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Relations Between Finite Zero Structure of The Plant and
The Standard H., Controller Order Reduction

Takao Watanabe!

Abstract

This paper finds new facts about a relation between the
finite unstable as well as stable invariant zero structure
of the generalized plant and the order reduction of the
H,., controller, and moreover characterizes a class of
reduced-order H . controllers on the basis of the invari-
ant zeros.

1 Introduction

QOver the last few decades, there has been a great interest
in the issue of solving the H, control problem, possibly
due to a wide recognition that the H,, control is one
of the most promising tools for robust control problems.
Since then, solutions to the problem have been proposed
in many researches. Thus, we have many ways to design
an Hoo controller. On the other hand, the H,, controller
often needs to be obtained with a reduced order that is
less than the order of the generalized plant, however
1t contains difficulties in designing a reduced-order H,
controller.

This paper focuses on cobtaining information about the
relation between the structure of a plant and the order
of the controller that is to be designed for the plant. If
we have a priori knowledge about the relation, we can
predict the order of the Hy, controller when construct-
ing a generalized plant, and we can utilize it in designing
a reduced-order H,, controler. For example, we know
that an output feedback controller that is composed of a
minimal-order observer and a state feedback can stabi-
lize a closed-loop system with an order less than that of
the plant. Based on this knowledge, methods for design-
ing reduced-order H,, controllers have been obtained
[1,2]. Thus, one important thing in the reduced-order
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H, controller design might be to know in advance facts
about the relation between the structure of the general-
ized plant and the order reduction of the H,, controller.

Notation: I, denotes the identity matrix of dimension
n X n. We denote the set of real numbers by R, the en-
tire complex plane by C, and subclasses of these seis as
RY*={seR|s>0},°={se€C|Re(s)=0},Ct =
{s e C|Re(s) >0}, and T = {s€ C|Re(s) <0}
The class of stable real rational transfer functions is de-
noted by RHo,. For a matrix A4 € C**™, we denote
the set of its singular values by ¢(A), the transpose ma-
trix by A7, the conjugate transpose by A*, the Moore-
Penrose generalized inverse by A' and an orthogonal
compliment by AL. In this paper, when the matrix A
has full rank, the matrix AL is selected in such a way
that AL is either inner or co-inner, satisfies AL A =0
and either (A A') or (AT (A1)T) is square and in-
vertible. The transmission zeros of a system are defined
as the zeros of its transfer matrix. The invariant zeros of
a realization for a system are defined via the Rosenbrock
system matrix.

2 Preliminaries

2.1 Reduced-order H., control problem
Consider the following linear continunous-time system

;1':=A.1:+Blw+Bgu
Y: z=Ciz+ Dyyw+ Disu {1)
y=Caz 4+ Dyyw+ Daau

where = € R” is the state, w & R™ is the disturbance
input, v € R™2 is the control input, z € RP! is the con-
trolled output, y € RP? is the measurement output. We
make a standing assumption that the triple (A4, B2, Co)
18 stabilizable and detectable. We denote the transfer
function of the system ¥ as

Z:12(‘3)) (2)

_ {Zu(s)
E(s)—(zgl(s) Ta(s)

where a subsystem Z;;(s) is represented by Ij;(s) =
Dij+Ci (sl —A) ' Bi,i,j=1,2.

We assume that a controller is represented by

7= Aen+ Bry

Rm-
HICH,'+D;¢y 7”6 ) (3)

EK'.

1101

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 11, 2009 at 04:28 from |IEEE Xplore. Restrictions apply.



with the minimal realization. The H, suboptimal con-
trol problem is to find a controller that stabilizes the
resulting closed loop system composed of £ and L,
and that makes the H.,-norm of the closed loop system
strictly less than an a priori given bound -, if one ex-
ists. Here we cali ny the order of the H, controller. The
reduced-order H,, control problemn that we consider in
this paper includes clarifying

1. a priori knowledge about the relation between the
H., controller-order reductionr and the structure
of the plant, and obtaining

2. a way how we obtain a reduced-order H,, con-
troller practically by using the knowledge.

In our recent paper, we have characterized a class of
reduced order H., controllers by using the structure of
invariant zeros of 2q;.

Theorem 1
Suppose that the H., control problem for X 1s solvable.
Then there exists an H,, controller of order

D21) — rank (Egl (O’))) (4)

where & > 0 is an invariant zero of the system %,;.

ni. < n— {rank (C,

2.2 The goal of this paper
In the above result there are some issues to be solved.

fi) The result uses only one zerc on the positive real
axis. Hence, if there exist plural zeros on the posi-
tive real axis, it is impossible to use those zeros in
order to reduce the order of the controller further.

(i1) In the case where the system X,; has invariant
zeros in the open right half plane, it is unknown
whether we can obtain a reduced-order H., con-
troller by using a zero of complex number.

(11) In the case where the system X,; has invariant
zeros in the open left half plane, it is unknown
whether we can obtain a reduced-order Ho, con-
troller by using them.

Thus, the goal of this paper is to invesitigate relations be-
tween the finite invariant zeros and the order reduction
of the H,, controller that is derived with the two-ARE
approach in the standard H, problem.

3 AREs and H., controllers

3.1 Assumptions

In this section we recall the standard solution that is
derived by solving two algebraic Riccati equations [3-
5]. Again, we consider the Ho, control problem for the

generalized plant £ in (1). From the context of our
issues, we make an assumption that

A1l X, has invariant zercs in Ct as well as in C—.

In order to analyze the structure of the H,, controller,
avoiding the complexity of the analysis, we make the
following assumptions:

A2 D?sz >0
A3 D DY >0

A4 rank (SICTIA 5122) =n+ma,¥se
sT-A B\ _
A5 rank ( ) D21) =n+p;,¥se

A6 Dy =0, Dp=0.

The assumptions A2 and A3 exclude singular cases
where Dy; (1,5 € 1,2,¢ # j) loses full rank or inequal-
ities D12DT, > 0 or/and DI Dy > 0 hold. In [6], we
studied the singular case where either D12DT.2 > 0or
DI D2y > 0 is not satisfied. The assumptions A4 and
A5 are from the reason that we employ the ARE ap-
proach. The assumption A6 is for the sake of simplicity
of the analysis. This has no loss of generality in our
result, and can be excluded by using techniques in [7].

3.2 Parametrization of the H_, controllers

We recall the parametrization of Hy, controllers repre-
sented by stabilizing solutions of AREs under the above
assumptions:

X (A-B,D},Ch) + (A= BgDIQCI)T X
e [7-2313?{’ — B,Dl, (BQDIZ)T] X
+CIpL (DR Ci=0 (5)
v (a- B, Dglcg)T +(a-BiDLG) Y
+Y [7-203"01 - (Dglcg)T Dglcz] Y
+ B (DX)" DLBT =0. (6)

Lemma 1

For the generalized plant X, there exists an Hy, con-
troller if and only if two ARFEs in (5) and (6) have pos-
itive semidefinite stabilizing solutions, and these satisfy

pXY) <~ (7)

If there exists an H., controller, the class of all Hy
controllers is given by

1= Ayn— Bou+ Hooy
BK w— _Cxls)n + THs)y ®)
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where parameters are given by

-

Ay =A+ "{_ZYCi‘r‘Cl + HOOCQ
o
Hoo =—BiDly ~Y (D},C2) D
Bg = By + ‘Y_QYC?Dlg
) Cr(s) = (Foo — ELF N(5)E57C1) 2
(s) = E1_2?N(3)E2_1§

t 1 1\ T

Foo = =D13Cy — Dy, (B2D12) X

C'Q = ’}’—‘2D2181‘FX + Cg, Z = (I - ‘}’_2YX)—
Ei2 = DI,Dyy,  Es = Dy DY)

1

(9)

and N(s) € RH is a free parameter.

3.3 Characterization of invariant zeros of Xg(s)
We can characterize invariant zeros of X3; by applying
a state transfermation 2 = Tz, |T| # 0.

Lemma 2

Suppose that assumptions A3 and Ab are satisfied.
Then there exists a suitable basis such that the matrices
A-B D%ICQ and B, (D.j‘l)T have the following block
decompositions with A_ stable and A, antistable

A0 0
A-BDyca=| 0 Ay 0 (10)
As Ay A
. 0
B (DL’LI) = 0 (11)
B

where (A,B) is controllable.

In the argument below, it is assumed that we have al-
ready made the state transformation for £, and we have
a generalized plant that saiisfies {10}, In this case, it is
clear that Lemma 1 still holds.

Lemma 3
The positive semidefinite stabilizing solution of ARE (6)
can be represented by

{00
Y_(O Yf), Y, > 0. (12)

Here, we decompose the solution of ARE {5) in accor-
dance with Y in (12) as

— * * TXT

and define a matrix 2, = (I — y~2¥,X,) "' € R,

4 Main results

The H, controlier presented by (8) contains the free
parameter N(s) € RH. If we put the parameter zero,
we obtain the so-called central controller whose order is
less than that of . On the other hand, by utilizing the
freedom in the parameter, we can obtain a controller
that might have an order less than that of the central
controller. As for the free parameter selection, using
this technique Li and Chang [8] and Yung [9] have con-
sidered the reduced-order H., controller design. How-
ever, the relation between the invariant zeros of the plant
and the controller reduction is not ciarified in those pa-
pers. Moreover, in [10,11], to avoid the stable pole-zero
cancellation between the plant and the H., controller
the SISO H,, controller order reduction is investigated
based on the invariant zeros on the left half plane. In
this section, by using the zeros of Xa; we derive a condi-
tion under which a reduced order H,, controller exists,
and show a way to find a free parameter that reduces the
order of the H, controller while preserving the stability
and the closed loop H,-norm less than +.

Theorem 2

Suppose that the H., control problem for the gener-
alized plant (1) under the assumptions Al to A6 is
solvable, and the generalized plant satisfies (10) where
Ay € R™%™+ js the matrix associated with the unsta-
ble invariant zeros of X1, Alsa, suppose that ms < ps,
where ma = dim(u) and p; = dim(y).

Let V,,, € R™+*™ be an arbitrary matrix that satisfies
rank V,, = m and

ATV, =Vud, JEeR™™ (14)

where m < r,, then the following properties hold.

(1) If the following rank condition
rank (C,2YV) = m (15)

Is satisfied, there exists a static solution N ¢
R™2%P2 to the equation Ck(s)Y'V = 0, where the
matrix V is defined as

Or:xm
V= Vin

O(n—r)xm

€ jrxm (16)

andr=r_+ry, A_eRT-*"- A, e R"+X"+,
(if}) If the solution satisfies the condition
7(N) <, (17)

the solution reduces the order of the Ho, controller
in (8} to n — m, while preserving the closed loop
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performance v. Then the reduced order H, con-
troller 1s represented by

- N = (A,- + B.Cryne + (Hr - Brnr) Yy
K U= — r’?r+nry
(18)

where the state variable of the controller is
= (VTY) neRr™™, (19)

and parameters are

(4, = (VTY)" Ay (YY)
B, = (VIY)' B,
| He= (VTY)' He
N 1.
Cr = Fuo {1~ (C22YV) Cz) Z(Yvy*
| T, = Fa (”zzyv)f.

Remark 1

The reduced-order controller represented in (18) gives
the upper bound of its order. Hence, the controller ob-
tained in this theorem has an order less than n — m,
where n -Is the order of the plant and m Is the sum of
the algebraic multiplicities of eigenvalues of J.

Remark 2

One major difference between this reduced-order H,,
controller and the central controller is that the reduced-
order H,, controller is proper.

Theorem 2 implies a sufficient condition for the reduc-

tion of the controlier order based on the transmission
zeros of ¥g;. In the preceding, we will investigate the
relation between the zero mode and the conditions in
{15) and (17). Knowing the relation, we can clarify that
how the zeros relate to those conditions and the reduced-
order H,, controller. First, we show a result that is
based on an unstable invariant zero on the positive real
axis.

Theorem 3

Suppose that the H,, control problem for the general-
ized plant (1) under the assumptions Al to A6 is sofv-
able. Furthermore, suppose that X4, has an invariant
zero on the positive real axis with the geometric mul-
tiplicity m. Then, we can obtain a reduced-order H,
controller by the formula in (18), while preserving the
closed loop performance ¥.

Remark 3

This result coincides with the result in Theorem 1.
However, by this result we can obtain a reduced-order
H., controller without using the bilinear transforma-
tion. Suppose that Y2y has an invariant zero o > 0 on

the positive real axis with the geometric multiplicity m.
Then, in the equation (14), we can choose a matrix Vy,
in such a way that the matrix J is represented by

J = aly. (20)

Using a full column rank matrix V in (16} with this
Vim, we can obtain a reduced-order H,, controller by
the formula in (18).

Next, we show a result that is based on plural unstable
invariant zeros on the positive real axis.

Theorem 4

Suppose that the H, control problem for the general-
ized plant (1) under the assumptions A1 to A6 is solv-
able. Furthermore, suppose that 241 has invariant zeros
on the positive real axis, and we choose the matrix Vy,
in (14) such that the matrix J is given by

70'1["11)7 (21)
o <, Vi€[l, - 1=1]CZ

J = blockdiag {a Iy, , a2l , - -

where a; > 0(i = 1,2,---,!) are the invariant zeros of
Yo and m = Zi’:l m;. Then if the following LMI:

-1

201 F + ) _e1pq1Fign >0 (22)
k=1

holds, we can obtain a reduced-order Hy, controller by
the formula in (18), while preserving the closed loop
performance v. Here, parameters are given by

= (Va Vin
e (%) 0 (75) >0

€1k 1= O — 0142 0
Fo =L, F+ FI,
I, := blockdiag (02":1‘ 1 Immom—E’-‘_.lma)

where O; Is a zero matrix of size i x {, and Oy means
empty.

Remark 4

In the LMI condition, if the parameter €, x4, is small
enough, the inequality is always satisfied. This means
that if the invariant zeros are located close each other,
the sufficient condition for the existence of a reduced-
order H., controller comes to be satisfied. In this sense,
Theorem 4 includes Theorem 3.

Finally, we show the most general result that is based
on unstable invariant zeros in C*,

Theorem 5

Suppose that the H., control problem for the general-
ized plant (1) under the assumptions Al to A6 Is solv-
able. Furthermore, suppose that we choose the matrix
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Vi in (14) in such a way that the matrix J is given by
J = blockdiag (jl, . J‘,) (23)

o (% —HY i_q19..
J!-' (ﬁl oy )1 2""‘1)2! !1: (24)
a; < aip,Vie[l,--- I-1CZ

where \; := oa; +jBi(i = 1,2, 1} are invariant zeros
of o1, and m = 2{. Then, if the following LMI:

-1 -1

20 F + 61 F + z €1 k41 k41 + Zﬂl,k+1Fk+1 >0
k=1 k=1
(25)

holds, we can obtain a reduced-order Ho, controller by
the formula in (18), while preserving the closed loop
performance . Here, given a nonsingular matrix Vi, €
Cmx™ that satisfies

SV = VA, (26)
where A is given by

A:b]ockdiag(("ol )‘D(’g g))

and the parameters appeared in the LMI (25) are defined

by
F=V3 (V'E) Y, Z- (Vm) Vin > 0
mA0 0
G =ar—a; >0
ﬁk = ko + Fik
I = blockdiag (Og(k,.l), I, On_gk)
F=05F +FO,
Mg =B — P
Fyo= OLF + FO,
Oy, := blockdiag (Oax-1), ©, Om-25)
_fi 0
o= 0 —j
@, = blockdiag (&, ---,0) € C"*™

and Oy means empty.

4

\

Remark 5

In the LMI condition (25), if the parameters e k41, B
and py k41 are small enough the LMI is always satis-
fied. This means that if the Invariant zeros are located
close each other and moreover those locate near to the
real axis, the sufficient condition for the existence of a
reduced-order H. controller intends to be satisfied. In
this sense, 'Theorem 5 includes both Theorems 3 and 4.

5 Extension to the stable zero case

In the previous sections, we have considered the H, con-
trol problem under the assumption that £s; has invari-
ant zeros in C*. Then, we have discussed the reduced-
order Hy, controlier design based on the unstable invari-
ant zeros. On the other hand, in this section we shall

discuss the reduced-order Hy, controller design based on
invariant zeros located in C- as well.

Consider a simple example. Suppose that a generalized
plant is given by (2) where E1;(s) and E;2{s) are

s+z s+ 2z
B = e OS5
where 2 # p, z > (. Since Z21(s) has no zeros in C we
cannot use the techniques from the previous section to
reduce the order of the controller. However, by noticing
the fact that, if there erists an H,, controller for the
following generalized plant:

- _ Ti(s)22 Xia(s)
E(S) - ( 221(8)322 222(5) ) y

the controller is also an Hy, controller for the gener-
alized plant in (2), we know that a reduced-order H.,
controller for the original problem can be obtained by
solving the He, control problem for ¥.. Moreover since
the plant ¥ satisfies the assumption A1, we can design
a reduced-order H, controlier by using the method we
have presented in the previous section. Thus, we have a
conjecture that we can obfain a reduced-order H, con-

troller for a generalized plant in which X2y and @;)

n
YR

have common stable transmission zeros . A theorem
that will be presented below supports our conjecture.

To state the theorem, we introduce a preliminary defi-
nition of the inner function and its properties.

Definition 1

Consider a system © = (A, B, C, D) where ¢({A) C C.
The system © is called inner if the transfer matrix ©(s)
satisfies @(—s)TO(s) = I

Lemma 4
Let @ be an inner system, and @} be an LTI system
with appropriate input-output dimensions that allow the
multiplication Q©. Then the following statements are
equivalent.

{i) The system O is stable and ||(0| < 1.
{ii) The system () is stable and ||Ql]cc < 1.

Now, we are in a position to state the main part of this
section.

¥

Lemma 5 (

Suppose that the systems 1) and Eg have common

Yo
stable transmission zeros and, additionally, I){; = 0 and
¥.1 is square. Then, there exists 2 matrix [/ such that
UUT = and

(4-BiD}C)UT =UTA (27)
C,uT =0. (28)
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Let us define a system as
T
0= (A_,P-IU (PhGs) ,-DhLGauT, 1) (29)

where P > 0 is a solution of the following Lyapunov
equation:

T
PA_+ AP+ U (DLG) DL GUT =0,

Here, we can easily verify that the system © is inner.
Using this inner system, we can obtain the following
result.

Theorem 6 =
Suppose that the systems (En) and Xs; have com-
21

mon stable transmission zeros with Dy, =0 and X Is
square. Then, we have an inner system © given by (29)
and given a controller X g, the following statements are
equivalent,.

(i) Tk solves the H, contral problem for .

{ii} g solves the Hy, control problem for

- El 1 @ 212
Y=
()321@ 222) ! (30)

where © satisfies the assumption Al, and the
McMillan degree of T is equal to that of E.

Remark 6

Suppose that there exists an H,, controller for the sys-
temn . Then, we can obtain a reduced-order H.. con-
troller for the original system ¥ where £y; has no zero
in &= but C* by applying the way we have presented
in the previous section to L.

6 Conclusions

In this paper, we have clarified a structure of the con-
troller order reduction in the standard Hy, problem. It
was shown that the mechanism of the controller reduc-
tion is related to the unstable zeros of an off-diagonal
subsystem of the generalized plant. Moreover the mech-
anism is investigated in detail by using the ARE-based
H., controller that is represented by a free parame-
ter. Furthermore, we have extended the result to cases
where the subsystem has plural stable zeros. Using this
new fact we proposed a method for the designing of a
reduced-order H., controller that has order less than
the order of the generalized plant. The feature of the
presented design is that we can obtain a reduced-order
Ho controller by solving a couple of AREs provided
that solutions of the AREs satisfy an LMI condition.
Thus this design effectively computes a reduced-order

H . controller on the basis of the structural information
of the generalized plant. Further topic of this study is
to incorporate the design philesophy into the LMI ap-
proach.

Acknowledgement: The first author would like to ac-
knowledge Prof. S. Hara in Tokyo Institute of Technol-
ogy for giving a comment of Section 5.
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