be-

fore the bearing. Based on simulations of the bearing area a design rule was developed

which can be used to design the sink-in geometry in order to obtain a uniform exit

velocity of the pro�le [1]. This approach has been tested in practise with satisfactory

results.

In order to better optimise process conditions for the extrusion process, quantitative

results, including the thermal behaviour during an extrusion cycle, are necessary. The
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results of the simulations are not accurate enough at the moment to be used in this

way. However, with the insight gained from the simulations, it is possible to improve

speci�c parts of the process. These improvements can lead to an expansion of the

process window as illustrated in Figure 6.1. For example the introduction of a relieved

bearing has reduced the process load and the heating because of friction. The result is

that the limitations imposed by the maximum process load and the exit temperature

are reduced. Another example of this is the improvement of the strength of porthole

dies by optimising the cross-sectional shape of the legs [2].

With the development of the extrusion pre-processor in Pro/Engineer it has become

possible to use simulations directly in the design process. Simulations can help to

predict the exit velocities of the aluminium and the deformations and stresses in the

die. Correction of the design is then possible before the die is actually manufactured.

In principle this application has the potential to signi�cantly improve the design of

extrusion dies, although it has not yet been tested in practise.
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Appendix A

Basic theory

The simulations presented in this thesis were made with the �nite element code DiekA.

This is an Arbitrary Lagrangian Eulerian (ALE) code, specialised in the simulation

of forming processes [1]. In this appendix the theoretical background of this FEM

code is explained brie
y. For a thorough treatment of continuum mechanics and the

nonlinear �nite element method, the reader is referred to the work of Belytscko, Liu

and Moran [2].

A.1 Continuum mechanics

This section gives an overview of the continuum mechanics used to describe the motion

and deformation of a body. Firstly, de�nitions of motion, deformation and stress

are given. Then a brief overview of the relation between stresses and strains, the

constitutive equations is given. Finally, the conservation laws are treated. For an

elaborate treatment of continuum mechanics, the reader is referred to Malvern [3].

A.1.1 Kinematics

Consider a body in an initial con�guration 
0, which is transformed to a current

con�guration 
. The position of a material point in the initial con�guration is given

by X. The vector X is called the Lagrangian or material coordinate. This vector does

not change with time and can be considered a label for a material particle. The motion

of the material particle is described as a transition from the initial con�guration to

the reference con�guration.

x = � (X; t) (A.1)
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Where x is the position of material point X at time t. The vector x is called the

Eulerian or spatial coordinate. The motion of the body is described by the function �

which maps the initial con�guration onto the current con�guration.

Two approaches are used to describe the deformation of the body. In the �rst ap-

proach, the independent variables are the the Lagrangian coordinates X and the

time t. This approach is called the Lagrangian description. In the second approach

the independent variables are the Eulerian coordinates x and the time t. This ap-

proach is called the Eulerian description.

The displacement of a material point is given by the di�erence between its initial and

current positions.

u (X; t) = � (X; t)� � (X; 0) = � (X; t)�X (A.2)

The velocity of a material point is de�ned as the material time derivative of the

displacement u.

v (X; t) =
d (u (X; t))

dt
= _u (X; t) (A.3)

A.1.2 Deformation

In order to describe the deformation of a body, the deformation gradient is de�ned

(Figure A.1):

F =
@� (X; t)

@X
= u

(

r0 + I (A.4)

In order to describe the response of a body to deformation, some kind of measure of

the amount of deformation, the strain, is necessary. To begin with the spatial velocity

112






ndS

df

Figure A.2: Force acting on a surface.

gradient is de�ned as:

L = v
(

r = _F �F�1 (A.5)

The velocity gradient L can be decomposed into a symmetric part and a skew-

symmetric part:

L = D+W (A.6)

The symmetric part of the velocity gradient is called the rate of deformation tensor

D.

D = 1
2

�
v
(

r+
*

rv
�

(A.7)

The skew-symmetric part is called the spin tensor W:

W = 1
2

�
v
(

r�
*

rv
�

(A.8)

The rate of deformation is a measure for the change in the length of an in�nitesimal

line segment dx, i.e. the strain rate.

d

dt
(dx � dx) = 2dx � dv = 2dx � @v

@x
� dx = 2dx � L � dx

= 2dx � (D+W) � dx = 2dx �D � dx
(A.9)

A.1.3 Stress de�nition

The Cauchy stress or true stress �, is de�ned as a force acting on a deformed surface

as illustrated in Figure A.2:

dSn � � = df (A.10)
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In which df is the force acting on an in�nitesimal surface dS with normal n. The

Cauchy stress can be divided into a hydrostatic part and a deviatoric part. The

hydrostatic stress or pressure is de�ned as:

p = �1
3
tr (�) (A.11)

The deviatoric stress is de�ned as:

s = � + pI (A.12)

A.1.4 Constitutive equations

The relation between stress and strain in a body is given by the constitutive equations.

In this section a brief overview is given of these relations. A thorough treatment of the

thermo-dynamical background of these equations was written by Mooi [4]. Rietman [5]

gives more details on these equations from a materials science point of view.

Principle of frame indi�erence

According to the principle of frame indi�erence, the constitutive equations must be

invariant to changes in reference frames. To obtain an objective expression for the

stress rate, the Cauchy stress and the rate of deformation are written in corotational

form. In this form, all components are expressed in an invariant coordinate frame:

�̂ = RT � � �R (A.13)

D̂ = RT �D �R (A.14)

Since only isotropic constitutive behaviour is considered, the orientation of the mate-

rial is of no consequence. Consider a corotational coordinate system with an arbitrary

orientation de�ned by the rotation tensor Q which has a spin W. The rotation ten-

sor R and its time derivative are de�ned as:

R = Q _R =W �Q (A.15)

The time derivative of the invariant corotational stress �̂ is:

d�̂

dt
= _RT � � �R+RT � _� �R+RT � � � _R
= QT � ( _� �W � � + � �W) �Q

(A.16)
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By rotating (A.16) back to the current reference frame, the objective Jaumann stress

rate is de�ned:

Æ

� = _� �W � � + � �W (A.17)

For anisotropic material behaviour, the orientation of the material has to be followed

during the deformation. In this case the corotational reference frame should be related

to the material orientation. Hence the rotation tensor Q should re
ect the rotation

of the material [6]. For isotropic material, the orientation of the material is of no

consequence. Hence the rotation Q can be chosen equal to the unity tensor I. As

a result, the corotational stress �̂ and strain rate D̂ are equal to their non-rotated

counterparts � and D.

Rate equations

In plasticity it is not possible to de�ne the relation between stress and strain directly.

As a consequence, the constitutive equations are generally de�ned as a relation be-

tween stress rate and strain rate. A �rst step in the de�nition of the constitutive

relation is the assumption that the strain rate can be split into an elastic part and a

(visco)plastic part:

D = De +Dvp (A.18)

In the case of metal plasticity, the elastic deformations are generally small. The elastic

response to deformation is given by the generalised Hooke's law:

Æ

� = E : De � �tr (D) (A.19)

With E the 4th-order linear elastic tensor. The plastic strain rate can be written as

the product of a scalar value _� which determines the magnitude and a tensorm which

determines the direction of the plastic 
ow.

Dp = _�m (A.20)

The behaviour of the material in the plastic domain is governed by a limit func-

tion g (�;q). This function gives a relation between the stress in the material and

the state variables q when the material is in the plastic domain. The conditions of

the material can be formally written using the Kuhn-Tucker conditions:

g � 0 ; _� � 0 ; g _� = 0 (A.21)
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When the material is in the elastic state, the plastic multiplier _� is equal to zero and

hence the plastic strain rate (A.20) is zero. If the material is in the plastic state,

the limit function g is zero, and consequently its time derivative is also equal to zero.

This is known as the consistency condition:

_g = 0 (A.22)

In the case of perfect plasticity, the consistency condition can be elaborated as:

_g =
@g

@�
:
Æ

� = nT :
Æ

� = 0 (A.23)

In which n is normal to the surface de�ned by g = 0 at the current stress point.

Combining (A.19-A.23) an explicit expression for the relation between stress rate and

strain rate can be obtained:

Æ

� =

�
E� E : mnT : E

nT : E : m

�
: D� �tr (D) (A.24)

For hardening plasticity and viscoplasticity a similar approach can be used to �nd an

relation between stress rate and strain rate. In general, this can be expressed as:

Æ

� = C : D� �tr (D) (A.25)

The second term in this equation is often neglected for metal plasticity, as volume

changes are very small for metals. However, since this term cancels out in the �nite

element formulation it is left here.

A.1.5 Conservation laws

A group of fundamental relations of continuum mechanics arises from the conservation

laws. These relations must always be satis�ed by physical systems. The �rst relation

is the conservation of mass, which states that changes in density � are equal but

opposite to changes in the volume of the continuum:

_�+ �
*

r � v = 0 (A.26)

The second relation is the conservation of momentum, also referred to as the equilib-

rium equation:

*

r � � + �b = � _v (A.27)
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In which b are the body forces. The �nal relation is the conservation of energy, which

is the �rst law of thermodynamics:

� _u = � : D� q �
(

r+ �r (A.28)

In which u is the speci�c internal energy, q the internal heat 
ux and r a speci�c heat

source.
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A.2 Finite element formulation

The equations governing the deformation of a body as described in the previous

section can generally not be solved analytically. To obtain an approximate solution,

the �nite element method is used. For an elaborate treatment of the �nite element

method, the reader is referred to Zienkiewicz and Taylor [7].

The starting point for de�ning the �nite element formulation is the strong form of the

equilibrium equation (A.27). If we consider a body 
 with boundary � and neglect

inertia forces, the equilibrium equation can be expressed as:

*

r � � + �b = 0 in 


� � n = t on �t

(A.29)

In which b are the body forces and t are forces that act on part of the boundary �t.

The strong form of the equilibrium equation can be transformed to the weak form,

given by:Z



Æw �
�
*

r � � + �b

�
d
 = 0 8 Æw (A.30)

Applying Gauss theorem, the weak form of the equilibrium equation can be written

as: Z



�
Æw

(

r
�
: (�) d
 =

Z



Æw � (�b) d
 +

Z
�t

Æw � td�t 8 Æw (A.31)

A.2.1 Finite element discretisation (spatial discretisation)

To obtain a solution for the equilibrium equation, the current domain 
 is subdivided

into elements 
e. Integrals are evaluated over these elements and subsequently, the

contributions of all the elements are added to a large system, representing the whole

domain. The elements are connected by nodes located on the boundaries of the

elements. The motion of 
 can be approximated by:

x = � (X; t) = xI (t)NI (X) (A.32)

Where NI are the interpolation functions and xI is the position vector of node I and

assuming a summation over I. The displacement �eld (A.2) is approximated by:

u (X; t) = (xI (t)�XI)NI (X) = uI (t)NI (X) (A.33)
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Where uI are the nodal displacements. The velocity �eld (A.3) is obtained by taking

the material time derivative of the displacement �eld:

v (X; t) = _uI (t)NI (X) = vI (t)NI (X) (A.34)

With vI the nodal velocities. The velocity gradient (A.5) can be written as:

L = v
(

r = vINI

(

r (A.35)

The symmetric part of the velocity gradient, the rate of deformation tensor (A.7) is

de�ned as:

D = 1
2
(L+ LT) = 1

2

�
vINI

(

r+
*

rNT

I
vT
I

�
= BIvI (A.36)

Galerkin

Following a standard Galerkin approach, the class of weighting functions for which the

weak form of the equilibrium equation (A.31) must be satis�ed, is limited to functions

which can be written as:

Æw = ÆvINI (A.37)

Substituting the above into (A.31):Z



ÆvINI

(

r : �d
 =

Z



ÆvINI � (�b) d
 +

Z
�t

ÆvINI � td�t 8ÆvI (A.38)

Which implies:Z



NI

(

r : �d
 =

Z



NI � (�b) d
 +

Z
�t

NI � td�t (A.39)

This is the discretised equation that is solved in the �nite element formulation. It can

be written more conveniently by de�ning an internal and an external force vector:

f int
I

=

Z



NI

(

r : �d


fext
I

=

Z



NI � (�b) d
 +

Z
�t

NI � td�t
(A.40)

Equilibrium in the discretised problem requires:

f int
I

= fext
I

(A.41)
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A.2.2 Incremental formulation (time discretisation)

To evaluate the deformation of the body 
, the time domain of interest is subdivided

into a number of time increments. Within each time increment the velocities are

assumed to be constant.

vI =
�uI

�t
(A.42)

Where �uI are the incremental nodal displacements and �t is the time increment.

At the end of each increment the global system must be in equilibrium. This requires

the solution of the non-linear equation (A.41). Adopting an updated Lagrangian

approach, the reference con�guration is de�ned as the con�guration at the start of

the increment 
n.

The strain increment is approximated by integration of the rate of deformation using

a midpoint rule:

�" =

Z
tn+1

tn

Ddt � 1
2

�
�uINI

(

rm +
*

rmNI�uI

�
(A.43)

The rotation during the increment is approximated by integration of the spin tensor:

Q � I+

Z
tn+1

tn

Wdt � I+ 1
2

�
�uINI

(

rm �
*

rmNI�uI

�
(A.44)

Integration of the constitutive model

To obtain an expression for the internal force vector, the constitutive equation has to

be integrated over the time increment. The constitutive equation is integrated in a

coordinate frame half-way between the reference frame and the current frame, de�ned

by the rotation tensor
p
Q. The new stress is calculated as:

�n+1 =
p
Q �

�p
Q � �n �

p
QT +��

�
�
p
QT (A.45)

An expression for the stress increment can be obtained by integration of the consti-

tutive equation:

�� =

Z
tn+1

tn

Æ

�dt (A.46)

This integration is approximated with a return mapping algorithm as explained in

Chapter 2 of this thesis.
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Iterative procedure

Since the equilibrium equation (A.41) is non-linear, it is solved by an iterative proce-

dure. Generally, a Newton-Raphson method gives the best convergence.

gI (�uI) = f int
I

(�uI)� fext
I

(�uI) = 0 (A.47)

�ui+1
I

= �ui
I
+ ÆuI (A.48)

With:

ÆuI = K
�1

i
gi
I

(A.49)

Where Ki follows from the linearisation of gI around �ui
I
:

gI
�
�ui

I
+ ÆuI

� lin� gI
�
�ui

I

�
+KiÆuI (A.50)

A.2.3 Linearisation of the equilibrium equation

For each iteration in the Newton-Raphson process, the equilibrium equation has to

be linearised around the current solution. In the simulations presented in this thesis,

the external force vector is constant. Hence the linear variation of this vector Æfext

is zero. In the remainder of this section, an expression for the linear variation of the

internal force vector Æf int is derived.

Since an updated Lagrangian method is used, the con�guration at the end of the

previous increment (step n) is used as reference con�guration. The deformation gra-

dient Fn maps the con�guration of step n to the current con�guration (step n + 1).

To begin with, the expression for the internal force vector (A.40) is transformed from

the current con�guration 
 to the reference con�guration 
n:

f int
I

=

Z

n

�
NI

(

rn �F�1n
�
: � det (Fn) d
n

=

Z

n

NI

(

rn : (F�1
n
� �) det (Fn) d
n

(A.51)

Linearisation of the factor det (Fn) yields:

det (Fn) = det
�
Fi

n
+ ÆF

�
= det

�
Fi

n
�
�
I+

�
Fi

n

�
�1

ÆF
��

= det
�
Fi

n

�
det
�
I+

�
Fi

n

�
�1

ÆF
�

lin� det
�
Fi

n

� �
1 +

�
Fi

n

�
�1

: ÆF
� (A.52)
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Linearisation of the factor (F�1
n
� �) yields:

F�1
n
� � =

�
Fi

n
+ ÆF

�
�1 � ��i + Æ�

�
lin� �

Fi

n

�
�1 � �i � �Fi

n

�
�1 � ÆF � �Fi

n

�
�1

+
�
Fi

n

�
�1 � Æ�

(A.53)

Substituting equations A.52, A.53 into equation A.51 and linearising gives:

f int
I

=

Z

n

NI

(

rn :
��
Fi

n

�
�1 � �i + ÆF�1 � �i +

�
Fi

n

�
�1 � Æ�

�
det
�
Fi

n

� �
1 +

�
Fi

n

�
�1

: ÆF
�
d
n

lin�
Z

n

NI

(

rn :
��
Fi

n

�
�1 � �i

�
det
�
Fi

n

�
d
n

+

Z

n

NI

(

rn :
��
Fi

n

�
�1 � �i �

��
Fi

n

�
�1

: ÆF
�

+ÆF�1 � �i +
�
Fi

n

�
�1 � Æ�

�
det
�
Fi

n

�
d
n

(A.54)

The linear variation of the internal force vector is the second term in the above

equation:

Æf int
I

=

Z

n

NI

(

rn :
�
Fi

n

�
�1 �

�
�
i �
��
Fi

n

�
�1

: ÆF
�

�ÆF � �Fi

n

�
�1 � �i + Æ�

�
det
�
Fi

n

�
d
n

(A.55)

Which can be transformed back to the current con�guration 
:

Æf int
I

=

Z



NI

(

r :
�
�
i �
��
Fi

n

�
�1

: ÆF
�
� ÆF � �Fi

n

�
�1 � �i + Æ�

�
d
 (A.56)

Since L is constant in an increment, the �rst term in (A.56) can be rewritten as:

�
i �
��
Fi

n

�
�1

: ÆF
�
= �

i � I : ÆL�t = �
i � tr (ÆD�t) (A.57)

The second term in (A.56) can be rewritten as:

ÆF � �Fi

n

�
�1 � �i = ÆL�t � �i (A.58)

Using the above two expressions in (A.56) the following is obtained:

Æf int
I

=

Z



NI

(

r :
�
�
i � tr (ÆD�t)� ÆL�t � �i + Æ�

�
d
 (A.59)

An expression for Æ� follows from the constitutive law that is used to model the

material. For now it will be assumed that the corotational rate of the stress can be

expressed in the general form (A.25):

Æ

� = _� �W � � + � �W = C : D� �tr (D) (A.60)
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This relation is integrated to obtain an expression for the stress increment. This is

integration is elaborated on in Chapter 2 of this thesis. The linear variation of ��

can be expressed as:

Æ� = C� : ÆD�t� �
itr (ÆD�t) + ÆW�t � �i � �

i � ÆW�t (A.61)

Where C� is the consistent tangent. Substituting this into (A.59) results in:

Æf int
I

=

Z



NI

(

r :
��ÆL�t � �i +C� : ÆD�t+ ÆW�t � �i � �

i � ÆW�t
�
d


(A.62)

Which can be rewritten with (A.6):

Æf int
I

=

Z



NI

(

r :
�
C� : ÆD�t� ÆD�t � �i � �

i � ÆD�t+ ÆL�t � �i
�
d


(A.63)

With (A.35) and (A.36) the following expressions can be derived:

ÆL�t = NI

(

rÆuI
ÆD�t = BIÆuI

(A.64)

Which gives:

Æf int
I

=

Z



NI

(

r :

��
C� �H � �i � �

i �H� : BI +
�
H � �i

�
: NI

(

r
�
d
ÆuI

(A.65)

With H is the 4th-order unity tensor, this can be simpli�ed to:

Æf int
I

=

�Z



BT

I
:
�
C� �H � �i � �

i �H� : BId


+

Z



NI

(

r :
�
H � �i

�
: NI

(

rd

�
ÆuI

(A.66)

This expression de�nes the matrixKi, which is used in the Newton-Raphson algorithm

for solving the non-linear system.
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check convergence
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update mesh &
remap state variables

stress update

start new increment

Figure A.3: Flow chart of semi-coupled ALE method.

A.2.4 Arbitrary Lagrangian Eulerian method

When using an updated Lagrangian description, distortions in the element mesh may

occur when large deformations are modelled. This reduces the accuracy of the sim-

ulation and may eventually lead to loss of convergence. With a Eulerian description

these problems are avoided, but it is diÆcult to model free surfaces with this method.

The Arbitrary Lagrangian Eulerian (ALE) method is a combination of the Lagrangian

and Eulerian descriptions. In this formulation, the reference frame is not necessarily

moving with the material (Lagrangian description) or �xed in space (Eulerian descrip-

tion), but can be chosen independently from the material displacement. This method

was �rst developed in 
uid mechanics, to model 
uid-structure interaction [8, 9] and

to model the motion of free surfaces [10, 11]. Later it was applied to the simulation

of forming processes [12, 13].

In the work presented in this thesis, a semi-coupled ALE method was used [14]. This

method is outlined in Figure A.3. For each iteration, the material displacement incre-

ments are �rst calculated with an updated Lagrangian method. For each iteration,

the mesh is updated and the state variables are remapped to the new mesh. Subse-
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quently the stresses are updated and convergence is checked. The iteration process is

continued until a convergence criterion is met. An advantage of this model is that the

system is in equilibrium at the end of the step. The disadvantage is that convergence

may be less than optimal, because the mesh update is not taken into account when

linearising the system.
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List of Symbols

Scalars:

b length of the Burgers vector for aluminium (m)

f yield function (MPa)

f int
I

internal force vector (N)

fext
I

external force vector (N)

g limit function (MPa)

h viscoplastic modulus (MPa)

i iteration number

l bearing length (m)

lD di�usion length (m)

m material parameter in Sellars-Tegart law ()

n step number

o sink-in o�set (m)

p hydrostatic pressure (MPa)

pc counter pressure used in bearing simulations (MPa)

r speci�c heat source W/kg

s sink-in depth (m)

sm material parameter in Sellars-Tegart law (MPa)

t time (s), pro�le thickness (m)

tdef time the material spends in the deformation zone (s)

u speci�c internal energy (J/kg)

A material parameter in Sellars-Tegart law (1/s)

Cb bulk modulus (MPa)

Di di�usion coeÆcient of solute element i (m2/s)

E Young's modulus (MPa)

G shear modulus (MPa)

127



I node number

K1 material parameter in solute dependent Sellars-Tegart law ()

K2 material parameter in solute dependent Sellars-Tegart law (1/wt%)

NI interpolation function for node I ()

P average pressure, used as measure for resistance in bearing (MPa)

Q activation energy in Sellars-Tegart law (J/mol)

R universal gas constant (J/molK)

S length of in
ow edge in bearing simulations (m)

T temperature (K)

X weighted solute content in aluminium matrix (wt%)

Z Zener-Hollomon parameter (1/s)

� weighting factor for return mapping algorithm ()

Æ subgrain size (m)

_� equivalent (visco)plastic strain rate (1/s)

_�0 parameter to include elastic region in Sellars-Tegart law (1/s)

_� plastic multiplier (1/MPas)

� friction coeÆcient ()

� bearing angle (Æ)

� density (kg/m3)

� e�ective stress (MPa)

�f 
ow stress (MPa)

�y yield stress (MPa)

�i friction stress opposing a moving dislocation (MPa)

�t time increment (s)

��q equivalent plastic strain increment ()

��vol volumetric strain increment ()

�
 scaling parameter for viscoplastic model (1/MPas)

�� equivalent (visco)plastic strain increment ()

�� plastic multiplier (1/MPa)
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Vectors:

b body forces (N/kg)

f force (N)

n normal ()

q internal heat 
ux (W/m2)

t traction forces (N/m2)

u displacement (m)

v velocity (m/s)

x spatial coordinate (m)

X material coordinate (m)

Æw weighting function ()

Tensors:

m direction of plastic 
ow ()

n normal on the limit surface de�ned by g = 0 ()

s deviatoric stress (MPa)

BI symmetric part of the gradient of the shape functions (1/m)

D strain rate (1/s)

D̂ corotational strain rate (1/s)

De elastic strain rate (1/s)

Dvp (visco)plastic strain rate (1/s)

F deformation gradient ()

L spatial velocity gradient (1/s)

I unity tensor

Q rotation tensor ()

R rotation tensor ()

W spin (1/s)

_" strain rate (1/s)

_"e elastic strain rate (1/s)

_"vp (visco)plastic strain rate (1/s)

� Cauchy stress (MPa)

�̂ corotational stress (MPa)
Æ

� corotational stress rate (MPa/s)

�e deviatoric strain increment ()
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�" strain increment ()

�"e elastic strain increment ()

�"vp (visco)plastic strain increment ()

�� stress increment (MPa)

4th-order tensors:

E elastic tensor (MPa)

H unity tensor
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Samenvatting

Aluminium extrusie is een vormgevingsproces dat wordt gebruikt om pro�elen te

maken. Een grote verscheidenheid aan pro�elen kan worden gemaakt door een blok

heet aluminium door een gat te drukken met de vorm van de gewenste doorsnede van

het pro�el. Momenteel wordt het ontwerp van extrusiematrijzen en de procesbesturing

voornamelijk proefondervindelijk gedaan. De ervaring van de matrijsontwerper, de

persoperator en de matrijscorrector bepalen de eÆci�entie van het proces. Het is

noodzakelijk om meer kennis van het extrusie proces te verkrijgen om de eÆci�entie te

verbeteren. Numerieke simulaties kunnen hierbij helpen.

In dit proefschrift worden een aantal nieuwe ontwikkelingen op het gebied van eindige

elementen simulaties van extrusie behandeld. De stof is opgedeeld in vier hoofd-

stukken die in de vorm van artikelen ook elders worden gepubliceerd. De aandacht is

gericht op de volgende drie onderwerpen:

� Het modelleren van de bearing

� Experimentele veri�catie van de simulaties

� Het ontwikkelen van een praktische methode voor het simuleren van willekeurige

pro�elen.

Het is gebruikelijk om een viscoplastisch constitutief model te gebruiken voor het

simuleren van het materiaal gedrag van aluminium tijdens extrusie. In zo'n model

wordt het elastische gedrag verwaarloosd. Dit is mogelijk omdat de plastische ver-

vormingen die optreden vele malen groter zijn dan de elastische vervormingen. In het

bearingkanaal zijn de vervormingen echter minimaal en elastische e�ecten hebben wel

degelijk een belangrijke invloed op de resultaten.
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Om de processen die in de bearing spelen te onderzoeken zijn er gedetailleerde 2D

simulaties van de stroming in dit gebied gemaakt. Met deze simulaties zijn de e�ecten

van het materiaalgedrag, de wrijving en de geometrie van de bearing onderzocht. Uit

de resultaten kon worden gekonkludeerd dat elastische e�ecten een belangrijke rol

spelen in parallelle bearings. Verder is er aangetoond dat de weerstand in parallelle

bearings zeer gevoelig is voor kleine veranderingen in de geometrie en in de procescon-

dities. Dit verklaart het onvoorspelbare gedrag van extrusiematrijzen in de praktijk.

Er is een nieuwe ontwerp�loso�e voorgesteld om dit te voorkomen.

Experimentele veri�catie van het numerieke model is uitgevoerd door de simulaties

te vergelijken met extrusie experimenten. De numerieke simulaties zijn uitgevoerd

met een elasto-viscoplastic constitutief model dat is gebaseerd op de Sellars-Tegart

wet aangepast voor het e�ect van oplosharding. De parameters voor dit model zijn

bepaald m.b.v. compressietesten. De extrusie proeven zijn isotherm uitgevoerd. De

resultaten van het numerieke model geven een goede overeenkomst met de experi-

mentele resultaten.

De toepassing van de numerieke simulaties in de extrusie praktijk wordt beperkt

door de complexiteit van deze simulaties. Het is nodig om een praktische methode

te ontwikkelen voor het maken van simulaties van willekeurige pro�elen. Er is een

equivalent bearing model ontwikkeld om de weerstand in de bearing te modelleren

zonder een groot aantal elementen te gebruiken. Om het tijdrovende en ingewikkelde

werk van het maken van een EEM model te vermijden, is er een speciale pre-processor

voor extrusie gemaakt. Hiermee is een directe koppeling tussen het matrijsontwerp

in het CAD programma Pro/Engineer en de simulaties in de EEM code DiekA tot

stand gekomen.

De simulaties kunnen in de praktijk gebruikt worden om speci�eke aspecten van

het extrusieproces te onderzoeken. De simulaties zijn al succesvol gebruikt om de

vorm van de vleugels in porthole matrijzen te verbeteren en om ontwerpregels voor

de bearinggeometrie af te leiden. Deze ontwerpregels zorgen voor een uniforme uit-

stroomsnelheid van het pro�el. In principe kunnen de simulaties ook rechtstreeks

in het ontwerpproces worden gebruikt om het ontwerp van speci�eke matrijzen te

verbeteren.
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