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Chapter 1

Introduction

1.1 Pre-test procedures

This thesis discusses pre-test procedures, which may be described as follows. Suppose
we want to test a given hypothesis, but we doubt whether we may assume a restricted,
but possibly incorrect model, or have to resort to a larger and thus less precise model.
To settle this issue, we perform a preliminary test on the adequacy of the restricted
model. If this test fails to reject, then we feel free to stick to the restricted model and
use a test specifically suitable for that model. Otherwise, we use an alternative main
test which is more general and appropriate for the large model, but less powerful than
the first test when the restricted model holds. The schematic picture below illustrates
how the procedure works.
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no rejection rejection

Specialized main test
(for restricted model)

General main test
(for large model)

Figure 1.1.1 Pre-test procedure
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2 Chapter 1. Introduction

The underlying idea of the above procedure is indeed appealing: if the restricted
model is incorrect, the specialized test is not valid and should not be used. But always
using the general and typically less powerful test would be a waste of power if the
restricted model is correct after all. The specialized main test might also be preferred
because it is simpler to use or explain. As it is not known beforehand whether the
restricted model is applicable, it seems very natural to settle this simply through a
preliminary test.

But thinking further about this attractive approach, some doubts may arise. Like
any other test, the preliminary test, which should help us to decide which of the two
main tests is most appropriate to test our main hypothesis, will make errors of first
and second kind. This may lead to application of the specialized main test when
in fact the restricted model is inadequate, or to application of the general main test
when it is not necessary.

As a consequence, the behavior of the combined procedure, which we call a pre-
test procedure, may be disappointing. Moreover, repeated use of the same data for
the subsequent tests may introduce correlations which influence the behavior of the
procedure. Hence, the idea of getting higher power if possible, while being protected
against violation of the level if necessary, may well be too optimistic.

After these considerations the questions arise what is known about these draw-
backs and how people deal with them in practice. The answers seem to be rather
simple: little is known, and most people ignore them. Still, almost everyone uses such
procedures, although many people do not even realize it. People who do, in most
cases assume that these procedures are good and that the possible problems sketched
above, will not be severe. However, in the articles from statistical literature in which
attempts were made to attack the problem, things turned out to be very complicated.
This makes it impossible to confirm the implicit optimism or to give guidelines for
responsible use of such procedures.

One might argue that it would be better to advise to refrain from pre-testing.
However, this would not be very helpful, since pre-test procedures are widely used
in practice and their use only grows in view of the steadily increasing computing
facilities, which make such an approach easier and easier. Hence, it does not seem
likely that the problem will vanish by ignoring it. It will rather increase and therefore
deserves attention.

In Section 1.2 we give an impression of the widespread use of pre-testing, not only
when the final inference concerns a testing problem, as in the pre-test procedures
we defined, but also when the main issue is an estimation problem. To this end,
we present several recognizable examples from literature. Next, in Section 1.3 we
put pre-test procedures in a wider perspective by discussing some related approaches,
which have the common feature that the data are repeatedly used, first to determine
better procedures for final inference based on the data under consideration, secondly
for the final inference itself. Finally, in Section 1.4 we give an outline of the material
covered in this thesis.
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1.2 Examples from literature

The starting point for the statistical analysis of specific data from an investigation is
usually a statistical model. This model may be specified before the data are collected,
based on theoretical knowledge or previous experience with similar data. This is what
is called an ’unconditionally specified model’ in the bibliographies by Bancroft and
Han (1977) and Han, Rao, and Ravichandran (1988), see also Bancroft and Han
(1980). In contrast to this and of particular interest to us, is a ’conditionally specified
model’, or an ’incompletely specified model involving preliminary tests’ as it was
previously called, see Bancroft (1964). In this case the collected data are used to
carry out preliminary tests to aid in the choice of a reasonable model. Subsequently,
the same data are used for inferences regarding the parameter(s) of interest in the
determined model.

The final inference following the preliminary test mostly concerns an estimation
or testing problem. In the case of an estimator based on the outcome of a preliminary
test, the term ’testimator’ is used. In literature ’testimation’ problems turn up more
often than ’testitesting’ problems. Indeed, the study of testing problems is more
complicated than that of estimation problems. The quality of estimators is usually
measured by the mean squared error (MSE), allowing for some bias in exchange for
a smaller variance. On the other hand, in testing problems, people do prefer a high
power, but they still tend to adhere to the principal requirement that the size of the
procedure should not exceed the nominal level. However, it is unrealistic to require
this in pre-test procedures because the possibility that the preliminary test wrongly
’accepts’, cannot be excluded. This leads to application of an inappropriate test and
consequently to violation of the level. Hence, in the pre-test testing problem a small
exceedance of the nominal level should be allowed. Nevertheless, the level should
still be controlled and the power maximized, while in the pre-test estimation problem
bias and variance are combined in the MSE, in which they are exchangeable. Also
from a technical point of view, testing problems are more complicated than (point)
estimation problems. While the analysis of estimation problems concentrates on the
first two moments of the final estimator, for the evaluation of size and power of testing
procedures that are based on a preliminary test, the whole distribution is needed. This
also makes the study of interval estimation after a preliminary test (considered by
a few authors, for instance Arabatzis, Gregoire, and Reynolds Jr. (1989) and Giles
and Srivastava (1993)) more difficult than point estimation. Arabatzis, Gregoire, and
Reynolds Jr. (1989) study the interval estimation of a mean from a sample of a
normal population. If the preliminary test rejects the null hypothesis that µ = µ0,
then the mean µ is estimated by X̄ and a confidence interval is calculated, otherwise
µ0 is taken. They study the actual coverage probability of a nominal or unconditional
interval after rejection by the preliminary test. The results are not uniform and the
authors do not advise pre-testing.

Many examples from literature involve the question of whether two or more sam-
ples come from the same underlying model or can be pooled to make inference about
a parameter occurring in the population distribution of one of the samples.
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A very famous example is the situation where we want to test whether the means
of two independent normal samples are equal, but where there is some uncertainty
about the validity of the usual assumption of equal variances. Then sometimes a
preliminary F -test is recommended to decide whether the ordinary two-sample t-test
with the pooled variance estimator may be used, or whether another method for
testing equality of means under heterogeneous variances should be used (the well-
known Behrens-Fisher problem, for references see e.g. Nikulin and Voinov (1995)).
In popular statistical packages like SAS and SPSS, preliminary variance tests have
been incorporated into procedures for the two-sample means tests. However, Moser
and Stevens (1992) conclude that the practice of preliminary variance tests is not
appropriate and that instead of the emphasis on equality of variances, more effort
should be spent on the qualities of an alternative Welch-Satterthwaite test, when
teaching the two-sample means test. However, most textbooks still treat the two-
sample t-test and recommend the F -test to check the assumption of equal variances.
The following quotation, from a well-known textbook in statistics, illustrates this
(Hoel (1984), p. 296, p. 300):

“It will be recalled that it was necessary to assume that σx = σy in order to
apply the t distribution to testing the difference between two means. For the
purpose of checking on this assumption, a density function that can be used for
testing the equality of two variances will be derived. [...] The sample value of
F = 2.63 is therefore not significant. This result implies that the assumption of
equal variances is a reasonable one and that the significant value of t obtained
in connection with this problem when testing the hypothesis µx = µy may not
be reasonably attributed to a lack of the assumption σx = σy being satisfied.”

Other references in which the effect of variance pre-testing before comparing two nor-
mal means was studied, are Gurland and McCullough (1962), Wehrhahn and Ogawa
(1978), Markowski and Markowski (1990), Moser, Stevens, and Watts (1989). A short
remark might be made here. Fisher (1990) criticized the previous point of view (see
p. 125 of ’Statistical Methods for Research Workers’), as he preferred to consider the
equality of variances as a part of the hypothesis to be tested, namely that the two
samples are drawn from the same normal population, rather than as an assumption.
However, he admits that one may also be interested in the question of whether the
samples have been drawn from a (possibly different) normal population with the same
mean, as we are.

Another example is the following. Consider two normal samples with the same
variance but possibly different means µ1 and µ2. It may be suspected that µ1 = µ2,
but one is mainly interested in µ1. If the hypothesis of equality of the means cannot
be rejected by a preliminary test, then the two samples are often pooled to get a
better estimate of µ1 or to get a better test for testing a given hypothesis concerning
µ1. If the preliminary test rejects, only the first sample is used. Some numerical work
for this situation was done by Arnold (1970).

Numerous variations on these examples are possible, for example extensions to
more than two samples, pooling problems for variances instead of means (Mehta and
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Gurland (1969a)), or situations with uncertainty about the independence of the two
samples. In the latter case the preliminary test is used to test whether the correlation
equals zero (Mehta and Gurland (1969b)).

The problem of pooling is also frequently discussed in an analysis-of-variance
(ANOVA) context. Bancroft and Han (1980) give an instructive overview with refer-
ences of the use of preliminary tests in ANOVA models. They consider fixed, random
and mixed models separately, and discuss results for the cases where either estimation
or testing is the final inference. Special ANOVA models are considered by e.g. Rao
and Saxena (1981) who studied the power of a ’sometimes pool procedure’, first by
numerical evaluation of the power function with a (for those years) sophisticated com-
puter, and then by deriving an approximation which can be evaluated easier, though
still numerically. Gupta and Srivastava (1963) derived an upper bound for the size of
a sometimes pool procedure in the limited case that also the null hypotheses of the
preliminary tests are true. Bancroft and Han (1980) also discuss the choice of the
significance level for the preliminary test, as it is observed that 0.05 is unacceptable
in most cases. In many cases they recommend to take at least 0.25 for the level of
the preliminary test.

Some other authors too considered the choice of the significance level for the
preliminary test, all recommending a larger value than the common value 0.05. In
most cases this problem is treated for some procedure where the final inference is
estimation, in which case the bias, arising when the significance level is chosen smaller
than 1, can be weighted against the variance, cf. e.g. Gun (1969), Sawa and Hiromatsu
(1973), Farebrother (1975), Toyoda and Wallace (1976).

Procedures involving preliminary tests are furthermore often employed if the un-
certainty in the model specification concerns the inclusion of a parameter in a given
model. A practical example is the question whether an interaction term should be
included in an analysis-of-variance model. A preliminary test is used to test whether
the interaction term equals zero. If this test is not significant, the main effects are
estimated and tested in the model without interaction term. On the other hand, if
the preliminary test rejects, we are faced with an interpretation problem for the main
effects. This example is considered by Fabian (1991). In the light of his negative
conclusions, he does not even specify what may be done after rejection by the prelim-
inary test. He analyzes an improved version of the above procedure which also takes
into account the estimated (on the basis of the power of the preliminary test) error
due to neglecting interactions. He concludes however, that the improved procedure,
and hence also the original procedure, is absolutely unsatisfactory.

Regression models also appear frequently as a subject of study. Consider the
simple bivariate regression model Y = β1x1 + β2x2 + ε with the ε’s independently
identically normally distributed with expectation zero. Suppose that one is interested
in the influence of x1 on the response variable Y and hence in inference about β1,
but that one is uncertain about whether the term with x2 should be incorporated
in the model. Then a common procedure is to test the hypothesis H̄0 : β2 = 0 vs.
H̄1 : β2 6= 0. If the preliminary test for this hypothesis is not significant at some
given level, then the term with x2 is omitted and the reduced model Y = β1x1 + ε is
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fitted to make inference about β1. Otherwise it is incorporated in the model and the
complete model is fitted.

This example occurred already in the first article in which the effect of prelimi-
nary testing on subsequent inference was studied (Bancroft (1944)), but it also has
appeared in many articles published since then. For example, more recently Giles and
Srivastava (1993) derived the distribution function of the conditional estimator β̂1 of
β1, given by either the restricted (by β2 = 0) ordinary least squares (OLS) estimator
in case the preliminary test did not reject, or by the unrestricted OLS estimator after
rejection. The result turns out to be very complicated thus requiring numerical eval-
uation. Moreover, it is data-dependent and depends on all the unknown parameters
in the problem.

Saleh and Sen (1983) and Saleh and Sen (1984) do not restrict attention to one
particular situation as most authors do, but consider the more general multivariate
linear model Y = βX + ε, where a test of hypothesis on a subset β1 of the parameters
follows a preliminary test on the complementary subset β2. For a class of likelihood
ratio and rank order tests, they derive first-order asymptotic approximations for size
and power of the pre-test procedure. These approximations involve the joint distri-
bution of non-central χ2-statistics which can only be evaluated by some elaborate
expansion. For some special cases (like β2 = 0) they give an upper bound of the
asymptotic size that depends on the levels of the separate tests and the power of the
preliminary test. As regards the asymptotic power of the pre-test procedure, they
observe that it lies between that of the two main tests, being more (less) efficiency-
robust than that of the restricted (unrestricted) test when β2 6= 0 may not hold. For
comparison of the ranks vs. least squares solutions, numerical evaluation is needed
since the results are too complicated.

Easterling and Anderson (1978) study by means of simulations the effect of pre-
liminary goodness-of-fit tests for normality on subsequent inference for the mean.
They initiated their study with the feeling that pre-testing on normality is not only
conventional, but good. However, their simulation results are not at all supportive.
Particularly for asymmetric distributions, passing a goodness-of-fit test does not pro-
vide protection against errors due to wrongly using normal distribution theory for
obtaining a confidence interval for the mean.

1.3 Repeated use of data in a wider perspective

Besides preliminary tests followed by the main statistical analysis on the same data,
there are other possibilities to deal with uncertainty in the specification of a model.
One might divide the available data into two parts, one part to perform the prelimi-
nary test on, the other part to make the final inference that one is interested in. In this
situation, a recommendation regarding the sizes of the sub-samples would be needed.
A technique of data-splitting is encountered in the theory of semi-parametric mod-
els for the construction of efficient estimators (Bickel, Klaassen, Ritov, and Wellner
(1993), Sec. 7.8). Unfortunately, its practical use is limited, since for finite samples it
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is not that clear how to split the sample. Another possibility is to use non-parametric
or distribution-free methods instead of preliminary tests. The idea is that such tests
are so robust that they will be valid even under the largest possible model, and thus
selection of the model becomes superfluous. However, use of these methods may lead
to unnecessary loss of efficiency. Also Bayesian procedures might be considered, but
a difficulty then is that they require a priori information. Cohen (1974) remarks
that preliminary tests form a sort of compromise between standard procedures and
Bayesian procedures.

In practice, people often use less formal methods involving repeated use of data.
In exploratory data analysis, for example, graphical techniques like box plots and
stem-and-leaf plots are applied to get an impression of the data. After fitting a
regression model, probability plots and other plots of residuals are made to check
usual assumptions like normality and homogeneous variances. However, the judgment
of these plots is mostly done by eye and not by objective criteria. People often just
try a few models and choose the one that best fits their data. In this way they ’check’
the assumptions underlying their model, and after convincing themselves that the
data do not conflict the model, they are satisfied and proceed as if they haven’t done
anything yet.

The use of such ’trial and error’ methods to find an appropriate model has grown
with the increased computing facilities, which has made it much easier to try several
variants. However, even if one would try, it would hardly be possible to describe
the behavior of people analyzing data with a computer, in a systematic way. Many
decisions taken during the process are subjective or ad hoc, which makes it impossible
to analyze the consequences of such behavior on final inference.

The problem however is, that the conclusions resulting from use of a model or
method that has been selected with the same data, also depend on the preceding
steps and should be interpreted with care. In practice, people often do not realize
this or they assume that it won’t be so bad. And if they are aware of the problem,
they propose to use new data for the application of the method. However, as these
are in most cases not available, we typically are left without a satisfactory solution.

Some other approaches which are related to procedures incorporating a prelimi-
nary test in the sense that they also use the available data to select a suitable model
or method, are worth mentioning. In this respect one can think of so-called ’adaptive
methods’. Typically a class of procedures is available, each of which is appropriate
for a special distribution, but not really bad for others. Then the value of a selec-
tor statistic is computed, on the basis of which one of the available procedures, or a
weighted combination of these, is chosen. Such adaptive methods are used to improve
the robustness of the resulting procedure.

As an example we mention the estimation of the center of a distribution. Here one
may use a trimmed mean with the trimming factor based on the observed sample,
chosen such that it minimizes what is essentially the standard error of the trimmed
mean after observing the sample. Another possibility is to consider a Stein-like esti-
mator which differs from a usual pre-test estimator by the fact that it does not choose
one of two possible estimators, but attaches weights according to the value of the test
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statistic of the preliminary test.
In the field of ’model selection’ the problem is to choose the best model from an

appropriate class of models. To get a good compromise between simplicity and accu-
racy, selection criteria are applied. These criteria measure the discrepancy between
the fitted and the actual distribution, but put a penalty on the number of parameters
in the selected model, to guard against over-fitting. Akaike’s criterion (AIC) and the
Bayesian information criterion (BIC) are well-known examples.

Sometimes the term ’data-driven procedures’ is used. The last few years data-
driven goodness-of-fit tests (see Ledwina (1994)), where a goodness-of-fit test is based
on a model that is selected by a selection rule applied to the data at hand, have
received a lot of attention. Another example of a data-driven procedure might be
the use of available data to estimate the optimal bandwidth in density estimation
problems.

1.4 Outline of this thesis

Since repeated use of data is very common in practice, there is definitely a need for
more insight in its consequences on final inference. In this thesis we restrict ourselves
to the well-defined pre-test procedures defined in Section 1.1, in which a preliminary
test determines which of two subsequent main tests will be used. Although some
numerical work has been done for this relatively simple looking procedure (compared
to some other procedures involving repeated use of data), insight is still lacking. The
controversy between the optimistic view of most of the textbooks and the recommen-
dations in statistical literature based on numerical work, is not yet settled. However,
classical first-order asymptotics does not give suitable answers. With second-order
asymptotics we will throw light on the behavior of pre-test procedures. We present
transparent expressions for the actual size and power of pre-test procedures, thus of-
fering a clear picture of their behavior in a qualitative and quantitative sense. At this
point, I would like to mention the following quotations from Lehmann (1999), p. 2,
p. 583, which support our idea:

“... approximations tend to be much simpler than the exact formulas and, as a
result, provide a basis for insight and understanding that often would be difficult
to obtain otherwise.”
“... numerical work can be greatly strengthened by consideration of higher order
asymptotics. These theoretical results paint a more general picture than that
obtained through the snapshots provided by simulation.”

In Chapters 2 and 3 we study the famous normal two-sample problem, mentioned
before. In order to get a better understanding, we first treat the corresponding one-
sample problem, in which a preliminary variance test may be used to decide on use
of the Gauss test or the t-test for a subsequent test about the mean. In Chapter 2
we begin by deriving simple approximations for the sample sizes needed such that
the preliminary test has sufficient power to detect such deviations from the restricted
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model that would lead to unacceptable differences between the size of the specialized
main test and its level. The idea behind this approach of course is that if the size of
the pre-test procedure is too large, then this will be due to the fact that the size of the
main test for the restricted model is unacceptable, in combination with a power of the
preliminary test which is too low to prevent use of the specialized test. In Chapter 3
we study the behavior of the procedure as a whole, thus taking into account the
correlations between the preliminary test and the subsequent main tests. We derive
approximations for the actual size and power of the pre-test procedure for the one-
and two-sample problem. From the structure of the approximations it follows that
the error in the size of the pre-test procedure is not as large as expected from the
approach in Chapter 2. This is due to the dependence taken into account. Chapter 2
is based on the paper by Albers, Boon, and Kallenberg (1998), which is essentially
based on the two internal reports Albers, Boon, and Kallenberg (1997b) and Albers,
Boon, and Kallenberg (1997a). Chapter 3 closely follows the text in Albers, Boon,
and Kallenberg (2000a).

In Chapter 4 we extend our work for the normal case to general families of densities
with two parameters, viz. a parameter of interest and a nuisance parameter. The
preliminary test then tests whether the nuisance parameter equals some prescribed
value, and is followed by a main test on the parameter of interest, either in the
restricted model with the nuisance parameter known to be equal to the given value,
or in the larger model where the nuisance parameter is assumed to be unknown.
For the pre-test procedure resulting when first-order asymptotically optimal tests
from a general class of tests are used for each testing problem, we derive a second-
order asymptotic approximation for the power gain or size difference from the pre-test
procedure compared to the general main test. This approximation is very transparent
and hence gives us the desired insight in the relationship between the power gain (or
size difference) as a function of all the underlying parameters in the problem. The
class of tests turns out to be involved in the result through only one quantity, while
the family of distributions appears in only three additional quantities. The result
is applied to several examples from a two-parameter exponential family and from a
symmetric location-scale family of distributions. For the latter, the approximation
reduces to that for the normal case, considered in the previous chapter, multiplied
by a constant which may differ from distribution to distribution. However, for the
classes of tests considered, the hope for power gain together with protection against
a large size turns out to be false for most values of the underlying unknown nuisance
and interest parameter. Chapter 4 is essentially based on both the internal report
Albers, Boon, and Kallenberg (1997c) and the more general paper Albers, Boon, and
Kallenberg (2000b), in which fewer details are presented.

Chapter 5 deals with an extension of the classes of tests considered in Chapter 4.
In the extended class the alternative main test is robust in a larger model than the
model against which the preliminary test aims to provide protection. This happens
for example when after a preliminary test which only protects against particular
deviations from normality, the sign test is used as an alternative test for testing the
median, instead of the t-test, which is optimal in a normal model. In such a situation,
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the approximation derived shows that power gain is indeed possible without severe
violation of the level. Chapter 5 is based on Albers, Boon, and Kallenberg (2001).



Chapter 2

The effectiveness of a
preliminary test of variance
for the normal one- and
two-sample problem

2.1 Introduction

Consider the problem of testing the equality of the means of two independent samples
from normal distributions. This is usually done with the standard two-sample t-
test, which however requires that the variances are equal. In practice, quite often a
preliminary F -test is applied to test the equality of the variances involved. This is
close to suggesting a two-step procedure: if the F -test does not reject the hypothesis of
equality of the variances, apply the two-sample t-test; otherwise apply a more robust
test, for example Welch’s or Satterthwaite’s test or even a non-parametric test. The
rationale behind this approach apparently is that once the F -test has not rejected, it
will be safe to use the standard t-test, which presupposes equality of variances. More
precisely, variances which differ so markedly that the level of the t-test would deviate
intolerably from its nominal value, are supposed to be detected with high power by
the F -test.

However, using a combination of simulation and numerical evaluation, Markowski
and Markowski (1990) reveal that unfortunately we have a case of wishful thinking
here. They demonstrate that for moderate sample sizes (5-40 for both samples), the
actual picture rather is the reverse: variance ratios leading to grossly wrong levels
of the t-test are only detected by the F -test with very low power. Hence Markowski
and Markowski (1990) rightly conclude that on this basis one should certainly not
advocate the use of a preliminary F -test. The same conclusion can be drawn from

11
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Wehrhahn and Ogawa (1978).
A drawback of these papers is that the conclusions drawn are based on simulations

and numerical evaluations of the rather complicated exact probabilities. However, in
addition to numerical work, it would be nice if we could get insight in a qualitative
way why this failure occurs and quantitatively how large it is. Hence, we would like
to have some simple approximations that can be used to gain more insight in the
functional relationships between various parameters.

A first step is to apply some standard asymptotics, from which the following pic-
ture evolves. Although the sample sizes tend to infinity in an asymptotic approach,
the F -test should attain a prescribed power for a given level, and hence we cannot
consider fixed alternatives, since then the power would tend to one as the sample
sizes tend to infinity, but we have to consider Pitman alternatives. For such nearby
alternatives, the variance ratio tends to one as the sample sizes increase. But under
these circumstances, the level of the t-test will nicely tend to the prescribed nominal
value and the problem resolves. Hence simple asymptotics, just as the intuitive rea-
soning mentioned above, completely overlooks the only too real difficulties established
in practice.

In this chapter we show that application of second-order asymptotics fortunately
does suffice to make matters transparent. We derive a simple expression for the
minimal sample size that would be required to trust the intuitive justification for a
preliminary F -test. These expressions make clear the relations between sample sizes,
variance ratios and levels involved, thus giving the qualitative insight. Moreover,
quantitatively it is also evident from these expressions that the sample sizes required
are indeed typically large (and quite often huge).

Before dealing with the two-sample case in Section 2.3, we begin by studying in
Section 2.2 the simpler one-sample version of the problem. Although not that often
mentioned in textbooks or literature, a similar situation occurs there. If the variance
is known to be equal to a certain value, one might prefer to use the Gauss test
instead of the ordinary one-sample t-test for testing the hypothesis of main interest
concerning the mean. A preliminary χ2-test can be used to test the assumption about
the variance.

It turns out that for the power of the preliminary test, first-order methods still
suffice, but that in particular the approximation for the level of the preferred main
test has to be improved by use of second-order asymptotics. Some figures are added
to demonstrate that the approximations work very well.

2.2 The one-sample case

In this section we consider the one-sample counterpart of the more familiar two-sample
case mentioned. From a practical point of view, this case is only marginally interest-
ing. However, as it is considerably simpler, its study will help our understanding of
what is going on, which is precisely our aim.

Let X1, . . . , Xn be independent identically distributed (i.i.d.) random variables
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(r.v.’s) from the N(µ, σ2)-distribution. Suppose we are interested in the mean, and
want to test the main null hypothesis H0 : µ = µ0 against one-sided alternatives
H1 : µ > µ0 at level α. To decide what test we shall use for this testing problem,
we wonder whether we may assume the variance to be equal to some known value
σ2

0 . This assumption, which clearly forms the analogue of the equality-of-variances
assumption in the two-sample case, can be tested by a two-sided χ2-test at level δ,
say. This test rejects H̄0 : σ = σ0 in favor of H̄1 : σ 6= σ0 for either small or large
values of the test statistic based on the sample variance S2, i.e. when

(n− 1)S2

σ2
0

< χ2
n−1,1−δ/2 or > χ2

n−1,δ/2, (2.2.1)

where for example χ2
n−1,δ/2 denotes the upper (δ/2)-point of the chi-squared distri-

bution with (n− 1) degrees of freedom (df).
If this preliminary test does not reject, we feel encouraged to apply the Gauss test

for the main testing problem on the mean. Then H0 is rejected when

n1/2(X̄ − µ0)
σ0

> uα, (2.2.2)

where X̄ is the sample mean and uα = Φ−1(1−α) is the upper α-point of the standard
normal distribution function Φ.

If, however, the preliminary test rejects H̄0, then an alternative test for the mean
has to be used. An obvious choice is the t-test, which uses an estimator S for σ, and
which hence rejects when

n1/2(X̄ − µ0)
S

> tn−1,α (2.2.3)

with tn−1,α denoting the upper α-point of the t-distribution with (n− 1) df.
For the procedure described above we study the power of the preliminary test

in relation to the actual size of the Gauss test. We first specify what we consider
to be an intolerable size for the Gauss test, and give an exact expression for the
corresponding variance ratio by which this is caused. Subsequently, we consider the
power of the preliminary test for these variance ratios and give a criterion to quantify
when it is considered to be sufficiently large. The exact sample size needed to meet
this criterion is evaluated numerically. After this, we derive approximations to get
the desired theoretical insight.

The actual size of the Gauss test exactly equals

α̃ = 1− Φ(uα/r1/2), (2.2.4)

where r = σ2/σ2
0. Suppose we define a tolerable deviation from the nominal level by

stipulating that the relative error h(r) = (α̃− α)/α in the size should satisfy

|h(r)| ≤ |ε|, (2.2.5)
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for some given, small ε. Taking e.g. ε = ±0.4 means that at a nominal level of 5% a
range from 3% to 7% is allowed. Clearly, as h is an increasing function of r, attention
will focus on the just tolerable values re, for which h(re) = ε holds exactly. It follows
immediately that

re = u2
α/u2

α(1+ε). (2.2.6)

Hence, for variance ratios r larger than the value of re corresponding to positive ε,
or smaller than the value re corresponding to negative ε, the Gauss test is considered
unacceptable.

Now consider the power of the preliminary χ2-test for H̄0 : σ = σ0. For a given
level δ it can be considered as a function of the sample size n and the variance ratio
r and will be denoted by π(n, r). It equals

π(n, r) = 1− P (χ2
n−1 < χ2

n−1,δ/2/r) + P (χ2
n−1 < χ2

n−1,1−δ/2/r), (2.2.7)

where χ2
n−1 is a r.v. with a chi-squared distribution with (n− 1) df. Again a bound

has to be prescribed. Suppose we define sufficiently high power for this test to mean
that for all variance ratios r for which the size of the Gauss test violates (2.2.5), we
should have a power of at least π0, i.e.

π(n, r) ≥ π0, (2.2.8)

for some given, sufficiently large π0. A minimal requirement would seem to be π0 ≥
0.50. Since the variance ratios violating (2.2.5) satisfy |r − 1| > |re − 1|, it follows
from the monotonicity of the power in |r− 1| that it suffices to require (2.2.8) for re.
Hence n should simply satisfy

π(n, re) ≥ π0. (2.2.9)

Numerically, it is straightforward to obtain ne = ne(α, δ, ε, π0), the smallest
integer-valued number n for which (2.2.9) holds. This is exactly the minimum sample
size, needed to ensure a sufficiently high power (in the sense of (2.2.9)) in cases where
deviations of the size of the Gauss test from the desired nominal level are no longer
tolerable (in the sense of (2.2.5)). In Figure 2.2.1, among others, values of ne are
presented for various α, δ, ε and π0. From these results we readily infer that very
large sample sizes are required. This is in agreement with the assertion of Markowski
and Markowski (1990) for the two-sample case they studied. Moreover, ne is seen
to vary widely as a function of its parameters. This makes it even more desirable to
gain theoretical insight into the functional relationships involved, which is not given
by the numerical results.

To this end, we now derive some simple approximations based on asymptotics.
For the probability in (2.2.4) that the Gauss test rejects, we can easily write down a
Taylor expansion for r about 1. This leads to a second-order approximation for the
actual size of the Gauss test, reading

α̃ = 1− Φ(uα/r1/2) = α + 1
2 (r − 1)uαϕ(uα) + O

(
(r − 1)2

)
, (2.2.10)
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where ϕ = Φ′ denotes the density of the standard normal distribution. The fact that
we expand here in terms of (r − 1) is justified by the fact that (r − 1) has to be of
order n−1/2 (Pitman alternatives for the preliminary test). It will be immediately
clear from expression (2.2.17) below, that for a different order the χ2-test cannot
achieve a prescribed power as n tends to infinity. Note that the result in (2.2.10)
contains the more simple first-order approximation α̃ = α + O(|r − 1|). However,
this is clearly useless in the present context: it gives α̃ ≈ α and thus h(r) ≈ 0,
which means that (2.2.5) is never violated. Hence we really need the second-order
version α̃ ≈ α + 1

2 (r − 1)uαϕ(uα) from (2.2.10), which leads to h(r) = (α̃ − α)/α ≈
1
2 (r − 1)uαϕ(uα)/α. Replacing h(r) by this approximation in solving h(r) = ε leads
to the approximation

r1 − 1 =
2εα

uαϕ(uα)
(2.2.11)

for re − 1 with re from (2.2.6). (Obviously, the step from (2.2.6) to (2.2.11) could
have been made by direct analysis, but that would have been less illuminating).

Next consider the power of the preliminary test. In order to approximate π(n, r),
we can for example use that

P

(
χ2
n − n√

2n
≤ z

)
= Φ(z)− n−1/2

√
2

3
(z2 − 1)ϕ(z) + O(n−1)

= Φ(z) + O(n−1/2).
(2.2.12)

The first approximation in (2.2.12) is a one-step Edgeworth expansion (cf. e.g. Feller
(1971), p. 542), whereas the latter obviously is the ordinary normal approximation
for a standardized χ2

n r.v. Inversion gives the corresponding approximation for the
percentile points, namely

χ2
n,δ/2 − n
√

2n
= uδ/2 + n−1/2

√
2

3
(u2
δ/2 − 1) + O(n−1)

= uδ/2 + O(n−1/2).
(2.2.13)

An alternative possibility is to use the Wilson-Hilferty approximation, based on the
normal approximation for a transformation of the original variable (see Johnson and
Kotz (1970), p. 176):

P (χ2
n ≤ z) ≈ Φ

({( z

n

)1/3
− 1 +

2
9n

}√
9n

2

)
. (2.2.14)

This leads to

χ2
n,δ/2 ≈ n

(
uδ/2

√
2
9n

+ 1− 2
9n

)3

(2.2.15)



16 Chapter 2. The effectiveness of a preliminary test of variance

as an approximation for the upper (δ/2)-point.
We begin by simply applying the normal approximation from (2.2.12), Using (r−

1) = O(n−1/2) and writing the critical value, properly standardized under alternatives
r 6= 1, as

χ2
n−1,δ/2/r− (n− 1)√

2(n− 1)
= uδ/2 − (r − 1)

√
n

2
+ O(n−1/2), (2.2.16)

it follows that we may approximate the power π(n, r) of the preliminary test by

1− Φ
(

uδ/2 −
√

n

2
(r − 1)

)
+ Φ

(
−uδ/2 −

√
n

2
(r − 1)

)
+ O(n−1/2). (2.2.17)

If we use (2.2.17) to solve π(n, re) = π0 (cf. (2.2.9)), we obtain

n ≈ n1(re) =
2(uδ/2 − uπ0)2

(re − 1)2 (2.2.18)

under the typically reasonable assumption that one of the tails in (2.2.17) is negligible.
Here we use “≈” to indicate that the number of observations n should be an integer,
and hence equals the smallest integer above the value n1(re).

Combination of this result with the approximation r1 from (2.2.11) for the just
tolerable variance ratio, leads to the following approximation for ne

n1 = n1(r1) =
1
2

{
(uδ/2 − uπ0)uαϕ(uα)

εα

}2

. (2.2.19)

Note that (2.2.19) indeed makes transparent the way in which the sample size depends
on α, δ, ε and π0. This is partly due to the fact that most of the parameters are
separated. The expression does not only show that the required sample size increases
as a function of the desired power π0 and decreases as a function of the nominal
levels α and δ and the allowed deviation |ε| for the level of the Gauss test (as is
intuitively clear), it also clarifies its behavior in a quantitative way. Moreover, the
occurrence of ε2α2 in the denominator of (2.2.19) explains why such large values
occur. As mentioned before, Figure 2.2.1 presents ne for a number of configurations
of the underlying parameters. To judge the performance of (2.2.19), we evaluated n1
for these cases as well. Comparison to the exact values shows that n1 follows these
widely varying values remarkably well. In fact, the simple n1 ignores skewness effects
and thus is an even function of ε (cf. (2.2.19)), while the exact ne typically is somewhat
larger for positive ε than for negative ε. It turns out that the approximations nicely
lie near the average of the corresponding two exact values. Only for the parameter
combination δ = 0.5, π0 = 0.7 this does not hold. A closer look at the derivation of
the approximation reveals the reason: the nominal level δ is very large compared to
the required power π0 and therefore, neglecting one of the tails is not justified and
leads to overestimation (cf. (2.2.17) and (2.2.18)).
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Figure 2.2.1 Minimal sample sizes for which π(n, re) ≥ π0, with h(re) = ε, for various
π0, ε and levels α and δ of Gauss test and χ2-test, respectively. Values of ne and
nwh corresponding to positive and negative ε are denoted in the same bar, where the
value for positive ε is the larger one; n1 is the same for positive and negative ε.

Looking back, we observe that for the actual size of the Gauss test in (2.2.10)
the second-order approximation was really necessary, whereas for the power of the
preliminary test we could do with the first-order approximation in (2.2.12). Never-
theless, we did investigate whether further improvement could be achieved by using
the refinement from (2.2.12) or the Wilson-Hilferty approximation from (2.2.14) after
all. As the Wilson-Hilferty approximation coincides (not by accident!) with the one-
step Edgeworth approximation to O(n−1), we only present the results for this first
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possibility. The difference is completely negligible.
If r > 1 (which corresponds to a positive value for ε), then we ignore the lower

tail probability and solve

1− P (χ2
n−1 < χ2

n−1,δ/2/r) = 1− Φ(uπ0). (2.2.20)

Using (2.2.14) and (2.2.15) gives a quadratic equation in
√

9(n− 1)/2, with positive
root

−f +
√

1 + f2, where f =
uδ/2 − r1/3uπ0

2(1− r1/3)
. (2.2.21)

Similarly, when r < 1 (or ε negative), then we neglect the upper tail probability and
find the same expression with f replaced by −f (since u1−γ = −uγ). Noting that the
first term (−f or +f) is positive in both cases, substitution of r1 into f from (2.2.21)
gives as an approximation for the required sample size

nwh − 1 = nwh(r1)− 1 =
2
9

(
|f |+

√
1 + f2

)2
. (2.2.22)

The results, also shown in Figure 2.2.1, are mixed. For α = 0.05, the values of
nwh for negative and positive ε lie between the corresponding values for ne, with n1
lying nicely in between. Hence for α = 0.05 improvement indeed resulted. But for
α = 0.10, the value we are primarily interested in, namely the maximum of the two,
is generally overestimated by nwh, with a larger error than the error of n1, which
underestimates ne. However, more important to us is the fact that the expressions
for nwh are much more complicated than the one for n1. Hence, in view of the much
greater simplicity of (2.2.19), refinements are not advised.

2.3 The two-sample case

We return to the main case, which is the two-sample situation. Consider two in-
dependent samples: X1, . . . , Xm are i.i.d. r.v.’s from a N(µ1, σ

2
1)-distribution and

Y1, . . . , Yn are i.i.d. r.v.’s from a N(µ2, σ
2
2)-distribution. The question here is whether

in testing the equality of means, we may trust the assumption that the variances are
equal. To test this assumption, i.e. to test H̄0 : σ1 = σ2 against H̄1 : σ1 6= σ2, we
apply a two-sided F -test at level δ, based on the ratio S2

1/S2
2 of sample variances.

This test rejects H̄0 when

S2
1

S2
2

< Fm−1,n−1,1−δ/2 or > Fm−1,n−1,δ/2, (2.3.1)

with Fm,n,γ denoting the upper γ-point of the F -distribution with m and n df in
numerator and denominator, respectively.
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If no rejection is necessary, we dare to use the ordinary two-sample t-test, which
assumes equality of variances. Then we reject H0 : µ1 = µ2 in favor of H1 : µ1 > µ2
if

(X̄ − Ȳ )
S

(
1
m

+
1
n

)−1/2

> tN−2,α, (2.3.2)

where N = m + n, X̄ and Ȳ are the sample means, S2 =
{
(m− 1)S2

1 + (n− 1)S2
2
}

/(N − 2) is the pooled variance estimator, and tN−2,α is the upper α-point of the
t-distribution with (N − 2) df.

If the preliminary F -test rejects H̄0, then one can use a modification of the two-
sample t-test to test the equality of means, for example the one proposed by Welch
(1937) and Satterthwaite (1946). Then H0 is rejected when

(X̄ − Ȳ )
(

S2
1

m
+

S2
2

n

)−1/2

> tν,α, (2.3.3)

with ν given by

ν =
(

S2
1

m
+

S2
2

n

)2/(
S4

1

m2(m− 1)
+

S4
2

n2(n− 1)

)
. (2.3.4)

Some straightforward modification suffices to apply the approach from the previous
section. Denote r = σ2

1/σ2
2, let α̃ now be the actual size of the two-sample t-test

instead of the Gauss test and let π(N, r) refer to the power of the F -test instead
of the χ2-test. Then we can start looking again for approximations for the total
sample size N required to detect harmful deviations from the equality-of-variances
assumption with high probability.

First determine for which variance ratios the size of the two-sample t-test is un-
satisfactory. Using the independence between (X̄, Ȳ ) and (S2

1 , S2
2), we obtain that

α̃ = 1−EΦ

(
tN−2,α

{
S2
(

1
m

+
1
n

)/(
σ2

1

m
+

σ2
2

n

)}1/2
)

, (2.3.5)

which is indeed more complicated than its one-sample counterpart 1 − Φ(uα/r1/2).
Fortunately, (2.3.5) can be simplified by expanding S2 around its expected value and
by using that tN−2,α = uα + O(N−1). Combined this leads to

α̃ = 1− Φ

(
uα

{
(1− λ)r + λ

(1− λ) + λr

}1/2
)

+ O(N−1), (2.3.6)

where λ = n/N . Moreover, the correspondence between the one- and the two-sample
case becomes visible: the choice λ = 1 reproduces 1 − Φ(uα/r1/2) in (2.3.6), while
it transforms (2.3.2) into m1/2X̄/σ2 > uα, which parallels (2.2.2). Note that this
approximation does not depend on the sample sizes anymore, and that we got rid
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of the expectation. This simplifies the problem in such a way that from now on, we
can proceed in the same way as in the one-sample case. Hence, we may separate the
two problems of, firstly, finding variance ratios r for which the size of the ordinary t-
test behaves unsatisfactorily, and secondly, by substitution of the just tolerable value
re according to (2.2.5) into π(N, r), finding the minimum sample sizes N needed to
achieve sufficiently large power in the sense of (2.2.9). As regards the error term
in (2.3.6), note that it is of a smaller order than α̃ − α = O(|r − 1|) = O(N−1/2)
(cf. (2.2.10) and (2.2.17)). Indeed, a numerical check confirms that the error due to
ignoring this O(N−1)-term is negligible for the present purpose.

Solving for re from h(re) = ε while using this simplification and thus ignoring the
O(N−1)-term in (2.3.6), leads through the equation α̃ = α(1 + ε) to

1− Φ

(
uα

{
(1− λ)re + λ

(1− λ) + λre

}1/2
)

= 1− Φ(uα(1+ε)), (2.3.7)

and thus to

(1− λ)(re − 1) + 1
1 + λ(re − 1)

= B, (2.3.8)

where B = u2
α(1+ε)/u2

α. Hence

re − 1 =
(B − 1)

(1− 2λ)− (B − 1)λ
. (2.3.9)

(Note that λ = 1 leads to re = B−1, as in (2.2.6).) In analogy to (2.2.9), let Ne =
Ne(α, δ, ε, π0, λ) be the smallest N such that π(N, re) ≥ π0. Just like re, this Ne will
be identified with the truly exact solution, as the difference is negligible.

Next we turn to the problem of how to derive simple approximations to re, and,
in particular, to Ne. As (B − 1) is small, the right-hand side of (2.3.9) may be
approximated by (B − 1)/(1 − 2λ), unless (1 − 2λ) is small as well. However, it
means no loss at all to exclude this possibility: when λ is close to 1

2 , the level of
the t-test remains close to α. (Note that for λ = 1

2 , i.e. for equal sample sizes, the
test statistics of the t-test and of the Satterthwaite test, which has approximately
the correct level, coincide.) The problem we are interested in, of large deviations
of level combined with small power will occur only for |1 − 2λ| bounded away from
0. As a second step, we expand (B − 1): as B = u2

α(1+ε)/u2
α, we observe that

α(1 + ε) = 1 − Φ(uαB1/2) = α − 1
2 (B − 1)uαϕ(uα) + O((B − 1)2). Hence (B − 1)

approximately equals −(2εα)/(uαϕ(uα)). Together with the first step, substitution
now gives (cf. (2.2.11))

r1 − 1 =
εα

(λ− 1
2 )uαϕ(uα)

. (2.3.10)

For the power π(N, r) of the preliminary F -test we again begin by applying
the straightforward normal approximation. Let Fm,n be a r.v. which has an F -
distribution with m and n df in numerator and denominator, respectively, then
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Fm,n (and of course also Fm−1,n−1) asymptotically has a N(1, 2(m−1 + n−1))
= N(1, 2{λ(1 − λ)N}−1)-distribution. Hence π(N, r) is approximated by (cf. ap-
proximation (2.2.17) for the power in the one-sample case)

1− Φ

(
uδ/2 −

{
Nλ(1− λ)

2

}1/2

(r − 1)

)
+ Φ

(
−uδ/2 −

{
Nλ(1− λ)

2

}1/2

(r − 1)

)
.

(2.3.11)

Assuming that one of the tails may be neglected, this leads to (cf. (2.2.18))

N ≈ N1(re) =
2(uδ/2 − uπ0)2

λ(1− λ)(re − 1)2 (2.3.12)

as an approximate solution for the total sample size satisfying π(N, re) = π0. Com-
bination of (2.3.10) and (2.3.12) gives as an approximation for Ne (cf. (2.2.19)):

N1 = N1(r1) =
2

λ(1− λ)

{
(λ− 1

2 )(uδ/2 − uπ0)uαϕ(uα)
εα

}2

. (2.3.13)

Just as in the one-sample case, the dependence on the underlying parameters is
made quite clear, as well as the occurrence of large values of Ne. In particular, note
how N1/n1 = (2λ− 1)2/{λ(1−λ)} reflects the influence of the unbalancedness of the
design. Figure 2.3.1, as a counterpart of Figure 2.2.1, depicts N1 as well as Ne. Since
both N1 and Ne are symmetric around λ = 1

2 , it suffices to consider values of λ < 1
2 .

The conclusion is similar: N1 manages to follow the wild behavior of Ne quite well,
as an approximate average of the exact values for positive ε and negative ε.

As concerns possible refinements, we point out that a well-known improvement
consists of replacing Fm,n by log Fm,n. Using that log (F/r) ≈ F − 1− log r, together
with the normal approximation for F−1, it is easily verified that this entails replacing
(r − 1) in (2.3.11) by log r, and thus replacing (2.3.12) by

Nlog(re) =
2(uδ/2 − uπ0)2

λ(1− λ) log2 re
, (2.3.14)

which through combination with the approximate variance ratio r1 from (2.3.10) leads
to an approximation Nlog = Nlog(r1). However, it turns out that the simple N1 out-
performs this Nlog, rather than the other way around. This surprising phenomenon is
easily explained by closer inspection of the errors involved. The inaccuracy of r1 w.r.t.
re is largely compensated by the inaccuracy of N1(re) w.r.t. Ne. Such compensation
is lacking for the more accurate approximation Nlog(re) of Ne. Of course, Nlog(re)
itself, in combination with (2.3.9), also gives an explicit approximation for Ne, and
this one is very accurate as can be seen from Figure 2.3.1. However, it is much less
simple and transparent than N1.
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Figure 2.3.1 Minimal sample sizes for which π(N, re) ≥ π0, with h(re) = ε, for various
π0, ε and levels α and δ of t-test and F -test, respectively, and sample size ratios λ < 1

2 .
Values of Ne and Nlog(re) corresponding to positive and negative ε are denoted in the
same bar, where the value for positive ε is the larger one; N1 is the same for positive
as for negative ε.



Chapter 3

Size and power of the pre-test
procedure for the normal one-
and two-sample problem

3.1 Introduction

In this chapter we further analyze the pre-test procedure for the normal one- and
two-sample problem from Chapter 2. Let us briefly recall the procedure. In the two-
sample case, a preliminary F -test is applied in the first step to check whether the
variances of the two normal samples are equal. If the F -test does not reject, then
in the second step the equality of variances is taken for granted and the simple two-
sample t-test is applied to test the equality of means. If the F -test does reject, then
we use the more complicated Welch-Satterthwaite test. The idea is quite clear: there
is a natural inclination to stick to the standard and efficient t-test as long as possible.
The F -test is supposed to single out deviations from the homogeneity-of-variances
assumption that would lead to unacceptable deviations from the nominal level of the
t-test. In the one-sample case the F -, t- and Welch-Satterthwaite test are replaced
by the χ2-, Gauss and one-sample t-test, respectively.

Although the method described above is mentioned in numerous textbooks on
statistics, almost no attention is paid to the behavior of the pre-test procedure. This
suggests that most writers think that the procedure works well (and their readers
too!). However, there are some questionable aspects about such pre-test procedures.
The preliminary F -test may fail to reject, leading to application of the two-sample t-
test while the essential assumption of equal variances is violated, and hence to serious
deviations in size with respect to the prescribed level. Furthermore, the repeated
use of the same data introduces correlations which influence size and power of the
combined procedure.

Contrary to the implicit optimistic view of textbooks, there are some papers on the

23
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subject that are in sharp contrast with this optimism. Related to the first aspect are
the numerical results of Markowski and Markowski (1990), which show that for sample
sizes occurring in practice, typically the F -test has low power against deviations that
are sufficiently large to cause unacceptable departures from the nominal level of the t-
test. Hence this first look at matters is not exactly reassuring. This phenomenon has
been further analyzed and explained using second-order asymptotics in the previous
chapter.

The preceding results are related indirectly to the problem, since they only look at
the first aspect, the relation between failing of the preliminary test and the resulting
violation of the level of the main test. More direct results, which also incorporate the
second aspect, the correlation between the tests, are also available. Moser, Stevens,
and Watts (1989) have done considerable numerical work considering a variety of
combinations of the parameters involved. They conclude that whenever the t-test is
unreliable with respect to size, the same may hold for the combined procedure, and
therefore they advocate to always use the alternative test. Their numerical results are
very interesting, but do not give much insight in the behavior of actual size and power
as functions of all the parameters involved. Their conclusion is clear (“always apply
the Welch-Satterthwaite test”), but still many practitioners will prefer the simpler
t-test if anyhow possible. To answer questions like “how wrong can it be to follow
the textbooks” and “what is the best level for the preliminary test”, a simple and
transparent formula for the actual size and power of the combined procedure is needed.

In view of the above, it seems worthwhile to obtain insight in a qualitative way
why the combined procedure fails to live up to expectations as indicated by the papers
mentioned above. Moreover, it would also be nice to have quantitative guidelines on
where and to what extent problems will occur.

Instead of doing additional numerical work and trying to get the underlying struc-
ture in an experimental way, we apply asymptotic methods to express the actual size
and power as functions of the parameters involved: the nominal sizes of the prelim-
inary test and the other tests, the total number of observations and the ratio of the
sample sizes of the two samples, the ratio of the variances of the two samples and
(for the power) the distance between the means of the two samples. With so many
parameters it is far from easy (if at all possible) to uncover the structure using only
numerical results.

To begin with, however, we emphasize that first-order asymptotics will be of little
help either. In the Pitman case of nearby alternatives for the preliminary F -test, the
variance ratios tend to one as the sample sizes increase. In that case the standard
t-test asymptotically agrees with the Welch-Satterthwaite test. In particular, its size
will tend to the intended nominal value. Hence, no problem seems to be present.

In this chapter we show that second-order asymptotics suffices to make clear what
happens. An explicit second-order approximation for the size and power of the com-
bined pre-test procedure is derived in Section 3.2. To make the underlying structure
as clear as possible, we first consider the simpler one-sample analogue. This facil-
itates the treatment and understanding of the two-sample case which subsequently
follows. In both cases, the resulting expression shows the dependence on the under-
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lying parameters in a straightforward manner, thus providing the desired qualitative
insight. It also serves quite well for quantitative purposes, to study the magnitude
of the deviations involved. It turns out that the correlation between the tests, which
was not taken into account in the analysis of the previous chapter, partly (but not
sufficiently!) compensates the effect of using the wrong test after an inappropriate
decision (failure to reject) by the preliminary test.

The consequences with respect to the actual size of the pre-test procedure are
discussed in Section 3.3, whereas the effects on the power are the subject of Section 3.4.
In these sections the applicability and the accuracy of the approximations are also
illustrated by solving different quantitative questions. The chapter is concluded with
Section 3.5, where some comments are given about the methods used, as well as about
possible refinements.

3.2 Main results: difference in size and power

3.2.1 The one-sample case

First we consider the one-sample analogue of the two-sample case from Section 3.1.
As it is simpler, the desired insight is obtained rather easily, after which generalization
to the case of main interest follows in a straightforward manner.

Let X1, . . . , Xm be i.i.d. r.v.’s from the N(µ, σ2)-distribution. Under the assump-
tion σ = σ0, we test H0 : µ = µ0 against H1 : µ > µ0 at level α by applying the
Gauss test, which rejects if

m1/2(X̄ − µ0)
σ0

> uα, (3.2.1)

where X̄ is the sample mean and uα = Φ−1(1−α) is the upper α-point of the standard
normal distribution function Φ. Without such an assumption about σ, our alternative
procedure will of course be the one-sample t-test, which rejects if

m1/2(X̄ − µ0)
S

> tm−1,α, (3.2.2)

where S2 is the sample variance and tm−1,α is the upper α-point of the t-distribution
with (m− 1) df. As a preliminary test for H̄0 : σ = σ0, we apply a two-sided χ2-test
at level δ, which rejects if

(m− 1)S2

σ2
0

> χ2
m−1,δ/2 or < χ2

m−1,1−δ/2, (3.2.3)

where χ2
m−1,δ/2 (χ2

m−1,1−δ/2) is the upper (lower) (δ/2)-point of the χ2-distribution
with (m − 1) df. If this preliminary test rejects H̄0, we subsequently use the t-test;
otherwise the Gauss test is applied.

Let Pµ,σ denote that Xi, i = 1, . . . ,m has a N(µ, σ2)-distribution, and denote
the probability that the just described pre-test procedure rejects H0 by π∗. (Of
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course, it is a function of the actual values of the mean and variance. Later we will
explicitly express this dependence as a function of the parameters which define the
Pitman alternatives for µ and σ.) Clearly π∗ is the following sum of two bivariate
probabilities

π∗ = Pµ,σ

(
m1/2(X̄ − µ0)

σ0
> uα, A

)
+ Pµ,σ

(
m1/2(X̄ − µ0)

S
> tm−1,α, Ac

)
,

(3.2.4)

where

A = {χ2
m−1,1−δ/2 <

(m− 1)S2

σ2
0

< χ2
m−1,δ/2} (3.2.5)

is the acceptance region of the χ2-test. To study the behavior of π∗, we relate it to
the probabilities of rejection of the Gauss, the t- and the χ2-test, which we will denote
by π, π̃ and π̄, respectively. In particular, we consider the difference π∗ − π̃ between
the rejection probabilities of the combined procedure and the t-test. Under H0 this is
precisely the deviation of the size of the combined procedure from the required level
α, since the size of the t-test is correct regardless of the actual value of σ, i.e. π̃ equals
α throughout H0 (as opposed to π = α being true for H0 ∩ H̄0 only). The difference
π∗ − π̃, which can of course straightforwardly be obtained by subtracting π̃ from the
expression for π∗ given in (3.2.4), can be rewritten in a more convenient way by

π∗ − π̃ = Pµ,σ

(
m1/2(X̄ − µ0)

σ0
> uα, A

)
− Pµ,σ

(
m1/2(X̄ − µ0)

S
> tm−1,α, A

)
.

(3.2.6)

This will be useful in the proof of the main result, given in the next theorem. In the
theorem we give an asymptotic approximation for the difference π∗ − π̃ as a function
of the actual underlying mean and variance, the sample size m, and the nominal levels
α and δ for the two main tests and for the preliminary test, respectively.

To this end, we consider Pitman alternatives, not only for H0 : µ = µ0, but also
for H̄0 : σ = σ0. To be more precise, we let without loss of generality µ0 = 0 and
σ0 = 1 and we suppose that for m→∞ we have

µ = bm−1/2, σ = 1 + c(2m)−1/2, (3.2.7)

for some constants b and c with b ≥ 0. The normalization for σ is chosen for conve-
nience in the result. Then we obtain, with ϕ = Φ′

Theorem 3.2.1 Under (3.2.7), the difference π∗ − π̃ from (3.2.6) satisfies

π∗(b, c)− π̃(b, c) = (2m)−1/2uαϕ(uα − b)h(c, uδ/2) + O(m−1), (3.2.8)

where

h(x, y) = x{Φ(y − x)− Φ(−y − x)} − {ϕ(y − x)− ϕ(−y − x)}. (3.2.9)
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Proof. To shorten notation, write the acceptance region A (cf. (3.2.5)) as {aL < S <
aU} (hence e.g. aU = {χ2

m−1,δ/2/(m− 1)}1/2). First conditioning on S in (3.2.6) and
taking the expectation with respect to S, it follows that

π∗ − π̃ = E

{
Φ
(

tm−1,αS − b

σ

)
− Φ

(
uα − b

σ

)}
I(aL,aU )(S). (3.2.10)

Now we expand the part in brackets. As tm−1,α = uα + O(m−1), we obtain in view
of (3.2.7), according to which σ = 1 + O(m−1/2)

Φ
(

tm−1,αS − b

σ

)
− Φ

(
uα − b

σ

)
= uαϕ(uα − b)(S − 1) + O(m−1 + (S − 1)2).

(3.2.11)

Combination of (3.2.10) and (3.2.11) leads to

π∗ − π̃ = uαϕ(uα − b)E(S − 1)I(aL,aU)(S) + O(m−1 + E(S − 1)2). (3.2.12)

The factor E(S − 1)I(aL,aU )(S) can be approximated by using the standard normal
approximation to the distribution of S̃ = (S − ES)/

√
var(S). Then we get, with

ãL and ãU the boundaries of the acceptance region written in terms of S̃ (e.g. ãU =
(aU −ES)/

√
var(S))

E(S − 1)I(aL,aU )(S) = E
(
S̃
√

var(S) + ES − 1
)

I(ãL,ãU )(S̃)

= (ES − 1)
{
Φ(ãU)− Φ(ãL) + O(m−1/2)

}
−
√

var(S)
{

ϕ (ãU )− ϕ (ãL) + O(m−1/2)
}

.

(3.2.13)

Remains to evaluate this expression. For evaluation of the moments, we may use
the following expansion

S

σ
=
{
1 +

(S2

σ2 − 1
)}1/2

= 1 +
1
2

(S2

σ2 − 1
)
− 1

8

(S2

σ2 − 1
)2

+ O
(∣∣∣S2

σ2 − 1
∣∣∣3).

Noting that E
(
S2/σ2 − 1

)
= 0, E

(
S2/σ2 − 1

)2
= 2(m − 1)−1 and E

∣∣S2/σ2 − 1
∣∣3

= O(m−3/2) and hence E(S/σ) = 1 − (4m)−1 + O(m−3/2), var(S/σ) = (2m)−1 +
O(m−3/2), we find in view of (3.2.7) that

ES = σ + O(m−1) = 1 + c(2m)−1/2 + O(m−1),√
var(S) = (2m)−1/2 + O(m−1).

(3.2.14)

From the normal approximation of the χ2-percentile points (cf. also (2.2.13)), it is easy
to derive the approximations for aL and aU . For aU we get aU = 1 + uδ/2(2m)−1/2 +
O(m−1), for aL the same expression with uδ/2 replaced by −uδ/2. Hence

ãL = −uδ/2 − c + O(m−1/2) and ãU = uδ/2 − c + O(m−1/2). (3.2.15)
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Finally, combination of (3.2.12) and (3.2.13) with (3.2.14) and (3.2.15) yields the
desired result. 2

3.2.2 The two-sample case

Next we return to the situation of main interest, which is the two-sample case.
Let X1, . . . , Xm and Y1, . . . , Yn be independent r.v.’s, the Xi from N(µ1, σ

2
1), i =

1, . . . ,m and the Yj from N(µ2, σ
2
2), j = 1, . . . , n. A two-sided F -test, based on the

ratio S2
1/S2

2 of sample variances, is applied at level δ to test H̄0 : σ1 = σ2. This test
rejects H̄0 when

S2
1

S2
2

< Fm−1,n−1,1−δ/2 or > Fm−1,n−1,δ/2, (3.2.16)

with Fm−1,n−1,δ/2 (Fm−1,n−1,1−δ/2) denoting the upper (lower) (δ/2)-point of the F -
distribution with (m− 1) and (n− 1) df in numerator and denominator, respectively.
As long as no rejection is needed, we use the standard two-sample t-test, which rejects
H0 : µ1 = µ2 at level α in favor of H1 : µ1 > µ2 if

(X̄ − Ȳ )
S

(
1
m

+
1
n

)−1/2

> tN−2,α, (3.2.17)

where N = m + n, X̄ and Ȳ are the sample means and S2 = {(m − 1)S2
1 +

(n − 1)S2
2}/(N − 2). However, if H̄0 has to be rejected, we resort to the approxi-

mate Welch-Satterthwaite t-test, which rejects if

X̄ − Ȳ

(S2
1/m + S2

2/n)1/2 > tν,α, (3.2.18)

where

ν =
(

S2
1

m
+

S2
2

n

)2/(
S4

1

m2(m− 1)
+

S4
2

n2(n− 1)

)
.

Again π∗ is the power of the combined procedure, which can easily be written
down analogous to expression (3.2.4) for the one-sample case, but now π, π̃ and π̄
stand for the powers of the two-sample t-, the Welch-Satterthwaite and the F -test.
Without loss of generality we let σ2 = 1 and, in analogy to (3.2.7), assume that for
some constants b and c with b ≥ 0

µ1 − µ2 = b(κN)−1/2, σ1 = 1 + c(2κN)−1/2, (3.2.19)

where κ = λ(1− λ), with λ = n/N (and thus (κN)−1/2 = (1/m + 1/n)1/2). Then we
have that
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Theorem 3.2.2 Under (3.2.19), the difference π∗ − π̃ satisfies

π∗(b, c)− π̃(b, c) = (2λ− 1)(2κN)−1/2uαϕ(uα − b)h(c, uδ/2) + O(N−1),
(3.2.20)

with h as in (3.2.9).

Proof. We extend the proof of Theorem 3.2.1. From (3.2.17) and (3.2.18) it follows
that we obtain in analogy to (3.2.10) that π∗ − π̃ equals

E

{
− Φ

(
tN−2,α

[
S2

(σ2
1/m + σ2

2/n)

(
1
m

+
1
n

)]1/2

− b(κN)−1/2

(σ2
1/m + σ2

2/n)1/2

)

+ Φ

(
tν,α

[
S2

1/m + S2
2/n

σ2
1/m + σ2

2/n

]1/2

− b(κN)−1/2

(σ2
1/m + σ2

2/n)1/2

)}
I(aL,aU )

(
S2

1

S2
2

)
,

(3.2.21)

where now aU and aL correspond to the upper and lower (δ/2)-points of the Fm−1,n−1-
distribution (hence e.g. aU = Fm−1,n−1,δ/2). A step similar to (3.2.11), but slightly
more complicated, shows that the leading term of π∗ − π̃ will be contained in

1
2 (2λ− 1)uαϕ(uα − b)E

(
S2

1

S2
2
− 1
)

I(aL,aU)

(
S2

1

S2
2

)
. (3.2.22)

The desired result (3.2.20) then follows by applying (3.2.13) with S replaced by S2
1/S2

2
and by using some straightforward results like

ES2
1/S2

2 = σ2
1/σ2

2(1 + O(N−1)) = 1 + c{2/(κN)}1/2 + O(N−1),

var(S2
1/S2

2) = 2/(κN)(1 + O(N−1/2)),

aU = 1 + uδ/2{2/(κN)}1/2 + O(N−1),

(3.2.23)

which follow from expectation, variance and normal approximation of an F -
distributed variable, respectively. 2

Remark 3.2.1 Comparison of (3.2.19) and (3.2.20) to (3.2.7) and (3.2.8), respec-
tively, shows that the two-sample case is indeed closely related to the more transpar-
ent one-sample case: (κN)−1 = m−1 + n−1 replaces m−1 from the former case, while
the factor (2λ − 1)κ−1/2 in (3.2.20) represents the unbalance of the design. In fact,
the limiting situation n = ∞ exactly coincides with the one-sample case. Note that
the two-sample t-test corresponds to the Gauss test in the one-sample case, rather
than to the one-sample t-test.
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Remark 3.2.2 Up to now we have restricted attention to the one-sided test of the
main null hypothesis H0. It is easily verified that for the two-sided version of the test,
results similar to (3.2.8) and (3.2.20) will hold. To be precise, it suffices to put in a
factor 2 (to account for both tails) and to replace α by α/2. (Hence the expression
for the relative error (π∗(0, c)− α)/α of the size in the two-sided case is the same as
in the one-sided case with therein α replaced by α/2.)

Remark 3.2.3 We should bear in mind that the approximation (3.2.8) or (3.2.20)
is no goal in itself, but only serves to provide answers about questions concerning
when and to what extent deviations can occur. Hence we shall postpone details
about numerical accuracy mainly to the next section. Here we merely remark that
the approximations seem sufficiently adequate for our purposes. For example, (3.2.8)
leads for m = 25 and α = 0.05 to relative errors in the size of about 3% to 4%.
Moreover, the magnitude of the error indeed behaves like order m−1, as suggested by
(3.2.8).

3.3 Consequences for the actual size

In this section we consider the null hypothesis case, where b from (3.2.7) and (3.2.19)
equals zero and π∗ − π̃ from (3.2.8) and (3.2.20) thus reduces (up to the order given)
to π∗(0, c) − α, the departure from the nominal level. We begin by noting that
the expressions in (3.2.8) and (3.2.20) nicely separate the effects of the parameters
involved. Clearly, the error π∗(0, c)− α decreases at rate m−1/2 or (κN)−1/2 as the
sample sizes increase. It also tends to 0 for α ↓ 0, but uαϕ(uα)/α behaves like u2

α in
this case, and thus the relative error increases. For the two-sample case, the factor
(2λ− 1)κ−1/2 in (3.2.20) represents the unbalancedness of the design. In particular,
it follows that for m = n the error is 0 to second order as well. This is in agreement
with the conclusion from Markowski and Markowski (1990) and Moser, Stevens, and
Watts (1989), according to which the problem vanishes for (nearly) equal sample sizes.
Moreover, (2λ− 1)κ−1/2 = 2(λ− 1

2 ){ 1
4 − (λ− 1

2 )2}−1/2 and hence, the farther away
λ is from 1

2 , the larger this factor is.
After these simple relations for m, n, and α, it remains to study the dependence on

δ and c, which is contained in h(c, uδ/2) from (3.2.8). As our starting point we shall use
the following link to the preliminary approach by Markowski and Markowski (1990),
which was further analyzed in Chapter 2. If the dependence between the preliminary
test and the subsequent tests is ignored, the right-hand side of (3.2.6) reduces to
(π− π̃)(1− π̄), which in the present situation equals (π(0, c)−α)(1− π̄(0, c)). Hence
this indeed suggests that control of the error π∗(0, c)−α requires that either the error
π(0, c)−α in the size of the Gauss test or two-sample t-test, respectively, is small, or
that the power π̄ is large for c 6= 0.

The connection to the present approach now simply is the following: write h =
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h1 + h2, in which

h1(x, y) = x{Φ(y − x)− Φ(−y − x)},

h2(x, y) = ϕ(y + x)− ϕ(y − x),
(3.3.1)

then (π − π̃)(1 − π̄) is nothing but the expression in either (3.2.8) or (3.2.20) if we
replace h by h1. Hence the thus ignored contribution by h2 represents the correction
required by the dependence between the test statistics. The behavior of h and the
role of h1 and h2 can be analyzed as follows. Note that h1(c, uδ/2) and h2(c, uδ/2) are
odd in c, so it suffices to consider c ≥ 0. For all c ≥ 0 and uδ/2 ≥ 0, we have h1 ≥ 0
and h2 ≤ 0. Since h(c, 0) = h1(c, 0) = h2(c, 0) = 0 for all c, and h = h1 + h2 increases
in uδ/2 for c ≥ 0, the sum h ≥ 0 for all uδ/2 ≥ 0 and c ≥ 0. Hence, 0 ≤ h ≤ h1.
Moreover, since h(0, uδ/2) = 0 and limc→∞ h(c, uδ/2) = 0 while h(c, uδ/2) ≥ 0 for all
uδ/2 and c ≥ 0, the function h has a maximum for some c ≥ 0. This also applies to
h1.

The statistical implications of these properties are illustrated in Figure 3.3.1. If the
Gauss test or two-sample t-test, respectively, is directly applied without preliminary
test (δ = 0), then we have h(c, uδ/2) = c which would lead to dramatic deviations
of the size, since then the deviation grows linearly in c. Application of the pre-test
procedure (δ > 0) improves matters. Then the violation of the level is smaller than
that of the Gauss or two-sample t-test, for two reasons. The first reason for this is
that the factor (1 − π̄) starts to play a role. Instead of the linear function c, we
now get the function h1, in which c is multiplied by the acceptance probability of the
preliminary test (1− π̄) which is smaller than 1. Contrary to the linear function c, the
function h1 reaches a maximum for some c ≥ 0, and then decreases, reflecting that at
some point the power of the preliminary test becomes large enough to detect harmful
deviations from the assumptions about the variance(s). Secondly, the effect of the
dependence between the tests (which was not taken into account previously) leads to
a further reduction of the error through replacement of h1 by h. In Figure 3.3.1 the
functions are sketched for δ = 0.05.

Apart from the qualitative properties, derived in the foregoing from (3.2.8) or
(3.2.20), also many quantitative questions can be answered from these results. We
mention a few typical questions of increasing complexity and present also some nu-
merical results to illustrate the accuracy of the approximations. Note that π̃(0, c) =
α + O(N−1).

Question 1. What is the error of the size if the nominal level α = 0.05, m = 20,
n = 40, σ1 = 1.3, σ2 = 1 and δ = 0.05?

We get λ = 2
3 , κ = 2

9 , N = 60, uα = 1.645, c = 1.55 and uδ/2 = 1.96. Insert-
ing this in (3.2.20) yields π∗(0, 1.55) ≈ 0.0572. The numerical value of π∗(0, 1.55)
equals 0.0582. Replacing α = 0.05 by α = 0.01 we get π∗(0, 1.55) ≈ 0.0126 with
corresponding numerical value 0.0137.
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Figure 3.3.1 Functions c, h1 and h as a function of c for δ = 0.05.

Question 2. How large do we have to take N in order that the absolute error of
the size is at most 0.01 for all λ with 0.2 ≤ λ ≤ 0.8, when c = 1.55, α = 0.05 and
δ = 0.05?

The approximation of the absolute error, using the right-hand side of (3.2.20), is
an increasing function of |λ − 1

2 |. Hence, we should consider λ = 0.2 or 0.8. We
get |π∗(0, 1.55) − α| ≈ 0.1179 N−1/2, implying N = 139. The numerical value for
m = 28, n = 111 of π∗(0, 1.55) is 0.0612, while for m = 111 and n = 28 we get 0.0407
numerically.

Question 3. How large do we have to take δ in order that the (absolute) error of
the size is at most 0.005 for α = 0.05, m = 20, n = 40, σ1 = 1.3 and σ2 = 1?

Instead of δ being prescribed (cf. Question 1), we now know the maximum de-
viation from the size which is allowed, and have to choose δ. Substituting λ = 2

3 ,
κ = 2

9 , N = 60, uα = 1.645 and c = 1.55 in (3.2.20), it follows that we have to
solve 0.01095 h(1.55, uδ/2) ≤ 0.005. This can be done numerically, but also some
further approximations can be applied. Firstly, we may ignore Φ(−uδ/2 − 1.55) and
ϕ(−uδ/2 − 1.55) (from the lower tail of the acceptance probability of the preliminary
test), since they will be very small. Secondly, for uδ/2 not too far from 1.55 we may
replace Φ(uδ/2 − c) by its first-order Taylor expansion Φ(0) + (uδ/2 − c)ϕ(0) and also
ϕ(uδ/2 − c) by ϕ(0). Hence, we solve 0.01095[1.55{ 1

2 + (uδ/2 − 1.55)ϕ(0)} − ϕ(0)] ≤
0.005, which is linear in uδ/2, yielding uδ/2 ≤ 1.68. The numerical value of π∗(0, 1.55)
for m = 20, n = 40, σ1 = 1.3, σ2 = 1, α = 0.05 and δ = 0.093 (corresponding to
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uδ/2 = 1.68) is 0.0561.

Question 4. What is the maximal error of the size if α = 0.05, m = 20, n = 40 and
δ = 0.05? (cf. Question 1).

Now we have to deal with maxc h(c, 1.96). The maximum equals 0.6581 and the
maximum is attained at c = 1.4583, cf. also Figure 3.3.1. Therefore the error, maxi-
mized over c, equals 0.0072 according to (3.2.20). The numerical value of π∗(0, c)−α at
c = 1.4583 is 0.0081. Replacing δ = 0.05 by δ = 0.25 we get maxc h(c, 1.15) = 0.1922,
which is attained at c = 1.1431. The resulting error, according to (3.2.20), equals
0.0021. The numerical value of π∗(0, c)− α at c = 1.1431 is 0.0027.

Question 5. What is the best level for the preliminary test if |(π∗(0, c) − α)/α|
should not exceed some given ε > 0 (e.g. 0.20 leading to an actual size of either 2%
or 3% for a nominal level α = 0.025) for all c?

Let c∗ = c∗(uδ/2) be the c that maximizes h(c, uδ/2) for given δ and h∗(uδ/2) =
h(c∗, uδ/2) the maximum value. Note that, as h itself decreases in δ, so does h∗. By
(3.2.20), δ should be sufficiently large to ensure that

h∗(uδ/2) ≤
ε(2κN)1/2α

|2λ− 1|uαϕ(uα)
. (3.3.2)

To evaluate h∗(uδ/2) we may use the following further approximation, cf. also Ques-
tion 3. For uδ/2 ≥ 1 we have c∗ ≥ 1.1 (which can be checked empirically) and
hence we ignore cΦ(−uδ/2 − c) and ϕ(−uδ/2 − c). Then c∗ = uδ/2 − g(1/uδ/2) with
g = (ϕ/Φ)−1 and h∗(uδ/2) = {uδ/2[uδ/2 − g(1/uδ/2)] − 1}ϕ(g(1/uδ/2)). It turns
out that for 1 ≤ uδ/2 ≤ 2.5 a good linear approximation is obtained by taking
g(x) = 3

2 (1 − 5
4x) and h∗(x) = 3

5x − 1
2 . Taking m = 20, n = 80, α = 0.025 and

ε = 0.2, (3.3.2) reads as 3
5uδ/2− 1

2 ≤ 0.4115, yielding δ ≥ 0.129. The numerical value
of π∗(0, c) at c = uδ/2 − 3

2 (1− 5/(4uδ/2)) = 1.2534 equals 0.0315.

It is seen from these examples that pretty good and very useful answers can be
achieved for many questions in an easy way using Theorem 3.2.2. In a similar way
Theorem 3.2.1 can be applied.

3.4 Consequences for the actual power

Here we can be quite brief, by virtue of the simplicity of the situation. From (3.2.20)
it follows that for all c

π∗(b, c)− π̃(b, c)
π∗(0, c)− α

=
ϕ(uα − b)

ϕ(uα)
+ O(N−1/2). (3.4.1)

Hence to first order the power difference is nothing but the size difference, inflated by
a factor ϕ(uα − b)/ϕ(uα). Clearly, this factor is always positive. It will typically be
larger than 1, and it will reach its maximal value for b = uα, e.g. 3.9 if α = 0.05.
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As expected, a gain in power is thus achieved by exceeding the nominal level under
the null hypothesis. Likewise, if the procedure happens to be conservative, then a
loss of power is sustained. However, it is not known beforehand which of the two will
be the case.

This pattern is of a general nature. For example, take the simpler situation of
a single test statistic which has a distribution that converges to a normal one with
expectation b and variance 1. For comparison one may think of the one-sample t-test
in the one-sample case. Then we can also gain power by allowing a larger size, (which
would be fair in the comparison with the pre-test procedure if we do allow it there),
since a larger size will automatically lead to a larger power. Suppose we tolerate a
size of α(1 + ε) instead of α, with ε = O(N−1/2). Then relation (3.4.1) also applies.
However, the difference is that then the size will always be as large as α(1 + ε) (and
the power difference will be in correspondence with this according to (3.4.1)), while
in the pre-test procedure the actual size will typically be somewhere between α and
α(1 + ε). In our application we can choose δ according to (3.3.2) to ensure that
α(1 + ε) will be the worst possible case, attained for c∗.

To conclude this section, we answer a typical question (cf. the approach in Sec-
tion 3.3).

Question 6. What is the power difference π∗(b, c) − π̃(b, c) if the nominal level
α = 0.05, m = 80, n = 20, c = −1, b = 1 and δ = 0.05?

We get λ = 0.2, κ = 0.16, N = 100, uα = 1.645, σ1 = 0.823 and uδ/2 = 1.96.
Inserting this in (3.2.20) yields π∗(1,−1) − π̃(1,−1) ≈ 0.0330. The numerical value
of π∗(1,−1)− π̃(1,−1) = 0.0384.

3.5 Discussion of the methods used

In Section 3.2 we presented the main results, followed by the implications for size
(Section 3.3) and power (Section 3.4). Here we conclude this chapter with some
comments on the methods used and a few possible refinements.

From the fact that the expression on the right-hand side of (3.2.8) is of order
m−1/2, it is evident that first-order asymptotics fails. Note that using (3.2.6) provides
a considerable shortcut compared to using (3.2.4) together with separate second-order
approximations for π, π̃ and π̄. By taking the difference as in (3.2.6) the first-order
terms, which are the same for π and π̃, immediately cancel. For 1− π̄ the first-order
result Φ(uδ/2 − c) − Φ(−uδ/2 − c) suffices. Being multiplied with the expression for
the difference between the main tests, this still leads to a second-order approximation
for the whole procedure. By taking δ = 0 it follows that the leading term of π − π̃
equals the expression in (3.2.8), with h(c, uδ/2) replaced by c. Hence the part of
(3.2.8) corresponding to the first of the two terms of h, stands for (π− π̃)(1− π̄). This
we encountered in Section 3.3 as an approximation to (3.2.6), obtained by ignoring
the dependence between the t-test and the χ2-test. Obviously, this defect has been
repaired in (3.2.8) by taking the second term of h into account. This interaction term
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vanishes for both δ = 0 (i.e. when π̄ = 0 and thus π∗ = π) and δ = 1 (π̄ = 1 and
π∗ = π̃).

Although the expression in (3.2.8) is asymptotically negligible from the point of
view of first-order asymptotics, it is typically of a larger order of magnitude than
the ordinary difference π − π̃ when no heterogeneity of variances occurs. Indeed, for
δ = 0 and c = 0, we get π − π̃ = O(m−1) from (3.2.8). In fact, the deficiency of the
t-test with respect to the Gauss test is known to equal 1

2u2
α (cf. Hodges and Lehmann

(1970)). This effect, be it rather small, is visible in practice. In this light, it becomes
understandable that the present effects, which are of order m−1/2 rather than of order
m−1, do cause problems for sample sizes occurring in practice.

Without problem the term of order m−1 can be obtained in (3.2.8) by applying the
Edgeworth expansion for the distribution function of S and expanding one step further
in (3.2.11)-(3.2.13). However, the resulting expression, being a linear combination of
Φ(k)(±uδ/2− c), k = 0, 1, . . . , 4, is much more complicated than (3.2.8) and hence we
refrain from giving it here, as our aim is to provide a simple description. A similar
comment applies to attempts to use a better approximation to the χ2-distribution,
such as the one due to Wilson and Hilferty (see Johnson and Kotz (1970), p. 176).
They suggest to treat

V =

{(
S

σ

)2/3

−
(

1− 2
9(n− 1)

)}√
9(n− 1)

2

as a standard normal r.v. (cf. also (2.2.14)). Unfortunately, this leads through (3.2.11)
and (3.2.12) to dealing with a truncated moment of

S

σ
=

{
1 +

√
2

9(n− 1)
V − 2

9(n− 1)

}3/2

.

If we approximate this in turn by 1 + {2(n− 1)}−1/2V , we end up with (3.2.8) again.
As concerns bounds, note the following. If we do not approximate tm−1,α and σ

as we did in (3.2.11), then we can approximate (3.2.10) by

ϕ

(
uα − b

σ

)
E

{
tm−1,α

S

σ
− uα

σ

}
I(aL,aU)(S). (3.5.1)

instead of (3.2.12). Since for x and y both nonnegative (nonpositive), Φ(y)−Φ(x)−
(y−x)ϕ(x) is nonpositive (nonnegative), this approximation serves in such situations
as a bound for the power gain (or size difference) π∗ − π̃. For example, under H0
we have b = 0 and (3.5.1) is an upper bound for π∗(0) − α. If b is sufficiently large
then (tm−1,α S − b)/σ is nonpositive except for an exponentially small probability
and (3.5.1) can be used to obtain a lower bound for π∗ − π̃. Note that for evaluation
of (3.5.1) both EI(aL,aU)(S) = 1 − π̄ and E(S/σ)I(aL,aU )(S) can be found from χ2-
or gamma-tables.
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Chapter 4

Size and power of pre-test
procedures for parametric
models

4.1 Introduction

The analysis in Chapters 2 and 3 of the pre-test procedure for the normal one- and
two-sample problem gave us considerable insight in its behavior and in the dependence
of size and power on the several variables involved (sample sizes, nominal levels and
real underlying means and variances). However, more general insight in the behavior
of pre-test procedures for other situations is still lacking. In this chapter we extend
our knowledge to pre-test procedures for general parametric densities.

Suppose we have a density with two parameters, θ and τ , say. The main testing
problem concerns a testing problem on θ, while τ is a nuisance parameter. The pre-
test procedure consists of a preliminary test on τ , to test whether it equals a given
value or not, followed by a suitable test in the restricted family with the given value
of τ in case the preliminary test does not reject, while otherwise the test on θ is
performed in the complete family including the nuisance parameter. For each of the
three testing problems in the given models, we define an appropriate class of tests,
containing all standard first-order optimal tests for the problem under consideration.

The idea of the procedure just described is of course that people prefer the test in
the restricted model as long as possible, either because of the convenience of greater
simplicity of the test in the smaller model, or because of a possibly higher power of
the test for the restricted model compared to the alternative test, due to “knowing
the value of the nuisance parameter”. It is the aim in this chapter to find an at-
tractive expression that reveals the differences in size and power between the pre-test
procedure and the one-stage test in the complete family.

Concerning the methods we use to arrive at meaningful and transparent results,

37
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a few things can be noticed in advance. In the special case of normal distributions,
which gives back precisely the one-sample problem of the previous chapter, the χ2-test
and the Gauss or one-sample t-test are asymptotically independent (to first order).
In general, independence between the preliminary test and the main tests does not
necessarily hold. However, if the preliminary test is already almost a test for the
main problem, a two-step procedure is not very appealing: the two steps should not
be mixed up too much. And more than that, if the correlations between the test
statistic applied for the preliminary test and those for the main tests are not small,
then the size of the pre-test procedure varies wildly and unacceptable violations of the
prescribed level cannot be avoided. This conclusion follows already from first-order
asymptotics and is presented in Section 4.2. Hence, pre-test procedures are only of
interest if the correlations between the preliminary test and the main tests are small.

Furthermore, if the correlation parameter is small, first-order asymptotics with
respect to the sample size is of little help anymore, as will be explained in Section 4.2.
Note that this was also the case in the special situation of normal distributions consid-
ered in Chapter 3. There the correlation parameter equals zero. Fortunately, second-
order asymptotics makes clear what is going on. However, second-order asymptotic
analysis with respect to the sample size for a fixed value of the correlation parameter,
is rather hopeless and will not lead to useful expressions. This problem is tackled by
applying asymptotics not only with respect to the sample size, but also with respect
to the correlation parameter. The more complicated second-order analysis is made
more transparent by taking into account that the two main tests are tests for essen-
tially the same testing problem (although in different models) and therefore have some
common part. The remaining difference is small, partly due to considering a small
correlation parameter, which is no restriction, as pointed out. This makes it possible
to reduce the rather large number of terms in the second-order asymptotic expansions
substantially. This argument is worked out in the first lemma in Section 4.2 and may
be of independent interest.

In the same section notations and conditions are gathered, and the classes of tests
for each of the three testing problems are defined. Also a technical lemma is presented,
due to Götze (1987) on Edgeworth expansions for bivariate U -statistics when dealing
with probability measures depending on the number of observations. The use of
second-order asymptotics implies that we have to deal with U -statistics, rather than
with sums of i.i.d. r.v.’s. The evaluation of the power under local alternatives induces
the dependence on the sample size for the involved probability measures.

Section 4.3 contains the main results formulated in two theorems which are proved
using the lemmas of Section 4.2. The (bivariate) Edgeworth expansions of the test
statistics are presented, followed by a transparent expression for the difference in size
and power between the pre-test procedure and the one-stage test in the complete
family. This expression gives much insight in a qualitative and quantitative sense.

It turns out that for all members of the class of test statistics the same expression
holds, except for one quantity coming from the main test in the simpler model. In
particular, it means that (up to the considered order) there is no difference between
applying e.g. the locally most powerful test with the restricted or unrestricted max-
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imum likelihood estimator of the nuisance parameter inserted, the likelihood ratio
test, Rao’s efficient score test or Wald’s test in the preliminary test on τ or in the
testing problem on θ in the complete family.

The implications of the main results are discussed in Section 4.4. It starts with
a general discussion on the consequences for the actual size and power. It is noted
that the family of distributions and the class of tests are involved through only four
parameters. Regarding the hope for power gain, it turns out that it is in most cases
not realistic, since the power change is often mainly nothing else but a factor times
the size change. This implies that a higher power is almost only obtained if the size
exceeds the nominal level. Moreover, a higher power at some value of the nuisance
parameter goes hand in hand with a lower power at another value of the nuisance
parameter, while the true value is unknown!

After the general discussion, two important classes of distributions are consid-
ered: two-parameter exponential families and symmetric location-scale families. In a
general symmetric location-scale family the approximation for the deviation from the
nominal level of the pre-test procedure is very simple: it is the same as that for the
normal case, except for a multiplicative constant. For several examples from these two
classes of distributions, the accuracy of our approximations is seen from comparison
with some numerical results.

4.2 Notation, assumptions and preliminaries

Let θ ∈ R, τ ∈ R, and let X1, . . . , Xn be i.i.d. r.v.’s with density f(x; θ, τ) with
respect to some measure µ on the measurable space (X ,A). Our main testing problem
concerns testing H0 : θ = θ0 against H1 : θ > θ0. If the nuisance parameter τ would
be known and be equal to τ0, say, we would test θ = θ0 in the family f(x; θ, τ0).
If we are not sure that τ = τ0, then we use a pre-test procedure and proceed with
the following two steps. First, we perform a preliminary test of H̄0 : τ = τ0 against
H̄1 : τ 6= τ0. Secondly, if H̄0 is not rejected, then we test H0 in the family f(x; θ, τ0);
otherwise, we test H0 against H1 in the family f(x; θ, τ).

To define the tests of the separate testing problems we give some notation and
state some regularity conditions. Without loss of generality let θ0 = 0 and τ0 = 0.
As usual (θ, τ) will denote the true value of the parameter as well as a variable in R2.
Its meaning is clear from the context.

The regularity conditions should hold on an open subset Ω0 of the parameter
space Ω ⊂ R2, containing (0, 0). Since we only deal with local alternatives, attention
is restricted to Ω0. The regularity conditions are of the same type as those used in
classical large sample theory, see e.g. Lehmann and Casella (1998), p. 462.

(Ri) The set A = {x ∈ X : f(x; θ, τ) > 0} is independent of (θ, τ), i.e. the
distributions Pθ,τ of Xi have common support.

(Rii) For every x ∈ A, (∂i+j/∂θi∂τ j)f(x; θ, τ) exists for i, j = 0, 1, 2, 3, (i, j) 6=
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(0, 0), and we write

ψ∗ij(x; θ, τ) =
(∂i+j/∂θi∂τ j)f(x; θ, τ)

f(x; θ, τ)
.

(Riii) For i, j = 0, 1, 2, 3, (i, j) 6= (0, 0), there exist functions Hij such that

sup
(θ,τ)∈Ω0

∣∣∣∣∣ ∂i+j

∂θi∂τ j
f(x; θ, τ)

∣∣∣∣∣ ≤ Hij(x)

with ∫
A

Hij(x)dµ(x) <∞.

(Riv) The Fisher information matrix under (θ, τ) = (0, 0)

I =

(
I11 I12

I21 I22

)
=

(
E(ψ∗10)

2 Eψ∗10ψ
∗
01

Eψ∗10ψ
∗
01 E(ψ∗01)2

)
is finite and positive definite.

In order to simplify notation, we write ψ∗ij or ψ∗ij(X) for ψ∗ij(X ; 0, 0). Expectations
under the model f(x; θ, τ) are denoted by Eθ,τ , but are abbreviated to E under
(θ, τ) = (0, 0). Furthermore, let

ψij(x; θ, τ) = ψ∗ij(x; θ, τ)I−i/211 I
−j/2
22 .

By application of the dominated convergence theorem it follows from (Rii) and (Riii)
that

Eθ,τψij(X ; θ, τ) = 0 for i, j = 0, 1, 2, 3, (i, j) 6= (0, 0). (4.2.1)

This will be used many times with (θ, τ) = (0, 0). The correlation coefficient of
ψ10(Xi) and ψ01(Xi) under (θ, τ) = (0, 0) is given by

ρ = I12(I11I22)−1/2. (4.2.2)

Define the so-called score functions under (0, 0)

S = n−1/2
n∑
i=1

ψ10(Xi) and T = n−1/2
n∑
i=1

ψ01(Xi). (4.2.3)

The statistic S corresponds to the locally most powerful (LMP) test for testing
θ = 0 in the family f(x; θ, 0). Other candidates for testing H0 are e.g. the likelihood
ratio (LR) test, the test based on the maximum likelihood estimator (MLE) and
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Wald’s test. These are first-order optimal tests, all having the same leading term,
and can (up to order n−1/2) be written in the form

SK = S + n−1/2S

{
n−1/2

n∑
i=1

k(Xi)

}
(4.2.4)

with Ek = 0. Therefore, we use this class of test statistics for testing H0 : θ = 0
against H1 : θ > 0, rejecting for large values of SK. (Here “K” refers to the known
value of τ .) In particular, we have for the tests mentioned

LMP : k = 0

LR : k = 1
2

{
ψ20 − (ψ2

10 − 1)
}

+ (1
3Eψ3

10 − 1
2Eψ10ψ20)ψ10

MLE : k = ψ20 − (ψ2
10 − 1) + (Eψ3

10 − 3
2Eψ10ψ20)ψ10

Wald : k = ψ20 − (ψ2
10 − 1) + 1

2 (Eψ3
10 −Eψ10ψ20)ψ10.

(4.2.5)

Note that Rao’s efficient score test coincides with the LMP test. In (4.2.5) the expec-
tations Eψ3

10 and Eψ10ψ20 appear. Their existence will be amply guaranteed by the
additional regularity conditions (Rv) and (Rvi), respectively, which will be needed at
the end of this section. This remark will also apply to the expectations occurring in
the second main test and the preliminary test.

These tests are more familiar in case of two-sided alternatives. The one-sided forms
as needed here are e.g. presented as directed versions in Barndorff-Nielsen and Cox
(1994), p. 82. A brief justification for LR is as follows. (We use “ .=” for approximately
equal up to order n−1/2.) Here we deal with testing in the family f(x; θ, 0) and we
write θ̂0 for the corresponding MLE of θ. The likelihood equations yield

0 = n−1/2
n∑
i=1

ψ10(Xi; θ̂0, 0) .= S − n1/2θ̂0I
1/2
11

+ n−1/2

[
n1/2θ̂0I

1/2
11

{
n−1/2

n∑
i=1

z(Xi)

}
+ anθ̂2

0I11

]
,

(4.2.6)

where z = ψ20 − (ψ2
10 − 1) and a = Eψ3

10 − 3
2Eψ10ψ20. The directed LR test statistic

is given by

sgn(θ̂0)
√

2{l(θ̂0)− l(0)} with l(θ) =
n∑
i=1

log f(xi; θ, 0).

By Taylor expansion we get

l(θ̂0)− l(0) .= θ̂0n
1/2I

1/2
11 S + 1

2 θ̂2
0I11

{
n∑
i=1

z(Xi)− n

}
+ 1

6nθ̂3
02aI

3/2
11 . (4.2.7)
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In view of (4.2.6) we obtain

n1/2θ̂0I
1/2
11

.= S + n−1/2S

{
n−1/2

n∑
i=1

z(Xi) + aS

}
, (4.2.8)

which by the way gives (4.2.4) and (4.2.5) for the MLE. Inserting (4.2.8) in (4.2.7)
gives

l(θ̂0)− l(0) = 1
2S2

{
1 + n−1/2

[
n−1/2

n∑
i=1

z(Xi) + 2
3aS

]}

and (4.2.4) and (4.2.5) for the LR statistic now easily follow.
It is easily seen that under f(x; 0, cI

−1/2
22 n−1/2) the test statistic SK converges in

distribution to a normal r.v. with expectation cρ and variance 1. Therefore, if ρ is not
small, the actual size of SK under f(x; 0, cI

−1/2
22 n−1/2) with c 6= 0 differs drastically

from the prescribed level. So, even small departures for τ from 0 lead to unacceptable
deviations in size.

The statistics of the preliminary test, defined later on, to first order equal
[T − ρS](1 − ρ2)−1/2 and converge in distribution to a normal r.v. with expecta-
tion c

√
1− ρ2 and variance 1 under f(x; 0, cI

−1/2
22 n−1/2). Since c

√
1− ρ2 is of the

same order as cρ, the preliminary tests do not have sufficient power to protect against
using the test based on SK under these deviations. Consequently, the pre-test proce-
dure will have the same disorder in size, unless ρ is small. Hence, for ρ not small the
situation is clear: the pre-test procedure is unacceptable. For a practical application
see Example 4.4.2.

As a consequence it is only of interest to consider small ρ, as will be assumed
from now on. This implies that the preliminary tests, (mainly) based on ψ01 − ρψ10,
and the main tests, (essentially) based on ψ10 and ψ10 − ρψ01, are at most weakly
dependent and have, so to say, different aims.

With respect to n, first-order asymptotics is not sufficient. This is clearly seen in
the special case that ρ = 0. The test statistics for testing θ = 0 when τ is unknown,
are in first order equal to [S − ρT ](1 − ρ2)−1/2 (cf. also (4.2.9) below). And hence,
for ρ = 0 they equal SK to first order. This corresponds to the notion of adaptation,
which implies that we can do as well not knowing the nuisance parameter as knowing
it, and which is possible when ρ = 0, see Bickel, Klaassen, Ritov, and Wellner (1993),
Sec. 2.4. This would imply that, based on first-order asymptotics, for ρ = 0 there
is no problem with the pre-test procedure, since the two main tests and the pre-test
procedure all behave in the same way. However, in the normal case, where we do
have ρ = 0, the actual size of the pre-test procedure may differ substantially from
its nominal level, see also Chapters 2 and 3, which deal with pre-test procedures
for tests on normal means as well in the one-sample as in the two-sample problem,
and Moser, Stevens, and Watts (1989) and Markowski and Markowski (1990), which
discuss the latter testing problem. Therefore, to make clear what is going on, second-
order asymptotics in n will be applied.
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If τ is unknown, a test for H0 : θ = 0 is in principle based on the efficient score
function for θ with nuisance parameter τ . The corresponding test statistic has the
form [S−ρT ](1−ρ2)−1/2, and is asymptotically efficient (Pfanzagl (1980), Sec. 11-13).
Similar to (4.2.4) we consider a class of first-order optimal tests, namely the class of
tests based on[

S − ρT + n−1/2

{
Sn−1/2

n∑
i=1

q(Xi) + Tn−1/2
n∑
i=1

r∗(Xi)

}]
(1− ρ2)−1/2

(4.2.9)

with Eq = Er∗ = 0. However, the (second-order) limiting distribution of these
statistics under (0, cI−1/2

22 n−1/2) depends on c, since their expectation and variance
under (0, cI

−1/2
22 n−1/2) are, up to order n−1/2 and ρ2 but ignoring terms of order

ρn−1/2,

n−1/2 {Eqψ10 + Er∗ψ01 + c2(1
2Eψ10ψ02 + Er∗ψ01)

}
and

1 + cn−1/2 {Eψ2
10ψ01 + 2 [Eqψ01 + Er∗ψ10]

}
,

respectively. Standardizing and plugging in n1/2τ̂ I
1/2
22 , or, equivalently, T as estimator

of c solves the problem. As a result we use as test statistic SU , which is (4.2.9) in
which r∗ is replaced by

r = r∗ − 1
2

{
Eψ2

10ψ01 + 2 [Eqψ01 + Er∗ψ10]
}

ψ10 −
(1

2Eψ10ψ02 + Er∗ψ01
)
ψ01.

(4.2.10)

(The “U” in SU refers to τ unknown.) The class of test statistics SU is a natural
extension of the class of test statistics SK. Test statistics of the form (4.2.9), up to
the considered order, are e.g. the LMP test with the given τ replaced by the restricted
or unrestricted MLE, the LR test, the test based on the MLE of θ in the unrestricted
model, Wald’s test and Rao’s efficient score test. In view of the fact that our final
results do not depend on q and r we do not present the specific q and r of the before-
mentioned tests, except for the LMP test with the unrestricted MLE for τ , which will
be used in the examples in Section 4.4. For this case, we have

LMP : q = 0, r∗ = ψ11 − ψ10ψ01 + ρ + 1
2d1ψ01,

r = ψ11 − ψ10ψ01 + ρ + 1
2d1ψ01 − 1

2 (2Eψ11ψ10 −Eψ2
10ψ01 + d1ρ)ψ10,

where d1 = E(−2ψ11ψ01 − ψ10ψ02 + 2ψ10ψ
2
01),

(4.2.11)

where we used the expression for r from (4.2.10) to get from r∗ to r.
Similarly, to test H̄0 : τ = 0 (with θ unknown) we start with (4.2.9), where T

and S are interchanged. Because here we have a two-sided testing problem, the small
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bias in expectation does not affect the size of the test up to the order n−1/2, but for
the variance a correction is needed. Therefore, the corresponding correction for r∗ is
given by

r = r∗ − 1
2

{
Eψ10ψ

2
01 + 2 [Eqψ10 + Er∗ψ01]

}
ψ01

and the test statistic is called TU . Although we use the same notation, the functions q
and r appearing in SU may be different from those in TU . Which q and r are meant,
from SU or TU , will be clear from the context. For the LMP case, the functions q
and r turn out to be the same as those for SU , but with ψ10 replaced by ψ01, ψ01 by
ψ10 and ψ02 by ψ20.

Having defined the classes of test statistics in the pre-test procedure, we can
analyze the behavior of the resulting procedure. The remaining part of this section
is devoted to two generally formulated lemmas which will facilitate the derivation of
the main result for our pre-test procedure in Section 4.3.

Conceptually, a straightforward approach to investigate the pre-test procedure is
to derive an expression for its (asymptotic) power and to analyze that, in particular
by comparing it with the (asymptotic) power of SU , which we should use when no
preliminary test is applied. We do not follow this path, but take a more subtle
approach. It is seen from (4.2.4) and (4.2.9) that SK and SU are not that much
different if n is large and ρ is small: S is the leading term of SK and SU . One of the
basic technical tools of this chapter is to use this similarity from the very beginning.
In this way we avoid a large number of terms which would cancel afterwards anyhow.
In a more abstract form this argument is presented in the lemma below.

Let Φ denote the standard normal distribution function and Φ(j) its jth derivative.
Instead of Φ(1) we also write ϕ for the standard normal density. Moreover, let Φ(·, ·; ρ)
be the distribution function of the bivariate normal N(0, 0, 1, 1, ρ)-distribution. (Note
that here ρ is not the quantity defined in (4.2.2), but the usual name for the correlation
coefficient in the bivariate normal distribution. The ρ occurring in Lemma 4.2.1 is
in general simply the name of a variable and hence should not be identified with the
quantity defined in (4.2.2), until Lemma 4.2.1 is applied in the proof of Theorem 4.3.2,
when it is the quantity from (4.2.2). In view of this application it is convenient to use
this notation in Lemma 4.2.1.)

Lemma 4.2.1 Let (U1n, Vn) and (U2n, Vn) be (standardized) sequences of r.v.’s (pos-
sibly depending on ρ) admitting Edgeworth expansions of the following form

Pr(Uin ≤ u, Vn ≤ v) = Φ(u, v; ρi) + n−1/2
3∑
j=0

cijΦ(j)(u)Φ(3−j)(v)

+ O(ρ3 + ρn−1/2) + o(n−1/2)

(4.2.12)

as ρ→ 0, n→∞ and i = 1, 2, uniformly for (u, v) in each compact set in R2, where
cij, i = 1, 2, j = 0, . . . , 3, are constants and ρ1, ρ2 are functions of ρ and n. Let
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ρ1 − ρ2 = O(ρ + n−1/2) and ρ1 = O(n−1/2). Then for u1n = u0 + O(ρ + n−1/2),
vn = v0 + O(ρ2 + n−1/2) and u2n = u0 + O(ρ2 + n−1/2),

Pr(U1n ≤ u1n, Vn ≤ vn)− Pr(U2n ≤ u2n, Vn ≤ vn)

= ϕ(u0)
{
(u1n − u2n)Φ(v0)− 1

2 (u1n − u2n)2u0Φ(v0)

+ (ρ1 − ρ2)ϕ(v0)− 1
2 (ρ1 − ρ2)2u0v0ϕ(v0)

}
+ n−1/2

3∑
j=1

(c1j − c2j)Φ(j)(u0)Φ(3−j)(v0)

+ O(ρ3 + ρn−1/2) + o(n−1/2).

(4.2.13)

Before proving Lemma 4.2.1 we emphasize that O(ρ3 + ρn−1/2) + o(n−1/2) in
expressions like (4.2.12) and (4.2.13) is understood as follows. There exist a con-
stant C and a sequence {an} with limn→∞ an = 0 such that the difference be-
tween the expressions on the left-hand side and the right-hand side is bounded by
C(ρ3 + ρn−1/2) + ann

−1/2 for all ρ and n. Hence, our results are uniformly valid in
ρ and n, but of course they are only meaningful (e.g. as approximations) for n→∞
and ρ→ 0.

Proof. Write Φ(u1n, vn; ρ1)− Φ(u2n, vn; ρ2) as

{Φ(u1n, vn; ρ1)− Φ(u2n, vn; ρ1)}+ {Φ(u2n, vn; ρ1)− Φ(u2n, vn; ρ2)}.

For the first part we use

Φ(u1, v; ρ1)− Φ(u2, v; ρ1) = (u1 − u2)ϕ(u2){Φ(v) + O(ρ1)}
+ 1

2 (u1 − u2)2ϕ(u2){−u2Φ(v) + O(ρ1)}+ O(|u1 − u2|3),
(4.2.14)

which leads to

Φ(u1n, vn; ρ1)− Φ(u2n, vn; ρ1)

= ϕ(u0){(u1n − u2n)Φ(v0)− 1
2 (u1n − u2n)2u0Φ(v0)}

+ O(ρ3 + n−1 + ρn−1/2).

For the second part we get, with ϕ(u, v; ρ) denoting the density of the bivariate normal
N(0, 0, 1, 1, ρ)-distribution,

Φ(u, v; ρ1)− Φ(u, v; ρ2)

= (ρ1 − ρ2)ϕ(u, v; ρ1)− 1
2 (ρ1 − ρ2)2uvϕ(u)ϕ(v) + O(|ρ1 − ρ2|3)

(4.2.15)
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and hence, using ϕ(u, v; ρ1) = ϕ(u)ϕ(v) + O(ρ1), we obtain

Φ(u2n, vn; ρ1)− Φ(u2n, vn; ρ2)

= ϕ(u0)ϕ(v0){(ρ1 − ρ2)− 1
2 (ρ1 − ρ2)2u0v0}

+ O(ρ3 + n−1 + ρn−1/2).

Note that by considering the marginal distribution of Vn it follows that c10 = c20.
The proof is now easily completed. 2

One should think of U1n, U2n and Vn as the test statistics SK, SU and TU ,
respectively, standardized under local alternatives with uin and vn as their critical
values, shifted and rescaled by the standardization of the test statistics. The re-
semblance of U1n and U2n in our application is represented in Lemma 4.2.1 by the
closeness of u1n and u2n to each other.

The straightforward approach, mentioned before, would imply an expansion of
Φ(u, v; ρi) for ρi around 0 in (4.2.12) and expansions of all the terms in (4.2.12) for
uin around u0 and vn around v0, where the ρ-, ρ2- and n−1/2-terms of u1n, u2n and
vn are made explicit. This would give a large number of terms. Presumably, also
the cij will be given explicitly in such an approach, which again gives a lot of terms.
Carefully gathering all these terms would show that many of them are the same for
U1n and U2n and hence cancel in taking the difference.

Replacing the expansion of Φ(u, v; ρi) for ρi around 0 and the expansion of all
the terms in (4.2.12) for uin around u0 and vn around v0 by the expansions for the
differences given in (4.2.14) and (4.2.15), yields an enormous reduction in the number
of terms and shows moreover what is really needed: for uin their first-order term u0
and furthermore only the difference u1n−u2n, while for vn even the first-order term v0
suffices! This is due to the similarity between U1n and U2n and the small correlation
of Vn and Uin. Finally, for the cij also only the differences c1j−c2j are involved, which
gives again a large reduction of terms. The application of Lemma 4.2.1 in Section 4.3
to SK, SU and TU clearly shows that the more subtle approach using (4.2.14) and
(4.2.15) is very profitable compared to the straightforward one, sketched above.

In the application of Lemma 4.2.1 we need an Edgeworth expansion of the form
(4.2.12). Since SU and TU are U -statistics and since we need the expansion under
local alternatives, we should have an Edgeworth expansion for bivariate U -statistics
when dealing with a probability measure depending on n. Such a result is given
in Götze (1987), p. 215. (The formulation of Corollary 1.18 in Götze (1987) is not
very transparent. The following lemma resulted from personal communication with
Götze.) Denote by ◦ the inner product in R2 and by ‖ · ‖ the Euclidean norm in R2.
Let ϕ0,W be the density of the bivariate normal distribution with expectations 0 and
covariance matrix W . Write

f(z) ◦D = f (1)(z)
∂

∂x
+ f (2)(z)

∂

∂y

for f(z) = (f (1)(z), f (2)(z)).
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Lemma 4.2.2 (Götze). Let Z1, . . . , Zn be i.i.d. r.v.’s with common distribution Pn.
Expectations and covariances in this lemma are under Pn and denoted by En, covn.
Let

Tn = n−1/2
n∑
i=1

{f0(Zi) + n−1/2f1(Zi)}+ n−3/2
∑∑
1≤i<j≤n

f2(Zi, Zj),

where f0, f1, f2 denote R2-valued functions such that Enf0(Z1) = Enf1(Z1) = 0,
En(f2(Z1, Z2)|Z2) = 0 a.s and f2(x, y) is symmetric. Assume there exist a constant
a > 0 and continuous non-increasing functions χj : [0,∞)→ [0,∞), j = 1, 2, satisfy-
ing

lim
x→∞

χ1(x) = 0,

0 < χ2(x) ≤ 1 for every x ≥ a,

En‖f2(Z1, Z2)‖3I(‖f2(Z1, Z2)‖ ≥ x) ≤ χ1(x) for every x > 0,

|En exp[it ◦ f0(Z1)]| ≤ 1− χ2(‖t‖) for every ‖t‖ ≥ a > 0,

En‖f0(Z1)‖3I(‖f0(Z1)‖ ≥ x) ≤ χ1(x) for every x > 0,

En‖f1(Z1)‖3/2I(‖f1(Z1)‖ ≥ x) ≤ χ1(x) for every x > 0.

If furthermore, lim
n→∞

covn(f0) is positive definite, then there exists a sequence

εn ↓ 0 and a constant K depending on χj and lim
n→∞

covn(f0) only, such that

sup
(u,v)∈R2

|Fn(u, v)−Gn(u, v)| ≤ Kεnn
−1/2, n ≥ 2,

where Fn is the distribution function of Tn and

Gn(u, v) =

u∫
−∞

v∫
−∞

{1 + 1
6n−1/2κ3(−D)}ϕ0,Wn(x, y)dxdy,

with Wn = covn(f0 + n−1/2f1) and κ3 the cumulant differential operator given by

κ3(D) = En(f0(Z1) ◦D)3 + 3En

{
[f2(Z1, Z2) ◦D][f0(Z1) ◦D][f0(Z2) ◦D]

}
.

2

To apply Lemma 4.2.2 we add the following regularity condition

(Rv) lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |ψij(X1)|3I(|ψij(X1)| ≥ x) = 0, for (i, j) = (0, 1), (1, 0),

lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |k(X1)|3I(|k(X1)| ≥ x) = 0,
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lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |q(X1)|3I(|q(X1)| ≥ x) = 0,

lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |r∗(X1)|3I(|r∗(X1)| ≥ x) = 0,

lim
‖t‖→∞

sup
(θ,τ)∈Ω0

|Eθ,τ exp[it1{ψ10(X1)− r1ψ01(X1)}

+ it2{ψ01(X1)− r2ψ10(X1)}]| < 1

for (r1, r2) = (0, ρ), (ρ, ρ).

If k, q, and r are given in terms of functions ψij , then the conditions for k, q and r
may be replaced by conditions on the corresponding expectations for those functions.
For example for the tests based on LR, MLE or Wald (see (4.2.5)), the condition on
k can be replaced by the conditions

lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |ψ20(X1)|3I(|ψ20(X1)| ≥ x) = 0,

lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |ψ2
10(X1)|3I(|ψ10(X1)| ≥ x) = 0.

Note that

sup
(θ,τ)∈Ω0

|ψij(x)|3f(x; θ, τ) ≤ Lij(x) with
∫
A

Lij(x)dµ(x) <∞

implies (e.g. by the dominated convergence theorem) that

lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |ψij(X1)|3I(|ψij(X1)| ≥ x) = 0.

This may be helpful in verifying (Rv). Condition (Rv) also guarantees the existence
of the third moments of the functions given, in particular the existence of Eψ3

10 and
Eψ3

01, which we needed already in the definition of the standard first-order optimal
tests in (4.2.5).

The following condition, finally, takes care of the existence of the expectations
used in the definition of the tests and in the calculations of the next section. It is
needed in the next section to justify that the remainder terms in the calculation of
moments under (θ, τ), are of the order given.

(Rvi) sup
(θ,τ)∈Ω0

Eθ,τ
(
|ψ10(X1)|3 + |ψ01(X1)|3 + |k(X1)|2 + |q(X1)|2

+ |r∗(X1)|2 + 1
)
|ψij(X1; θ, τ)| <∞ for i, j = 0, 1, 2, 3.

Note that the conditions for the functions q and r∗ should hold for the q and r∗

corresponding to SU as well as for those corresponding to TU .
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4.3 Main results: difference in size and power

Our main aim in this chapter is to reveal the difference in size and power of the pre-
test procedure and the one-stage test SU . We consider local alternatives of the form
(θn, τn) with

θn = bI
−1/2
11 n−1/2, τn = cI

−1/2
22 n−1/2 with b ≥ 0 and c ∈ R. (4.3.1)

(Note that θn and τn are described in I
−1/2
11 and I

−1/2
22 “units”. In this way the

redundant parameters I11 and I22 are absorbed and I12 reduces to ρ.) As usual
in this kind of analysis the (composite) null hypothesis H0 is represented by se-
quences (0, cI

−1/2
22 n−1/2), H̄0 by (bI−1/2

11 n−1/2, 0) and H1 of course by (bI−1/2
11 n−1/2,

cI
−1/2
22 n−1/2).
We start with the Edgeworth expansions of the simultaneous distribution of

(SK, TU) and (SU, TU) under (θn, τn).

Theorem 4.3.1 Suppose that (Ri)–(Rvi) hold. Write

U1n =
SK − µ1n(b, c)

σ1n(b, c)
, U2n =

SU − µ2n(b, c)
σ2n(b)

and Vn =
TU − µn(b, c)

σn(c)

with

µ1n(b, c) = b + cρ + 1
2{b2Eψ10ψ20 + 2bcEψ10ψ11 + c2Eψ10ψ02

+ 2(1 + b2)Ekψ10 + 2bcEkψ01}n−1/2,

σ1n(b, c) = 1 + 1
2{bEψ3

10 + cEψ2
10ψ01 + 4bEkψ10 + 2cEkψ01}n−1/2,

µ2n(b, c) = b− 1
2bρ2 + 1

2{b2Eψ10ψ20 + 2bcEψ10ψ11 − bcEψ2
10ψ01

−Eψ10ψ02 + 2(1 + b2)Eqψ10}n−1/2,

σ2n(b) = 1 + 1
2b(Eψ3

10 + 4Eqψ10)n−1/2,

µn(b, c) = c− 1
2cρ2 + 1

2{c2Eψ01ψ02 + 2bcEψ01ψ11 + b2Eψ01ψ20

− bcEψ10ψ
2
01 + 2(1 + b2)Erψ10 + 2(1 + c2)Eqψ01}n−1/2,

σn(c) = 1 + 1
2c(Eψ3

01 + 4Eqψ01)n−1/2.

(4.3.2)

Then, uniformly for (u, v) ∈ R2,

Pθn,τn(Uin ≤ u, Vn ≤ v) = Φ(u, v; ρi) + n−1/2
3∑
j=0

cijΦ(j)(u)Φ(3−j)(v)

+ O(ρ4 + ρn−1/2) + o(n−1/2)

(4.3.3)
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with

ρ1 = n−1/2r1(b, c), ρ2 = −ρ + n−1/2r2(b, c)

for some functions r1(b, c), r2(b, c) satisfying

r2(b, c)− r1(b, c) = − 1
2bEψ2

10ψ01 − bEkψ01 − cEψ10ψ02,

(4.3.4)

and

c10 = c20, c11 − c21 = − 1
2Eψ10ψ02, c12 − c22 = − 1

2Eψ2
10ψ01 −Ekψ01,

c13 = − 1
6Eψ3

10 −Ekψ10, c23 = − 1
6Eψ3

10 −Eqψ10.

(4.3.5)

Hence (4.2.5) holds.

Proof. We prove (4.3.3) for U2n in detail and make a few remarks about the U1n-
case. The proof for U1n is quite similar and even slightly more simple. We apply
Lemma 4.2.2 with Pn = Pθn,τn and therefore we rewrite SU as follows (we write En
for Eθn,τn), with g = ψ10 − ρψ01 and hence Eg2 = 1− ρ2:

SU =
[
n−1/2

n∑
i=1

{g(Xi)−Eng}

+ Enψ10 n−1/2
n∑
i=1

{q(Xi)−Enq}+ Enq n−1/2
n∑
i=1

{ψ10(Xi)−Enψ10}

+ Enψ01 n−1/2
n∑
i=1

{r(Xi)−Enr}+ Enr n−1/2
n∑
i=1

{ψ01(Xi)−Enψ01}

+ n−3/2
n∑
i=1

{z(Xi)−Enz}

+ n−3/2
∑∑

1≤i6=j≤n
{ψ10(Xi)−Enψ10}{q(Xj)−Enq}

+ n−3/2
∑∑

1≤i6=j≤n
{ψ01(Xi)−Enψ01}{r(Xj)−Enr}

+ n1/2Eng + n1/2Enψ10Enq + n1/2Enψ01Enr + n−1/2Enz
]/

(Eg2)1/2,

(4.3.6)

with

z = (ψ10 −Enψ10)(q −Enq) + (ψ01 −Enψ01)(r −Enr).
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By direct calculation we get

n1/2Eng = b− bρ2 + 1
2 (b2Eψ10ψ20 + 2bcEψ10ψ11 + c2Eψ10ψ02)n−1/2

+ O(n−1 + ρn−1/2),

n1/2Enψ10Enq = (b2Eqψ10 + bcEqψ01)n−1/2 + O(n−1 + ρn−1/2)

n1/2Enψ01Enr = (bcErψ10 + c2Erψ01)n−1/2 + O(n−1 + ρn−1/2)

n−1/2Enz = (Eqψ10 + Erψ01)n−1/2 + O(n−1).

Adding these, using Erψ10+Eqψ01 = − 1
2Eψ2

10ψ01+O(ρ) and Erψ01 = − 1
2Eψ10ψ02+

O(ρ) (which follows immediately from r of (4.2.10)), and dividing by (Eg2)1/2 gives
the expression for µ2n in (4.3.2) up to order O(ρ4 + ρn−1/2 + n−1). For the variance
of the first three lines (the last four lines of SU do not contribute to the variance up
to the order considered), we get

varn (g + (Enψ10)(q −Enq) + (Enq)(ψ10 −Enψ10)

+ (Enψ01)(r −Enr) + (Enr)(ψ01 −Enψ01))

= Eg2 + (bEψ3
10 + cEψ2

10ψ01)n−1/2 + 2n−1/2bEqψ10 + 2n−1/2cErψ10

+ 2(bEqψ10 + cEqψ01)n−1/2 + O(n−1 + ρn−1/2)

= Eg2 + (bEψ3
10 + 4bEqψ10)n−1/2 + O(n−1 + ρn−1/2),

(4.3.7)

using in the last step again that Erψ10 + Eqψ01 + 1
2Eψ2

10ψ01 = O(ρ). Hence, we may
write

U2n = n−1/2
n∑
i=1

{
f

(1)
0 (Xi) + n−1/2f

(1)
1 (Xi)

}
+ n−3/2

∑∑
1≤i<j≤n

f
(1)
2 (Xi, Xj)

+ O(ρ4 + n−1 + ρn−1/2)

(4.3.8)

with

f
(1)
0 = (g −Eng)/σ∗n,

f
(1)
1 =

{
(Enψ10)n1/2(q −Enq) + (Enq)n1/2(ψ10 −Enψ10)

+ (Enψ01)n1/2(r −Enr) + (Enr)n1/2(ψ01 −Enψ01) + n−1/2(z −Enz)
}/

σ∗n,

f
(1)
2 (x, y) =

{
(ψ10(x)−Enψ10)(q(y)−Enq) + (ψ10(y)−Enψ10)(q(x) −Enq)

+ (ψ01(x) −Enψ01)(r(y) −Enr) + (ψ01(y)−Enψ01)(r(x) −Enr)
}/

σ∗n,
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where

σ∗n = (Eg2)1/2σ2n(b).

Similarly, but now with the functions q and r corresponding to TU instead of to SU ,
we get

Vn = n−1/2
n∑
i=1

{
f

(2)
0 (Xi) + n−1/2f

(2)
1 (Xi)

}
+ n−3/2

∑∑
1≤i<j≤n

f
(2)
2 (Xi, Xj)

+ O(ρ4 + n−1 + ρn−1/2)

with f
(2)
0 , f

(2)
1 , f

(2)
2 obtained from f

(1)
0 , f

(1)
1 , f

(1)
2 by interchanging ψ10 and ψ01 (also

in the function g), and replacing σ2n(b) in σ∗n by σn(c).
To apply Lemma 4.2.2 we verify the conditions of the lemma. It is easily seen that

Enf0 = Enf1 = En(f2(X1, X2)|X2) = 0 and that f2 is symmetric. The conditions on
the moments and characteristic function follow from (Rv). Finally,

lim
n→∞

covn(f0) =
(

1 −ρ
−ρ 1

)
,

which is positive definite. Using (4.3.7), direct calculation gives

Wn = covn(f0 + n−1/2f1) =
(

1 −ρ + n−1/2r2(b, c)
−ρ + n−1/2r2(b, c) 1

)
+ O(n−1 + ρn−1/2),

where

r2(b, c) = lim
ρ→0

lim
n→∞

[
n1/2{covn(f (1)

0 , f
(2)
0 )− cov(f (1)

0 , f
(2)
0 )}

+ cov(f (1)
0 , f

(2)
1 ) + cov(f (1)

1 , f
(2)
0 )
]
.

By the similarity of U1n and U2n we get

r2(b, c)− r1(b, c) = lim
ρ→0

lim
n→∞

cov(f (1)
1,U2n

− f
(1)
1,U1n

, f
(2)
0 )

= lim
ρ→0

lim
n→∞

[(Enψ10)n1/2(Eqψ01 −Ekψ01) + (Enψ01)n1/2(Erψ01) + (Enr)n1/2]

= − 1
2bEψ2

10ψ01 − bEkψ01 − cEψ10ψ02,

where the last equality follows from direct calculation, using the expressions for f
(1)
1

(corresponding to U2n and U1n, respectively) and f
(2)
0 (which corresponds to Vn), and

substituting Erψ10 = − 1
2Eψ2

10ψ01 −Eqψ01 + O(ρ) and Erψ01 = − 1
2Eψ10ψ02 + O(ρ)

with r from (4.2.10).
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Application of Lemma 4.2.2 and noting that replacement of En by E in κ3 in the
application of this lemma gives an error of order O(n−1), yields (4.3.3) with

3∑
j=0

c2jΦ(j)(u)Φ(3−j)(v) =

u∫
−∞

v∫
−∞

1
6κ3(−D)ϕ(x)ϕ(y)dxdy,

where κ3 is given by

κ3(D) = E[(ψ10(X1), ψ01(X1)) ◦D]3 + κ∗3(D)

with

κ∗3(D) = 3E
{
[f2(X1, X2) ◦D][(ψ10(X1), ψ01(X1)) ◦D]

[(ψ10(X2), ψ01(X2)) ◦D]
}
.

Hence, noting that f
(2)
2 (x, y) is the same for U1n and U2n, we get

3∑
j=0

(c2j − c1j)Φ(j)(u)Φ(3−j)(v) =

u∫
−∞

v∫
−∞

1
6 κ̃3(−D)ϕ(x)ϕ(y)dxdy

with

κ̃3(D) = 3E
{
[f̃2(X1, X2) ◦D][(ψ10(X1), ψ01(X1)) ◦D]

[(ψ10(X2), ψ01(X2)) ◦D]
}

and

f̃2(x, y) = (f (1)
2,U2n

(x, y)− f
(1)
2,U1n

(x, y), 0).

In view of the marginal distributions it follows that c10 = c20, and it remains to
calculate c21 − c11, c22 − c12 and c13 and c23. Direct calculation gives, up to O(ρ +
n−1/2), c21−c11 = 1

2Eψ10ψ02, c22−c12 = 1
2Eψ2

10ψ01 +Ekψ01, c13 = − 1
6Eψ3

10−Ekψ10
and c23 = − 1

6Eψ3
10 −Eqψ10. This completes the proof of Theorem 4.3.1. 2

Now we can derive the critical values for the tests based on the given test statistics.
The test based on SK is meant for testing θ = 0, τ = 0 against θ > 0, τ = 0. With
σ1n(0, 0) = 1 and µ1n(0, 0) and c13 from (4.3.2) and (4.3.5), respectively, it follows
that

P0,0(SK ≤ u) = Φ(u− µ1n(0, 0)) + n−1/2c13Φ(3)(u) + o(n−1/2),

where it is easy to understand that under (0, 0) we only get the remainder term
o(n−1/2), since SK and its distribution do not depend on ρ. Of course, this result
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can also easily be obtained from standard Edgeworth expansions. Hence θ = 0, τ = 0
is rejected when

SK > uα − c13n
−1/2(u2

α − 1) + µ1n(0, 0)

with uα = Φ−1(1− α), giving size α + o(n−1/2) under (0, 0).
The test based on SU is meant for testing H0 against H1. With σ2n(0) = 1 and

µ2n(0, c) and c23 from (4.3.2) and (4.3.5), respectively, it follows from Theorem 4.3.1
that

P0,τn(SU ≤ u) = Φ(u− µ2n(0, c)) + n−1/2c23Φ(3)(u) + O(ρn−1/2) + o(n−1/2)

and hence H0 is rejected when

SU > uα − c23n
−1/2(u2

α − 1) + µ2n(0, c),

giving size α+ O(ρn−1/2) + o(n−1/2) under (0, τn). Note that we dropped the O(ρ4)-
terms. These turned out to cancel under (0, τn).

The test based on TU is meant for testing H̄0 against H̄1. With σn(0) = 1, it
follows from Theorem 4.3.1 that

Pθn,0(TU ≤ v) = Φ(v − µn(b, 0)) + n−1/2c10Φ(3)(v) + O(ρn−1/2) + o(n−1/2).

Since µn(b, 0) = O(n−1/2), the two-sided test which rejects H̄0 when

|TU | > uδ/2,

gives size δ + O(ρn−1/2) + o(n−1/2) under (θn, 0). Note that n−1/2-terms which
occurred in the critical values for SK and SU are not necessary here, since a shift
of order n−1/2 of both upper and lower critical value in the same direction does not
affect the size of the test.

The pre-test procedure is defined as to reject H0 if

SK > uα + n−1/2 ( 1
6Eψ3

10(u
2
α − 1) + Ekψ10u

2
α

)
and |TU | ≤ uδ/2

or

SU > uα + n−1/2 (1
6Eψ3

10(u
2
α − 1) + Eqψ10u

2
α − 1

2Eψ10ψ02
)

and |TU | > uδ/2.

The probability that the pre-test procedure rejects, depends on the local alter-
natives (θn, τn) parameterized by b and c, and is denoted by π∗ = π∗(b, c). The
probability that SU rejects will be denoted by π̃ = π̃(b, c). The next theorem is our
main result. It gives an attractive expression for the difference π∗ − π̃, from which
much insight can be obtained for the comparison of the pre-test procedure with the
test based on SU .

Theorem 4.3.2 provides a good approximation of π∗− π̃ if n is large and ρ is small.
The results are uniformly valid in ρ and n, but of course they are only meaningful for
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n →∞ and ρ→ 0. The latter is no serious restriction, because if ρ is not small the
situation is clear: in that case the pre-test procedure is unacceptable (see Section 4.2).
Moreover, Theorem 4.3.2 gives the rate of convergence, O(ρ3 + ρn−1/2) + o(n−1/2),
which demonstrates the (high) accuracy of the approximation and its dependence on
n and ρ. If we would add the terms of order ρn−1/2 to the approximation a large
number of terms would come in. When we really would use these terms, the expression
would become less insightful due to too many complications. The same holds for the
ρ3-terms. Ignoring terms of order O(ρ3 + ρn−1/2) + o(n−1/2) seems to be the right
compromise between needed accuracy and transparency. A further illustration of the
accuracy obtained in this way is seen in the numerical results of Section 4.4, while
for the technical meaning of O(ρ3 + ρn−1/2) + o(n−1/2) we refer to the remark just
before the proof of Lemma 4.2.1. Note that for ρ = 0 the error term in Theorem 4.3.2
reduces to o(n−1/2).

Theorem 4.3.2 Suppose that (Ri)–(Rvi) hold. Then

π∗(b, c)− π̃(b, c)

= ϕ(uα − b)
{
h1(c, uδ/2)[ρ + 1

2ρ2{(b/c) + (uα − b)c}+ m(c, uα)n−1/2]

+ h2(c, uδ/2)[ρ + 1
2cρ2(uα − b) + m(c, uα)n−1/2]

+ h3(c, uδ/2)[ρ2(uα − b)−Eψ10ψ02n
−1/2]

}
+ O(ρ3 + ρn−1/2) + o(n−1/2) as ρ→ 0 and n→∞,

where

h1(x, y) = x{Φ(y − x)− Φ(−y − x)},

h2(x, y) = ϕ(y + x)− ϕ(y − x),

h3(x, y) = 1
2y{ϕ(y + x) + ϕ(y − x)},

m(x, y) = 1
2

{
xEψ10ψ02 + y

(
Eψ2

10ψ01 + 2Ekψ01
)}

.

Proof. Let

u1n = {uα − c13n
−1/2(u2

α − 1) + µ1n(0, 0)− µ1n(b, c)}/σ1n(b, c),

u2n = {uα − c23n
−1/2(u2

α − 1) + µ2n(0, c)− µ2n(b, c)}/σ2n(b),

vUn = {uδ/2 − µn(b, c)}/σn(c),

vLn = {−uδ/2 − µn(b, c)}/σn(c).
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with µin and σin from (4.3.2), and c13 and c23 from (4.3.5). Then

π∗(b, c)− π̃(b, c) = Pθn,τn(U1n ≤ u1n, Vn ≤ vLn )− Pθn,τn(U2n ≤ u2n, Vn ≤ vLn )

− {Pθnτn(U1n ≤ u1n, Vn < vUn )− Pθn,τn(U2n ≤ u2n, Vn < vUn )}.

By Theorem 4.3.1 we get (4.2.12). It is easily seen that the other conditions of
Lemma 4.2.1 are satisfied with u0 = uα − b, v0 = −uδ/2 − c when vLn is used and
v0 = uδ/2 − c in case of vUn . Noting that

u1n − u2n = − cρ− 1
2bρ2 + (u2

0 − 1)(Ekψ10 −Eqψ10)n−1/2

− cm(c, uα)n−1/2 + O(n−1 + ρn−1/2)

and

ρ1 − ρ2 = ρ + n−1/2{ 1
2bEψ2

10ψ01 + bEkψ01 + cEψ10ψ02},

straightforward calculation gives the result. 2

It is remarkable that π∗(b, c)− π̃(b, c) does not depend (up to the considered order) on
the q’s and r’s occurring in SU and TU and only through Ekψ01 on k. This property is
related to the phenomenon that “first-order efficiency implies second-order efficiency”,
cf. Bickel, Chibisov, and van Zwet (1981) or Pfanzagl (1980), p. 62. Note that due to
this phenomenon for testing θ = 0 the power at (bI11n

−1/2, 0) of SK is the same up
to order n−1/2, irrespective of the choice of k.

For the tests mentioned in Section 4.2 we get, ignoring ρ-terms, cf. (4.2.5),

LMP : Ekψ01 = 0

LR : Ekψ01 = 1
2 (Eψ20ψ01 −Eψ2

10ψ01)

MLE and Wald : Ekψ01 = Eψ20ψ01 −Eψ2
10ψ01.

(4.3.9)

A special case which is of particular interest is when ρ = 0. The following corollary
gives this as an immediate consequence of Theorem 4.3.2.

Corollary 4.3.3 Suppose that (Ri)–(Rvi) hold and that ρ = 0. Then

π∗(b, c)− π̃(b, c)

= ϕ(uα − b)[h(c, uδ/2)m(c, uα)− h3(c, uδ/2)Eψ10ψ02]n−1/2 + o(n−1/2)

as n→∞, where h = h1 + h2.
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4.4 Consequences for the actual size and power

Under the null hypothesis H0 : θ = 0, the difference π∗ − π̃ reduces to π∗(0, c) −
α + o(n−1/2). Hence the departure from the nominal level of the pre-test procedure
follows from Theorem 4.3.2 and approximately equals

ϕ(uα)
[
h(c, uδ/2)

{
ρ + 1

2uαcρ2 + m(c, uα)n−1/2
}

+ h3(c, uδ/2)
{
uαρ2 −Eψ10ψ02n

−1/2
} ]

,

(4.4.1)

where h = h1 + h2. Firstly, we note that the family of distributions and classes of
tests are involved through only four parameters: ρ, Eψ10ψ02, Eψ2

10ψ01 and Ekψ01.
If ρ tends to 0 and n→∞, the error π∗(0, c)− α tends to 0. Also for α ↓ 0 the error
tends to 0.

Secondly, we analyze the behavior of h and h3. They are shown in Figure 4.4.1.
As h(c, uδ/2) is odd in c and h3(c, uδ/2) is even in c, we only consider c ≥ 0. The
function h3, to begin with, is strictly positive for all c. The function h increases in
uδ/2, and since h(c, 0) = 0 for all c, we have h(c, uδ/2) ≥ 0 for all c ≥ 0 and uδ/2 ≥ 0.
Since h(0, uδ/2) = 0, limc→∞ ch(c, uδ/2) = 0 and limc→∞ h3(c, uδ/2) = 0, there exists
a c∗ = c∗(uδ/2) for which the error, given by (4.4.1), is maximal.

If we ignore the ρ2-terms (which includes of course the case ρ = 0 presented in
Corollary 4.3.3), and assume that Eψ10ψ02 = 0 (which holds in many examples, see
Sections 4.4.1 and 4.4.2), then (4.4.1) reduces to

ϕ(uα)h(c, uδ/2)
{

ρ + uα
(1

2Eψ2
10ψ01 + Ekψ01

)
n−1/2

}
, (4.4.2)

which depends on c only through the function h. Expression (4.4.2) may be interpreted
as follows. If SK is used without a preliminary test, we have δ = 0 and h(c, uδ/2) = c
and hence the error π∗(0, c)−α grows linearly in that case. For δ > 0 the function c is
replaced by the re-descending function h, sketched for δ = 0.05 in Figure 4.4.1. Note
that the function h consists of two parts. The first part is the function h1 which equals
c multiplied by the first-order approximation of the acceptance probability of the
preliminary test. This acceptance probability is at most 1 and hence a first reduction
of the error is obtained. The larger c, the smaller the acceptance probability, and thus
the larger the reduction. The second part is the function h2, which is negative for
c ≥ 0 and gives a further reduction. Hence the replacement of c by h(c, uδ/2) indeed
yields a substantial reduction of the error, as is seen in the figure.

Again ignoring terms of order ρ2, it is immediately seen from Theorem 4.3.2
that the power difference is nothing but the size difference, inflated by a factor
ϕ(uα − b)/ϕ(uα). For α = 0.05 this factor runs from 1 at b = 0 to its maximal
value 3.9 at b = uα and, being a multiple of ϕ, it then decreases. Here, it is seen
that the idea mentioned in the introduction of getting higher power due to “knowing
the value of the nuisance parameter” does not come true. If there is a gain in power,
it is due to the difference between size and level, possibly blown up by some factor.
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Figure 4.4.1 Functions c, h1, h and h3 as a function of c for δ = 0.05.

Moreover, since h(c, uδ/2) is odd in c, a gain in power at c will as a rule imply a loss
in power at −c. An exception should be made for (very) small values of c, because
in that case ρ2-terms are dominant and should not be ignored. Consider the special
case c = 0. The approximation given by Theorem 4.3.2 now reads as

ϕ(uα − b)
[ 1

2bρ2
{
Φ(uδ/2)− Φ(−uδ/2)− 2uδ/2ϕ(uδ/2)

}
+ uδ/2ϕ(uδ/2){uαρ2 −Eψ10ψ02n

−1/2}
]
.

(4.4.3)

Since the coefficient of bρ2 is positive for all uδ/2, the term with bρ2 gives some (small)
gain in power not due to the difference between size and level. Note however that
this does not mean that the size may not exceed α. If Eψ10ψ02 = 0 or small enough,
then the second line of (4.4.3) is always positive due to the fact that uδ/2ϕ(uδ/2) is
strictly positive, and hence the size is certainly larger than α.

In the remainder of this section we consider some examples, gathered in two impor-
tant classes: two-parameter exponential families and symmetric location-scale fami-
lies. In all examples we use LMP tests in which the nuisance parameter, if present, is
estimated by the MLE in the unrestricted model.

In Example 4.4.1 numerical calculations are performed, while in the other exam-
ples simulation results are presented. Each of the simulations is based on 100 000
repetitions. Hence, the standard deviations of the simulated power differences are at
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most (100 000)−1/2 = 0.0032. This reduces to 0.0019 if at least one of the probabilities
π∗ or π̃ is at most 0.05 and to 0.001 if both probabilities are at most 0.05.

4.4.1 Two-parameter exponential families

Let µ be some probability measure on R2 and assume that the moment generating
function of µ exists in some open neighborhood Ω0 of (0, 0). With respect to this
measure, define a family of densities

f(x; θ, τ) = exp
{

θx(1) + τx(2) − ω(θ, τ)
}

(4.4.4)

with x = (x(1), x(2)) ∈ R2 and ω a normalizing constant. This representation is a
standard representation (cf. Barndorff-Nielsen (1978), p. 115) of the densities of the
two-parameter exponential family with respect to the measure µ. It is easily seen that
the regularity conditions (Ri)-(Riv) hold. Assume that also the regularity conditions
(Rv) and (Rvi) hold. From exponential family theory it follows rather easily that

ψ10(x) =
x(1) −EX(1)
√

varX(1)
, ψ01(x) =

x(2) −EX(2)
√

varX(2)
,

ψ20(x) =
(x(1) −EX(1))2

varX(1) − 1, ψ02(x) =
(x(2) −EX(2))2

varX(2) − 1,

ψ11(x) =
(x(1) −EX(1))(x(2) −EX(2))√

varX(1)varX(2)
− ρ,

(4.4.5)

see for example Lehmann and Casella (1998), Sec. 1.5.
First note that all these functions may be written in terms of ψ10 and ψ01. This

may greatly simplify the expressions for k, q and r which determine the test statistics.
Since ψ20 = ψ2

10−1, the first part of the expressions for k cancels for the LR, MLE and
Wald’s test (see (4.2.5)) and only the term with ψ10 remains. For Wald’s test this term
also vanishes, since Eψ10ψ20 = Eψ3

10. For the quantity Ekψ01 we get Ekψ01 = 0 (up
to order ρ) for LMP, LR, MLE and Wald’s test, cf. also (4.3.9). This means that for
the two-parameter exponential family, our approximation from Theorem 4.3.2 yields
the same result for all these tests!

In the following examples, we compare the approximation given by Theorem 4.3.2
with simulation results for the pre-test procedure with LMP tests. In the LMP case
we have k = q = 0, and using the relations ψ11 = ψ10ψ01− ρ and for the expectations
Eψ11ψ01 = Eψ10ψ02 = Eψ10ψ

2
01 and Eψ11ψ10 = Eψ01ψ20 = Eψ2

10ψ01, it follows that
r from (4.2.11) reduces (up to order ρ) to

r = − 1
2 (Eψ10ψ

2
01)ψ01 − 1

2 (Eψ2
10ψ01)ψ10.

Note that the ignored term with coefficient − 1
2d1ρ indeed does not contribute to the

final result, in which terms of order ρn−1/2 are ignored. The function r is (up to order
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ρ) the same both for SU and TU , since interchange of ψ10 and ψ01 does not make
any difference.

Example 4.4.1 Problem of the reference set for normal means. Suppose we
have a sample from a normal distribution with expectation θ and variance 1. Further,
a second sample is available from a normal distribution, with (known) variance v2,
but we are not sure whether this second sample has the same expectation as the first
one. We denote this expectation by θ − τ . If the second sample has the same mean,
we might want to use it together with the first sample in order to test whether θ = 0.
A preliminary test is performed to investigate the equality of the means.

Arnold (1970) numerically analyzed the pre-test procedure for this example with
v = 1, α = 0.05 and δ = 0.25, showing it to be biased. He compares the pre-test
procedure with the (unbiased) generalized likelihood ratio test with the same size,
and concludes that the latter is more powerful in a rather large part of the parameter
space. He furthermore notes that biasedness is not only a feature in this example,
but may be encountered frequently in pre-test procedures. He recommends to make
power comparisons between the pre-test procedure and available unbiased tests before
deciding to use the pre-test procedure.

If Y has a N(θ, 1)-distribution and Z a N(θ − τ, v2)-distribution, independent of
Y , then their joint density with respect to the Lebesgue measure on R2 equals

1
2πv

exp
{
− 1

2
(y − θ)2 − 1

2

(
z − θ + τ

v

)2 }
= C(θ, τ) exp

{
θ
(
y +

z

v2

)
+ τ

(
− z

v2

)}
g(y, z)

for some function g and a normalizing constant C. Hence, in the standard rep-
resentation (4.4.4) the probability measure µ corresponds to the distribution of
(X(1), X(2)) = (Y + Z/v2,−Z/v2) under (θ, τ) = (0, 0), i.e. for a measurable set
B ∈ R2, µ(B) = Pr(X ∈ B) with X = (X(1), X(2)) distributed according to the
N(0, 0, 1 + 1/v2, 1/v2, 0)-distribution.

Here we have ρ = −1/
√

v2 + 1 and hence the larger v, the smaller |ρ|. Further-
more, Eψ2

10ψ01 = Eψ10ψ
2
01 = 0, and hence also r = 0 for SU and TU . Note that

SU = n−1/2∑n
i=1{X

(1)
i + X

(2)
i }. This means that SU is the standardized sample

mean of the first sample, as it should be, since for unknown τ the second sample is
of no use for testing about θ.

Because SK, SU and TU are exactly normally distributed, it is no surprise that
the n−1/2-terms cancel in this case. Application of Theorem 4.3.2 yields

π∗(b, c)− π̃(b, c) = ϕ(uα − b)
[
h(c, uδ/2)

{
ρ + 1

2 (uα − b)cρ2
}

+ h1(c, uδ/2)1
2 (b/c)ρ2

+ h3(c, uδ/2)(uα − b)ρ2
]
+ O(ρ3).

(4.4.6)
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Suppose that we want to know the error of the size of the pre-test procedure if the
nominal level α = 0.05, c = 1, v = 4 and δ = 0.05. Approximation (4.4.6) with b = 0
yields −0.0092. The numerical value of π∗(0, c) − α equals −0.0099. Furthermore,
consider the power difference π∗(b, c)− π̃(b, c) if the nominal level α = 0.05, c = −1,
b = 1, v = 5 and δ = 0.05. Approximation (4.4.6) yields 0.0466. The numerical
value of π∗(1,−1) − π̃(1,−1) equals 0.0473. This illustrates the accuracy of the
approximations. 2

Example 4.4.2 Gamma distribution. In this example the main testing problem
concerns the scale parameter in an exponential distribution. However, we are not
sure about the model and therefore the idea is to perform a preliminary test to decide
whether the exponential distribution is appropriate against the alternative of gamma-
distributions.

The gamma-density with scale parameter 1− θ and second parameter τ + 1 reads
as

(1− θ)τ+1zτ exp{−(1− θ)z}
Γ(τ + 1)

=
(1− θ)τ+1

Γ(τ + 1)
exp{τ log z + θz − z}

with respect to the Lebesgue measure. For τ = 0 this reduces to an exponential
density with parameter (1 − θ). The measure µ in this example corresponds to the
distribution of (X(1), X(2)) = (Z, log Z) on R2 with Z exponentially distributed with
parameter 1. In this example we have

ρ = cov(Z, log Z)/
√

varZvar(log Z) =
√

6/π = 0.78.

As argued in Section 4.2, this large value of the correlation parameter ρ indicates that
the size of the pre-test procedure is unacceptable. Indeed, simulation of the pre-test
procedure with LMP tests for n = 25, α = 0.05, δ = 0.05 and c = 1, yields a simulated
value of π∗(0, 1) equal to 0.1808, which differs too much from the prescribed level. 2

Example 4.4.3 Normal one-sample problem. Suppose we have a sample from
a normal distribution. The main testing problem is to test expectation 0 against a
positive expectation. A preliminary test is performed to test the hypothesis that the
variance equals 1 against the alternative of a variance not equal to 1. For convenience
we start with a N(ν, σ2)-distribution. Then the density with respect to Lebesgue
measure equals

1√
2πσ

exp

{
−1

2

(
z − ν

σ

)2
}

=
1√
2πσ

exp
{
− 1

2σ2 z2 +
ν

σ2 z − ν2

2σ2

}
.

Reparameterizing such that (θ, τ) = (0, 0) corresponds with (ν, σ) = (0, 1), we get
θ = ν/σ2, τ = 1

2 (1 − 1/σ2). Hence f(x; θ, τ) represents a normal distribution with
expectation θ/(1−2τ) and variance (1−2τ)−1, written in standard form with respect
to the measure µ, which corresponds to the distribution of (X(1), X(2)) = (Z,Z2) on
R2 when Z is standard normally distributed.
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In view of (4.4.5) we get ψ10 = X(1) and ψ01 = (X(2) − 1)/
√

2. Since EZ3 = 0,
we have ρ = 0 and moreover, Eψ10ψ

2
01 = 0, because EZ5 = 0. Further, Eψ2

10ψ01 =
EZ2(Z2− 1)/

√
2 =
√

2 and hence r = −ψ10/
√

2. Substituting this in the expressions
for SK, SU and TU gives back the Gauss test for SK, an asymptotically equivalent
form of the one-sample t-test for SU and the well-known χ2-test statistic for TU .

Application of Corollary 4.3.3 gives

π∗(b, c)− π̃(b, c) = ϕ(uα − b)h(c, uδ/2)uα/
√

2n + o(n−1/2), (4.4.7)

which approximation was also presented in Theorem 3.2.1. (Note that there the
local alternatives were parameterized as ν = bn−1/2, σ = 1 + c(2n)−1/2, which leads
through the reparameterization to θ = ν/σ2 = bn−1/2+O(n−1) and τ = 1

2 (1−1/σ2) =
c(2n)−1/2 + O(n−1), corresponding to bI

−1/2
11 n−1/2 and cI

−1/2
22 n−1/2, respectively, in

this example.)
Suppose we want to know the error in size if α = 0.05, n = 50, c = −1 and

δ = 0.05. Application of (4.4.7) with b = 0 yields −0.0099 while the simulated value
equals −0.0113. Next consider the power if α = 0.05, n = 50, c = 1, b = 2 and
δ = 0.05. Approximation (4.4.7) gives 0.0359 and the simulated value equals 0.0462.

Finally, suppose that we want to know how wrong the size can be if α = 0.05,
n = 50 and δ = 0.05. Then we have to deal with maxc h(c, 1.96). The maximum equals
0.6581 and is attained at c = 1.4583, cf. also Figure 4.4.1. Therefore, according to
(4.4.7), the error maximized over c equals 0.0112. The simulated value of π∗(0, c) −
π̃(0, c) at c = 1.4583 is 0.0157, while the simulated value of π∗(0, c)−α at c = 1.4583
equals 0.0024. Consequently, there is a rather large discrepancy between the simulated
value of π̃(0, c), which equals 0.0524− 0.0157 = 0.0367, and the level α = 0.05 which
should be achieved. Note that c = 1.4583 corresponds to 1.4118 as value of the
variance of the normal distribution. Hence the variance is rather far away from 1.
The resulting conservatism of the test based on SU is also the reason for the difference
between the approximated and simulated value of π∗(0, c) − π̃(0, c). If we replace
SU by the (exact) t-test in the pre-test procedure, π∗(0, c) − α can be calculated
numerically. Then the result is 0.0119 and the approximation according to (4.4.7),
0.0112, is quite close to it. 2

It is seen from the preceding examples that many interesting situations can be
written in the form of a two-parameter exponential family. This way of presenting
makes application very easy.

4.4.2 Symmetric location-scale families

Let f0 be a given probability density with respect to the Lebesgue measure on R with
f0(x) > 0 for all x ∈ R. Consider the location-scale family defined by

f(x; θ, τ) =
1

1 + τ
f0

(
x− θ

1 + τ

)
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with (θ, τ) in some open neighborhood of (0, 0). Suppose in addition that f0 is sym-
metric: f0(x) = f0(−x) for all x ∈ R. Finally, assume that (Ri)–(Rvi) hold.

The main testing problem in the pre-test procedure concerns the location param-
eter θ. The preliminary test is used to determine whether it may be assumed that
the scale parameter 1 + τ equals 1.

Direct calculation gives

ψ∗10(x) = −f ′0
f0

(x), ψ∗01(x) = −1− x
f ′0
f0

(x),

ψ∗20(x) =
f ′′0
f0

(x), ψ∗02(x) = 2 + 4x
f ′0
f0

(x) + x2 f ′′0
f0

(x),

ψ∗11(x) = 2
f ′0
f0

(x) + x
f ′′0
f0

(x).

(4.4.8)

The symmetry of f0 implies that f ′0/f0 is odd and f ′′0 /f0 even, and therefore ψ∗10 and
ψ∗11 are odd, while ψ∗01, ψ∗20 and ψ∗02 are even. This implies in the first place that
ρ = 0 and Eψ10ψ02 = 0. Hence, Corollary 4.3.3 can be applied with Eψ10ψ02 = 0,
which leads to the simple approximation

π∗(b, c)− π̃(b, c) = 1
2ϕ(uα − b)h(c, uδ/2)uα

(
Eψ2

10ψ01 + 2Ekψ01
)
n−1/2

+ o(n−1/2).
(4.4.9)

This means that the approximation for the difference in a general symmetric location-
scale family is the same as that for the normal case (see (4.4.7)), corresponding to
f0(x) = exp(− 1

2x2)/
√

2π, except for the multiplicative constant Eψ2
10ψ01 + 2Ekψ01,

which may differ from family to family. For the normal distribution Eψ2
10ψ01 =

√
2.

Furthermore, due to the oddness of ψ10 and ψ11 and evenness of the other ψ’s,
we have in addition to ρ = Eψ10ψ02 = 0 that Eψ3

10 = Eψ10ψ
2
01 = Eψ10ψ20 =

Eψ11ψ01 = 0. Again this may reduce the calculations of expectations occurring in
the test statistics and critical values.

For the LMP tests which are used in the following examples, we have already
k = q = 0, and get, using the simplifications mentioned

for SU : r = ψ11 − ψ10ψ01 − 1
2 (2Eψ11ψ10 −Eψ2

10ψ01)ψ10

for TU : r = ψ11 − ψ10ψ01 + 1
2E(−2ψ11ψ10 − ψ01ψ20 + 2ψ01ψ

2
10)ψ10

for the symmetric location-scale family.

Example 4.4.4 Logistic distribution. Let f0 be the logistic distribution, i.e.

f0(x) = e−x(1 + e−x)−2.

Standardizing ψ∗10 and ψ∗01 from (4.4.8), we get

ψ10(x) =
√

3(1− e−x)(1 + e−x)−1,

ψ01(x) = 3(π2 + 3)−1/2{x− 1− (x + 1)e−x}(1 + e−x)−1.
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It follows that

Eψ2
10ψ01 = 3(π2 + 3)−1/2 (4.4.10)

and hence the power or size difference of (4.4.9) in the logistic case is 3(π2 +
3)−1/2/

√
2 = 0.591 times the difference in the normal case (cf. (4.4.7)).

Suppose we want to know how large we should take δ in order that the relative
error of the size (π∗(0, c) − α)/α is at most ε for some given ε > 0 (e.g. ε = 0.2
leading to 2% or 3% if α = 0.025) for all c. Remember that c∗ = c∗(uδ/2) is the c
that maximizes the approximation of π∗(0, c)− α, given in (4.4.1). In view of (4.4.9)
c∗ is the c that maximizes h(c, uδ/2) for given δ. Let h∗(uδ/2) = h(c∗, uδ/2) be the
maximum value. Note that, as h itself decreases in δ, so does h∗. By (4.4.9) and
(4.4.10), δ should be sufficiently large to ensure

h∗(uδ/2) ≤
2εα(π2 + 3)1/2n1/2

3uαϕ(uα)
. (4.4.11)

To evaluate h∗(uδ/2) we use the same further approximation as on p. 33, namely
h∗(x) = 3

5x− 1
2 . Taking n = 25, α = 0.025 and ε = 0.2 and using this approximation

in (4.4.11), we get 3
5uδ/2 − 1

2 ≤ 0.5220, which yields δ ≥ 0.089. The simulated value
of π∗(0, c) at δ = 0.089 and c = uδ/2 − 3

2{1 − 5/(4uδ/2)} = 1.3041 (which is the
approximate solution for c∗ according to p. 33), equals 0.0303, just as it should be.2

Example 4.4.5 Normal mixture. Let f0 be a mixture of two normal distributions,
as often used e.g. in robustness studies (cf. Huber (1981), p. 2)

f0(x) = 0.95ϕ(x) + 0.05ϕ(x/3)/3.

We get

Eψ2
10ψ01 = 1.104

and hence the difference in this mixture model is 1.104/
√

2 = 0.781 times the differ-
ence in the normal case.

Suppose we want to know how large we should take n in order that the (absolute)
error of the size is at most 0.01 when c = 1.5, α = 0.05 and δ = 0.05. Inserting this
in (4.4.9) with b = 0 we get 0.0616 n−1/2 ≤ 0.01 implying n ≥ 37.9. The simulated
value for n = 38 of π∗(0, 1.5) equals 0.0673 and that of π∗(0, 1.5)− π̃(0, 1.5) is 0.0111,
which is close to the required 0.01. 2

It is seen from the examples that pretty good and very useful answers are achieved
for many questions in an easy way using the approximations given in Theorem 4.3.2
and Corollary 4.3.3.



Chapter 5

Power gain by pre-testing?

5.1 Introduction

Pre-test procedures, consisting of a preliminary test followed by either a basic main
test or, in case of rejection, by an alternative, second main test, are often used for
one of the following two reasons. First of all, in practice people strongly prefer simple
procedures and hence like to stick to the basic main test as long as possible. Only if
this causes really unacceptable deviations in the size of the main test (which should
be detected by the preliminary test), one shifts to the alternative main test, which
may be more complicated. The second nice aspect is that in principle a higher power
can be achieved if stronger assumptions can be made. Hence again, if possible one
wants to apply the basic main test, because one feels that always using the robust
second main test implies an unnecessary loss of power in case the model assumptions
for the basic main test hold. As a typical example, consider the use of a preliminary
test to choose between the t-test and the sign test for testing the main hypothesis
of a zero median. The main issue of this chapter is to investigate in what kind of
situations such power gain by the pre-test procedure indeed comes true.

First, let us summarize what we have done so far. In Chapters 2 and 3, we studied
the behavior of the pre-test procedure for the normal one- and two-sample case. The
one-sample case can be considered as a special case of the more general situation
treated in Chapter 4. There we considered a parametric family of densities f(x; θ, τ),
with θ the parameter of interest and τ the nuisance parameter. The preliminary test
concerns the nuisance parameter τ and is, depending on its outcome, followed by a
main test on θ either in a restricted family with the given value of τ , or in the com-
plete family where τ is unknown. For this situation, a general class of tests (including
the standard first-order optimal tests) was considered for each of the three testing
problems in the pre-test procedure. We obtained transparent expressions for both
the deviation in size and the gain in power of the pre-test procedure compared to
the main test in the complete family. These expressions demonstrated that in gen-
eral no substantial power gain can be realized without unacceptable violation of the

65
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prescribed level. The key to the explanation of this phenomenon is the correlation
between the test statistic of the preliminary test on the one hand, and the test statis-
tics of the main tests on the other hand (represented by a correlation parameter ρ).
Wild and uncontrollable variation in the size of the pre-test procedure can only be
avoided if this correlation is really small (like in the previously studied normal case,
where in fact it is zero). But then the two main tests, being first-order optimal in
their respective models, are quite close, and their power difference will be small.

Hence, in this situation the virtue of the pre-test procedure is really largely based
on the aforementioned simplicity: usually no rejection by the preliminary test occurs
(at least, that is what one hopes) and one can stick to the simple basic main test.
Only if rejection occurs, one is forced to perform another, possibly more complicated,
test.

In the above, not only θ, but τ as well, has been a one-dimensional parameter.
However, for higher-dimensional τ , the situation essentially remains the same: as long
as optimal tests are used for each of the three components of the problem, we either
have a stable size but closely related main tests with little power difference, or we
get really different main tests, which opens the way to power gain, but only at the
expense of unacceptable deviations in size.

Nevertheless, interesting situations involving power gain may arise, and these are
the subject of the present chapter. The starting point now is not the parametric
family f(x; θ, τ) where the nuisance parameter τ may or may not be known, but
the basic main test. This test is concerned with the main hypothesis on θ and is
appropriate in a restricted (parametric) model f(x; θ). However, this model may be
incorrect. To check its validity a preliminary test is applied. The preliminary test
picks up a particular property of the family f(x; θ) and explores whether the data are
in agreement with it. For instance, if f(x; θ) represents a symmetric location model
with location parameter θ, then the mean and median in this model coincide and the
preliminary test can be devised for testing whether the difference between mean and
median equals zero. More generally, the preliminary test protects against a limited
number of directions in which the density at hand may deviate from the restricted
model. For simplicity, we assume that the deviations against which the preliminary
test effectively protects, can be parameterized by a single parameter τ , giving back
the restricted family f(x; θ) for some given value of τ . Hence, the preliminary test is
appropriate in a model f(x; θ, τ) and tests whether τ equals some prescribed value.

If the null hypothesis regarding τ is not rejected by the preliminary test, then the
basic main test in the restricted model f(x; θ) is carried out as intended. Otherwise,
the main hypothesis on θ is tested in a non-parametric model in the following sense.
If, for example, θ can be interpreted as the median in the family f(x; θ), then in the
non-parametric case we may also test the corresponding null hypothesis about the
median, and apply the sign test for this purpose. Hence, the interpretation of θ in the
restricted model determines the second main test. In principle, there is a choice which
property to take, since usually θ can be interpreted in several ways. The particular
choice determines the second main test. Note that in contrast to the previous chapter,
where the main hypothesis on θ was tested in a parametric family, the second main
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test in the present setting is often not that complicated, thus resulting in an attractive
pre-test procedure from the point of view of simplicity.

Because the preliminary test protects (mainly) against alternatives of the form
f(x; θ, τ), we analyze the pre-test procedure in this model. The reason for possible
power gain of the pre-test procedure compared to the second main test, becomes now
transparent: typically the second main test provides robustness of validity in a much
larger model, resulting in some loss of power in the model f(x; θ, τ). (Compare again
the sign test, which indeed guarantees the correct level for all continuous densities.)

It is our purpose not only to reveal the properties of the pre-test procedure, but
in particular to clarify when power gain is obtained while still controlling the size.
Although the practical application of the pre-test procedure is straightforward, its
analysis is not trivial. Two quantities play a very important role: (i) the correlation
(ρ) between the score function (ψ10) for the parameter of interest and the score
function (ψ01) for the nuisance parameter, and (ii) the correlation between the basic
main test and the second main test.

• The correlation between the score functions for the parameter of interest and for
the nuisance parameter. The validity of the pre-test procedure, measured by its
size, can only be controlled if the correlation between the score functions for
the parameter of interest and the nuisance parameter is small. Otherwise, the
size of the pre-test procedure varies wildly and unacceptable violations of the
prescribed level cannot be avoided. For an explanation of this effect we refer to
Section 4.2 or 5.2, noting that it is mainly caused by the interplay of the basic
main test and the preliminary test, which remain the same as in Chapter 4. But
even in case of a small correlation, non-negligible departures from the nominal
level can occur. While first-order asymptotics does not reveal this feature, the
use of second-order asymptotics in Theorem 5.3.2 makes clear what is going on.

• The correlation between the basic main test and the second main test. Having
controlled the size of the pre-test procedure, it is indeed possible to get power
gain for the pre-test procedure compared to always using the second main test.
This will happen when the basic main test and the second main test are not too
highly correlated. In principle, the smaller the correlation, the higher the gain
in power. This qualitative statement is made more precise in Theorem 5.3.2,
where a transparent approximation also gives the possible (asymptotic) power
gain in a quantitative way. By this result the aim to show whether it is possible
to get power gain in pre-testing and if so, to give insight in when this occurs
and to what extent, is achieved.

The organization of this chapter is as follows. In Section 5.2 the framework for
our analysis is set. Notation is given, the various models are specified and the classes
of statistics to be considered are given, together with some natural assumptions.

In Section 5.3 we present and discuss the approximation (given by Theorem 5.3.2)
for the size and power difference of the pre-test procedure with respect to the robust
second main test. This approximation gives us the required qualitative and quanti-
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tative insight in the behavior of the pre-test procedure. To arrive at this approxima-
tion, we use second-order asymptotics in n, together with assumptions about the two
correlations mentioned. That these assumptions are necessary and that first-order
asymptotics is generally insufficient to explain deviations of the size of the procedure,
is demonstrated in Section 5.2.

In Section 5.4 the theory is exemplified by considering the pre-test procedure with
essentially the t-test as basic main test for the null hypothesis of a zero median, and
the sign test as second main test. The accuracy of the approximations is illustrated
by comparison with simulation results.

5.2 Notation, assumptions and preliminaries

Let X1, . . . , Xn be i.i.d. r.v.’s with density f with respect to a measure µ on the
measurable space (X ,A). Suppose that we conjecture that this density can be pa-
rameterized as f(x; θ). A short remark on notation should be made. When we write
f , an unknown density is meant, while f(x; θ) indicates a member of a family of
densities with given (and hence known) function f and unknown parameter θ. To
avoid too many different symbols we use the same notation f with different inter-
pretation; which interpretation is the right one is however obvious from the context.
For simplicity of presentation we take θ one-dimensional, but an extension to higher
dimensions is possible. Suppose that, according to the conjectured parameterization,
we are interested in testing the main hypothesis H0 : θ = 0 against H1 : θ > 0.
This can be done by a test in the restricted model f(x; θ). But in order to determine
whether this model is suitable, a preliminary test is performed. This test investigates
whether there are deviations from the model f(x; θ) into a direction parameterized
by a parameter τ (also one-dimensional) giving back the restricted model for τ = 0.
Hence the preliminary test aims at testing H̄0 : τ = 0 against H̄1 : τ 6= 0 in a model
f(x; θ, τ) with f(x; θ, 0) = f(x; θ). If the preliminary test does not reject, the main
hypothesis on θ is tested by the basic main test in the restricted model f(x; θ). If
the preliminary test rejects, however, then a well-defined property that corresponds
to θ = 0 in the restricted family, is tested without making restrictive assumptions on
the density f . This property is often written in the form

∫
ξfdµ = 0 for some given

function ξ, e.g. ξ(x) = sign(x) for the case of the median. As f(x; θ, τ) is an extension
of the restricted family f(x; θ), we should of course also have that θ = 0 in this model
gives

∫
ξfdµ = 0, or, equivalently, that

∫
ξ(x)f(x; 0, τ)dx = 0 for all τ . The hypothe-

ses of the main testing problem are rewritten in the form H∗0 :
∫

ξfdµ = 0 against
H∗1 :

∫
ξfdµ > 0. Without further assumptions on the form of the distribution, it is

asymptotically optimal to base the test simply on the empirical estimator of
∫

ξfdµ,
given by n−1∑ ξ(Xi) (Van der Vaart (1998), p. 368, 385).

So, we consider three models. The smallest one is denoted by f(x; θ). Here,
we test H0 : θ = 0 against H1 : θ > 0. This model may be incorrect. This is
checked by a preliminary test which is appropriate in the somewhat larger model
f(x; θ, τ) with f(x; θ, 0) = f(x; θ). Here we test H̄0 : τ = 0 against H̄1 : τ 6= 0.
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Finally, if the preliminary test rejects, the main testing problem is replaced by testing
H∗0 :

∫
ξfdµ = 0 against H∗1 :

∫
ξfdµ > 0 with the function ξ chosen such that θ = 0

gives H∗0 :
∫

ξ(x)f(x; 0)dµ(x) = 0. Since H∗0 is the extension of H0 in a larger model,
including at least the model f(x; θ, τ), we have also

∫
ξ(x)f(x; 0, τ)dµ(x) = 0 for all τ .

Because the preliminary test protects only against alternatives of the form f(x; θ, τ),
we analyze the pre-test procedure in this model.

Before defining the test statistics, we will give some further notation and condi-
tions. By Pθ,τ we denote that Xi has density f(x; θ, τ). Expectations under this model
are denoted by Eθ,τ or shortly by E if E0,0 is meant. We assume that the regular-
ity conditions (Ri)–(Riv) of the previous chapter, Section 4.2, p. 39 hold. Conditions
(Rv) and (Rvi) (needed for Götze’s Lemma 4.2.2 and for the existence of expectations
and remainder terms) need to be adapted for the tests used in this chapter. They
will be as follows (where the functions k, q, r∗ which will appear in the basic main
test and the preliminary test, are the same as in Chapter 4, and where ξ and w are
functions appearing in the second main test, defined later in this section):

(Rv) lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |ψij(X1)|3I(|ψij(X1)| ≥ x) = 0, for (i, j) = (0, 1), (1, 0),

lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |ξ(X1)|3I(|ξ(X1)| ≥ x) = 0,

lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |k(X1)|3I(|k(X1)| ≥ x) = 0,

lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |q(X1)|3I(|q(X1)| ≥ x) = 0,

lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |r∗(X1)|3I(|r∗(X1)| ≥ x) = 0,

lim
x→∞

sup
(θ,τ)∈Ω0

Eθ,τ |w(X1)|3I(|w(X1)| ≥ x) = 0,

lim
‖t‖→∞

sup
(θ,τ)∈Ω0

|Eθ,τ exp[it1ψ10(X1) + it2{ψ01(X1)− ρψ10(X1)}]| < 1,

lim
‖t‖→∞

sup
(θ,τ)∈Ω0

|Eθ,τ exp[it1ξ(X1) + it2{ψ01(X1)− ρψ10(X1)}]| < 1.

(Rvi) sup
(θ,τ)∈Ω0

Eθ,τ
(
|ψ10(X1)|3 + |ψ01(X1)|3 + |ξ(X1)|3 + |k(X1)|2 + |q(X1)|2

+ |r∗(X1)|2 + |w(X1)|2 + 1
)
|ψij(X1; θ, τ)| <∞

for i, j = 0, 1, 2, 3.

The score functions ψ∗ij(x; θ, τ), under (0,0) denoted by ψ∗ij or ψ∗ij(x), and the ele-
ments I11, I12 and I22 of the Fisher information matrix are as given in Section 4.2, and
also the definitions of the standardized versions ψij(x) and the correlation coefficient
ρ are the same. In addition to

S = n−1/2
n∑
i=1

ψ10(Xi) and T = n−1/2
n∑
i=1

ψ01(Xi) (5.2.1)
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we now define

Ξ = n−1/2
n∑
i=1

ξ(Xi).

The basic main test is meant for testing H0 : θ = 0 in the family f(x; θ, 0),
thus assuming that the form of the underlying distribution is known except for the
parameter of interest itself. A class of test statistics for this problem is given by

SK = S + n−1/2S

{
n−1/2

n∑
i=1

k(Xi)

}
(5.2.2)

for some function k with Ek = 0. The null hypothesis H0 : θ = 0 is rejected in favor
of H1 : θ > 0 for large values of SK. The functions k corresponding to the LMP test,
Rao’s efficient score test, the LR test, the test based on the MLE of θ, and Wald’s
test, are given in (4.2.5).

The only interesting case is the situation where the correlation coefficient ρ is
small, which will be assumed hereafter. This may be explained as follows. Since
the basic main test and the preliminary test are meant for testing problems in the
same parametric models as in Chapter 4, the corresponding test statistics SK and
TU (given below) have the same forms, and hence we may use the same arguments as
there: Under f(x; 0, cI

−1/2
22 n−1/2) the distribution of SK converges to a normal one

with expectation cρ and variance 1. At the same time, TU is asymptotically normal
with expectation c

√
1− ρ2 and variance 1. Hence, for the preliminary test to have

large power, it is necessary that c is large. But then the error in the size of the basic
main test, and together with it the error in the size of the total procedure, grows very
large, unless ρ is small. Therefore, the procedure is unacceptable for large ρ and it is
only natural to restrict attention to the case that ρ is small.

Although the preceding argument could be based on first-order asymptotics in
n, this does not suffice for our analysis. For the present procedure, this can be
seen by considering the sizes of the two main tests and of the combined two-stage
procedure. Under f(x; bI−1/2

11 n−1/2, cI
−1/2
22 n−1/2), the test statistic for the basic main

test converges in distribution to a normal r.v. with expectation b + cρ and variance
1. The test statistic for the second main test will be based on Ξ to first order,
and converges to a normal distribution with expectation bEξψ10 and variance 1. In
situations where ρ = 0, the size of the two main tests is thus the same to first order.
Hence, to first order, the size of the pre-test procedure is equal to the nominal level
if ρ = 0. Nevertheless, numerical work shows that differences in size between the
pre-test procedure and the nominal level are certainly not negligible in practice. To
explain these differences, we need higher-order asymptotics. Note however, that in
the present situation (contrary to that of Chapter 4), the test statistics of the two
main tests do differ in first order, also when ρ = 0. We will see that this causes
differences in power between the pre-test procedure and the (second) main test, while
the size of the procedure still equals the nominal level to first order.
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The fact that small ρ is the only interesting case justifies that in the derivation of
the results, we use expansions not only with respect to n, but also with respect to ρ,
ignoring terms of order ρ3 and ρn−1/2. In this way the results are not only accurate,
but also transparent, which would not have been the case if ρ were taken fixed.

The class of preliminary tests for H̄0 : τ = 0 against (two-sided) alternatives in
the parametric model f(x; θ, τ) with θ unknown, is based on (cf. Section 4.2)[

T − ρS + n−1/2

{
Tn−1/2

n∑
i=1

q(Xi) + Sn−1/2
n∑
i=1

r∗(Xi)

}]
(1− ρ2)−1/2

(5.2.3)

with functions q and r∗ satisfying Eq = Er∗ = 0. In order to get a well-defined statis-
tic, studentizing is needed, since under f(x; bI−1/2

11 n−1/2, 0) the variance of (5.2.3)
depends on the unknown b. Ignoring terms of order ρn−1/2 and n−1, this leads to a
statistic TU of the given form (5.2.3), where r∗ is replaced by

r = r∗ − 1
2

{
Eψ10ψ

2
01 + 2[Eqψ10 + Er∗ψ01]

}
ψ01, (5.2.4)

The preliminary test rejects for large values of |TU |.
Finally, we have to specify the second main test. This test is based on a non-

parametric model and will therefore differ from the corresponding test in the previous
chapter (although we still call it SU).

In that model, the null hypothesis is written as H∗0 :
∫

ξfdµ = 0. Since f(x; θ, τ)
is a sub-model of the large model, f(x; 0, τ) belongs to H∗0 , implying E0,τ ξ = 0 for
all τ and hence Eξ = Eξψ01 = Eξψ02 = 0. Moreover, f(x; θ, 0) belongs to H∗1 for
θ > 0, implying Eθ,0ξ > 0 for θ > 0. Hence, it is natural to assume that Eξψ10 ≥ 0.
This indicates that ξ and ψ10 are positively correlated, as they should be, since tests
based on these functions are meant for the same hypothesis, written as H0 or H∗0 .
Without loss of generality let also Eξ2 = 1. Then it follows from the Cauchy-Schwarz
inequality that Eξψ10 = Eξ(ψ10 − ρψ01) ≤

√
1− ρ2. Hence, by the assumption that

Eξψ10 ≥ 0, we may write Eξψ10 as Eξψ10 =
√

(1− ρ2)(1− γ2) for some γ.
In order to keep convenient clarity in the results, it will be assumed that terms of

order γn−1/2, with γ from Eξψ10 =
√

(1− ρ2)(1− γ2), are negligible. For γ small,
this is of course justified. If γ is not small, it is also justified because then the first-
order terms which depend on γ, will dominate. As a consequence of this assumption,
we may replace ξ by ψ10 in n−1/2-terms with factors of the form Eξh, Eξ2h, Eξ3

for regular functions h. This follows from the Cauchy-Schwarz inequality, e.g. for
the first form: E(ξ − ψ10)h ≤

√
E(ξ − ψ10)2Eh2 =

√
O(ρ2 + γ2)Eh2 = O(ρ + γ),

provided the second moments under (0, 0) exist. For factors of the form Eξ2h or
Eξ3 we need fourth moments in the application of Cauchy-Schwarz. The existence of
second moments of k, r, q and w and fourth moments of ψ10 and ψ01 already follows
from (Rvi). In addition to this, we assume that the following condition holds

(Rvii) Eξ4 <∞, Eψ2
20 <∞, Eψ2

11 <∞, Eψ2
02 <∞.
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Since Eξψ02 = 0, condition (Rvii) also implies that terms with Eψ10ψ02n
−1/2 are of

order ρn−1/2 + γn−1/2, and may be ignored.
The negligibility of terms of order ρn−1/2 and γn−1/2 will simplify the calculation

of the second-order part of the approximate power gain. By considering the power
difference right from the start, and using the similarity of the second-order parts of
the two main tests, we can avoid a lot of terms that we would have to deal with if we
would calculate the powers of the two-stage procedure and of the second main test
separately, and take differences afterwards.

The empirical estimator for
∫

ξfdµ equals n−1/2Ξ. This can be extended to a
class of test statistics based on

Ξ + n−1/2Ξ

{
n−1/2

n∑
i=1

w∗(Xi)

}
(5.2.5)

with Ew∗ = 0. Under the assumptions concerning ξ, the expectation under
f(x; 0, cI

−1/2
22 n−1/2) does not depend on the unknown c up to the considered order,

but again we need to replace the unknown c in the variance by a consistent estimator
in order to get a well-defined test statistic. The variance under f(x; 0, cI

−1/2
22 n−1/2)

equals up to order n−1/2

1 + cn−1/2{Eξ2ψ01 + 2Ew∗ψ01}.

Studentizing leads to a statistic SU of the form (5.2.5) with w∗ replaced by

w = w∗ − 1
2

{
Eξ2ψ01 + 2Ew∗ψ01

}
ψ01. (5.2.6)

Note that studentizing Ξ by means of its sample variance, corresponds to w∗ =
− 1

2 (ξ2 − 1). Then no further correction is needed. Also ignoring terms of order
ρn−1/2 + γn−1/2, we may replace ξ by ψ10 and use

w = w∗ − 1
2

{
Eψ2

10ψ01 + 2Ew∗ψ01
}

ψ01. (5.2.7)

The second main test rejects for large values of SU .
Now we know from (5.2.3) and (5.2.4), from (5.2.2), and from (5.2.5) and (5.2.6) or

(5.2.7) the form of the test statistics TU , SK and SU for the preliminary test and the
two main tests, respectively. We will investigate the power (or size) difference between
the pre-test procedure consisting of these tests and the second main test based on SU .
The latter has the correct level (at least to O(ρn−1/2 + γn−1/2) + o(n−1/2)), since it
does not use possibly incorrect information about the form of the distribution.

5.3 Main results: difference in size and power

In this section we will give an approximation for the difference in size and power be-
tween the pre-test procedure and the main test based on SU . For this approximation
we need a bivariate Edgeworth expansion for the simultaneous distribution of the
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statistics corresponding to the preliminary test and each of the main tests. Since we
consider local alternatives of the form (θn, τn) with

θn = bI
−1/2
11 n−1/2, τn = cI

−1/2
22 n−1/2 with b ≥ 0 and c ∈ R, (5.3.1)

this expansion must be valid under probability measures depending on n. Theo-
rem 5.3.1 below gives the required expansion and is the analogue of Theorem 4.3.1 of
the previous chapter. From that expansion we can derive the critical values for the
three testing problems. Then we have all the ingredients to state the main result in
Theorem 5.3.2. For notational convenience, define λ =

√
1− γ2.

Theorem 5.3.1 Suppose that (Ri)–(Rvii) hold. Let

U1n =
SK − µ1n(b, c)

σ1n(b, c)
, U2n =

SU − µ2n(b, c)
σ2n(b)

and Vn =
TU − µn(b, c)

σn(c)

with

µ1n(b, c) = b + cρ + 1
2{b2Eψ10ψ20 + 2bcEψ10ψ11 + 2(1 + b2)Ekψ10

+ 2bcEkψ01}n−1/2,

σ1n(b, c) = 1 + 1
2{bEψ3

10 + cEψ2
10ψ01 + 4bEkψ10 + 2cEkψ01}n−1/2,

µ2n(b, c) = bλ(1− 1
2ρ2) + 1

2{b2Eψ10ψ20 + 2bcEψ10ψ11

+ 2(1 + b2)Ewψ10 − bcEψ2
10ψ01}n−1/2

σ2n(b) = 1 + 1
2b(Eψ3

10 + 4Ewψ10)n−1/2

µn(b, c) = c− 1
2cρ2 + 1

2{c2Eψ01ψ02 + 2bcEψ01ψ11 + b2Eψ01ψ20

− bcEψ10ψ
2
01 + 2(1 + b2)Erψ10 + 2(1 + c2)Eqψ01}n−1/2,

σn(c) = 1 + 1
2c(Eψ3

01 + 4Eqψ01)n−1/2.

(5.3.2)

Then

Pθn,τn(Uin ≤ u, Vn ≤ v) = Φ(u, v; ρi) + n−1/2
3∑
j=0

cijΦ(j)(u)Φ(3−j)(v)

+ O(ρ4 + ρn−1/2 + γn−1/2) + o(n−1/2)

(5.3.3)

uniformly for (u, v) ∈ R2, with

ρ1 = n−1/2r1(b, c), ρ2 = −ρλ + n−1/2r2(b, c)

for some functions r1(b, c), r2(b, c) satisfying

r2(b, c)− r1(b, c) = − 1
2bEψ2

10ψ01 − bEkψ01,

(5.3.4)
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and

c10 = c20, c11 − c21 = 0, c12 − c22 = − 1
2Eψ2

10ψ01 −Ekψ01,

c13 = − 1
6Eψ3

10 −Ekψ10, c23 = − 1
6Eψ3

10 −Ewψ10.

(5.3.5)

Note that, except for the cancellation of Eψ10ψ02n
−1/2 and the order of the remain-

der term, only the leading terms of µ2n and ρ2 differ from those in Chapter 4, by the
appearance of λ. All expectations, variances, correlations and skewness terms corre-
sponding to both SK and TU remain the same, since the form of these test statistics
is unchanged. Hence, also the proof of this theorem, which we do not present here,
is very similar. It goes along the same lines as the proof of Theorem 4.3.1, except
that it is even slightly more technical. This is due to the fact that in all expectations
occurring in n−1/2-terms, we replace ξ by ψ10, taking account for this replacement
by adding a remainder term of order O(ρn−1/2 + γn−1/2). This is allowed if the
necessary moments exist, as explained before condition (Rvii), which was added for
this purpose. Owing to that replacement, we may again profit from the similarity of
(the n−1/2-terms of) the two main tests in the calculation of r2(b, c) − r1(b, c) and
the differences c1j − c2j . Therefore we get the same expressions for the n−1/2-terms
(except for the fact that terms with Eψ10ψ02n

−1/2 do not appear anymore).

From the marginal distributions under the corresponding null hypothesis it is easy
to derive the critical values for the three separate testing problems. Since σ2n(0) = 1,
we have for the second main test

P0,τn(SU ≤ u) = Φ(u− µ2n(0, c)) + n−1/2c23Φ(3)(u) + O(ρn−1/2 + γn−1/2)

+ o(n−1/2)

with µ2n(0, c) and c23 from (5.3.2) and (5.3.5). Note that µ2n(0, c) = Ewψ10n
−1/2

does not depend on c. Hence, the one-sided test based on SU which rejects H0 : θ = 0
when

SU > uα − c23n
−1/2(u2

α − 1) + µ2n(0, c),

has size α + O(ρn−1/2 + γn−1/2) + o(n−1/2) under (0, τn).
With the tests based on SK and TU the same as before, it follows that the pre-test

procedure rejects H0 : θ = 0 against H1 : θ > 0 when

SK > uα + 1
6Eψ3

10n
−1/2(u2

α − 1) + Ekψ10n
−1/2u2

α and |TU | ≤ uδ/2

or when

SU > uα + 1
6Eψ3

10n
−1/2(u2

α − 1) + Ewψ10n
−1/2u2

α and |TU | > uδ/2.

(5.3.6)

With π∗(b, c) and π̃(b, c) the probabilities of rejection by the pre-test procedure
and the second main test, the following theorem gives the main result: an expression
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for the approximate power gain (or size difference) π∗(b, c)− π̃(b, c) of the two-stage
pre-test procedure compared to the second main test based on SU , which does not
assume restrictive knowledge about the underlying distribution.

Theorem 5.3.2 Suppose that (Ri)–(Rvii) are satisfied. Then

π∗(b, c)− π̃(b, c)

= {Φ(uα − bλ)− Φ(uα − b)}{Φ(uδ/2 − c)− Φ(−uδ/2 − c)}

+ h1(c, uδ/2)[ρϕ(uα − b) + 1
2ρ2{bλ

c
ϕ(uα − bλ) + c(uα − b)ϕ(uα − b)}

+ m(uα)ϕ(uα − b)n−1/2]

+ h2(c, uδ/2)[ρλϕ(uα − bλ) + 1
2cρ2{λ2(uα − bλ)ϕ(uα − bλ)

+ Φ(uα − b)− Φ(uα − bλ)}+ m(uα)ϕ(uα − b)n−1/2]

+ h3(c, uδ/2)[ρ2λ2(uα − bλ)ϕ(uα − bλ)]

+ O(ρ3 + ρn−1/2 + γn−1/2) + o(n−1/2) as ρ→ 0 and n→∞,

(5.3.7)

where

h1(x, y) = x{Φ(y − x)− Φ(−y − x)},

h2(x, y) = ϕ(y + x)− ϕ(y − x),

h3(x, y) = 1
2y{ϕ(y + x) + ϕ(y − x)},

m(y) = y{ 1
2Eψ2

10ψ01 + Ekψ01}.

Proof. Rewrite the power gain (or size difference) π∗ − π̃ as

π∗(b, c)− π̃(b, c) = Pθn,τn(U1n ≤ u1n, Vn ≤ vLn )− Pθn,τn(U2n ≤ u2n, Vn ≤ vLn )

− {Pθn,τn(U1n ≤ u1n, Vn < vUn )− Pθn,τn(U2n ≤ u2n, Vn < vUn )}
(5.3.8)

with U1n and U2n the test statistics for the main tests based on SK and SU , stan-
dardized under local alternatives, u1n and u2n the standardized critical values, and
Vn the standardized test statistic for the two-sided preliminary test, with correspond-
ing lower and upper critical value vLn and vUn . With λ =

√
1− γ2, u0 = uα − b,
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vU0 = uδ/2 − c, vL0 = −uδ/2 − c, and un1 and un2 denoting the n−1/2-terms of u1n and
u2n, these critical values equal

u1n = u0 − cρ + n−1/2un1 + O(ρn−1/2 + n−1),

u2n = uα − bλ + 1
2bλρ2 + n−1/2un2 + O(ρ2n−1/2 + γ2n−1/2 + n−1),

vUn = vU0 + 1
2cρ2 + O(n−1/2),

vLn = vL0 + 1
2cρ2 + O(n−1/2),

where the n−1/2-terms of vUn and vLn will not contribute to the result, and where the
difference between the n−1/2-parts of u1n and u2n equals

un1 − un2 = (Ekψ10 −Ewψ10)(u2
0 − 1)− cm(uα).

Theorem 5.3.1 gives expansion (5.3.3) with

ρ1 = O(n−1/2), ρ1 − ρ2 = ρλ + n−1/2bm(uα)/uα, and

c10 = c20, c11 = c21, c12 − c22 = −m(uα)/uα, c13 − c23 = Ewψ10 −Ekψ10.

This expansion can be used to evaluate (5.3.8). However, we cannot directly apply
Lemma 4.2.1 now, since the difference between u1n and u2n is of order O(ρ+γ2+n−1/2)
instead of order O(ρ + n−1/2). We have to be more careful when taking differences of
terms with u1n and u2n. Distinguishing between terms with ρ, ρ2, γ2 and n−1/2, and
carefully gathering and ignoring terms of the orders in the remainder term of (5.3.7),
leads to the result, as is shown next.

From expansion (5.3.3) and the rewritten form (5.3.8) of π∗ − π̃, it follows that
the first part of the power gain is given by the difference

{Φ(u1n, v
L
n ; ρ1)− Φ(u2n, v

L
n ; ρ2)} − {Φ(u1n, v

U
n ; ρ1)− Φ(u2n, v

U
n ; ρ2)}.

with ρ1 = O(n−1/2) and ρ1 − ρ2 = O(ρ + n−1/2). Using this when expanding for
ρ1 and ρ2 small, together with the facts that u1n − u2n = O(ρ + γ2 + n−1/2) and
vUn = vU0 + O(ρ2 + n−1/2), gives

Φ(u1n, v
U
n ; ρ1)− Φ(u2n, v

U
n ; ρ2)

= {Φ(u1n)− Φ(u2n)}Φ(vUn ) + {ρ1ϕ(u1n)− ρ2ϕ(u2n)}ϕ(vUn )

− 1
2ρ2

2ϕ
′
(u2n)ϕ

′
(vUn ) + O(ρ2

1 + ρ3
2)

= {Φ(u1n)− Φ(u2n)}Φ(vUn )− (ρ2 − ρ1)ϕ(u2n)ϕ(vU0 )

− 1
2 (ρ2 − ρ1)2ϕ

′
(u2n)ϕ

′
(vU0 ) + O(ρ3 + ρn−1/2 + γ2n−1/2 + n−1).

(5.3.9)
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In this expression, we expand u1n, u2n, vUn (up to the required order) for ρ small and
n large around u0 = uα − b, uα − bλ, vU0 = uδ/2 − c, respectively. Substituting the
necessary terms of ρ2 − ρ1, gives for the first part

{Φ(uα − b)− Φ(uα − bλ)}Φ(uδ/2 − c)

+ Φ(uδ/2 − c)[{−cρ− 1
2c2ρ2(uα − b)}ϕ(uα − b)− 1

2bλρ2ϕ(uα − bλ)

+ n−1/2{(Ekψ10 −Ewψ10)(u2
0 − 1)− cm(uα)}ϕ(uα − b)]

+ ϕ(uδ/2 − c)[{ρλ− 1
2ρ2λ2(uα − bλ)(uδ/2 − c)}ϕ(uα − bλ)

+ n−1/2b
m(uα)

uα
ϕ(uα − b) + 1

2cρ2{Φ(uα − b)− Φ(uα − bλ)}].
(5.3.10)

For the second part we get (using c10 = c20 and c11 = c21)

n−1/2
3∑
j=0

{c1jΦ(j)(u1n)− c2jΦ(j)(u2n)}Φ(3−j)(vUn )

= n−1/2
3∑
j=2

(c1j − c2j)Φ(j)(u0)Φ(3−j)(v0) + O(ρn−1/2 + γ2n−1/2 + n−1).

(5.3.11)

Combining these two parts shows that the n−1/2-terms with c13 − c23 and Ekψ10 −
Ewψ10 cancel, as well as those with −b(c12−c22) and bm(uα)/uα. Taking uδ/2 outside
brackets and taking the difference with the expression with −uδ/2 yields the result.
2

The result given by (5.3.7) depends on the family of distributions and the classes
of tests only through the correlations ρ and λ, and through the expectations Eψ2

10ψ01
and Ekψ01 in the function m. Hence, only the function k, coming from the basic main
test, appears in the result. The functions q, r and w, which define the n−1/2-parts of
the other tests, do not influence the final result.

The result π∗− π̃ may be decomposed into two parts. Let π denote the probability
that the basic main test based on SK rejects H0 and π̄ the probability that the
preliminary test rejects H̄0. Then the first part may be written as the product (π −
π̃)(1 − π̄), which is the power difference of the two main tests multiplied by the
acceptance probability of the preliminary test. This part is recognized in the first
three lines (after the equality sign) of (5.3.7) together with the ρ2-part in the second
line of the term with h2. The second part consists of the remaining terms, which are
due to the correlation between the preliminary test and the main tests.
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First consider the size of the procedure. For the size (b = 0) the approximation
(5.3.7) reduces to

ϕ(uα){h1(c, uδ/2)[ρ + 1
2cρ2uα + m(uα)n−1/2]

+ h2(c, uδ/2)[ρλ + 1
2cρ2λ2uα + m(uα)n−1/2]

+ h3(c, uδ/2)[ρ2λ2uα]}.

(5.3.12)

For λ = 1, the coefficients for h1 and h2 are equal and the result agrees with the
result in the previous chapter, see formula (4.4.1), p. 57. The behavior of the size
may be deduced by analyzing the properties of the functions h1, h2 and h3. This has
been done on p. 31 and p. 57, 58, where Figure 4.4.1 shows for δ = 0.05 the functions
h = h1 + h2, h1, h3 and c = h1(c,∞) = h(c,∞) (to illustrate the effect of always
using the basic main test (δ = 0) without preliminary test). The function h3, being
even in c, is positive for all c. Regarding h1 and h2, the reasoning there shows that
0 ≤ h1 + h2 ≤ h1 ≤ c for all uδ/2 and c ≥ 0, and that h = h1 + h2 and h1 have
a maximum for some value of c > 0. The same holds when we replace h2 by λh2
or λ2h2, since 0 ≤ λ ≤ 1. (For c ≤ 0, inequalities are reversed since h1 and h2 are
odd in c.) Therefore, the interpretation of these properties does not change much in
the present situation. Using the basic main test for the restricted model without a
preliminary test, leads to an error in the size that grows linearly with the deviation
of τ (or c) from 0:

ϕ(uα)c[ρ + 1
2cρ2uα + m(uα)n−1/2].

Compared to the application of the basic main test, pre-testing leads to a reduction
of the error in the size (see (5.3.12)). The error is now redescending, and (for not too
large ρ) smaller than the first line of (5.3.12) (the terms with h1). This holds true
because the deviation from the level due to the terms with h1, is partly compensated
by the terms with h2. This compensation occurs as long as ρ is small enough in order
that the ρ2-terms in the term with h3 cannot overrule this again.

Notice however, that in situations where ρ = 0, all first-order terms cancel. Hence,
the n−1/2-terms are essential to explain differences between the actual size of the pre-
test procedure and the prescribed level.

Now let us pay attention to the power. In case λ = 1, power gain is (almost only)
possible at the cost of a larger size. In the present situation, where λ < 1, the terms
with Φ(uα− bλ)−Φ(uα− b) do not cancel and lead to a possibly substantial increase
of power without automatically exceeding the prescribed level.

If the correlation between the two main tests is smaller (λ smaller or ρ larger),
indicating that the two main tests differ more, then for smaller λ in combination with a
small ρ, a larger (possibly substantial) power gain of the pre-test procedure compared
to the power of the second main test can be achieved without getting unacceptable
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sizes. For ρ = 0 the result reduces to

{Φ(uα − bλ)− Φ(uα − b)}{Φ(uδ/2 − c)− Φ(−uδ/2 − c)}

+ {h1(c, uδ/2) + h2(c, uδ/2)}m(uα)ϕ(uα − b)n−1/2
(5.3.13)

and λ occurs only in the leading term. Hence, in this case the difference between the
two main tests does not influence the size at all. Therefore, for ρ = 0 one can first
control the size, which then does not change anymore if the second test is chosen such
that λ is smaller, and a substantial power gain can be achieved.

5.4 Numerical example: testing the median

The theory of the preceding section is now illustrated by means of the previously
mentioned example, in which a preliminary test is performed to choose which of two
main tests is used to test whether the median equals zero. For this example, we
compare simulation results regarding power and size of the pre-test procedure with
the approximation given in Theorem 5.3.2.

Let X1, . . . , Xn be r.v.’s from a continuous distribution with corresponding density
f with respect to Lebesgue measure. Consider the restricted model f(x; θ) = ϕ(x−θ).
The main testing problem in this model concerns testing H0 : θ = 0 against H1 : θ > 0.
From this model it follows that ψ10(x) = x. Hence, a first-order optimal test within
this model is the Gauss test, corresponding to SK from (5.2.2) with k = 0. Its critical
value equals uα, which corresponds to (5.3.6), since Eψ3

10 = Ekψ10 = 0. The null
hypothesis of a zero median is rejected when n−1/2∑n

i=1 Xi > uα.
Note that we use the Gauss test instead of the t-test. In principle the theory may

be extended with additional nuisance parameters in the restricted model to account
for an unknown variance, but for this chapter that is not relevant and might distract
the attention from the present purpose: showing that power gain is possible and in
what kind of situations. For this purpose, the difference between the Gauss test and
the t-test is not essential.

In case the restricted model might not hold, we need a more general test. Inter-
preting θ in the restricted model as the median, we can for any continuous density f
rewrite the hypothesis as H∗0 :

∫
ξfdx = 0 with ξ(x) = sign(x). Here sign(x) = ±1

for x > 0 or x < 0, respectively, and sign(x) = 0 for x = 0. The second main test
becomes the sign test, based on the difference between the number of observations
strictly larger than 0, and the number of observations strictly smaller than 0. Within
the class of continuous distributions, this test is well-known to be uniformly most
powerful for testing H∗0 (Lehmann (1986), p. 106, 107). We take w∗ = 0 in (5.2.5).
Since the variance of Ξ exactly equals 1, we do not explicitly need to studentize, and
hence w = w∗ = 0 in SU . This is in accordance with (5.2.6). Again we have Eψ3

10 = 0
and Ewψ10 = 0 in (5.3.6). So the critical value reduces to uα again.

However, the test statistic Ξ has a lattice distribution with jumps of order n−1/2.
Hence, the remainder term of approximation (5.3.7) presented in Theorem 5.3.2 can-
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not be of order o(n−1/2) if the second main test rejects when Ξ > uα. But a minor
modification suffices to achieve the order given by the theorem. An Edgeworth ex-
pansion for the distribution of the discrete variable remains valid to order n−1/2 when
the original distribution function is replaced by its polygonal approximant (which is
continuous and equals the original distribution function at midpoints of the lattice
and which equals the average of its upper and lower limits at lattice points), (see
Feller (1966), p. 540). Using randomization, we can develop a test with the same
size and power (to the order considered) as the test which would reject when a r.v.,
distributed according to the polygonal approximant of the distribution of Ξ, would
exceed uα.

Let cα,n = uαn1/2 + 1. Then the nearest lattice point of the distribution of∑n
i=1 ξ(Xi) below cα,n is the integer kα,n given by

kα,n =

2b 1
2cα,nc if n is even

2b 1
2 (cα,n + 1)c − 1 if n is odd.

(5.4.1)

If p = 1
2 (cα,n − kα,n) denotes the difference between the real-valued and the integer-

valued “critical values”, divided by 2 such that p lies between 0 and 1, then the test
which rejects with probability 1 if

∑n
i=1 ξ(Xi) > kα,n

with probability 1− p if
∑n
i=1 ξ(Xi) = kα,n,

(5.4.2)

has the same size and power as the test based on the “continuous version” of Ξ. The
approximation given by Theorem 5.3.2 is applied with the sign test randomized in
this way.

Finally, we have to provide the model f(x; θ, τ) and the corresponding preliminary
test which has to determine whether the Gauss test or the sign test is used to test the
main null hypothesis of a zero median. For this testing problem there is considerable
freedom of choice. Therefore, we consider a whole class of alternative models f(x; θ, τ)
for the deviations from the restricted model f(x; θ). Corresponding to this class, there
is a class of preliminary tests that are (first-order) optimal for the considered model.
The preliminary test aims to test H0 : τ = 0 against H1 : τ 6= 0, where τ parameterizes
the deviations from the restricted model against which protection should be offered.
It is natural to consider deviations of the following form

f(x; θ, τ) = (1− τ)ϕ(x− θ) + τg(x− θ)

= ϕ(x− θ)
{

1 + τ

(
g

ϕ
(x− θ)− 1

)} (5.4.3)

for some given function g. If g is a density and τ is positive (between 0 and 1), then
this may be interpreted as a contamination model.

There are two conditions which must be satisfied, as explained in Section 5.2.
First, it is necessary that Eξψ01 = 0, since f(x; 0, τ) should belong to H∗0 . Secondly,
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the side condition of small ρ has to be respected, since otherwise the size of the
procedure may deteriorate.

It is easy to construct a class of functions g for which these two conditions are
satisfied. Let g be a density with corresponding distribution function G, and let h
denote a symmetric density on (0,1) with distribution function H. We consider the
class satisfying

G = H ◦ Φ, hence g = (h ◦ Φ)ϕ

with h(t) = (2s + 1)(2t− 1)2s for 0 ≤ t ≤ 1, s = 1, 2, ...
(5.4.4)

In order to achieve symmetry, the density h on (0,1) is an even power with its minimum
at t = 1

2 . Then g, and hence also ψ∗01(x) = (g/ϕ)(x) − 1, is even, which leads to
Eξψ01 = 0 and ρ = Eψ10ψ01 = 0 due to the oddness of both ξ and ψ10. The
boundedness of ψ∗01 assures that its moments do not deteriorate. Note that in order
for f(x; 0, τ) = ϕ(x){1 + τ

[
(2s + 1)(2Φ(x)− 1)2s − 1

]
} to be positive for all x, it is

necessary and sufficient that −1/(2s) ≤ τ ≤ 1.
From (5.4.3) and (5.4.4) it follows that ψ∗01(x) = (2s + 1)(2Φ(x) − 1)2s − 1 and

ψ01(x) = ψ∗01(x)I−1/2
22 with I22 = (2s)2/(4s + 1). The preliminary test is based on

TU with ψ01 as given, and with ρ = 0, q = 0 and r∗ = 0. Since Eψ10ψ
2
01 = 0 by

oddness of ψ10, r = r∗ = 0 after studentization. The null hypothesis H̄0 : τ = 0 is
therefore rejected when |n−1/2∑n

i=1 ψ01(Xi)| > uδ/2.
Summarizing, first a preliminary test is performed based on TU with ψ01(x) =

{
√

4s + 1/(2s)}{(2s+1)(2Φ(x)−1)2s−1}, ρ = 0 and q = r = 0. After acceptance, the
main hypothesis is tested by the Gauss test, based on SK with ψ10(x) = x and k = 0.
After rejection, the randomized sign test is used, based on SU with ξ(x) = sign(x)
and w = 0. The pre-test procedure (with these tests) is analyzed in the model given
by (5.4.3) and (5.4.4).

Now we present numerical results for the case s = 1, and α = δ = 0.05. For
n = 25, 50, 75 and 100, for different values of b between 0 and 1.5, and for c varying
between −1 and 2, we performed 100 000 simulations. This implies that the standard
deviations for the simulated power differences π∗ − π̃ are at most (100 000)−1/2 =
0.0032. If π∗ or π̃ is at most 0.05, then this reduces to 0.0019, if they are both
less than 0.05, then the standard deviation of the difference is not more than 0.001.
Observations from the given density were generated using the acceptance-rejection
method. As a majorizing function we used a multiple of the standard normal density,
since f(x; 0, τ) ≤ ϕ(x){1+ |τ |2s} for all x. The approximate size difference and power
gain are given by Theorem 5.3.2 with Eψ2

10ψ01 =
√

15/π.
Figure 5.4.1 shows simulated and approximate values for the power or size dif-

ference π∗ − π̃ as a function of c for n = 50 and for different values of b. For the
other values of n, the pattern was not really different, except for the contribution of
n−1/2-terms. These are important for the size deviations, but are relatively small if
power gain is considered.

The size difference is for all parameter combinations considered less than 0.014,
and decreases for larger n, equalling at most 0.008 for n = 100 and c ≈ 1.5. (Note
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Figure 5.4.1 Power gain (or size difference) for several values of b, as a function of the
deviation from the restricted model for s = 1, α = δ = 0.05 and n = 50.

that this is much better than the size difference of the Gauss test, which is monotone
and equals more than 0.02 for c = 2 and n = 100, almost 0.03 for n = 50, and about
0.04 for n = 25.) The maximal error between the simulated and approximated value
of the size varies between 0.001 for n = 100, and 0.002 for smaller n.

For the power gain, the maximal error of the approximate compared to the simu-
lated value varies for c > 0 from 0.003 to 0.01 when n decreases from 100 to 25, and
for c < 0 from 0.01 to 0.02 for decreasing n.

The main result is the substantial power gain which is achieved: for all n its
maximal value for b = 1.5 equals about 0.13, while the simulated power π̃ was only
0.24 for n = 25 and 0.29 for n = 100. For c = 0, where there is no size deviation, the
power gain equals for all n more than 0.10, compared to a power π̃ of less than 0.33
for the sign test. So indeed, there are situations in which it is possible to gain much
power without getting unacceptable size deviations.
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Summary

In statistical practice, it frequently happens that one is interested in a certain pa-
rameter, but that there are doubts about the adequacy of the statistical model. In
such a situation the assumptions of the model may be tested by a preliminary test.
In this thesis we consider so-called pre-test procedures, in which the preliminary test
on the adequacy of a given restricted model is followed by a main testing problem
on a parameter of interest. If the preliminary test does not reject, then a basic main
test that is suitable for the restricted model is performed. If the preliminary test does
reject, then a more general main test is used.

The implicit idea behind these kinds of procedures is that researchers often want
to use the main test for the restricted model as long as possible, either because that
test is simpler or more familiar to them or to their clients, or because that test yields
a higher power if the restricted model holds. The preliminary test should protect
against inappropriate use of the basic main test. However, the preliminary test may
fail to reject and moreover, test statistics for the preliminary test and the main tests
may be dependent. Although in practice these two problems are mostly ignored, they
do influence the size, which differs from the nominal level of the main test, and the
power of the pre-test procedure.

It is the aim of this thesis to gain insight in the consequences of pre-testing for the
size and power of the whole pre-test procedure as a function of the underlying param-
eters. As first-order asymptotics turns out to be insufficient, higher-order asymptotic
methods are used to derive transparent expressions which provide the desired quali-
tative and quantitative insight.

In Chapters 2 and 3, we consider the normal one- and two-sample problem. Since
the two-sample t-test for testing the equality of two normal means requires homoge-
neous variances, a preliminary F -test is often advised to check this assumption. After
rejection by the F -test one may use the Welch-Satterthwaite test as an alternative.
In the one-sample analogue, the χ2-test is used as preliminary test for the variance,
the Gauss test as basic main test, and the one-sample t-test as alternative main test
for the mean.

First, we derive for the one- and two-sample problem approximations for the size of
the basic main test and for the power of the preliminary variance test, evaluated under
the more general model in which the assumption on the variance(s) does not need to
be true. Solving from these approximations the number of observations needed such
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that the preliminary test has a sufficiently large power to get adequate protection,
shows that very large sample sizes are needed. It is observed that in order to get simple
and accurate approximations for the sample size, first-order asymptotics suffices for
the preliminary test, while for the main test second-order asymptotics is required.

In Chapter 3 we consider the procedure as a whole, thus also taking into account
the dependence between the tests. A transparent approximation for the size and
power difference of the pre-test procedure compared to that of the general main test
(which has the correct level) is derived. Numerical examples show the usefulness
and accuracy of the approximation. It turns out that the result can be decomposed
into two parts. One part equals the product of the acceptance probability of the
preliminary test and the difference of the rejection probabilities of the two main tests.
This part reflects the idea of the previous chapter that in order to control the size
of the procedure, the power of the preliminary test should be large when the size of
the basic main test differs too much from the nominal level. The second part may
be viewed as a correlation term and partly compensates the first part. The power
difference turns out to be a multiple of the size difference and hence power gain is
only possible at the cost of size violation. Furthermore, the power and size difference
are antisymmetric about the null hypothesis value of the preliminary testing problem
for the variance. This implies that power gain at a certain value of the variance goes
hand in hand with power loss at another value, while the actual value is not known
beforehand. For the two-sample case the differences vanish when the sample sizes are
equal, and increase when the sample sizes differ more.

Chapter 4 discusses the pre-test procedure for a general family of densities with
two parameters. For convenience we assume that they are one-dimensional, but this
is not a serious restriction. The preliminary test investigates whether the nuisance
parameter equals a given value or not. It is followed by a main test on the param-
eter of interest, either in the restricted model with the given value of the nuisance
parameter, or in the complete model that contains the nuisance parameter. For a
class of first-order optimal tests, the pre-test procedure is analyzed. In this analysis,
the correlation between the score functions corresponding to the parameter of inter-
est and the nuisance parameter plays a crucial role. Arguments based on first-order
asymptotics already show that the pre-test procedure cannot work satisfactorily if
this correlation parameter is not small. Hence, it only makes sense to consider the
situation of a small correlation parameter. This is used in addition to second-order
asymptotics to arrive at a transparent as well as accurate approximation for the size
and power difference. In the result the classes of tests and the family of distributions
are involved through only four parameters. The conclusions that may be drawn can
be interpreted in a similar way as those in the normal one-sample case, which fits in
the general situation with a correlation parameter of zero. Moreover, a small gain in
power not due to violation of the size is possible now when the (unknown) nuisance
parameter equals the supposed value. However, depending on the family of distri-
butions, the size may still exceed the nominal level. Numerical results for several
examples from an exponential family of distributions and a symmetric location-scale
family illustrate the accuracy of the approximation.
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In the final chapter, we consider a situation in which power gain by pre-testing
is possible. We assume that the restricted model contains only the parameter of
interest, and that the preliminary test tests on a particular property of this model.
Deviations from this property are parameterized by a single (nuisance) parameter.
After rejection by the preliminary test, we now use an alternative main test that
is robust in a much larger model than the model of deviations against which the
preliminary test may protect. The procedure is analyzed in the latter model for a
class of tests that contains more general alternative main tests than the class of tests
considered in Chapter 4. The expression for the power and size difference of the
pre-test procedure compared to the general main test, shows that substantial power
gain, not merely due to size violation, is possible if the alternative main test really
differs from the basic main test. The smaller the correlation between the two main
tests, the larger the power gain. As an example, the problem of testing the median
is considered, with essentially the t-test as basic main test and with the sign test as
alternative. For this example theoretical results are compared with simulation results.
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Samenvatting

In de statistiek komt het vaak voor dat men gëınteresseerd is in een gegeven parameter,
maar twijfels heeft over de geschiktheid van het statistische model. In zo’n situatie
kunnen de aannames van het model getoetst worden met behulp van een voorafgaande
toets, een pretoets. In dit proefschrift beschouwen we zogenaamde pretoetsprocedures,
waarin de pretoets voor de geschiktheid van een gegeven beperkt model gevolgd wordt
door een toetsingsprobleem voor de parameter waarin we gëınteresseerd zijn. Als de
pretoets niet verwerpt, dan wordt een hoofdtoets uitgevoerd die toegesneden is op het
beperkte model. Als de pretoets wel verwerpt, dan wordt een algemenere hoofdtoets
gebruikt.

Het impliciete idee achter dit soort procedures is dat onderzoekers vaak de hoofd-
toets voor het beperkte model willen gebruiken waar dat maar mogelijk is. Dit is
enerzijds omdat die toets eenvoudiger is of omdat zij of hun klanten er beter bekend
mee zijn, anderzijds omdat die toets een hoger onderscheidend vermogen haalt als het
beperkte model geldt. De pretoets moet beschermen tegen onterecht gebruik van de
speciale hoofdtoets. Helaas kan de pretoets wel eens falen, en bovendien kunnen de
toetsingsgrootheden voor de pretoets en voor de hoofdtoetsen afhankelijk zijn. Hoe-
wel deze twee problemen in de praktijk meestal genegeerd worden, bëınvloeden ze wel
degelijk de onbetrouwbaarheid, die verschilt van de onbetrouwbaarheidsdrempel van
de hoofdtoets, en het onderscheidend vermogen van de pretoetsprocedure.

Het doel van dit proefschrift is om inzicht te krijgen in de consequenties van pre-
toetsen voor de onbetrouwbaarheid en het onderscheidend vermogen van de gehele
pretoetsprocedure, als functie van de onderliggende parameters. Aangezien eerste-
orde-asymptotiek ontoereikend blijkt te zijn, wordt hogere-orde-asymptotiek gebruikt
om doorzichtige uitdrukkingen af te leiden, die het gewenste kwalitatieve en kwanti-
tatieve inzicht verschaffen.

In de hoofdstukken 2 en 3 beschouwen we het normale één- en twee-
steekproevenprobleem. Omdat voor het toetsen op gelijkheid van twee verwachtingen
uit normale verdelingen met behulp van de twee-steekproeven-t-toets homogene vari-
anties nodig zijn, wordt vaak een voorafgaande F -toets aanbevolen om deze aanname
te toetsen. Na verwerpen door de F -toets zou men de Welch-Satterthwaite-toets als
alternatief kunnen gebruiken. In het één-steekproefanalogon wordt de χ2-toets ge-
bruikt als pretoets voor de variantie, de Gauss-toets als speciale hoofdtoets, en de
één-steekproef-t-toets als alternatieve hoofdtoets voor de verwachting.
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Eerst leiden we voor het één- en twee-steekproevenprobleem benaderingen af voor
de onbetrouwbaarheid van de speciale hoofdtoets en voor het onderscheidend vermo-
gen van de pretoets. We doen dit onder het algemenere model waarin de aanname met
betrekking tot de variantie(s) niet waar hoeft te zijn. Lossen we uit deze benaderingen
het benodigde aantal waarnemingen op zodanig dat de pretoets een onderscheidend
vermogen heeft dat groot genoeg is om adequaat bescherming te kunnen bieden, dan
blijken zeer grote steekproefomvangen nodig te zijn. Om simpele en accurate bena-
deringen voor de steekproefomvang te krijgen, volstaat eerste-orde-asymptotiek voor
de pretoets, terwijl voor de hoofdtoets tweede-orde-asymptotiek vereist is.

In hoofdstuk 3 beschouwen we de pretoetsprocedure in z’n totaliteit, waarbij we
dus ook de afhankelijkheid tussen de toetsen meenemen. Er wordt een doorzichtige
benadering afgeleid voor het verschil in onbetrouwbaarheid en onderscheidend vermo-
gen van de pretoetsprocedure ten opzichte van de algemene hoofdtoets (die de juiste
onbetrouwbaarheid heeft). Numerieke voorbeelden illustreren de bruikbaarheid en
nauwkeurigheid van de benadering. Het resultaat blijkt in twee delen te kunnen wor-
den gesplitst. Eén deel is gelijk aan het produkt van de kans op niet-verwerpen door
de pretoets en het verschil tussen de kansen waarmee de twee hoofdtoetsen verwerpen.
Dit stuk weerspiegelt het idee uit het vorige hoofdstuk, dat om de onbetrouwbaarheid
onder controle te houden, het onderscheidend vermogen van de pretoets groot moet
zijn wanneer de onbetrouwbaarheid van de speciale hoofdtoets teveel afwijkt van de
onbetrouwbaarheidsdrempel. Het tweede stuk kan gezien worden als een correlatie-
term en compenseert gedeeltelijk het eerste stuk. Het verschil in onderscheidend ver-
mogen blijkt een veelvoud te zijn van het verschil in onbetrouwbaarheid en daarom
is winst in het onderscheidend vermogen alleen mogelijk ten koste van een grotere
onbetrouwbaarheid. Verder zijn de verschillen in onderscheidend vermogen en onbe-
trouwbaarheid antisymmetrisch rondom de nulhypothesewaarde van het voorafgaande
toetsingsprobleem voor de variantie. Dit impliceert dat winst in onderscheidend ver-
mogen voor een bepaalde waarde van de variantie hand in hand gaat met verlies van
onderscheidend vermogen voor een andere waarde, terwijl de werkelijke waarde van
tevoren niet bekend is. Voor het twee-steekproevenprobleem verdwijnen de verschil-
len als de steekproefgroottes gelijk zijn, en stijgen ze wanneer de steekproefgroottes
meer van elkaar verschillen.

Hoofdstuk 4 bespreekt de pretoetsprocedure voor een algemene familie van dicht-
heden met twee parameters. Voor het gemak nemen we aan dat deze ééndimensionaal
zijn, maar dit is geen serieuze beperking. De pretoets onderzoekt of de nuisance pa-
rameter gelijk is aan een gegeven waarde of niet. Daarna volgt een hoofdtoets op de
parameter waarin we gëınteresseerd zijn, ofwel in het beperkte model met de gegeven
waarde van de nuisance parameter, ofwel in het volledige model waar de nuisance
parameter nog in voorkomt. Voor een klasse van eerste-orde-optimale toetsen wordt
de pretoetsprocedure geanalyseerd. In deze analyse speelt de correlatie tussen de
score functies horend bij de parameter waarin we gëınteresseerd zijn en de nuisance
parameter een cruciale rol. Argumenten gebaseerd op eerste-orde-asymptotiek laten
al zien dat de pretoetsprocedure niet tot tevredenheid kan werken als deze correla-
tieparameter niet klein is. Daarom heeft het alleen maar zin de situatie met een
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kleine correlatieparameter te bekijken. Dit gebruiken we in aanvulling op tweede-
orde-asymptotiek om tot een zowel doorzichtige als accurate benadering te komen
voor het verschil in onbetrouwbaarheid en onderscheidend vermogen. In het resul-
taat komen de klasse van toetsen en de familie van verdelingen voor via slechts vier
parameters. De conclusies die we kunnen trekken, kunnen op gelijksoortige manier
gëınterpreteerd worden als die in het normale één-steekproefgeval, dat in de algemene
situatie past met een correlatieparameter van nul. Bovendien is nu een kleine winst in
onderscheidend vermogen, niet als gevolg van een afwijking in de onbetrouwbaarheid,
mogelijk, wanneer de (onbekende) nuisance parameter gelijk is aan de veronderstelde
waarde. De onbetrouwbaarheid kan echter nog steeds de onbetrouwbaarheidsdrem-
pel overschrijden, afhankelijk van de familie van verdelingen. Numerieke resultaten
voor verschillende voorbeelden uit een exponentiële familie van verdelingen en een
symmetrische locatie-schaalfamilie illustreren de nauwkeurigheid van de benadering.

In het laatste hoofdstuk beschouwen we een situatie waarin een groter onderschei-
dend vermogen door pretoetsen wel mogelijk is. We nemen aan dat het beperkte
model alleen de parameter bevat waarin we gëınteresseerd zijn, en dat de pretoets op
een speciale eigenschap van dit model toetst. Afwijkingen van deze eigenschap wor-
den geparametriseerd door één nuisance parameter. Na verwerpen door de pretoets
gebruiken we nu een alternatieve hoofdtoets die robuust is in een veel groter model
dan het model van afwijkingen waartegen de pretoets kan beschermen. De procedure
wordt in het laatstgenoemde model geanalyseerd voor een klasse van toetsen die alge-
menere alternatieve hoofdtoetsen bevat dan de klasse van toetsen in hoofdstuk 4. De
uitdrukking voor het verschil in onderscheidend vermogen en onbetrouwbaarheid van
de pretoetsprocedure ten opzichte van de algemene hoofdtoets, laat zien dat een sub-
stantiële winst in onderscheidend vermogen, niet alleen ten gevolge van een te grote
onbetrouwbaarheid, mogelijk is als de alternatieve hoofdtoets echt verschilt van de
speciale hoofdtoets. Hoe kleiner de correlatie tussen de twee hoofdtoetsen, hoe groter
de winst in onderscheidend vermogen. Als voorbeeld beschouwen we het toetsen van
de mediaan, met in essentie de t-toets als speciale hoofdtoets en met de tekentoets
als alternatief. Voor dit voorbeeld worden theoretische resultaten vergeleken met
simulatieresultaten.
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